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S. Coriascd

FOURIER INTEGRAL OPERATORS IN SG CLASSES |
COMPOSITION THEOREMS AND ACTION ON SG SOBOLEV
SPACES

Abstract. A new class of Fourier Integral Operators (FIOs, for shartjéfined.
Phase and amplitude functions are chose8@symbol classes, the former with
the additional requirements of being of ordér 1), real-valued and suitably grow-
ing at infinity. These FIOs turn out to be continuous on thecepd (R") of
rapidly decreasing functions a&(R") of temperate distributions. Results about
the composition oSG FIOs with SG pseudodifferential operators and about the
composition of aSG FIO with its L2-adjoint are proved. These allow to obtain
results about the existence of parametrices for elliptidsrithe continuity on the
SG Sobolev Spaces and the wave front sets. As an example, ibe atta SG-
compatible change of variable ors& pseudodifferential operator is reconsidered
in terms of SG FIOs.

1. Introduction

Fourier Integral OperatoTswere systematically treated by Hormander for the first fimi@1],
after having been initially used by Lax, Maslov, Egorov arldens. The results in [21] were
expanded in the paper [15] by Duistermaat and HormandesreMiney studied parametrices of
ydos of principal type and propagation of singularities. Ha meantime, FIOs had also been
applied to the study of hyperbolic equations and specteairth

The standard theory of FIOs is based on symbol classes whtefysuniform estimates
in compact sets oveR". It is very well suited for studying operators on compact iftdds,
and also the Cauchy problem can be solved in a satisfactoyy Wacollection of techniques
and results in this environment can be found, e.g., in Kurgm{26]. However, problems arise
when one tries to solve the same problems on honcompact atamifAlso in the simple case
of R", we need decay of the symbol both in the variables and in tharizbles if we want
to achieve compactness of the remainder operators. A pesgiproach to the solution of the
problem is based on amplitude classes satisfying, forg8, y € N' andx, y,£ € R", the
estimates

€Y |0g9507a(x, y, )] < Capy (&)™ 121 (x)M2=IBl (y)ms=l1,

m = (Mg, My, M3) € R3 is the “order” of the amplitude. Analogously, we can consiledt-
symbolsa(x, &) of double-ordertn = (mq, my) € R2. The associated Sobolev spadés,

*Thanks are due to Prof. Elmar Schrohe, University of Potsdamt Prof. Luigi Rodino, University of
Torino, for helpful discussions and observations.
TFrom now on, FIO will stand for Fourier Integral Operator ahdo for pseudodifferential operator.
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s € R? are defined in the canonical way. These concepts date batle tadrks of Shubin
[43], Parenti [35] and Cordes [10] and tiielos theory so obtained is very precise: in fact, the
residual elements of the calculus associated to the ardpktin (1) are the integral operators
with Schwartz kernels, i.e., kernels in the Schwartz spa@" x R"). In Schrohe [38] the
whole theory has been name8G’ calculus and transferred to a class of noncompact marsfold
with a compatible structure, the so-call&& manifolds. Applications concerned the analysis of
complex powers of elliptic operators on noncompact madgf¢Schrohe [39]) and the solution
of boundary value problems for manifolds with noncompaatriatary (Cordes and Erkip [12],
Schrohe and Erkip [40], Schrohe [37]). A detailed discussiftheSG theory is given in Cordes
[11]: the definition of theSG symbol classes and some of their properties are recallegtiion
2.

We will be concerned here with a class of FIOs with phase argliarde functions chosen
in SG classes. As standard, these operators present two forimamatogous properties. Type |
operators, for functions € S(R"), have the form

@ AUK) = Ay al(X) = / de d90E) acx, £)0(6),
while Type Il operators are defined by
3) BU(®) = Bypu(€) = / dx e *%8 b &) u(x).

Here, as usualj = (27)~"d&, while the phase functiop and the amplitudea andb are
chosen inSG symbol classes. More precisely, the phase fungatiésm chosen real valued in the
SGl(l’l) class, with the additional property that its first derivativsatisfy a growth condition:
there exist constants C > 0 such that

c(X)

< C{x)
@ and c(&) < (deo)

C).
The amplitudes andb can be chosen in arsqm class. We have set

=
=

(x)2 = 1+ |x|? for x vector or covector ifR",
dyg = (%,...,88%):(Bl(p,...,an(p)=(8:)L((p,...,8r)1(<p),
d¢
IREIR
Vep = = =
99 "y oLy
9&n

andN, R andC denote, respectively, the integer, real and complex nusniets, whileN*, R*
andC* are the same sets without 0. It can be shown ghdas of the form

Puco = [ d X5 poc 666
(fori < X|§ >= xigi andp € SC—:{“) mapS @R") continuously into itself and are extendable to

linear continuous operators fro8f(R™) to S’(R") (see [11] and references therein). The same
is true for FIOs defined in (2) and (3), as we show in section 3.

*Whenever it will be convenient, we will use the conventioattbxpressions with repeated upper and
lower indices denote summation over such indices, g.g',= Zi”:l X&',
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One of the main results proved in section 4 is the followirgptiem.

THEOREM1 (COMPOSITIONTHEOREM). Given a FIO A= A, 5 of Type | such that the
real valued phase < Sq(l’l)(R”) satisfies (4) with a SG"(R") and aydo P = Op(p)
with p € SG}(R”), then the composed operator B P A is, modulo smoothing operators,
a FIO of Type 1. In fact, H= H, h wherey is the same phase function and the amplitude
he SGIert (R") admits the following asymptotic expansion:

1 .
h(x,§) ~ D2 @GP, dkg(x, £)DY [V Y Day, )] .
aeln & y=x

Here
V(X Y. 8) =0y, §) —e(X, §) — (y — X|dxp(X, §)) ,

and, as usual, B = (—i)lel5Y.

As a first application, we reconsider in subsection 4.43fecompatible change of vari-
ables foryrdos with symbol inSG{“(R”), cf. Schrohe [38]. In subsection 4.5 we analyze the

action of these FIOs on tH8G Sobolev spaceBiS, s € R2, recovering the expected continuity
results. In particular, FIOs with amplitudee SG™ map H® continuously intoHS~™ for all

m, s € R2. Finally, in subsection 4.3 elliptic FIOs are defined andiibsection 4.6 we consider
the action of FIOs on wave fronts. Section A.1 of the appenditains the proof by induction of
formula (27) while section A.2 contains an alternative prafcthe continuity of FIOs in th&G
Sobolev spaces. For the detailed proofs of most of the cusnber formulae used throughout
the text, see, e.g., the appendix of Coriasco [14].

In a subsequent paper (Coriasco [13]), the solution of Hygir Cauchy problems in this
environment will be given in terms of FIOs.

From now on, we will use the notations < g and f(x) < g(x) to meaniC > 0
vx | f(X)| < Clg(x)|, while the notationsd ~ gand f (x) ~ g(x) willmeanf <g A g~< f.
Notations concernin@G classes are recalled in section 2, where, for the sake of lebemgss,
we also recall the notion G manifold. For convenience, when dealing with orders of sgisib
we will often use the obvious notatioes= (1, 1), e; = (1,0) andey; = (0, 1). Analogously,
e=(1,11,e =(1,0,0) andey = (0, 1, 0) andeg = (0, 0, 1) when the reference is to orders
of amplitudes. If not explicitly otherwise stated, will always stand for a Type | FIO of the
form (2) with phasey and amplitudeax while B will stand for a Type Il FIO of the form (3) with
the same phase and amplitudeIn general,yydos will be denoted by capital letters and their
symbols or amplitudes by the corresponding small letter, = Op(p), g = Sym(Q), etc.).
The other notations are standard.

Comparing our results with the existing literature, we finalbserve that general FIOs
calculi exist already, see for example Liess and Rodino &id Bony [5], but they seem not
applicable to the present situation. A natural questionhstiver our results may keep valid if
SG symbol classes are replaced by more general Beals or Wayh#étider classes R", see
Beals [2], Hormander [22] Vol. 3. As it concerns Theorent1s icertainly possible to extend it
in some way to such situations, however the developmentedfiOs calculus in subsection 4.2
take advantage of the peculiarities of tB& structure, and of cours8G changes of variables,
treated in subsection 4.4, have not a counterpart in thesBé@tmander frame.
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2. Definition and basic properties of SG symbol classes, opprs and manifolds

DEFINITION1. Form=(mq,...,myn),r =(1,...,IN) e RN write:
m>r, if mjzrj,jzl,...,N;
m>r, if mj>rj,j=1,...,N.

DEFINITION 2. For m = (mq, myp, mg) € R3 we denote bysGM(R") the space of all
amplitudes functions & C* (R" x R" x R") which satisfy the condition

(5) Vo, B,y e N' 1 agafayacx, y, ) < (&Ml pgmelBlyyms=ivl,

SGM@®R") is given the usual Fréchet topology based upon the semmonplicit in (5). More-
over, let us set
SG® = Umer3 SG™,  SG™*®° = ner3 SG™

The functionsa € SG™(R") can be(v x v)-matrix-valued (this will be useful to deal with
systems) and the estimates must be valid for each entry aihtigx. We will write simply
SGM instead ofSGM(R"): the dimension of the base space is from now on fixed, tand the
base space is specified only if it is a manifold, a submanifatttording to the definitions in the
following) or an open subset &".

DEFINITION 3. For m = (mg, my) € R? denote bySG"(R") = SG" the double-order

symbol space of functions @ SGM:M2:0) which are independent of y. As in Definition 2, let
us set

SG® =Umerz SG"  SG ™ = MNmer2 SG™
DEFINITION 4. A formal infinite sumZ‘J?O:1 aj is an asymptotic expansion if

1.VjeNaj eSG;
2. VjeNmj; 1 <mj;
3. limj_, 0o mj = (—00, —00).

We further write a~ ‘J-’Ozl aj when
N
. MN-+1
VNeN a-) ajesg™.

j=1

DEFINITION 5. We denote b2 (k) with k > 0 the set of allSG-compatible cut-off func-
tions which are equal to one in a suitable neighbourhood efdlagonalA, more precisely the
setofally = x(x, y) € SG0.0.0 sych that

k
ly — x| < §<X) = xxy=1
ly—x| >k{x) = xXy =0.

If not otherwise stated, we will always assumesk(0; 1), which is what we will generally
need when we will make use of these cut-off functiah&k) with R > 0 will instead denote
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the set of allSG-compatible cut-off functions which vanish near the orjgin., the set of all
¢ = ¢(x, &) € SG*? such that

IX| + €] zRR = ¢(X &) =1

X+ €] < 5 = d(x, &) =0.

PROPOSITIONL. The set€2 (k) and E(R) are non-empty for any,kR > 0.

DEFINITION 6. To each amplitude g SG™ associate a linear operator P= Op(p) :
S@®") — SR") defined as

®) Puco = Op(Puco = [ [ dyek &Y= pix v, 6 uey.
Let us denote biyG™ the space of all these operators, i.e.,

LG™ = 0p(SG™) = {P e Hom(S@®™)) |Ipe SG™ : P =0p(p)}.
An element R= LG™M is called aydo , of order less or equal to m.

DEFINITION 7. For P € LG™ we denote by p= Sym(P) ¢ SGlm the symbol of P, that is
P = Op(p). Moreover, we denote iy, (P) the principal symbol of P, that is a' e SGlm

such that p- p’ € SG"°.

DEFINITION 8. Let K denote the space of linear integral operators having kesriel
S®M), e,

K=KR" = {K e HomS®RM) | Ik € SR : Kf(x) = /dy k(x, y)f(y)}

PROPOSITION2. Every K € K extends to a linear continuous map K S'(R") —
S@RM.

DEFINITION9. A symbol pe SG{“ and the corresponding operator £ Op(p) are called
md-elliptic if there exists B~ 0 such that

IX| + 6] > R= p(x,&) # 0
and
X+ 18] > R= [pox, )17 < (6)7™ (™.
Let us denote bESG"(R") = ESG™ the subset 08G" of all md-elliptic symbols of order m
and byELG™ = Op(ESG") the corresponding subset of md-elliptic operators. Anaicy,

an amplitude pe SG™ and the corresponding operator 2 Op(p) are called md-elliptic and
we write pe ESG"(R") = ESGM if

3p e ESG", m' = (mg, my +mg) | Op(p) — Op(P) € K.

