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DIFFUSION LIMITS FOR THE INITIAL-BOUNDARY VALUE

PROBLEM OF THE GOLDSTEIN-TAYLOR MODEL

Sommario.
In the paper is studied, in the diffusive scaling, the limiting behaviour of the

Goldstein-Taylor model in a box, for a large class of initialand boundary condi-
tions. It is shown that, in the limit, the evolution of the mass density is governed
by the heat equation, with initial conditions depending only on the initial data of
the hyperbolic system, and conditions on the boundary depending only on the ones
of the kinetic model.

1. Introduction

In the kinetic theory of rarefied gases, a challenging problem is given by the study of the transi-
tion from the full Boltzmann equation to the Euler or Navier-Stokes equation.

This problem was introduced by Hilbert in the first years of this century, but, until now, many
results were obtained only at a formal level [2].

For this reason, in recent years much attention has been devoted to the so calleddiscrete
velocity modelsof the Boltzmann equation and, in particular, to the two-velocity ones, which
allow to achieve rigorous results.

Two velocity models describe the evolution of the velocity distribution of a gas composed
of two kinds of particles moving parallel to thex-axis with constant and equal speeds, either in
the positivex-direction with a densityu = u(x, t), or in the negativex-direction with a density
v = v(x, t).

The most general one, which is in local equilibrium whenu = v, has the following form:



















∂u

∂t
+ c

∂u

∂x
= k(u, v, x)(v − u)

∂v

∂t
− c

∂v

∂x
= k(u, v, x)(u − v) x ∈ � ⊆ R, t ≥ 0 ,

wherek(u, v, x) is a nonnegative function which characterizes the interactions between gas par-
ticles, andc > 0. The most famous model of this kind was introduced by Carleman [1] and it
corresponds to the choicek(u, v, x) = u + v.

The mathematical theory of these models is well established(see, for example, [9]); re-
cently, in some papers [7], [10], [3], [13], it has been shownthat several well known differential
equations of mathematical physics (the porous media equation, the Burgers’ equation and some
kinds of diffusion equations) can be obtained as diffusive limits of Cauchy problems of particular
kinetic models.

Moreover, these results have a very useful application, giving the possibility to construct new
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kinds of numerical schemes for the target equations, as shown in several works (for example,
see [4], [5], [8]).

All the previously quoted papers deal with the full initial value problem, or with the initial-
boundary value problem with specular or periodic conditions at the boundary. For this reason,
in the present paper, we will investigate the hydrodynamical limit (i.e. as ε → 0+) of the
hyperbolic Goldstein-Taylor model [6], [11]

(1)



















∂uε

∂t
+

1

ε

∂uε

∂x
= 1

ε2 (vε − uε)

∂vε

∂t
−

1

ε

∂vε

∂x
= 1

ε2 (uε − vε) ε > 0

in a bounded domain� = (−L , L), L ∈ R
+, with initial conditionsuε(x, 0) = u0(x),

vε(x, 0) = v0(x) ∈ L∞(�) and boundary conditions of typeuε(−L , t) = ϕ−(t), vε(+L , t) =

ϕ+(t) ∈ W1,∞(0, T), T > 0.

The macroscopic variables for this model are the mass density ρε = uε + vε, and the flux

jε(x, t) =
uε(x, t) − vε(x, t)

ε
.

It is interesting to remark that, sinceuε andvε can be expressed in terms ofρε and jε,
system (1) is equivalent to the following macroscopic equations for the mass density and the flux

(2)



















∂ρε

∂t
+

∂ jε
∂x

= 0

ε2 ∂ jε
∂t

+
∂ρε

∂x
= −2 jε (x, t) ∈ � × (0, T),

where the boundary conditions for the macroscopic variables are partially unknown. We will
show that the densityρε = uε + vε converges weakly inL2, asε → 0+, to ρ = u + v whereu
andv are, respectively, the limits ofuε andvε . Moreoverρ is governed by the heat equation

(3)
∂ρ

∂t
−

1

2

∂2ρ

∂x2
= 0

satisfying the initial and boundary conditions:

ρ(x, 0) = u0(x) + v0(x)

and

ρ(−L , t) = 2ϕ−(t)

ρ(+L , t) = 2ϕ+(t).

