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FOURIER INTEGRAL OPERATORS IN SG CLASSES I

COMPOSITION THEOREMS AND ACTION ON SG SOBOLEV

SPACES

Abstract. A new class of Fourier Integral Operators (FIOs, for short) is defined.
Phase and amplitude functions are chosen inSG symbol classes, the former with
the additional requirements of being of order(1,1), real-valued and suitably grow-
ing at infinity. These FIOs turn out to be continuous on the spaces

�
(�n) of

rapidly decreasing functions and
� ′(�n) of temperate distributions. Results about

the composition ofSG FIOs withSG pseudodifferential operators and about the
composition of aSG FIO with its L2-adjoint are proved. These allow to obtain
results about the existence of parametrices for elliptic FIOs, the continuity on the
SG Sobolev Spaces and the wave front sets. As an example, the action of aSG-
compatible change of variable on aSGpseudodifferential operator is reconsidered
in terms ofSG FIOs.

1. Introduction

Fourier Integral Operators† were systematically treated by Hörmander for the first timein [21],
after having been initially used by Lax, Maslov, Egorov and others. The results in [21] were
expanded in the paper [15] by Duistermaat and Hörmander, where they studied parametrices of
ψdos of principal type and propagation of singularities. In the meantime, FIOs had also been
applied to the study of hyperbolic equations and spectral theory.

The standard theory of FIOs is based on symbol classes which satisfy uniform estimates
in compact sets over�n . It is very well suited for studying operators on compact manifolds,
and also the Cauchy problem can be solved in a satisfactory way. A collection of techniques
and results in this environment can be found, e.g., in Kumano-go [26]. However, problems arise
when one tries to solve the same problems on noncompact manifolds. Also in the simple case
of �n, we need decay of the symbol both in the variables and in the covariables if we want
to achieve compactness of the remainder operators. A possible approach to the solution of the
problem is based on amplitude classes satisfying, for allα,β, γ ∈ �n and x, y, ξ ∈ �n , the
estimates

(1) |∂αξ ∂
x
β∂

y
γ a(x, y, ξ)| ≤ Cαβγ 〈ξ〉m1−|α| 〈x〉m2−|β| 〈y〉m3−|γ | .

m = (m1,m2,m3) ∈ �3 is the “order” of the amplitude. Analogously, we can consider left-
symbolsa(x, ξ) of double-orderm = (m1,m2) ∈ �2. The associated Sobolev spacesHs,

∗Thanks are due to Prof. Elmar Schrohe, University of Potsdam, and Prof. Luigi Rodino, University of
Torino, for helpful discussions and observations.

†From now on, FIO will stand for Fourier Integral Operator andψdo for pseudodifferential operator.
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s ∈ �2 are defined in the canonical way. These concepts date back to the works of Shubin
[43], Parenti [35] and Cordes [10] and theψdos theory so obtained is very precise: in fact, the
residual elements of the calculus associated to the amplitudes in (1) are the integral operators
with Schwartz kernels, i.e., kernels in the Schwartz space

�
(�n × �n). In Schrohe [38] the

whole theory has been named “SG” calculus and transferred to a class of noncompact manifolds
with a compatible structure, the so-calledSGmanifolds. Applications concerned the analysis of
complex powers of elliptic operators on noncompact manifolds (Schrohe [39]) and the solution
of boundary value problems for manifolds with noncompact boundary (Cordes and Erkip [12],
Schrohe and Erkip [40], Schrohe [37]). A detailed discussion of theSG theory is given in Cordes
[11]: the definition of theSGsymbol classes and some of their properties are recalled in section
2.

We will be concerned here with a class of FIOs with phase and amplitude functions chosen
in SGclasses. As standard, these operators present two forms with analogous properties. Type I
operators, for functionsu ∈

�
(�n), have the form

(2) Au(x) = Aϕ,au(x) =

∫
d−ξ eiϕ(x,ξ ) a(x, ξ) û(ξ),

while Type II operators are defined by

(3) B̂u(ξ) =
�

Bϕ,bu(ξ) =

∫
dx e−iϕ(x,ξ ) b(x, ξ)u(x).

Here, as usual,d−ξ = (2π)−ndξ , while the phase functionϕ and the amplitudesa andb are
chosen inSG symbol classes. More precisely, the phase functionϕ is chosen real valued in the

SG(1,1)l class, with the additional property that its first derivatives satisfy a growth condition:
there exist constantsc,C > 0 such that

(4)
c 〈x〉 ≤

〈
∇ξϕ

〉
≤ C 〈x〉

and c 〈ξ〉 ≤ 〈dxϕ〉 ≤ C 〈ξ〉 .