DEFINITION 10. A KC-parametrix (or simply parametrix) of ¢¢do P € LG™ is ayydo Q
such that
PQ—-I,QP—-1 ek,

where | denotes the identity operator.
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In the following propositions we state some basic propgrtiethe symbols and operators
defined above. We also define and state some properties obtfesponding Sobolev spaces.
Proofs can be found in [11], [38] and the references quoterkth.

PROPOSITIONS.

vmm eR® : m<m =SG"csa",
vmm eR? : m=<m = sG"csq".

Moreover, as direct consequence of the Leibniz rule and #fen@ion 2,

7 vpeSGM, qeSG : pge SG™MT.

(8) Vpe SGMva, B,y eN' : 9 0a) p e SGNIHla-iPle-ivies

PROPOSITION4.

1. The integral in(6) makes sense and, as already observed, defines an elenfgstdf.e.,
Op(p) is a linear continuous operator froid in itself), which is extendable to a linear
continuous operator fron§” in itself.

2. Ifin(6)pe SG{“, Definition 6 coincides with the usual one, i.e.,

Op(P)u(x) =/ds & <XI5> p(x, &) ac)
whered () = Fx_¢ (u)(§) is the Fourier transform of u.
3. SG® = SR, SG*® = S®R?") andLG ~>® =K.
DEFINITION 11. Fors = (s, ) € R? the symbolks denotes the product
9) ms(X, &) = (£)% ()%
andIls = Op(rs) the corresponding operator.

DEFINITION 12. The associated family of weighted Sobolev space@®M) = HS, s =
(s1,S) € RZ, is defined in the canonical way:

(10) HS = {u c S'®R") | Tlsu € LZ(R“)}
with the normjjulls = ||TIsull 2 = [ITTsullg.

PropPosITIONS. The following results govern the asymptotic expansiongrobsls.

1. (ldentification of symbols).
For every asymptotic expansicE‘j’o:1 pj we have:

D 3pesq™|p~ Xy pj;

11
) 2 P~ = p-p e SERM.
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2. (Simplified criterion).
If p e C®R2") satisfies

Vo, pe N Fq@), ka(B) € R1ZIEP(X, &) < (§)[a) pqle®

and
Hrkrenler | Ir = —o00
with  p(x, &) — X5 _q pj(x, &) < ) ()l

then we have p- ch;o:l p;-
3. (Existence of the symi5ol

Vp e SGM3pe SG", m = (my, my+mg) | Op(p) = Op(P)
and

jlol
(12) P& ~ Y —-DEDY pX. ¥, O)ly—x
aeNN 7

4. (Symbol of the composition).

VpeSG",q e SG 3se SG™ | Op(p) Op(a) = Op(s)
and

j el
(13) s(x.§)~ Y —-DZp(x, £)DXA(X, §).
aeNn

In particular, the composition of twgrdos is ayrdo the order of which is the sum of the
orders of the two operators.

5. (Order of the commutator).
VpeS@",qeSG R=[P,Q] e LG™ ¢
and

Symp (R) (x, €) = ) i(Dg p(x, §)Dya(x, &) — Dy p(x, §) DEq(X, ).
la|=1

6. (Symbol of the £-adjointl ).
VpeSG" 3q € SG" | Op(p)* = Op(qQ)
and
jilel

o N
(14) A, &) ~ Y —-DgDEp(X, £).

aeND

8The equalities of operators like in points 3, 4 and 6 of Prajmws5 are to be understood “moduld’.

The symbol will also denote, in some parts of the sequel, the pull-bd@nmperator or of a function
and the “adjoint” functiona*(x, §) = a(&,x). The meaning of the symbol in the various situations is
generally clear by the context, since we will never use pattks of adjoint operators and functions or
adjoints of pull-backs of operators and functions.
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PROPOSITIONG. (Action on Sobolev spaces).
1. VP elG™ : P e L(HS HSM).

2. In particular, if s> r then HS is continuously embedded in"HIf s > r the embedding
HS < H' is compact.

PROPOSITIONY. (Parametrix of md-elliptic operators).
Every P e ELG™ admits a parametrix Q¢ ELG ™™ and is a Fredholm operator from #to
HS~™ for every se R2.

An important property oSG classes of symbols and operators is their invariance under
coordinate changes in a suitable class of diffeomorphidrapen sets oR", the SG-compatible
diffeomorphisms (oSG diffeomorphisms). This is the content of Proposition 8 aheédrem 2
below. They allow us to transport the whole structure to ast# manifolds, th&G manifolds,
which are all those manifolds having &G-compatible atlas. The precise meaning of this is
given in Definition 17. We introduce now all the necessaryams for these statements.

DEFINITION 13. (Push-forward and pull-back of functions on open subseR0f
Let us denote bg?(R") the set of all open sets B'. LetU, V € OR") and lety € C*®(U, V)
be a diffeomorphism of U onto V with inverge= ¢ 1. Let us denote this by € Diffeo(U, V).
Forany f € C°°(U) and ge C*°(V) define:

(15) fa=¢uf €CPNV) by fi(y)="fod(y) = fB(Y);
(16) g =9¢"ge C¥WU) by g(X)=gogp(X)=g@X).
DEFINITION 14. (Push-forward and pull-back of functions on open subse®*®").

Letus take UV € O@RM), ¢ e Diffeo(U, V) and f € C®(T*U), g € C®(T*V). Denote by
‘;—‘)’Z the Jacobian matrix of the functigihand define f € C°°(T*V) and g € C>®°(T*U) by
X

X=$(y>) ’
.
g (¢>(X), & a—d)

y y=¢<x>)

The operator$ and, induce actions on Hoo€*°(U)) and Hon{C>°(V)) as described in
the following definition.

P
fu(y.m) = ¢ f(y, m) o¢

f (5()/), n

g (X, &) = ¢*g(X, §)

DEFINITION 15. For all P € Hom(C*®(U)), Q € Hom(C*®(V)), f € C*U) and
g € C*®(V) define:

Py = ¢« P € HOm(C®(V)) by (P.g)(y) = (PG (@(y) = (PG)u(Y);
Q" =¢*Q € Hom(C>*(U)) by (Q* F)(x) = (Qf)(¢(x) = (Qf)*(X).

DEFINITION 16. (SG-compatible diffeomorphisms).
Letg e Diffeo(U#, v#) with U#, V# € ORM) satisfy

an vx e U* 0%p () < (x)171¢l and vy e V* ala(y) < (y)L-lel,
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Assume also

U cU* v cv¥#s5>0]| ¢|y eDiffeoU, V)
(18) vx € U B(x, 8 (x)) c U¥
vy eV B(y. 8 (y) c V¥

where Bx,r),x € R",r > 0is the euclidean ball oR" of center x and radius r. We will
then say that) is an SG-compatible diffeomorphism (&G diffeomorphism) and we will write
# e SGDiffeo(U*, V#; U, V; ).

PrROPOSITIONS. (Invariance ofSG{" by the action oSG diffeomorphisms).
For all ¢ e SGDiffeo(U*, v¥#;U,V;8) and all p € SG™ | supp(p) € U xR", q €
SG" | supp() € V x R" we have p,g* € SG".

THEOREM?2. Let¢ e SGDiffeo(U#, V¥ U, V; §). Then:

Q=0p(q) |qeSG", supp(@) CV xR" =
= 3peSE"3IK €K | supp(p) CU xR,

Q* =0p(p) +K.
Moreover, p— g* € SGlm/ withm’ < m.

To complete this short survey on ti86G calculus, we now describe the conceptSiH
manifold. In the following sections we will always work @&f'.

DEFINITION 17. (SG manifolds).
Let X be an n-dimensional manifold. We will say that X isSsg&compatible manifold (or an
SG manifold) if

1. X has a finite atlast” = {(X#, q)‘f)} o7 X? - UJ# c ORM);

jef1,.... N}

2. A% is shrinkable, i.e.3A4 = {(Xj.$])} ;1. ) atlas of X such that
Viell... N} Xjcxf

o) =¢ﬂxj e Diffeo(Xj,Uj), Uj € ORM),

3% > 0|Vje{l...N}¥xeUj : B(x,ax<x))cuf‘.

The atlasA is called a “good” shrinking of A%.

3. The changes of coordinatﬁ = dﬁf oEi#, i,je{l,...,N},i # j satisfy (17) on the
corresponding open sezm;(Xi# N X?) where they are defined.

These notations and those introduced in the next Lemma bevilsed repeatedly in the sequel.

ExampPLE 1. (Manifold with finitely many cilindrical ends).
SupposeX is ann-dimensional manifold of the following form:

X=XgUX1U---UXNUIXpU---UdIXN
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with disjoint union, whereXg, . .., Xy aren-dimensional submanifold aridXg, ..., Xy are
connected(n — 1)-dimensional submanifolds. Assume thég is relatively compact and its
boundaryd Xq satisfiesdXg = X1 U --- U dXy. Moreover, for allj = 1,..., N, let X;

be diffeomorphic tod Xj x (1, +00). Then X is anSG manifold. In particular, all compact
manifolds areSG manifolds.

LEMMA 1. Let X be anSGmanifold. Let us setlf? =¢i (XFn X?), Vi? = ¢j(X¥n X?),
Uij = ¢i(Xj N X)) and \{j = ¢j(X; N Xj). Then all the changes of coordinates satisfy
¢ﬁ € SGDifreo(uﬁ, vi?; Uij. Vij: 8x).

DEFINITION 18. (Transfer operators).
Let X be an n-dimensional manifold with atl{xsx?, ¢j)}A 3 and corresponding open sets

je
Uj = ¢; (X?) C R". Denote by, : CW(X?) — COO(UJ-) the transfer operator from smooth
functions on the manifold to functions &%, defined as in (15):
vfe C“(X?)Vx eUj @ f(0 = fopx).

Similarly, we denote by : C*(Uj) — C°°(X?) the transfer operator from smooth functions
onR" to functions on the manifold, defined as in (16):

Ve C®Uj)¥x e x? D) = fog(X).

DEFINITION 19. (Extension operator).
Let f be a function defined on & R". Denote bye the extension operator defined by

ef(x)={ fgx) ’;;8

THEOREM3. AnySG manifold X admits aisG-compatible partition of unity subordinate
to the atlasA”, i.e., there are function®;, j = 1,..., N, such that

1. ®j € C®(X;[0,1]), supp(®;) C x*j*, ZjN:l<Dj =1

2.Vj=1,...,N ! e(®j)s € Sqo, where the transfey is performed via the correspond-
ing chart mapg; .

LEMMA 2. Let {<I>j }je{1 N be the partition of unity of Theorem 3. Then there are
functions®; = @?, j=1,..., N, defined on X such that

. . . # 0. —1-
1. ©j € CO(X:[0.1]), supp(©j) C X, Ojlgypa;) = 1
2.¥j=1...,N : &®)), € SG.

Moreover, it is possible to build a sequenb@'j‘}k N’ j =1,..., N, such that for all ke N*
€

oK ¢ Coo (X oK) ¢ xt ok .
1. 6 e C(X; [0, 1]),SUpp<OJ) c XJ’OJ|supp(®lj<’1) =1

2.Vj=1...,N : e@"), €S
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DEFINITION 20. (SpaceS(X)).
Let X be anSG manifold. DefineS(X) by

S(X):{ueCOO(X)Wj =1....Nulx eS(Xj)}

where
S(Xj) = {ue C®(Xj) | Vo, p e N"3ICop > 0 :
Vx e Uj x*9g(dj)sU(x) < Caﬁf

i.e., ue S(X) if all its local coordinate expressions satisfR") estimates on their domains.
REMARK 1. We may introduce as standard the space of the distritsutarthe manifold
X, cf. [22]. In view of Definitions 17 and 20, we may also refettlie same way to the space

S’(X). Once aC* densitydu is fixed on X, we may identifyD’(X) with the space of the
continuous linear forms 083°(X). Basing on Definition 4 and Theorem 2 we may also easily

defineHS(X) for s € R2.

DEFINITION 21. (Symbols or8G manifolds).
Let X be arSG manifold and let jp CW(U}# xR, j=1..., N.

1. pe sqm(ub@\f@esq%supp(@)cufon . e(p®) € SGM;
2. sqm(X)={p=(p1,...,pN)|Vj =1...,N : p ese{“(uf)}.