The paper is organized as follows: in the next section we prove many preliminary results on
the hyperbolic model; in part III, we study the limiting behaviour of the macroscopic density on
the boundary. Section IV is devoted to the study of uniform bounds for the flux and, finally, in
part V, we investigate the hydrodynamical limit.
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It is necessary to point out that many of the forthcoming results are deeply connected to the
linearity of the problem, and they are not easily extendibleto nonlinear situations. This will be
the object of our future research.

2. A maximum principle

In this section we prove a maximum principle for system (1). Local existence of solutions of
such kind of hyperbolic systems is well known (see, for example, [12] and the references within).
Therefore, a maximum principle implies that the solution isglobal and unique. Since the problem
is linear, we will consider some different sub-problems, which are easier to study.

PROBLEM 5.1. We study the system

(4)



















∂u1

∂t
+

1

ε

∂u1

∂x
= 1

ε2 (v1 − u1)

∂v1

∂t
−

1

ε

∂v1

∂x
= 1

ε2 (u1 − v1),

with the initial and boundary conditions:

u1(x, 0) = u0(x) ∈ L∞(�)

v1(x, 0) = v0(x) ∈ L∞(�)

u1(−L , t) = 0

v1(+L , t) = 0.

PROBLEM 5.2. We study the system

(5)



















1

ε

∂u2

∂x
= 1

ε2 (v2 − u2)

1

ε

∂v2

∂x
= 1

ε2 (v2 − u2),

with boundary conditions:

u2(−L , t) = ϕ−(t) ∈ W1,∞(0, T)

v2(+L , t) = ϕ+(t) ∈ W1,∞(0, T).

PROBLEM 5.3. We study the system

(6)



















∂u3

∂t
+

1

ε

∂u3

∂x
= 1

ε2 (v3 − u3) + fε(x, t)

∂v3

∂t
−

1

ε

∂v3

∂x
= 1

ε2 (u3 − v3) + gε(x, t),

where fε(x, t) and gε(x, t) are suitable functions that will be specified later, with thefollowing
initial and boundary conditions:
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u3(x, 0) = 0

v3(x, 0) = 0

u3(−L , t) = 0

v3(+L , t) = 0.

The functions

uε(x, t) = u1(x, t) + u2(x, t) + u3(x, t),

vε(x, t) = v1(x, t) + v2(x, t) + v3(x, t)

satisfy, by linearity, the differential system (1), with the correct initial-boundary conditions, pro-
vided that

fε(x, t) = −
∂u2

∂t
and

gε(x, t) = −
∂v2

∂t
.

In addition, if a maximum principle holds separately for Problem 5.1, 5.2, and 5.3, then the
original problem admits itself a maximum principle.

In order to obtain bounds for Problem 5.1, we multiply the first equation of system (4) by

2pu2p−1
1 and the second one by 2pv

2p−1
1 (p ∈ N):

(7)























∂u2p
1

∂t
+

1

ε

∂u2p
1

∂x
= 2

ε2 pu2p−1
1 (v1 − u1)

∂v
2p
1

∂t
−

1

ε

∂v
2p
1

∂x
= 2

ε2 pv
2p−1
1 (u1 − v1).

By integration over�, adding the resulting equations and using the boundary conditions, we
have:

d

dt

∫

�
(u2p

1 + v
2p
1 )dx +

1

ε

[

u2p
1 (L , t) + v

2p
1 (−L , t)

]

=(8)

=
2p

ε2

∫

�
(u1 − v1)

(

v
2p−1
1 − u2p−1

1

)

dx ≤ 0.

Thus we deduce, at least formally, that

d

dt

∫

�

[

u2p
1 + v

2p
1

]

dx ≤ 0

for all t ≥ 0. Letting p go to+∞, we find that

(9) max{‖u1(t)‖∞, ‖v1(t)‖∞} ≤ max{‖u0‖∞, ‖v0‖∞} .
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This proves the following lemma.