The amplitudesa andb can be chosen in anySGm
l class. We have set

〈x〉2 = 1 + |x|2 for x vector or covector in�n ,

dxϕ =

(
∂ϕ

∂x1
, . . . ,

∂ϕ

∂xn

)
= (∂1ϕ, . . . , ∂nϕ) = (∂x

1ϕ, . . . , ∂
x
nϕ),

∇ξϕ =




∂ϕ

∂ξ1
. . .
∂ϕ

∂ξn


 =



∂1ϕ

. . .

∂nϕ


 =



∂1
ξ
ϕ

. . .

∂n
ξ
ϕ




and� , � and
�

denote, respectively, the integer, real and complex numbers sets, while�? ,�?
and
� ? are the same sets without 0. It can be shown thatψdos of the form

Pu(x) =

∫
d−ξ ei<x|ξ> p(x, ξ) û(ξ)

(for‡ < x|ξ >= xi ξ
i and p ∈ SGm

l ) map
�
(�n) continuously into itself and are extendable to

linear continuous operators from
� ′(�n) to

� ′(�n) (see [11] and references therein). The same
is true for FIOs defined in (2) and (3), as we show in section 3.

‡Whenever it will be convenient, we will use the convention that expressions with repeated upper and
lower indices denote summation over such indices, e.g.,xi ξ

i =
∑n

i=1 xi ξ
i .
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One of the main results proved in section 4 is the following theorem.

THEOREM1 (COMPOSITIONTHEOREM). Given a FIO A= Aϕ,a of Type I such that the

real valued phaseϕ ∈ SG(1,1)l (�n) satisfies (4) with a∈ SGm
l (�

n) and aψdo P = Op(p)
with p ∈ SGt

l (�
n), then the composed operator H= P A is, modulo smoothing operators,

a FIO of Type I. In fact, H= Hϕ,h whereϕ is the same phase function and the amplitude

h ∈ SGm+t
l (�n) admits the following asymptotic expansion:

h(x, ξ) ∼
∑

α∈�n

1

α!
(∂αξ p)(x, dxϕ(x, ξ))D

y
α

[
eiψ(x,y,ξ )a(y, ξ)

]
y=x

.

Here

ψ(x, y, ξ) = ϕ(y, ξ)− ϕ(x, ξ)− 〈y − x|dxϕ(x, ξ)〉 ,

and, as usual, Dyα = (−i )|α|∂
y
α .

As a first application, we reconsider in subsection 4.4 theSG-compatible change of vari-
ables forψdos with symbol inSGm

l (�
n), cf. Schrohe [38]. In subsection 4.5 we analyze the

action of these FIOs on theSG Sobolev spacesHs, s ∈ �2, recovering the expected continuity
results. In particular, FIOs with amplitudea ∈ SGm

l map Hs continuously intoHs−m for all

m, s ∈ �2. Finally, in subsection 4.3 elliptic FIOs are defined and in subsection 4.6 we consider
the action of FIOs on wave fronts. Section A.1 of the appendixcontains the proof by induction of
formula (27) while section A.2 contains an alternative proof of the continuity of FIOs in theSG
Sobolev spaces. For the detailed proofs of most of the cumbersome formulae used throughout
the text, see, e.g., the appendix of Coriasco [14].

In a subsequent paper (Coriasco [13]), the solution of hyperbolic Cauchy problems in this
environment will be given in terms of FIOs.

From now on, we will use the notationsf ≺ g and f (x) ≺ g(x) to mean∃C > 0 :
∀x | f (x)| ≤ C|g(x)|, while the notationsf ∼ g and f (x) ∼ g(x) will mean f ≺ g ∧ g ≺ f .
Notations concerningSG classes are recalled in section 2, where, for the sake of completeness,
we also recall the notion ofSGmanifold. For convenience, when dealing with orders of symbols,
we will often use the obvious notationse = (1,1), e1 = (1,0) ande2 = (0, 1). Analogously,
e = (1,1, 1), e1 = (1, 0,0) ande2 = (0, 1,0) ande3 = (0,0,1) when the reference is to orders
of amplitudes. If not explicitly otherwise stated,A will always stand for a Type I FIO of the
form (2) with phaseϕ and amplitudea while B will stand for a Type II FIO of the form (3) with
the same phase and amplitudeb. In general,ψdos will be denoted by capital letters and their
symbols or amplitudes by the corresponding small letter (i.e., P = Op(p), q = Sym(Q), etc.).
The other notations are standard.