DEFINITION 22. (Smoothing operators angldos onSG manifolds).
Let X be anSG manifold. We denote b (X) the set of smoothing operators on X:

K(X) = {K e HomS(X)) | Ik e S(X x X) : Ku(x) =/ K(x, y)u(y)du(y)},
X

where g (y) is a C* density ofclas§§G1O in local coordinates. We say that P S(X) — S§(X)
is in LG™M(X) with symbol p= Sym(P) e SG{“(X) if VO € Sqo(X) such that® is &-
independent andupp(®) C X‘J?* there exists I§ € K(X) such that:

Yu e S(X) : P(OU) = Kgu+ (Op(epj) (e(®u)))*.
Analogously we may define PELG ™M (X).

LEmMA 3. By construction, theydos defined above satisfy the usual properties, i.e.:
1. PeLG"(X)and Qe LGS(X) imply P+ Q € LGMaXI-S)(X):

2. PelLG"(X)and Qe LGS(X) imply R= PQ e LG"*5(X) and, in local coordinates,
Sym(R) has the asymptotic expansion given by (13);

3. P € ELG"(X) admits a parametrix and extends to a bounded Fredholm opeit:
HS(X) — HS~M(X) for all s € R2.

3. Continuity in S@R™) and S’ (R™)

In subsection 3.1 we give the precise definition of the cldghase functions to be considered
in our context. We further show the relation between Typed Bype Il FIOs and explain why it
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suffices to make explicit calculation only with Type | operatthroughout this section. Explicit
expressions for the transpose operators of our FIOs will bésgiven in subsection 3.1; they
will be used in subsection 3.2 to show the continuitySi(R") of our FIOs and their extension
to S’(RM), as well as in the next subsection.

3.1. Phase functions. Transpose and adjoint operators

DEFINITION 23. (Phase functions. Regular phase functions). We will calisghfunction
or simply phase any real valuede Sqe satisfying

(Veg) < C(x)
= C®)

for suitable constants & > 0 and denote by the set of all such phases. Moreover, we define
the setP?, ¢ > 0 of all regular phases as follows:

(19) and c(¢)

(20) Pt = {(p ePIVXE : ‘det(Bixasj(p)’ > s} )

DEFINITION 24. (Transpose and adjoint functions.) Let us set, from now on:

VX, & lo(x, ) = p(E, %)
and
VX, & a*(x,§) = aG, x).

Using the standard properties of the oscillatory integsae for example Boggiatto, Buzano,
Rodino [4], we see easily that Type | and Type Il FIOs definetiooious maps fron® to S’.
This allows us to state the following proposition.

PROPOSITIOND. If A is a Type | FIO as defined i2), then its transposEA is given by

tA%a =FoAytgo0 FL

Here transposition is formed with respect to the customaying of elements of, namely
<Uu,v>= fuz), sothat< 'Au,v > =< u, Av > holds for all u v € S. Moreover!F = F,
t(F—1) = F-1 and, by definition of the transpose of a linear operator&rfor any couple of
such linear operator§(PQ) = 'Q'P.

Proof. By Definition 2 we have fou, v € §

<'Agalv> = <u Ayav>= /dx u(x)/dg d9*Hax, £)d(8)

/dxdgdy dex-ax, £)e T <YE>umyv(y)

/dy (/ dg e 1 <Ely> /dxé‘ﬂ("@a(x,g)w(x)) u(y)

= < (Fo At‘p,taof_l)u, v >

where we used standard properties of oscillatory integualy = w(X) & w = F 1w and
Definition 24. For the transpose of the Fourier transform asxetobviously:

< t}'u, v>=< FU, v >
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and analogously
<Y F Huvs=<Fluv>.
The last result follows immediately from

< t(PQ)U, v>=<u,PQu >=<tPu, Qv >=< tQtPu, v > .

REMARK 2. By Definition 24 and Proposition 9 above, we have immedtiate
tt _t _ —
( A(p,a) = At(p,la = Al(l(p)’t(la) = A(p,a,
as expected.

REMARK 3. Since, in particulal? = Op(p) = A_ | - pforanyP € LG™, we also have
tP=FoOp(tp)oF L

REMARK 4. By operating in a completely similar way to that used ing@sition 9, for all
Type Il FIOs we also havkB, b = F o Bty tp o F 1.

PropPOsITION10. The Type | FIO 4 5 defined in(2) is the L2-adjoint of the Type Il FIO
By,a defined as ir{3) and viceversa.

Proof. Immediate by the definitions, operating as in the proof ofBsition 9.
O

REMARK 5. By comparing the two definitions (2) and (3), we also hByg, = en"F-1lo
Aty br 0 Fle Aga=@2r) "FoB_tyaoF.
3.2. Continuity in S@®"). Extension toS’'(R™)

THEOREM4. The FIO defined in (2) witlh € P and ae SGlm is continuous frons (RM)
in itself.

For the proof we need the following two lemmas.
AaXA @ _ P i (181, le])
LEMMA 4. (pESGIe:>3§ aﬂe' _bﬂel with by € SG .

Proof. By induction on|«| and|g|.

LEMMA 5. Let us consider the operator L defined by:
1-— Ag

1) L=
(Vo)

—iAgp
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such that l€¥ = é¥. Assume alsg € P and denote b the division by d= <Vs<p)2 —ilge
operator (i.e.,.Dq = %), so that L= D(1 — Ag). Then, for any s= N*:

(22) (L= A2e)D...(1 - Ae)D = D%+ Q(D, A¢)

stimes

where Q is a suitable polynomial of total deg=in the variableD, A¢, whose terms contains
exactly sD factors and at least ond¢. Then we have, for all orders ra R?, (tL)S : SG{“ —

SG" % and QD, A¢) 1 SG" — SG" 2B,
Proof. We obviously have
L=t1-29)'"D=(1-2s)D

which implies the first part of (22). The second part of (22)btained immediately by induction.
To prove the last part of the lemma it is enough to observe that

peP = ld=1(Veg) —ineql = (Veg* - %= d e ESG*? &
1 0,-2)
& S cEsG
(23) = D:sS@" — sqm—zez

by (7). (23) gives the desired conclusions, since obviQusly8), 1— A : Sqm — SG{” and
Ag @ SGM - s@™ L,
|

Proof of Theorem 4 Since it is possible to differentiate under the integrahsiy (2), we find,
with the notations of Lemma 4,

Vo, B e NV x“a;‘/e“ﬂ(x’@a(x,g)a(g)dg =
)3 ( g ) [ e aas ax e,
14
O<y=pg
so we only need to show that for aBye SGlrﬁ
/ drODAX HAGTE < ulsk= Sup X7 3u(0)]
' ly +8|<k,xeRn

for suitablek. Let us use the operatardefined in (22). Since integration by parts is admissible,
by Lemma 5 we find:

Vi eN / deOOF(x, £)0(5)dE = / (L) €90D(x, £)0(5)dE =

_ / o) {%o@) 1+ Q(D, Ag) [A(X, s)o<s>]} ae

(24) =/eitp(x.,S) {%0@)4_ > ¢ @ d)agﬂ(é)i| de
’ lyl<2r
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with coefficientsc, € SG" 2® depending only of@ andd. In fact, the maximum order of
differentiation of(i in (24) is 2, and, by Lemma 5, every monomial @f contains exactly
D-factors. Sog, € SG" 2 follows by (23), Leibniz rule and Proposition 3. Then, réical
u e S, itis easily seen by means of (24) that:

Vr €N / rOFx, aEdE < (0T Jujg / e "tdg < julsk

choosing > fiy/2 and k > 2r +[n+ 1+ fii1]+. In fact, as already said, the maximum order
of derivatives ofl in (24) is 2 and for the convergence of the integral we can\qs¢3g0(§)| <

(g)~"—1-M_sSumming up, we have proved that
VpeN3keN||Agauls p < lulsk

and we can conclude invoking the Closed Graph Theorem.
O

THEOREMbS. A, g Withg € P and ae Sqm extends countinously frod/ (R") in itself.

Proof. SinceS «— S’ and is dense i8’, it is enough to prove the continuity bA%a restricted
to S. Using Proposition 9:

<tA¢,au,v> = <U,A¢,av>
= <(‘7~'0At§0’tao.7:_l)u,v>.

Sincely and'a behave likey anda (symmetry in the role of variable and covariable, with
simple exchange of the order components for the amplituélg), 5 is continuous fromsS in
itself, as we have proved in Theorem 4. So, the same is trdeﬁigga, since it turns out to be a
composition of operators which are all continuous fr8rim itself.

O

THEOREM®6. By is an element of (S) extendable to an element 6£S").

Proof. Immediate, by Remark 5 and Theorems 4 and 5.

4. Composition theorems

In subsection 4.1 we prove the Composition Theorem alreadyed in the introduction. In
subsection 4.2 we deal with other composition theorems s& lwchich involve FIOs angrdos
are consequences of the Composition Theorem 7 while thsedout the composition of FIOs
of Type | and Type Il will be needed in particular in subsect#3, where elliptic FIOs and their
parametrices are introduced. In subsection 4.4 an exarhpleptication of all the composition
theorems is given, analyzing the action®&-compatible change of variables on operators in
LG classes. In subsection 4.5 we analyze the action of our FiOth® Sobolev spaces of
Definition 11, which also will require the use of the compiosittheorems. In section 4.6 an
adapted version of the Egorov Theorem is obtained and usedager the expected result about
the action of FIOs with regular phase on wave front sets.

Ia]+ = maxa, 0} and p] - = max—a, O} denote respectively the positive and negative past ofR.
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4.1. The main composition theorem

THEOREM7. Given a FIO A= A, 4 of Type | such thap € P and ac SG"(R") and
aydo P = Op(p) with p € SG}(R”), then the composed operator B P A is, modulo
smoothing operators, a FIO of Type I. In fact, H H,  whereg is the same phase function
and the amplitude e SC—:{“th (RM) admits the following asymptotic expansion:

1 .. i
(25) hoo§) ~ 30 @ P dep(x ) DZ [V Y Dary, )]
aeNn
Here
(26) PO Y. 6) = (Y. 6) = 90X §) = (¥ = XIdg (. £))

and, as usual, B = (—i)lel5Y.

To prove Theorem 7 we will need many lemmas. In particulamire 6 below, dealing
with the y-derivatives of the exponential function involved in themaptotic expansion (25),
will be important also in future developments concerning lilyperbolic Cauchy problems (see
[13]).

LEMMA 6. Letus sety(X, Y, &) = (Y, &) — o(X, &)— < y — X|dxp(X, &) > as in (26).
Then we have, foi| > 1:

DYV = g€V
= [(dyw —dko)” +
N1jy
0.
@7 + chjl (dy‘/’ - dX‘/)) & j 18%,1112('0 +
1 2=

N2j;

/ y iy

+ 220 [T 9,0 | @
J1 jo=1

with suitable G, cﬁl, Bj1j» and Yitiz such that:

(28) 1Bisjal Vi1j2l = 2
N1j; N2jy

(29) 05, + Z Biijz = Z Vit =«
j2=1 j2=1

where &g = dxp(x, &), dyp = dyp(y. &), 3¢ = ¥p(x. &) anddle = (Y. &) is to be
understood.

Proof. By induction on|«| (see section A.1.)