LEMMA 5.1. Let u1(x, 0) = u0(x), v1(x, 0) = v0(x) ∈ L∞(�) and u1(−L , t) = 0,
v1(+L , t) = 0, for all t > 0. Then u1(x, t), v1(x, t) ∈ L∞(�) and

max{‖u1(t)‖∞, ‖v1(t)‖∞} ≤ max{‖u0‖∞, ‖v0‖∞} .

In order to study the so called “stationary problem”, we subtract the two equations of sys-
tem (5), finding

∂

∂x
(u2 − v2) = 0;

this means that

(10) u2(x, t) = v2(x, t) + α(t)

almost everywhere in�, whereα(t) is a function that will be determined later.

Moreover, adding the two equations of system (5), we find that

∂

∂x
(u2 + v2) =

2

ε
(v2 − u2).

By using (10) we have

(11)
∂v2

∂x
(x, t) = −

α(t)

ε
.

If we integrate (11) on the interval(L , x), we obtain

(12) v2(x, t) = ϕ+(t) −
α(t)

ε
(x − L).

Using (10) atx = −L , we havev2(−L , t) = ϕ−(t) − α(t); this result, joined to (12), leads
to conclude that

α(t) = ε
ϕ−(t) − ϕ+(t)

ε + 2L
.

Similarly, by integrating on(−L , x), we can prove that

u2(x, t) = ϕ−(t) −
α(t)

ε
(x + L).

Thus we have proved the following lemma.

LEMMA 5.2. The solution of Problem 5.2 is given by the two functions

u2(x, t) = ϕ−(t) −
ϕ−(t) − ϕ+(t)

ε + 2L
(x + L)
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v2(x, t) = ϕ+(t) −
ϕ−(t) − ϕ+(t)

ε + 2L
(x − L).

Thanks to the hypotheses on the boundary conditionsϕ−(t) and ϕ+(t), u2(x, t), v2(x, t) ∈

W1,∞(0, T; C∞(�̄)), uniformly inε.

Problem 5.3 needs a slightly more complicated proof, which will be given in several steps.

We first notice thatfε, gε belong toL∞(0, T; C∞(�̄)) by Lemma 5.2. Then, we multiply

the first equation of system (6) for 2pu2p−1
3 and the second one by 2pv

2p−1
3 ; then we integrate

on� and add the two obtained equations:

(13)
d

dt

∫

�
(|u3|2p + |v3|2p)dx ≤ 2p

∫

�
(| fε ||u3|2p−1 + |gε ||v3|2p−1)dx.

Let M be

M = ess sup
x∈�, t∈(0,T)

{| fε |, |gε |}.

Then, inequality (13) becomes

d

dt

∫

�
(|u3|2p + |v3|2p)dx ≤ 2pM

∫

�
(|u3|2p−1 + |v3|2p−1)dx.

Now, by the Hölder-inequality we have:

∫

�
|u3|2p−1dx ≤ (2L)1/2p

[∫

�
|u3|2pdx

]

2p−1
2p

.

By the algebraic inequality

ac + bc ≤ 4(a + b)c a, b ≥ 0,
1

2
≤ c ≤ 1,

we obtain

d

dt

∫

�
(|u3|2p + |v3|2p)dx ≤ 8pM(2L)1/2p

[∫

�
(|u3|2p + |v3|2p)dx

]

2p−1
2p

.

Letting

y(t) =

∫

�
[|u3(x, t)|2p + |v3(x, t)|2p]dx,

we must now solve the ordinary differential inequality:

d

dt
y(t) ≤ 8pM(2L)1/2py(t)

2p−1
2p .

Its solution is

y(t)1/2p ≤ y(0)1/2p + 4M(2L)1/2pt,

i. e., thanks to the initial conditionsu3(x, 0) = v3(x, 0) = 0
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(14)
[∫

�
(|u3|2p + |v3|2p)dx

]1/2p
≤ 4M(2L)1/2pt .

Finally, letting p → +∞, it is possible to show that, for any finite time, the solutionof
Problem 5.3 is essentially bounded.

In conclusion, considering our global problem, by linearity we have proved the following
theorem.

THEOREM 5.1. Let uε(x, 0) = u0(x), vε(x, 0) = v0(x) ∈ L∞(�) and uε(−L , t) =

ϕ−(t), vε(+L , t) = ϕ+(t) ∈ W1,∞(0, T), for all T > 0. Then uε(x, t), vε(x, t) ∈ L∞(�) for
all t ∈ [0, T ], uniformly inε.

3. The solution on the boundary

This section is devoted to the study of the limiting behaviour of uε(+L , t) andvε(−L , t) on the
boundary.

If 1 ≤ p < ∞, equation (8) shows that

d

dt

∫

�
(u2p

1 + v
2p
1 )dx +

1

ε

[

u2p
1 (L , t) + v

2p
1 (−L , t)

]

≤ 0

and so, by Theorem 5.1

1

ε

∫ T

0

[

u2p
1 (L , t) + v

2p
1 (−L , t)

]

dt ≤ (‖u0‖
2p
2p + ‖v0‖

2p
2p) = E,

whereE ∈ R
+. Then we have

lim
ε→0

‖u1(L , t)‖L p(0,T) = 0,

lim
ε→0

‖v1(−L , t)‖L p(0,T) = 0.

Furthermore, by Lemma 5.2, we have that

lim
ε→0

u2(L , t) = ϕ+(t)

lim
ε→0

v2(−L , t) = ϕ−(t)

almost everywhere.

Finally, if we choose 1≤ p < ∞, system (6) also implies that

d

dt

∫

�
(|u3|2p + |v3|2p)dx +

1

ε

[

u2p
3 (L , t) + v

2p
3 (−L , t)

]

≤

2pM
∫

�
(|u3|2p−1 + |v3|2p−1)dx.

By integration over(0, T) we have
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1

ε

∫ T

0

[

u2p
3 (L , t) + v

2p
3 (−L , t)

]

dt ≤ 2pM
∫ T

0

∫

�
(|u3|2p−1 + |v3|2p−1)dxdt+

+

∫

�
(|u3(x, 0)|2p + |v3(x, 0)|2p − |u3(x, T)|2p − |v3(x, T)|2p)dx.

By inequality (14), we know that theL p(�)-norms ofu3 andv3 are bounded by a linear function
of the time, and therefore all the integrals on the right-hand side of the above inequality are
bounded, provided that 1≤ p < ∞, for all T > 0. Also in this case, we then have

lim
ε→0

‖u3(L , t)‖L p(0,T) = 0,

lim
ε→0

‖v3(−L , t)‖L p(0,T) = 0.

Therefore, since

ρε =

3
∑

i=1

(ui + vi ) ,

by using the properties of the norm we have proved the following theorem.

THEOREM 5.2. Let ρε = uε + vε the macroscopic density of system (2) andε > 0. Then,
on the boundary,

lim
ε→0

ρε(−L , t) = 2ϕ−,

lim
ε→0

ρε(+L , t) = 2ϕ+

strongly in Lp(0, T), provided that1 ≤ p < ∞.

4. Behaviour of the flux

In this section we show that the flux is bounded inL2(� × (0, T)).

We repeat the splitting of system (1) and study separately the behaviour of the three fluxes:
j1, j2 and j3 respectively; by using the classical inequality

(15) (a + b + c)2 ≤ 3(a2 + b2 + c2), a, b, c, ∈ R

we will then derive a bound for the total fluxjε(x, t).