REMARK 6. Note that, by (28) and (29), we have, in any term of (27)
Wherenljl, N2j, > 1:
N1jy N2jy la|
o
ol = 37 Byl = 200y, lel = 3 vl = 2ajy = Ny ngjy < -
jo=1 j=1
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LEMMA 7. With the samer of Lemma 6, fop € Sqe we have:
(30) ao)[/eiw(x,y,g)‘ c SG‘([Ia\/Z],[f\aI/Z]) N ao)[/eiw(x,y,g)‘ < &) 0%
y:X y_X

([a] denotes the integer part of a) and

ly =Xl =k(x).ke(0;1)
lel lol

31 )
&Y = VY < (L4 ly —xI(y—x) EDE) 2 (072

Proof. (30) is immediate by Lemma 6, Remark 6 and Sqe, observing that the first term and
the first sum of (27) vanish foy = x, as well asyr(x, X, §) = 0, and, of courseny j;, Npj, <
la|/2 = nyj,, n2j, < [le|/2]. For what concerns (31), we obviously have:

1 . .
Doy, §) — ok &) = /Odt B oty =%, )y —x) =
Biy(p—aixg0<
< ly=x]  sup [gje(X+t(y—X),8&) =<
te[0;1L;1, ]

< ly—x sup (&) (x+t(y—x)t
tel0;1]

<y —=xI{y—x) &) x)L.
Moreover, note that
ly — x| <k (x), ke (0 1) = (x) ~ (y)
We then have the following estimates:
(dyg —dxo)® < (ly — x| (y —x) )l )1
< Adly—x(y—x ENE ) T
N1jy

(Ayg—cke)s [T 2% ¢ < Ay=xity—x (&) b0~ H%l &)
jo=1
(y)nljlizrj]zlill “31112‘
<y —xlty—x el

nlj
(X>”111*(|911|+Zj2=11 1Bi1iz D)

l

< Ay Xy —x @ ©)'F x

n2jy n2jy
N O DL AN
[1 e < @ ol
j2=1
lal  _lal
< )22

< Ay =Xy -0 E ©'F x-
which prove (31).
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LEMMA 8. If ¢ € P, ¢ is defined as in Lemma 6,epS(31t and ae Sqm, the expression

1 1 i
@) ) 8= ) —OFPX dp(x.£)Dy [é‘/’“’yf)a(y,é)]y_x
aeNn T aeN? -

is an asymptotic expansion which defines an amplitueieS]G{“th
Proof. Using Lemmas 6 and 7 with € SG", we see that

5 (3 Joeroot
0<B=a

< Y ®7 077 g™ pomelel A
0<f=<a

DY [ YDay, 6]
y=x
y=x

< EMTE (gmeE
Using (19), we also easily have:

(9 PI(X, dxg(x, §) < (dxop(x, §)171*1 ()2 < (&)1l ()2
So, we obtain:

Vo e N c(x.8) < (M pomere- g

which proves the lemma, invoking the first point of Propasitb.
|

. i_yi . .
LEMMA 9. Let us consider the operator M= —i ZJ -1 ‘XX )xzaj M is well defined on

supp(l — ) for x € EA(K), k € (0; 1), it has the property M <X—YI§> — d<X=YI§> gn(d,
vr e N*:

(33) (M) = (=) 209 |2r

01=r

for suitable ¢ € N*. Moreover, it is possible to show that

Nl

B4 ly—xIzk(x)=3K >0]ly—x =K (y) =y —x| > (X) +(y) = (x) (¥)
Proof. (33) can be proved by induction on For its proof and some hints about (34) see the
appendix of [14].

O

LEMMA 10. Letw = w(y) be a smooth function such thiakw| # 0 and let us set

(35) |d w|2 Z oy wdy

so that Ue—@ = g=i1®_ Then

(36) vr eN (U) =

> Purdy

|d w|4r
| <r
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with

,r y y
(37) Poz,r = Z C;.j(sl...(sr (dya))yaala) . aara)
where in the sum

(38) lyl =2r,
r
1Bl =1 > I8j+lel=2r
j=1

and & are suitable constants.
Y 81...6¢

Proof. By induction orr.
|

LEMMA 11. If g € P, x € EA(k), a e SG" and pe SG' then the function p = hy(x, &)
defined by

ha(x, &) = / dydy & @5 —eXE=<y=XIn>) (1 _ y(x, y))a(y, ) p(x, n)
isinS.
1-Ay

(Vyp)?—inyp
in Lemma 9, we have, for any s € N*:

Proof. Using the operators = , analogous to that defined in (21), alWd defined

ha(x, &) = / dydy € @Y-H=eXOH=<Y=XI1=) (1 _ 5 (x, yy)a(y, £) [(M) p] (x, )

(39) /dydn d @E—pOE)+<xIn=) (t| ) [e—i <Y g(x, v, £, n)]

having set
ax, ¥, & m = (L= x(x, yaey, &) [(M) p] (x, n).
Let us analyze thg derivatives ofg. By Lemma 9, we find™*

agq(x7 y’ %‘7 n) =

= 9% (1_ (X i (X — y)9 80
= oy x(x ynay. )= %y PP
16|=r

ol
=Y @pxn Y m(aw,o—(azlx)(x,y))

|0]=r a1tartaz=a

! g P X=Y)
ay a ) a3 X — 0 /31'327
Py @)(y. ) ,31%:% Brip O Y T D

**We denote by k the Kronecker symbol such that

1 i =k
51**{0 it ] £k



268 S. Coriasco

with Pg, homogeneous polynomial of degrg®|. So, by obvious calculations:

agq(xv y! %‘7 77) <
< o el T (y) il gM (yymeriea]

|0]=r aytazxtaz=a
Z X — y||0|—\/31\+|ﬂ2\—2r—2|ﬂ2|
Br1t+pa=a3

~ (X)t2 (U)tl_r (E)ml Z <y)m2—\oz1\—|a2\ X — y|—r—|a3\'
altaxtaz=a

Since only the domain in whicly—x| > % (x) is relevant hereqidentically vanishes elsewhere)
and since from (34)

NI

k
ly=x[z 5 ) =1y =X = {y) = [y = x| > {x) +{y) = () {y)

we can conclude

r

(40) dyq(x, y, £, m) < (&)™ (" )2 (y)me—5—lel

so thatq has aSG behaviour also with respect §o Let us now analyze the integrand of (39).
As shown in Lemma 5, once sét= (Vygo(y, é))z —iAyp(y. ) = (£)2, we have:

L [e M qecy 6 | =

_ eI qx, y. £, )
— i

as in (24). Due to the presence of the exponential in the agguiof Q(D, Ay), in the second
term there are powers gfof heigth not greater thars20wing to (40) we have at last:

+Q, Ay [ Yo v, m)]

h2(X, E) < <‘;;:>m1*25 (X>t2_r§ /dy(y)mz—% /dn <n)t17r+25 .

so that
Vo, B e N £9%Pha(x, &) < ()M 2Tl () l=5HIAl
[dyonmet [an oz <
provided
my + ||
2

ro > max2(tz + |8, t1 + 25+ n, 2(n+ my)}.
Since then, differentiating under the integral sign,
Vo, B € N1 agaghz(x, £) =

(41) > / dydye (PO-E=eE=<Yy=XIn=) 5 (x yyaj (v, §) pj (X, n)
j
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with suitabley j, aj and pj in someSG classes angj having support in the domaily — x| >

% (x), we can also conclude

Vo, B,y,8 e NU %P9l 9Xha(x, &) < 1,

by applying the same procedure illustrated above to evéegial in the sum (41).

Proof of Theorem 7 We can now prove the Composition Theorem. Writing expicRIA, au(x)
with P = Op(p) € LG!, we find:

P Ay au(x) =
[ ase == poce) [ dyet V= [and0ary, moo

/dneiw(X.,n) |:/ dydsei(W(YJI)-W(X,U)—<Y—X\5>)a(yv n) p(X, E)i| acn)

/ dedv(x.6) [ / dytind ©O-H—P0CE—<Y=XI1=)a(y. £ p(x. n)] ace)

/ ded ?%Oh(x, £)0(E).
We have to show

h(x, £) = / dydnei(‘ﬂ(y,f)—W(X,f)—<y—x\ﬂ>)a(yv E)p(X,n) € SG|m+t.

Choosingy € EA (k) we can write

h(x, &) h1(x, §) + ha(x, §)

/ dydne (PY-E)=eXE=<y=XIn=) 5 (x yya(y, £) p(x, n)

+ / dydne (P-E = XE=<y=XIn=) (1 _ 5 (x, y)a(y, £) p(x, n),

with hp € §, by Lemma 11. We will prové, € SG{"th by showing that it admits the asymptotic
expansion already studied in Lemma 8. In fact, setting dx(X, &) + 6 in the expression of
h1 and using the Taylor expansion

0% M
PG = Y —@ERX g, )+ Y —0Ta(X E,0)
laj<M la|l=M
1
fa(X, £,6) = /Odt(l—t)M—1<a§‘p><x,dxw<x,s)+t9>,
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we have:
hi(x,§) =
(02 p)(X, dx(X, §)) -
= > - o Foly [9“5”%0 (e“”(x’y’g)x(x, y)ﬁ()hé))]
la|<M
M .
Y S Fl [Q“ra(x, £.0)Fyp (VYO x, yyary, 5))]
la|l=M
(@ pP)(x, dx@(X, §)) -
= Z (3 aIX Dz I:el\b(x,yas))((x7 y)a(y7 %.):ly_x
la|<M ! =
+ > %/d@e‘“‘“ra(x,s,e)}‘y%@ [Dgf (e“”(X*V@X(x, y)a(y,g))],
la|=M

Now, since every derivative of vanishes in a neighbourhood of the diagonak= {(x,y) €
R2N | x =y} andy(x, x) = 1, by an obvious use of the Leibniz rule in the last formulacae
write:

1 M
hix, &)= 3 Ze(X &)+ Y —Ra(x&)
le|<M ™" la|=M

where thec, are the terms of the asymptotic expansion (32) and

Ry = /dee‘<x‘9>ra(x,g,e>fyﬁe [D}; (e“”(x*y’g)x(x, y>a(y,¥))]-

Let us now estimat&®,,: these estimates will prove the convergence of the intetgfhingh4
and will allow the use of the point 2 of Proposition 5 to conteleur proof. To our aim, let us
choosex* e C3° such that

&

1 X <=

KFX) = ||_2
0 |x|=¢

with ¢ > 0 to be fixed later. Let us denote U, : the set{d € R" | |6] <& (£)}, so that

supp(x* <ﬁ>) C Eg . Ry can obviously be expressed by the sum of the two following
integrals:

/ doe <X1>r, (x, £, 0) x* (%) Fy—o [Dz (ei VY-8 y (x, y)aly, é))] ;

K = /d@ei<x|9>ra(x,g,9)[1—)(*((%)}-

Fy—o | DY (VYD yrawy. ).

1. Estimate of I .
Let us set

0
fu(x, £,) = Fyt [MX’ £.0x (Eﬂ '
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Then, we have:

/dedye‘<x‘9>ra(x,g,9)x* ((%) .

Y=Y (VYD x, yya(y. 6)

/dy[/ doe <*Y10>r,(x, &, 0)x* ((%)} .

DY (V0¥ Dyx yay. §)

[ vt ex—ypY (4559 0 ay. )

Remembering our choice gf* andg € P, we have:
Va, B € N' 0Fra(x,£,6)
42) < (k /1dt (dxp(x, &) + 1)~ 1oI=IAl (1 — )M—1 (Al
< <§)t17|00t\7|ﬁ| x|

In fact, the presence of* in the integrand ofl andt € [0; 1] imply 9] < ¢ () =
[td] < e (¢). Moreover

peP = (dxo(X, &)~ (&)=

(dxp(X, £) +10)2 = (dxp(x. £))2 +t%0]? < (C5 + £2) (£)?
(dxg (X, &) +10)2 = (dxp(x, £))% +120]? > CZ ()2.

We have also:

Va, B € N ‘Uﬁ fa (X, &, U)’ = "7_—07—1>u I:Dg (ra(X,S, Ox* (%))]‘
< 1g(Egg) SURcE, , ‘Dg (ra(x’ §.0x ((%))‘

In view of (42), a good estimate for the last expression in) @ be easily found. In

(43)

fact:
(44) o (ra(x, £.0)x" (i»
0 (€)
(6
< S |arax.6.0)||3) 7 x <<$—>>’
v<B
~ Z gyalel=lvl iyta gy lvI=18l
Y=B
< (g)alal=IBl (xyt
and also
(45) poEep= [ do=io" [ dy<gen
|0]<e(&) [nl<e

by the linear change of variabbe= (¢) ».
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So, (42), (44) and (45) imply
Va, f € N ‘uﬁ fu (X, £, u)‘ < (g)arn—lel=IBl (te o
Vo, B e N W ()| falx, &, W] < ()1 (g2 =
Vo e N', vj e N(ul () [ fa(x. &, )| < (&)1l (x)t2
which finally implies

VaeN', VL >0 (14 ul (N5 [ fa(x, & )|
< @+ uENIHF fy(x, £, u)| < (g)tn—lel ()2 o
Va e NV, VL >0 [fo(x & W] < (L+|ul (g) "k g)utn=lel )tz

So, setting. = L1 + Lo with L1, Lo > 0, we can say that

VL1, Ly > 0Va e N
| < <¥)t1+n—\a| <X)t2 .