We can indeed multiply the two equations of system (4) by 2u1 and 2v1 respectively. Then
we add and integrate on�, obtaining:

d

dt

∫

�
(u2

1 + v2
1)dx +

1

ε

[

u2
1(L , t) + v2

1(−L , t)
]

= −2
∫

�

(

u1 − v1

ε

)2
dx,

and so
∫

�
| j1|

2dx ≤ −
1

2

d

dt

∫

�
(u2

1 + v2
1)dx
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(16)
∫ T

0

∫

�
| j1|2dxdt ≤

1

2

∫

�
[u2

0 + v2
0 − u2

1(x, T) − v2
1(x, T)]dx ≤

1

2
(‖u0‖2

2 + ‖v0‖2
2).

Then, we must consider Problem 5.2: as usual, we use the explicit solution in Lemma 5.2 in
order to show that

j2 =
1

ε

[

ϕ−(t) −
ϕ−(t) − ϕ+(t)

ε + 2L
(x + L) − ϕ+(t) +

ϕ−(t) − ϕ+(t)

ε + 2L
(x − L)

]

=
1

ε + 2L
[ϕ−(t) − ϕ+(t)].(17)

Finally, we multiply the two equations of system (6) for 2u3 and 2v3 respectively. Then we
add and integrate on�, obtaining:

d

dt

∫

�
(u2

3 + v2
3)dx +

1

ε

[

u2
3(L , t) + v2

3(−L , t)
]

=

= −2
∫

�

(

u3 − v3

ε

)2
dx + 2

∫

�
( fεu3 + gεv3)dx,

that is, by the maximum principle for Problem 5.3 and using the properties offε andgε:

∫

�
| j3|2dx ≤ −

1

2

d

dt

∫

�
(u2

3 + v2
3)dx + 2Kt,

whereK is a positive constant. This means that

(18)
∫ T

0

∫

�
| j3|

2dxdt ≤ K T2.

Inequality (15), together with (16), (17) and (18), shows that jε = j1 + j2 + j3 is bounded
in L2(� × (0, T)).

THEOREM 5.3. Let uε(x, t), vε(x, t) be the unique solution of the initial-boundary prob-
lem 1. Then, for all T> 0 there exists D∈ R

+ such that:

∫ T

0

∫

�
| jε|

2dxdt ≤ D,

uniformly inε.

5. The hydrodynamical limit

In this section, we study the limiting behaviour of the solution (ρε, jε) to system (2) asε → 0. In
our passage to the limit, we will consider various relatively compact sequences. In these cases,
when we say that the sequence converges to a limit, we mean that there exists a subsequence
which converges to a limit.
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First, sinceρε = uε + vε is bounded inL∞ (and hence inL2) by Theorem 5.1, we notice
that there exists a subsequenceρε such thatρε ⇀ ρ in L2. Moreover, by Theorem 5.3, we have
that jε ⇀ j in L2

x,t .

Consider now system (2) with the following conditions:

ρε(x, 0) = u0(x) + v0(x)

ρε(−L , t) = ρ∗(−L , t, ε)

ρε(+L , t) = ρ∗(+L , t, ε),

where the right-hand sides of the last two conditions are partially unknown, but they approach
respectively 2ϕ− and 2ϕ+ asε → 0 by Theorem 5.2. We can conclude, by substitution, that

(19)
∂ρε

∂t
−

1

2

∂

∂x

[

∂ρε

∂x
+ ε2∂ jε

∂t

]

= 0,

at least at a formal level.

Let φ(x, t) be a test function of classC∞ that vanishes outside the rectangle(−L , L) ×

(0, T). Multiplying equation (19) byφ and then integrating in(−L , L) × (0, T), we obtain the
weak formulation:

∫ T

0

∫ L

−L

∂ρε

∂t
φdxdt −

1

2

∫ T

0

∫ L

−L

∂

∂x

[

∂ρε

∂x
+ ε2 ∂ jε

∂t

]

φdxdt = 0.

This equation coincides with the weak formulation of the heat equation, provided that

lim
ε→0

ε2
∫ T

0

∫ L

−L

∂

∂x

(

∂ jε
∂t

)

φdxdt = 0,

and the initial-boundary conditions approach the correct ones asε → 0.

Indeed, we have that

ε2
∫ T

0

∫ L

−L

∂

∂x

(

∂ jε
∂t

)

φdxdt = ε2
∫ T

0

[

∂ jε
∂t

φ

]L

−L
dt − ε2

∫ T

0

∫ L

−L

∂ jε
∂t

∂φ

∂x
dxdt,

where the first term on the right-hand side vanishes by the conditions on the support ofφ. There-
fore, it remains only the second term; we now prove that it approaches zero asε → 0.

Since

ε2
∫ T

0

∫ L

−L

∂ jε
∂t

∂φ

∂x
dxdt = ε2

∫ L

−L

[

jε
∂φ

∂x

]T

0
dx − ε2

∫ T

0

∫ L

−L
jε

∂2φ

∂x∂t
dxdt,

we may consider the two terms on the right-hand side separately. We have that

ε2
∫ T

0

∫ L

−L

∣

∣

∣

∣

∣

jε
∂2φ

∂x∂t

∣

∣

∣

∣

∣

dxdt ≤ ε2

[

∫ T

0

∫ L

−L
j 2
ε dxdt

]
1
2




∫ T

0

∫ L

−L

(

∂2φ

∂x∂t

)2

dxdt





1
2

→ 0
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because of Theorem 5.3 and the smoothness ofφ; furthermore, we obtain

ε2
∫ L

−L

[

jε
∂φ

∂x

]T

0
dx = ε

∫ L

−L

[

(uε − vε)
∂φ

∂x

]T

0
dx → 0

because of the maximum principle (see Theorem 5.1) and the smoothness ofφ.

Since jε is bounded inL2, we deduce that∂ jε/∂x belongs toH−1, and so we can derive
both members of the second equation in system (2) with respect to x. Thereforeρ, which satisfies
the boundary conditionsρ(−L , t) = 2ϕ−, ρ(L , t) = 2ϕ+ in L p(0, T) for p ∈ [1, ∞) and the
initial conditionρ(x, 0) = u0 + v0, solves by subsequences the heat equation

(20)
∂ρ

∂t
−

1

2

∂2ρ

∂x2
= 0

in a weak sense, in the rectangle� × (0, T).

Since we have assumed the initial valuesu0, v0 ∈ L∞(�), also the initial densityρ0(x) =

ρ(x, t = 0) ∈ L∞(�). On the other hand, the heat equation (3), which is compatible with
the initial-boundary value problem for system (1), admits aunique global solution inD′. The
uniqueness result guarantees the existence of a unique limit for the whole family.

Therefore, the main results of this paper may be summarized as follows:

THEOREM 5.4. Let (ρε, jε) be a sequence of solutions to the initial-boundary value prob-
lem for system (2), where the initial values u0, v0 ∈ L∞(�), and the boundary conditions
uε(−L , t) = ϕ−(t), vε(+L , t) = ϕ+(t) ∈ W1,∞(0, T). Then, there existsρ ∈ L∞ such that
ρε(x, t) converges toρ(x, t) in L2. Moreoverε jε converges to zero strongly in L2(� × (0, T)).
The limit densityρ(x, t) is the (unique) weak solution to the initial-boundary valueproblem
for the heat equation (3), inD′(� × (0, T)), with initial datumρ0 = u0 + v0, and boundary
conditions

ρ(−L , t) = u(−L , t) + v(−L , t) = 2ϕ−,

ρ(L , t) = u(L , t) + v(L , t) = 2ϕ+

in L p(0, T), 1 ≤ p < ∞.

6. Conclusions

The paper shows that the heat equation with initial-boundary conditions can be obtained as the
hydrodynamical limit (in a weak sense) for the Goldstein-Taylor model of the Boltzmann equa-
tion, provided that initial data belong toL∞ and boundary conditions belong toW1,∞. There
are still two open problems. It seems, indeed, that it is possible an-dimensional generalization,
which will be considered in a later work.

Even more interesting might be the nonlinear case, which needs new techniques, not con-
nected to the properties of the linearity of the problem.
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