(46) -sup] D2 (/¥ xx. a. o)) | @+ 1y =xi e H]
~/dy<1+ ly = x| (&)~ "2.
For what concerns the integral in (46), by the translagion x — y and the transform

6 = (&) n, it turns out to be estimated )", by choosingL» large enough to assure its
convergence. The syps easily estimated by observing that

0 (700 (x yyawy. ) =

= > _H Y Xy @0 (X, y) (B a)(y, &)

B
B+y+ié=a ﬁ!V!S!
< Z A+1y—=x[{y—x) (‘9)“3‘(5)%@)_% '
B+y+é=a
. (y>7|7| <$>m1 <y>m2,‘8‘
< @Hly—xly—x) @) @™

1Bl _lyl_1s
3 (x)me— 5 -5 -1

B+y+dé=a
< @™ om=E (@4 y - x| (y - x) €)',

where we used (31) and the fact i@t ~ (y) (owing to the presence gf). We conclude
that

eyt lg moto gl (Y = XY = x) ()1
y Q+ly—x[nh

I <

lo la|

~< <€>m1+t1+2n— 7 (x) my+ty— 5

forL1 > 2|«|.
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2. Estimate of K.
Let us set

(47) (I)(X, Y, E, 9) =< y|9 > _W(Xv Y, ";:)
=< Yl0 > —(p(y,§) — (X, §)— <y — X|dxp(X, §) >)

which implies

dyo(x,y,£,0) = 60— (dyp(y,§) —dxe(X, §))
= 60— (dyp — dxe)
< {O)+(&).

We begin by using the operat¥ = 1&% = 'w, such thatvs; € N wstd <xIf>

= d<XI> in the integral defining , to obtain, for alls; € N,

K = /dee‘<X|9>W91 {rﬂx,g,@)[l—f((%)]

Fyo [DE (70D x yay. )]}

(48) = Z/deé“'“rg(x,g,mxj* (%)

j

Fy—6 [yﬁj Dy (ei‘”(x’“)x(x, y)a(y, 5))]
with, for anyj,

* * . e .
(49) <1 supp(xj (@» cloiw =3 ©}:
(50) rd < (x)2=%1 if ¢ satisfiest; — |a| < 0;
(51) 1Bl < 251.

This can be proved by induction &. From now on, we will consider only one of the
integrals in the sum (48), since all the estimates we will fiitinot depend onj . Writing
explicitly the Fourier transform and the derivative yyn one of such integrals and using
Definition (47) and the notation in Lemma 6, we have to estmat

ol ) ; 0
52 K = -~ [ god —lw(X,y.E,@)th E. 0 *<_>
o ﬁ+;§3=amy!6!/ ¥ a5 O 78

op(x, Y. &) 0y x(x, y) yPiaja(y, )
under the conditions (49), (50) and (51). We will write
fa,506 ¥, 6) = 0p(X, ¥, §) ) x(x, y) YPIaJa(y, &)
for the sake of brevity. Note that

(53) £l

by € sllel+m:,0,ma+2s)
¥ ,

owing to
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- (27), which impliesog € SG(A.0.0) ¢ 5G(1«1.0.0);
- x € SGO00 5 3Yy € SGO0.-I¥D ¢ 5G0.0.0);

- (51) anda € SG" = yPia(y, £) € SGMLOMHIAD ¢
SG(M1,0,ma+2s1)

Let us now use in each integral in the sum (52) the opetdtdefined in (35). This is
admissible since

3C >0 |dyw| = |6 — (dyp — dxe)]
(54) > 0] — |dyp — dxe)|
> CUO) + (&) - (0) (€))2,

providedk € (0; 1) in the definition ofy is suitably small. In fact, owing to the presence

of thexj*, we have heréf| > % (¢) and also

C1

J1-C2

wz%awe@n:wm

vC1e (D) 18] = =161 = C1(0);

&).

NI ™

Choosing, as is possible,

we havelf| > 5 (£) = |0] = 5 = 0| > Cq1 (9), which gives

ldyw| > [0] — |dyg — dxg)|
= Cp(0) — Cok(§)

e C

= 2O+ 2 0) - Ok
Cc C

= 2o C%—QQ@

which implies (54) for 0< k < 4%2' Note also thatU acts only onfgyg, Ieavingrg[

and x* unchanged, so that we can use the estimates (49) and (5@gfar By applying
formulae (36), (37), (52) and (53) we find:

—iwsl _
/dye fays=
_ —iw ) \Sp £
= /dye ‘tU) fﬂyS

= /dye—"“i Y Prs,d? T
4 ! 5
dyol™2 | 125, o
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which implies

K < (72 %
J.B+y+é=a

. Z <£_—)m1+\06| <y>m2+251—\fl,
ITI=s2

O+ ENF2 ()T (0) + (6))%2

(x)'2~2% (g) Ml / dy {y)met s / do((e) + (&N~

< (B gmite—F

/dedy<<9> + ().

provided

Sp > max{2n, my + 251 + n}.

By all the estimates we showed above, it is now possible tolade as follows. For an arbitrary
p €N, fix a such that

tg—lal <0
7] i
p+m1+t1+2n—7 <0

lot]
p+m2+t2—7§0.

Then, withk ande fixed by the above discussion about the estimatié ofix s; such that

p+ir—25 <0
andsp such that

S > My + N+ 2s;
S > 2n;
p+mitlal -2 <0
This shows thatp € N 3M e N such that:

1
(&) (x))” (hl(x,gf)— > Jca<x,s)) =

le|<M

M
= (@00 Y —Rex 6 <1

laj=M "
which gives the desired result, invoking point 2 of Progosib.
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4.2. Further composition theorems

The next three theorems are immediate consequences of thpdSition Theorem 7.

THEOREMS. Under the hypotheses of Theorem 7, the composed operatorAy), a P is,
modulo smoothing operators, a FIO of Type I. In fact,2v/ V,, , whereg is the same phase
function and the transpose of the amplitude € SGlmth admits the asymptotic expansion (25)
with p changed i p, a changed ifa andg changed i ¢.

Proof. Using Proposition 9, Remarks 2 and 3 and Theorem 7, we have
ApaP = '(P'Aja)
=t [(.7:0 Op(t p) o .7:_1) o(FohAytgo .7:_1)]
= [Foop(p)ony,moF Y
=t |:.7:o Aty h 0.7:_1]
= YFhHolAypolF

= Floro A(p!th oF loF
A(p,th'

a

THEOREM. Given a FIO B= B, , of Type Il such thap € P and be SG"([R") and
aydo P= Op(p) with pe SC—:1t (R™), the composed operator & B P is, modulo smoothing
operators, a FIO of Type Il. In fact G= G, 1, whereg is the same phase function and the
amplitude he SG{“th (R") admits the following asymptotic expansion:

1 .
(55) hoc§) ~ Y- = @Ea)(x. dep(x, £)DY [V *VEbiy. )]

=X
aeN? y

where
VX, ¥.6) =@V, §) — (X, &) — (y — X|dxe(X, §))
and g is given by equatiofi4).

Proof. By Proposition 10 and Theorem 7 we immediately have
((BpoP)'u,v) 2 = (P*Bju,v) 2

(P*A(ﬂ,bu! U)Lz
= (G;’hu; U)|_2

which gives the desired result, recalling also point 6 ofg@sition 5.
O

THEOREM10. Under the hypotheses of Theorem 9, the operatoe=\WP B, , is, modulo
smoothing operators, a FIO of Type Il. In fact, W W, ., whereg is the same phase function
and the transposkw of the amplituday € SGlmth admits the asymptotic expansi(sb) with q
changed irfq, b changed ifb andg changed if .
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Proof. Immediate, using the same technique of Theorem 8 and reg&kmark 4 and Theorem
9.
|

The subsequent Theorems 13 and 14 deal with the composfteiype | operator with a
Type Il operator. They will be useful in subsections 4.5, rehee will show continuity of the
FIOs in the Sobolev spaces of Definition 12, and 4.3, wheigtielIFIOs will be introduced and
their parametrices computed. First of all, we give a simpl@dent condition for maps to be
SG diffeomorphisms in open subsetsRf. Then, we put it in relation with regular phases. In
the following lemmasp and its inversep—1 = $ are smooth functions defined on open subsets
of R", vector valued irR".

LEMMA 12. Let f € SG™ and g vector valued ilR" such that ge SG™ and (g) ~ (£).
Then f(x, y, g(x, y,§)) € SG™.

Proof. The desired estimates can be obtained by induction.
O

REMARK 7. Of course, the requirements fipin Lemma 12 need to be satisfied on sqpp
only. By applying repeatedly Lemma 12, we obtain also:

f e SG™, gj € SG% | (g1) ~ (£). (g2) ~ (X). (g3) ~ (y)
= f(g2(x. y. £). 93X, y. £), 91(x. ¥. £)) € SG™.

LEMMA 13. Let¢ = ¢(y) € C*™ be such tha¥a € N | || = 1: oY) = ag(@(y))
with 8, (x) € SG and($(y)) ~ (y). Theng(y) € SG2.
Proof. Itis obvious thaﬂ&'E(y) < <y>1—|"“ for |@| < 1. The other estimates can be obtained by
induction on|«|.
Od

LEMMA 14. Let¢ = ¢(X) € Sqez and ‘detg—‘f(" > ¢ > 0. Then the inverse function
¢ = ¢(y) is such that

Vo e N ol =1 : 9J$(y) = aa(d(Y))
with & (x) € SG.

Proof. Obviously, the hypotheses imply d% € ESQO. Since

-1 -1
aX aX

where the adjoint matriM is made of determinants of submatrices%, we also obtain

-1
(g—ﬁ) € SG|0. The result is then a consequence of the inverse functioorehe and the

composition Lemma 12.
O
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LEMMA 15. If ¢ e Diffeo(U¥, V¥, satisfieg18) and also

¢(x) € SGZ;
(X)) ~ (X);

det%
X

>e>0

for a suitable constant > 0then¢ e SGDiffeo(U*, V#; U, V; ).

Proof. We only have to prove(y) e SGlez. This is an immediate consequence of Lemmas 13
and 14.
O

PROPOSITION1L. Letg = ¢ (X, y; &) € SG™ be such thatg) ~ (&) and|%| >e>0.

Then, setting; = ¢(X, y; &) & & = d(X, y; 1), ¢ and its inverse both satisfGP estimates
with respect to x and y. We will briefly speak in such cas8®fdiffeomorphisms wittsG°
parameter dependence.

Proof. ¢ satisfies the required estimates with respec o view of the obvious variant of
Lemma 15 t&, n variables. For what concerns the estimates with respecataly, it is enough
to use the Riemann-Dini theorem about derivatives of inifflimctions and an inductive process
completely analogous to that used in Lemma 13.

|

PROPOSITION12. If ¢ € P¢, according to Definition 23, theA — dxe(x, &) and x —
Vep(x, &) are two globalSG diffeomorphisms witsGP parameter dependence.

Proof. The property of beingG diffeomorphisms is immediate from Proposition 11, sinde al
the hypotheses made abauthere are expressed by the propertigg < Sqel, Vep € SGlez,
(19) and (20). The globality is a consequence of the follgntimeorem (see Berger [3], page
221):

THEOREM11. Letus assume that € C1(X,Y) with X and Y Banach spaces. Thgris

a diffeomorphism of X onto Y if and onlyﬁfis proper andg—‘f(’(x) is a linear homeomorphism
for each xe X.

The condition on‘gi)‘(5 with ¢ = dye(x, .) ord = Ve (., §) is satisfied, owing to the hypoth-
esisg € Pt. The fact thatp is proper in the two cases again descends fyom P¢. In fact,
we have the following characterization of proper mappimgBriite dimensional Banach spaces
(see [3], page 102):

5 THEOREM12. If X and Y are finite dimensional Banach spaces and CO(X, Y), then
¢ is proper if and only if it is coercive, i.elim) x| - 400 | f O || = +o0.

For the first case we have, at least for lagge

kg (x, )] =/ (dxpx, )2 — 1> /C )2 - 1,

which implies the required coercivity of the mappingRf, so that it is proper and therefore
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global owing to Theorem 11. The same is obviously true als&f@(., £).
O

THEOREM 13. Let A = A, 5 be a Type | and B= B, a Type Il FIO withg € P?,

ac SG1r and b e SGls. Then the operator P= AB is, modulo smoothing operatorsyjedo
with amplitude pe SG™ (given in equation (62) below); m is related to r and s by=m

(r1+s1.12,9).

Proof. Let us write explicitly the composition far € §. We find
Ag,aBypu(x) = / ds €909 ax, £) / dy e Y by, &) u(y)
— [ asay e ey, e uy)

where we have sek (X, y, £) = ¢(X, £) — ¢(y, £) andc(x, Y, £) = a(x, £)b(y, £) € SG™. Let
us choose € 22 (k) and write

AuaBooue0 = [ dedyd O qyxy. opuy)

+

/ dedy €V Y9 go(x, y, &) u(y)
(11 + I2)u(x)

with gi(x, y, &) = x (X, y)c(X, y, §) anda(x, ¥, £) = (1 — x(X, y)c(x, y, §). We begin by
showing thatl; is a smoothing operator, then we will show how to rewtifeas an operator in
LG ™ with suitable amplitudep.

1. o is smoothing.
First of all, note that supfip) C {(x, VE) | IX—y] > % (x)} = R®. So, the use of the
operatortd = W;ﬁ Zrk‘zl ag wasj, analogous to that defined in (35), is allowedjn
In fact, let us seb = Veo(X, &) andw = Veo(y, §). By making use of Proposition 12
and byy € SG’, we can write

X—yl = [(Vep) 1, &) — (Vep) " H(w, &)

1
‘/ dt <v—wld(Vep) L(tv + 1w, &) >
0

IA

lv—w| sup [dx(Vew) 1z &)
RN xRN

= M|Vep(x, §) — Veo(y. §)]

= MIVey (X, y, )l
So we have
(56) Ve (X, ¥, §)| > [x = Y| > (X) + (¥)
in the regionR®. Then, acting as above and using (36), (37), (38) and ag&irsqe, for
alheN

12u(x) =/d&dyé‘/’ (‘U)gp)
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and
1
(O, Y, &) = ——= > Pandf(X Y. £)
IVew 2=
. Zaizh (x)M2 (y)Ms (g)M—lel ((x) 4 (y))3N (g)lel=h
({x) + (y)ah
_ Ylajzh 0™ (y)Ms ()M
B ({x) + (ynh
mi—h m m
57) L M 2<hy> 3
() + (y)
Let us write

12u(x) / dy uy) / de dV0OY-E tuygyx, y, &)

= /dy f(x, y)u(y).

Since(x) + (y) > ((x) (y))%, we easily see that
Vo B.y.8 e N' x2yPaXal f(x,y) < 1o f e SR™).

This is trivial fory = § = 0 by the estimate (57), choositg> maxm; + n, 2(my +
le]), 2(m3 + |B8])}. For what concerns the cage + §| > 0, since it is possible to
differentiate under the integral sign, any derivative prces a sum of terms of analogous
form with differentSG orders, so that the result is also true for egnds: this concludes
the proof ofl, € K.

. lyisinLG™. .
Here we have supf;) € {(X, ¥, &) | X —y| <k (X)} = R' = (x) ~ (y). Let us define
_ 1
(58) dxp(X,y; &) = /0 dfdxe(y +6(X — ), £).
We can write
dxp(X.y:6) = dxe(y. £)

1 ,r1
4 /0 /0 d01d05 < 010 — y)|02p(y + O162(x — ). £) >

9 Feox, y: 6) = d
= % X‘/)( d’f)—g xfﬂ(yf)

1 p1 9
(59) + [ [ aonde 01 < x = yiz oty + 36206 — y).0) >
The integrand in (59) can be estimated as follows
oK = Y 9 0L e(y + G102 (x — y), ©)

<Ix—yl sup (y+016px—y)~t
61,62€[0;1]

<k(x) <k
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so that the jacobian cﬁx<p(x, y; &) is a small perturbation of that a ¢ (y, £). Then by
choosingk suitably small and recalling € P¢, we can assume (see, e.g., the appendix
of [14])

0 ~
det 7 dro(x, y: )| = g > 0.
Moreover
3g 9y dxp(X, y: §) =
(60) =/d9 01— )" @g o), )y +6(x - ), &)

< (&)l (yy=IBHYT — () 1=lel () =IBT gy =¥l

since(x) ~ (y), so thaﬁx(p(x, y; £) satisfiesSG®L estimates in the regioRi. We want
now to prove

(61) (dxe(x, y; ©) ~ (€).
The first inequality{dx g (x, y; §)) < (£) is easily proved by

2
<

(Gox. y: 5 =1+ / do ¥ p(y +0(x = ¥), €)
'=l 0

2
(/ do 18] p(y +6(x =), §)|>

<1+

We also have

(g x, y; ) = 1+
n

2
1 r1
Z (Bjxso(y, £) +f0 fo d61d6p 01 < X — y|dxdj (Y 4 6162(X — ¥), &) >>
j=1

= (dxe(y, £))?
Fi

n
23 o0y s)/ / 4616 61 < X — YIdDj (Y + B162(x — Y, ) >

2
1
/0 do1d62 01 < X — yldxdj (Y + 0102(X — ¥), &) >) :

Gj
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Let us now estimatEJ- ande :

1 r1
o< <s>|x—y|<s>/0/0d91dez (Y + 0102(x — y)) L

< k2 yt
< k()2

and similarly
Gj < k2?2
We have now all we need to show (61). Sindge(y, £))2 > Cy (£)2 we have

(o, y: &) =

n n
> CiE?-2) IFjl- > G
j=1 j=1
> (£)2[C1 —kn(2Cy + kC3)]

which impliesﬁx(p(x, y; g)) > (&) for k suitably small. This completes the proof of (61).
Then, with a suitable choice &f dx¢ (X, y; £) satisfies all the requirements of Proposition
11, and, for(x, y,.) € R, dxe(X, y; &) is anSG diffeomorphism withSGQ parameter
dependence. With this in mind, the operatgris an integral extended t& which we
can rewrite as

lux) = / dgdy € WX gy (x, y, &) u(y)

/ dndy & <X=YI@CY> g (x 'y ) u(y).

In the regionR we can perform the substitution

£ =Oxp(X, y; ) & 1= (Gxe) L(X, y; §)

so that we can conclude
lux) = / dyds & <XYE> gy (x, y, (dxp) 71X, y: §))

u(y)

0 ~
det@dxw)*l(x, y; €)

/ dyds € <X7YE> pix, y, £) u(y)

setting

(62) P(X, Y, £) = ar(%, Y, ([@x) "L, y; £))

0 ~
detg(dw)—l(x, y; &)l

By (60), Lemma 12 and Proposition 11 we fipce SG™, which concludes the proof.
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THEOREM 14. Let A = Ay 5 be a Type | and B= B, a Type Il FIO withg € P?,
ae S andbe SGls. Then the operator P= B A is, modulo smoothing operatorsyalo with
symbol pe SGlm, m = r + s, which admits the asymptotic expansion given in equdB6h
below.

Proof. Again, let us begin by writing explicitly the compositionrfo € S. We find

By.bAg,al(X) =
= /ds ¢ =Xl / dye v0®) W/ dy €407 a(y, n) (n)

= /dﬂ d <xIn> (/ dyde d @y, m—o(y.£)—<x|n—§>) ay, W)M) aen)

= /ds d <xl> </ dydy &o0YEM (e g, y)) a()

where we sety (&, 7, Y) = ¢(¥,&) — oy, m), (X, ¥, &, n) = ¥ (&, n, ¥)— < x|§ —n > and
c&, n,y) = a(y, £)b(y, n) € SG, witht = (r» + S, r1, 51). The theorem is proved if we can
show that

p(x. &) = / dydy €°YED ¢, . y) € SGM.
Let us choosg € 22 (k) as above and set

p(x, &)

/dydn dOOYED ¢ . y) x (€, )

+

/dydn dOYEM oz . y) (L — x(E. )

/dydn dOYEM g€ 1, y)

+

/dydn OYED g 7, y)
(I + 19).

Again, we analyze separately andl».

1. 15 € S@RM).
The proof is very similar to the one in Theorem 13 above, shgulat the operator asso-
ciated withl, is smoothing. In fact, we are in the regi&¥, so that we have, analogously
to (56),

ldy (&, n. V)| > 1§ —nl = (§) + (n) .

This implies that the operatdd = |d71ip|2 2?21 ajyl/lajy, identical to that used above
Y

(apart a change of names of variables) can be uség.imhen for alla, 8 € N and
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arbitrarys € N,

I, = s“xﬂ/dndyei<x‘”—f>e“““’”qz(s,n,y)

/dndy B <XIn> g Eny)—<XE>) ga g & y)
= /dndy Df e <Xln> d W EnY=<XIE>) gagy & 4, y)
— (1l /dndyei<x|”> pf (ei(w(s,n,y>—<x|s>> £ (&, 1, y))

63 = 3 [yt dvEnn g .y
j

for suitabletpj € SGImj , wherem; depends on, « andg. We find, just as above,

%P1y, <1
if we useUSé¥ = &V in each of the integrals of the sum (63) wiHarge enough.
Again, for*x# BVE);‘IZ we have to act in the same way on a sum of integrals similar to

(63), since differentiation under the sign simply produaesim of terms in the integrands
which are still amplitudes with orders depending on the rinttices of the derivatives.

2. 11 defines a symbol in S@".

In the regionRi ={(&,n,Y) | 1€ —n| < k(&)} defined as in the proof of Theorem 13 it
is possible to consider tHf8G diffeomorphism withSG® parameter dependence

- 1
Vep.n: y) =/0 do Veu(y. 1+ 6 — 1))

analogous to that defined in (58) (symmetry in the role ofaldd and covariable for
@ € P?). Let us perform the change of variables

z=VepE.my) & y=Vep) e n 2)
recalling that obviously
YE. 0. y) =< VepE nY)E —n >=< 2§ —n >,
and set
I1 = /dZ_O'V &<z XE=n> g5, 9, 2)
with

BEn2 = qeEn Ve XEnD) xE -

0 ~
detﬁww)—l@, n:2)| € SG
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(again, we are following the proof of Theorem 13). We can nbemsthatly Sqm by
writing for it an asymptotic expansion. Letus getn — & & n = ¢ + &, so that

=
|

/dcé<x'5>/dze <UqE e+

> f;ix[z“fzﬁ;((ag‘m)(s,s,z))] > Ra

jal<M jal=M &

(64)

> —(DZD“ql)(s X+ D~ Ra

o] <M laj=M ¢

having used the Taylor expansion with respect to the secandbler of g1 with

Ry = /d;dzé<x 2> o / do (1 - oM @xT)E. & +0c.y).

Now, the sum forle| < M in (64) has the same behaviour (apart a change in role of
variables and covariables) of the asymptotic expansioocésed to a generic amplitude
defined in (12). The first term obviously has ordee (r1 + s1,r2 + ). So, we simply
have to estimaté&,, to make possible the use of the simplified criterion for gstptic
expansions in point 6 of Proposition 5. Let us note, first bfthht the presence of in

01 implies
gl =1& —nl <k =
[(E+0¢)— (€)Y <0lC] < Ig] <k(&)
(65) = +00) ~(§).

Then sez — x = w in Ry, to find
Re (X, £) —/d;dw e'<“"¢>/ do (1 - 0ML(DZo2a) (&, & + 07, X + w).

Let us now take into account the operativs= 1;A2‘ = twandW = =80 — tyy

(having obviously the same properties of Meused in the proof of Theorem 7). We
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have, for alls;, s € N,
Re(x.8) = /d:dwé<w">~
l ~
| do - oMt [(0F0a) €. & + o6 x-+ w)]

i 1
= /dgdwé<w|5>/ do 1-oM-1.
0

(DZogT1) (&, & + 62, X + w)
()1 ()%

1 o1 1 ;
d R (R

j1=1

j2=1

1 ti—|a| /gt t3—|a|
. /dcdw/ go X AW 6 (& 4 00)'s
0 (w)S1 ()22

1 & (s i e~
LQZSQ Z ( i» >(_Aw)Jz(D§3n Q1)($,§+9§,X+w):|}

~ <X)t1*\0!| (§)t2+t37‘°‘|/dw (w>|t1*\0!||*2$1/dw <C>*252’

since all the terms in the sum have lower order than the first,tdue to the action of
the Laplacians. We have used Peetre inequality and (65kifa#it estimate. Then, with
M = |«| fixed, chooses; ands, such that

[ty — le]] — 281 < —n;

—2% < —n.
This implies
M
Y R @MTM pgmemM
la|=M "
jlel -
(66) = 11~ ) —-(DEDa)E 1, 0ly=¢
o

From the calculations described above, it turns out &t &) is a symbol with asymptotic
expansion given by (66), i.e., a symboISlﬁm as desired.
|

4.3. Elliptic FIOs and parametrices

DEFINITION 25. A Type | Ay 4 or a Type Il B, , FIO is said md-elliptic ifp € P® and the
amplitude a or b is md-elliptic.

LEMMA 16. If Ay a is md-elliptic, then the twgydos Ay aAj 4 and A, 3 Ap a are md-
elliptic as well.
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Proof. It is enough to prove that the principal part of the asymptetkpansion of the two
symbols is md-elliptic. In fact, let us pick a generic symbaokith md-elliptic principal part
ro € SG" such that —rg =ry € SG"°® with § > 0. We have

- — — r, —
Tt =o+rp Tt =rgtas 7!
0

which implies
rh < ()M 0.

Now, from Theorem 13, cf. (62), the symbol A(g,aA;,a has principal part

Pox, &) = ax, mack m| [det (cke) ~Lx, £)] = hox HE(x, 6).

=(dx¢)1(x,8)

h(x, &) = a(x, p)a(x, n)‘ﬂ_(d o106 is md-elliptic of order 2n, owing to the hypothesis on
—\Ux )

the amplitudes, to the property oflp(., £) of being anSG diffeomorphism withSG® parameter
dependence and to the composition propertieS@classes expressed by Lemma 1B. €
ESGI0 because it is the jacobian determinant ofSfadiffeomorphism (see the proof of the next
Proposition 13). With similar arguments, it turns out tHabaA;’aA%a is md-elliptic.

|

THEOREM15. Any md-elliptic FIO A admits a parametrix, 2. If A is of Type I, Alis
of Type Il and viceversa.

Proof. Let us denote by~ the parametrix o = AA* and byQ~1 the parametrix ofQ =
A* A, which exist owing to Lemma 16. We have

PP 1= —-Ry, Plp=I-Ry,
QQ'=1-R;, Q'Q=I-Ry
with Ry, Ry, Rg, Rq € K. Let us sef; = Q~1A* andF = A*P~1. We then have

FA=(AALAA) =1 — Ry,
AR = (AAY(AAH =1 - Ry,
FAR =( —Ry)Fr = F — R = F — RyFr & F = Fy modKk,

so thatFy or F| can be chosen as parametricesfof With similar arguments it is possible to
find a parametrix folA*, namely settingsy = AQ~1 andG; = P~1A. The second part of the
theorem follows from the composition Theorems 7, 8, 9 and 10.

|

4.4, Example: the action of SG-compatible change of variabk on SG operators

As an example, we reexamine here the pull-back gfdo in LG™ in terms of FIOs. In all
this subsectioy € SGDiffeo(U#, V#; U, V; §) with U#, V* U,V € OR™), s > O andp €
SGlm | supp(p) C U x R". Note also that the properties required to the phasethe various
composition theorems examined in the preceding subsactierad to be fulfilled only on the
supports of the various amplitudes and symbols involvedt &8l be in our calculations here.
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Finally, it could appear that we cannot use here Theorem&d3 4 to compose FIOs of Type |
and Type Il (which is required at some point in this subsegtisince we cannot use Theorems
11 and 12 to show thﬁs¢(x; &, n) is aSG-diffeomorphism withSG? parameter dependence
(x lives in an open subset &"). However, in this case we can show directly this properge (s
(68) below), so that results analogous to those express&tidgrems 13 and 14 hold.

PROPOSITION13. Let us setpq(X, £) =< @(X)|E >, p2(Y,n) =< d(Y)|n > for x €
U* y e V¥ £, 7 € R". Theng; and g, have the same properties of the phages P¢, for
x € U# y e V¥,

Proof. We will prove the result only fop4, since calculations are identical fpp. ¢ € Sqe is
immediate fromp € SGDiffeo, owing to (17).<V§(p(x, 5)) = (¢ (X)) ~ (x) again follows from
the hypotheses op. In fact,¢(X) < (X) = (¢p(X)) < (X) is the casex = 0 of the first of (17).
From the second of (17):

S(Y) < (y) = (B(Y) < (Y) = (X) = (¢ (X)) < ($(0)) = ($(X)) > (X).
Since

0
epr(x §) = & 22 (0,

the inequality(dx 1 (X, &)) < (&) is trivial from (17), since the components %& are bounded
from above. For the other estimate, sirg{iais invertible, we can write

-
£ = depr(x, £) 3—¢;(¢(x>>

and, recalling the same argument as above, this imflies (dx¢1 (X, £)) as required. Now, let
us note thaE(x) = detg—‘ﬁ(x) € ESQO. In fact, we obviously hav& e Sqo. Moreover, owing

to the invertibility ofg—‘ﬁ(x) on allU*, we also find:

| = g—i(x) z—¢(¢(x)), deti—‘p <1l= 37; = detg—i > 1
y y det5% (@ ()
This gives the regularity of the phase. In fact,
. . ¢
(#Fokor0x ) = (950') = 5+

and
E ¢ ESG) = |det(0Xokpr(x.6))| = & > 0

with suitableg.
O

We have thus showed that the operatéys 1 and A, 1 are well defined md-elliptic FIOs
with regular phases. The following lemma is immediate.

. . ., A1
LEMMA 17. With the notations of Proposition 13,,A; = A¢2,1'



Fourier integral operators BG classes 289

Proof. We have, for alu € S supported irJ,

(Apy,1 AgpaW(X) =
2/65 ei<¢(x>\s>/dw oi<wlé> /dc ei<$(w)|§>/dyefi<y|§>u(y)

=F 0 <” °5)
= U(¢ 0 p(X)) = u(x)

and analogous result for the compositidp, 1 Ay, 1.

We obtain now the following more precise version of Theorem 2

EXAMPLE 2. For allP € LG™ we have forP* as in Definition 15:

(67) P* = Ap 1P As 1
and Sym(P*) can be described by means of Theorems 8 and 14.

Proof. (67) is immediate from the definitioR*u = (Pu,)* if we note that

V00 = (Frl 0 Fo)v = Ay 1v(X),
W(y) = (F L5 Foo=Agau®).

From Theorem 15 and Lemma 17 we also find

P* = A, 1PA L = Ay 1(POAY  modk

whereC is the parametrix of the md-ellipti¢do Q = A;1,1A<ﬂ1,1' From (66), with an arbitrary
oA
x € 82(K)

jlel
qx. &) ~ Y DY DZG(E £.%)

o

with

x(&, m

geéE n7.%

IS 1.
det&(VEQDl) (X’ “;:v 77)‘

-1

det_ V () (U) S ”)
58,
aw g 1

x(&.m - ‘
w=(Vep)"L(X:E.m)

Since in this case

- 1
Tepr(ws £,1) = /0 49 Vegr(w, & +0(n — £) = d(w)

(68) & (Vepp 106 £, 1) =9,
so that depends o andn only throughy, we have, moduldC,
-1
qx, &) = det% .
W ly=g(x)




290 S. Coriasco

Q is then a multiplication operator, whose inverse (and pater) has symbol

0
det—¢
w

c=c(x) =

w=p(x)
Let us setS= PC. Then, from (13),

jlal

S0, §) ~ Y — D p(x. £) DXe(v).

Let us compute the symbol (SSAm’l = Ay, . From Theorem 7, choosing an arbitrary
oA
x € E2(K),

1 .
hx. §) ~ 37 = (0F (9)x. (e (x. )D (€7 7VE (. y))

y=x"
where
vy, 8) = Cony, &) — Conx, &)— <y —xldx 1) (x, £) >

= <¢p@Iy>—<9@IX>—-<y—X[(dx <)X >)>

= <yY—X¢E¢)>—-<y-—X[¢p&)>=0.
Then

y iw _ 1 O[=0

so that

h(x, &) ~ ('s)(x, $(&)) = (¢ (&), X)
and, from Theorem 8,
Ay 1S="("SA, 1) = A, th
with
th(x, &) = h(€, ) ~ s($(x), ).

At last, the amplitudep of P* can be then expressed using Theorem 14, as the amplitude of
A%thA’(;1 1 Letus set

1 3
M(X, y)=/ deo —d’<y+9(x—y))
0 X

= (ko) rx, y: ) = EM (%, y),

SinceM is obviously invertible forlx — y| < k (x). We have

0 ~
detg(dxwl)il(xv y: S)

jlel
~ Y Y (DD 00, EMTHX, y)) IdetM (x, I~ DXe

By, &) = x(x Whx, ([dxe) X, y: £))

From this we may deduce the asymptotic expansion of the slyniths easy to verify that the
first term is the same of the analogous one described in [B&he previous Theorem 2.
O
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4.5. Action on the Sobolev spaces

Theorem 16 here below could be proved as in [4], that is, aglaptad version of the general
L2-boundedness result of Asada-Fujiwara [1]: the proof whatlows these lines is in section
A.2 of the appendix. However, we can make here full use of Téraal3 and of the usual?-
boundedness result fardos inLG Y (special case of Proposition 6) to skip long calculations
completely.

THEOREM16. Let A= A, 5 be a Type | FIO withy € P° and ac SG . Then Ac L(L?).
Proof. We have easily, fou € L2,
IAUI? = (Au, Au) = (A*Au, U) < |A*Au] [lu]| < IA*All (L2 luli?,

and the result follows immediately since, by hypothesisEBmebrem 13A*A LGO c £(L?).
O

To prove the general continuity Theorem 17 below we have aoée the inverse of the op-
eratorIT used in (10). We also give, for sake of completeness, amalige equivalent definition
of Sobolev spaces (10). The proof of Lemma 19 is containedilih [

LEMMA 18. Fort € R? letus sefft (y, &) = (&)1 (y)t2, which we consider as x-independent
S

amplitude, and apply (6). Then, for alls R2, 1 g = Op(—s) = Hs_l wherells is defined
in (9).

Proof. The proof is immediate. In fact, for an arbitranye S we have

f_sMsux) = / dedy € <XYIE> (£)7S1 (y) "% / dn €<= ()1 (y)% Ay
/ de d<XE> (5)7% / dyei<VE> / dn & <Y () agn)

/ds d<XE> (£)7SL(g)S ace)

u(x)

and an analogous result ol _s.

LEMMA 19. For all s € R? the space
As — {u e S'R") | fisu € LZ(R”)}

has the same elements of the Sobolev space of equation (d®qaivalent normjul| zs =
ITisull 2.

Proof. Using Lemma 18 we have

(69) ueHS & Tsuel?= Tisu= (TIsf_s)(Msu) € L?,
(70) ueAS o Tisuel?= Msu= (MsM_s)(fIsu) € L?,
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sinceﬁsﬁ,s as well ad1sI1_g are inE(LZ), because they are order/@os . The equivalence
of the norms is a consequence of (69) and (70) since

lullgs = [Tsull 2 = [I(TsTT_s)(TTsW)l 2
ITIsTT—s]l £ 2 ITIsUll 2 < Mullps
ITsull 2 = [[(TTsMT—s)(TTsu)| 2
ITsTT—s £, 2, ITIsUll 2 < M{ullgs

IA

ullhs

IA

for a suitableM > 0.

THEOREM17. Foralls e R2 ae SG{“, @ € PE: Aga € L(HS, HS™M),

Proof. For anyu € HS we find

lAgaullys—m = [ITls—mAgp,aUll 2 = ||(HsfmA<p,aﬁfs)(HsU)|| L2
< IMs—mAgpall-sllz 2)ITsull 2
< Mjullps,

where we have used Lemma 19 and Theorems 7 and 8 tblgehA, all_s = Ay h with

h € SGY, Theorem 16 to achieve the?-continuity of A, h andu € HS < Msu € L2.
Od

REMARK 8. Owing to Remark 5, and since the Fourier transform is &fsometry, Theo-
rems 16 and 17 are also true for a Type Il operdggt, with ¢ € P¢ andb SGl0 orbe SGlm
respectively.

4.6. Wave front sets

We begin recalling the definition of the so-called “wave frepace” (see [11]).

DEFINITION 26. (Directional compactification dR")
LetB" denote the “directional compactification” @&", i.e. B" consists oR" and the “infinite
set” {ooXg : Xg € R" [xg| = 1.

Let B1(0) denote the unitary open ball centered in the origin. Thetfanc
(71) s:R"—> B1(0) : x> %

is a homeomorphism dR" onto B4(0) which is extendable to a homeomorphismBf onto
B1(0) = {x € R" | |x] < 1}, mapping the boundaryB" of B" onto S"~1. So we can identify
the pointsoox of 9B" by means of the correspondimgpf S71.

DEFINITION 27. (Wave front space)
Let us consider the cotangent bundlgR™ = R" x R" and its compatificatioB” x B". We
call “wave front space” the subséty = R" x 9B" of 9(B" x B").

We will define the wave front set of a temperate distributioas a subset afV. We now
give the definition oSG-microregularity.
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DEFINITION 28. (SG-microregularity)
Letue S’ be given. We say that u 8G-microregular at a point(xg, co&g) € W if there exist

- a neighbourhood ofxg, coép) of the form U = Q x I whereQ < B” is an open
neighbourhood of xandT is of the formI’ N {& : |&| > R > O} with I" open conical
neighbourhood ofg in R";

- aydo P=Op(p) such that pe SG, p > 1inU and Pue S(R").

DEFINITION 29. (Wave front set of a temperate distribution)
We define the wave front SatF(u) of a distribution ue S’ as

WF(u) = W\ {(Xg, 00&g) € W | u is SG-microregular in(Xg, 0c0&p)}

To obtain an adapted version of the Egorov theorem, we fiest tree expression of S)ﬁT(A P A—l),

where A = Ay a is an elliptic FIO of Type | whileP = Op(p) is aydo with p € SGlt. We
generalize here the calculations of subsection 4.4.

PROPOSITION14. Let A= A, 5 be an elliptic FIO of Type | with & ESGlm and P =
Op(p) aydo with pe SG. Then, setting) = (dx¢) "1 (x, &) we have

Symp (APA™) (x, &) = P((Ve@) (X, 1). 1),

Proof. Let us selC = AA*, so that, in view of Theorem 1~1 = A*C~1. By Theorem 13
we immediately have

Symp (C) (x, &) = |a(x, (dxg) ~1(x, £))1°

d
detg(dxf/))_l()(, ).

By Theorem 10 we then have

(symp (P*)(x, () (x, &) Cay(x, &)
P(Vep)(E, %), X) a&, X) =

tSymp (P A*) (x, £)

= Symp (PAY) (x, &) P((Veg) (X, £), &) ax, &).

Finally, settingB = P A* andn = (dx(p)*l(x, &), owing to Theorem 13 we find

Symp (AP A) (x, &) Symp (AB) (. §)

ja0x, 1)2|detz (cke) Lx, £)| PUTz@) 6 1), 1),

(72)

Since obviously Sy@(Cfl) = (Symp ()7L, (72) implies

Symp (APA™) (x, §) = Symp (AP A) (x, §) Symp (C7%) (x, §) = P((Ve@)(X, n), )

as desired.
Od
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Let us denote byb the canonical transform of*R" into itself generated by, i.e. ®
(X, &) — (Y, n) is defined by

(Vep) (X, m)
(dx@) (X, ).

y
73
73) {
Let us assume in (73) homogeneity of degree 1 with respegffoo ¢(x, n) (for largen). We
denote then by the same symhltthe transform that (73) induces &%. We can now state an
adapted version of the theorem concerning the action ogEi®Owave fronts.

THEOREM18. For any elliptic FIO A of Type | and any distribution& S’ we have
(74) WHRAU) = &~ L(WF(u))

Proof. Let u be SG-microregular in(yg, oong) and letP € LGP be the operator of Definition
28. Letus sefQ = APAl & QA = AP. Then, by Definition 28 and Theorem 4, we have
QAue S & APue S. By Proposition 14 and (73), we have SyQ) = p o @, so thatAuis
SG-microregular ind~1(yp, cong). This means that

(75) W\ WF(AU) = @~ (W \ WF(u)).
Complementing (75) with respect W and recalling that is a bijection, we obtain (74).

|

Appendix

A.l. Derivatives of the exponential functione ¥

PROPOSITION1S. Letus sety (X, Y, &) = (Y, &) — (X, §)—
<y —X|dxe(X, §) > asin (26). Then we have, far| > 1:

DYV = o€V
= &V [(dyg — dxe)* +

n]_jl
. _ 0]1 y
(76) + chl (dye — dxo) _]‘[ 9., +
1 j2=1
N2j;
/ Y
+ 226 [T #y,0
1 j2=1
with suitable g, ¢, , Bj, j, andyj, j, such that:
(77) 1Birials 1¥j1jo] = 2
N1jy n2jy
(78) 0j, + Z Biria = Z Vida = ¢
jo=1 jo=1

where dp = dxp(x, ), dyp = dyp(y. &), ¢ = 8%p(x, &) anddgp = d3¢(y. &) is to be
understood.
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Proof. For|«a| = 1 (76) holds with only the first term:

—i ajye‘\” = e"ﬁ(aij ~ 9%p).

For |a| = 2 (76) holds without the first sum: in fact

~0% eV =gV [(ajysﬁ — 3X0) (0 — ) —i 3jyk¢] :

For|«| = 3 (76) holds with all the terms:

eV =
=V [(aj-y</> — 0@y — K@ e — §o) — 10l 0@ 0 — 30)

10 03y — k) — 139 e — 9¥) — ajykl ¢] :

In all the three cases above (77) and (78) trivially hold. Wwefproceed by induction assuming
(76), (77) and (78) true for alt such that 1< |«¢| < p with p > 3. Differentiating (76) we
obtain

Dgl/_,,_emei‘// =—i 8r¥] (aaei‘//) = [(8,){1(/) — Br),%ga) oq — i 8r¥]aa] dv
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so that
Oa+em =
= (dyg — dyg)* "
N1jy N2jy
GJ +em
+Z°n dyg — dxg) It 1_[ By J2<p+z:ch(am<p amga) ]_[ a?’mz
i1 jo=1 jo=1
Lo & y x \¥i y x \k=1{ .y
+ ) (—Dak [1 (8 =9 <p) (akw—aw) Iem®
k=1 j=1
j #k

j1 k=1

n _ )
+ZZ( e8]k 1_[ (ajyga—ajxga)ejll (3 — )9J1k 1
=1
£

nljl

y y
Okm® 1_[ aﬁilizga
j2=1

N1jy i1
. 0j
+ Z Z(—l)cjl (dy(,o — dxg) "t 323/1 kt+em?¥ l_[ ngljz(p
i k=1 j2=1
2 #k
n2j, n2j;
y
+ZZ( I)Cu Visk+em? [T %,e
j1 k=1 ja=1
2 #k

The terms obtained are all of the correct type, as it is clgahb calculation above. Also the

fact that (77) still holds is trivial, so that we only have teeck (78) on the above formula. By
the inductive hypothesis we have

- for the first sum:

n,1J1 N1jy
+ZﬁJ1J2 911+em+2ﬂ1112—a+em,
j=1 j2=1
- for the second sum:
n,1J1 n2jy

+Zﬁjljz—em+2yjljz—a+em,
jo=1 j2=1



Fourier integral operators BG classes 297

- for the third sum:

n’1jl
91{1"_ Z 'leizza_eK"_e"'_em:a"_em;
jo=1
- for the fourth sum:
n/lil N1jy
/ ! . .. — .
Oy + D Birjpy =i — &+ D Bjsjp + & +em=c +em;
j2=1 j2=1
- for the fifth sum:
n/lil N1jy
/ ! . - —
O+ D Biajp =i+ 2 Fisjp +em =+ em
j2=1 j2=1
- for the sixth sum:
n/21'1 N2j1
/ . . j—
Z Yitia = Z Yitip T@m=o + ém.
j2=1 j2=1

Formula (76) with (77) and (78) is then proved forall

A.2. Direct proof of continuity in Sobolev spaces

We give here an alternative proof of Theorem 16 as an adaptsibw of a general2-boundedness
result of Asada-Fujiwara ([1]), very close to the analogons in [4] (Theorem 12.1). We will
need the following classical Schur’s lemma.

LEMMA 20. If H e CR" x R") and
sun/dXIH(x, WI<T, SUD/dylH(x, VI<T,
y X

2),

then the integral operator with kernel H has nornT in £(L

Proof of Theorem 16L et us choose a non-increasitige C°°(R) such thaty(t) = 1fort < %
andy (t) =0fort > 1. Then set, fow = (s,0) € R" x R",

Y(x—shy (s —al)

w8 = [dsty (X — sy (€ — o)’
so that
(79) SUPP(Yw) € Uy = {(x,6) e R" xR | [x — | < 1, | — o] < 1},
(80) max sup 13¢5y (X, )| < Cm,

la+Bl<m (x,&)eRNxRN

VX, & /dsda Yw(X, &) =1,
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where the constantSy, do not depend ow. For fixedw, let us set
(81) ay (X, &) =YX §arx,§),
Ay = A<p,aw-

(79), (80) and (81) implyA,, € Hom(C3°, C5°) and ||Ayull 2 < CJlull 2 with constantC
independent ofv. In fact,a,, has compact support and (80) holds. Moreover,

Yuw € CP = Yu €S = ay € SF

and
Ay au(x) =

N— o0 lw|<N

where the limit exists pointwise for al € R" and with respect to the strong topology Iof.
We will prove the theorem if we can show that for all compads $& C R" x R"

(82) H/ dw Awu(.)H < Mull 2, uecCy
K L2

with constantM independent ofi and K. To this aim, we will use Cotlar’s lemma (see, e.g.,
[22]), which, adapted to our operatofs,, can be stated in the following form.

LEMMA 21. Let h(w, w’) and k(w, w’) be two positive functions dR?" x R2" such that
(83) IAwASL I < h(w, w)2, AL Ayl < kw, w)2

If h and k statisfy
(84) /dw h(w, w) < M, /dw k(w,w) < M,
then (82) holds for the same value M.

Here we shall not use Theorem 13, but observe that the ketpgl (x, y) of Ay, AY, can
be easily written in the form

(85) Hw,w’ (X, Y) = /d-%- ei(w(x,é)fw(y,S)) qw,w’ (X; Y, %-)

with
O, w (X, Y, §) = ay (X, E)ay,/ (Y, &).

We now want to show thatl,, ,, in (85) satisfies the hypotheses of Lemma 20 for a suitable
Let us introduce the operator
£=dta-0

where
n .

i) (p(x.§) —p(y. £) 3/,
j=1

d = 1+ |Ve(pX &) — oy, §)

|—
Il

2
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so that
L @X.E—0(y.§) — deX.6)—e(y.§)

Take note that

Ve (0%, ) —p(V, €)= x =yl = d> (x—y)?

(see the first part of the proof of Theorem 13, and also, sgfif = f/d,

D : SR xR" x R") = S(R" x R" x RM),
L:SR"xR"xR" - S®R" x R" x RM),

supp(Gy.w) S{X, Y. 6) 1 [ IX—s| <Ll ]y—S|<LlE—o|l<LIE—0/| <1
= Oy € SR" xR x RM).

Since for(*£)™ a formula analogous to (22) holds, by the hypotheses andtheabservations
we have, for arbitraryn € N and a suitable polynomi&@n in the variablesD, L,

Hw,w’ (x, Y) =
=/d§ LM@Y g xy £
= / de d @(X.6)—0(y.£)) toym O o’ (X, Y, €)

= / dg € @XO=0YE) (DM 4 Qu(D, L)) Gy (X, ¥, £)

/

—7 ) tx—9)t(y—8) A+ x—y>H™™

(86) = Hy (X, Y) < T <"

wheretr = xpq,1) is the characteristic function of the unit ballRY. Then:

S;Jp/ dx [Hy (X, Y| <

_ /
<‘E<U (o4 > sup / du(1+|u+(s_y)|2)—m
2 ) yeB(s.1) JueB©,1)

_ !
<7 (U 7 ) sup (L+1Is—y>H™M
2 yeB(s,1)

_ /
<7 (U 20 ) (1+]s—gHm

and analogously for syp/ dy |H,, ,,(X, ¥)|, owing to the symmetry in the estimate (86). So,
all requirements of Lemma 20 are satisfied and summing upave: h

lo—o'|=2 = AyA;, =0
lo—o'l<2 = [AWALl <@+[s—gPH™™
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An analogous estimate can be obtainedAgrA,,. In fact, using Remark 5,

AbAy = Bpa,Apa,
= (271)”.7—'71 o A—‘(p,aql, oF loFo @r)™" Bftw,a* oF

w’

xof

_ -1 *
== ‘7: [e] A_t(p’ *, Aftﬁoﬁaw/

a,
= FloR,At oF
which implies
IAS Awll 22y < I1AwAL Il 22

since the Fourier transform is anz-isometry. Of course, also the kernel Efl,ﬂ*w, satisfies
estimate (86), due to the usual symmetry in the role of véegand covariables in phases and
amplitudes. Then, also the requirements (83) and (84) ofhai2il are satisfied, and the theorem
is proved.

|
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