Comparing our results with the existing literature, we finally observe that general FIOs
calculi exist already, see for example Liess and Rodino [27]and Bony [5], but they seem not
applicable to the present situation. A natural question is whether our results may keep valid if
SG symbol classes are replaced by more general Beals or Weyl-H¨ormander classes in�n, see
Beals [2], Hörmander [22] Vol. 3. As it concerns Theorem 1, it is certainly possible to extend it
in some way to such situations, however the developments of the FIOs calculus in subsection 4.2
take advantage of the peculiarities of theSG structure, and of courseSG changes of variables,
treated in subsection 4.4, have not a counterpart in the Beals-Hörmander frame.
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2. Definition and basic properties of SG symbol classes, operators and manifolds

DEFINITION 1. For m = (m1, . . . ,mN ), r = (r1, . . . , r N ) ∈ �N write:

m ≥ r, if m j ≥ r j , j = 1, . . . , N;

m> r, if m j > r j , j = 1, . . . , N.

DEFINITION 2. For m = (m1,m2,m3) ∈ �3 we denote bySGm(�n) the space of all
amplitudes functions a∈ C∞

(
�n × �n × �n) which satisfy the condition

(5) ∀α,β, γ ∈ �n : ∂αξ ∂
x
β ∂

y
γ a(x, y, ξ) ≺ 〈ξ〉m1−|α| 〈x〉m2−|β| 〈y〉m3−|γ | .

SGm(�n) is given the usual Fréchet topology based upon the seminorms implicit in (5). More-
over, let us set

SG∞ =
⋃

m∈
�3 SGm, SG−∞ =

⋂
m∈

� 3 SGm.

The functionsa ∈ SGm(�n) can be(ν × ν)-matrix-valued (this will be useful to deal with
systems) and the estimates must be valid for each entry of thematrix. We will write simply
SGm instead ofSGm(�n): the dimension of the base space is from now on fixed ton, and the
base space is specified only if it is a manifold, a submanifold(according to the definitions in the
following) or an open subset of�n .

DEFINITION 3. For m = (m1,m2) ∈ �2 denote bySGm
l (�

n) = SGm
l the double-order

symbol space of functions a∈ SG(m1,m2,0) which are independent of y. As in Definition 2, let
us set

SG∞
l =

⋃
m∈

�2 SGm
l , SG−∞

l =
⋂

m∈
� 2 SGm

l .

DEFINITION 4. A formal infinite sum
∑∞

j =1 a j is an asymptotic expansion if

1. ∀ j ∈ � a j ∈ SG
m j
l ;

2. ∀ j ∈ � m j +1 ≤ m j ;

3. lim j →∞ m j = (−∞,−∞).

We further write a∼
∑∞

j =1 a j when

∀N ∈ � a −

N∑

j =1

a j ∈ SGmN+1
l .

DEFINITION 5. We denote by41(k) with k > 0 the set of allSG-compatible cut-off func-
tions which are equal to one in a suitable neighbourhood of the diagonal1, more precisely the
set of allχ = χ(x, y) ∈ SG(0,0,0) such that

|y − x| ≤
k

2
〈x〉 ⇒ χ(x, y) = 1,

|y − x| > k 〈x〉 ⇒ χ(x, y) = 0.

If not otherwise stated, we will always assume k∈ (0; 1), which is what we will generally
need when we will make use of these cut-off functions.4(R) with R > 0 will instead denote
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the set of allSG-compatible cut-off functions which vanish near the origin, i.e., the set of all

φ = φ(x, ξ) ∈ SG(0,0)l such that

|x| + |ξ | ≥ R ⇒ φ(x, ξ) = 1,

|x| + |ξ | ≤
R

2
⇒ φ(x, ξ) = 0.

PROPOSITION1. The sets41(k) and4(R) are non-empty for any k, R> 0.

DEFINITION 6. To each amplitude p∈ SGm associate a linear operator P= Op(p) :�
(�n) →

�
(�n) defined as

(6) Pu(x) = Op(p)u(x) =

∫ ∫
dyd−ξ ei<x−y|ξ> p(x, y, ξ) u(y).

Let us denote byLGm the space of all these operators, i.e.,

LGm = Op
(
SGm) =

{
P ∈ Hom

(�
(�n)

)
| ∃p ∈ SGm : P = Op(p)

}
.

An element P∈ LGm is called aψdo , of order less or equal to m.

DEFINITION 7. For P ∈ LGm we denote by p= Sym(P) ∈ SGm
l the symbol of P, that is

P = Op(p). Moreover, we denote bySymp (P) the principal symbol of P, that is a p′ ∈ SGm
l

such that p− p′ ∈ SGm−e
l .

DEFINITION 8. Let � denote the space of linear integral operators having kernels in�
(�2n), i.e.,

� = � (�n) =

{
K ∈ Hom(

�
(�n)) | ∃k ∈

�
(�2n) : K f (x) =

∫
dy k(x, y) f (y)

}

PROPOSITION2. Every K ∈ � extends to a linear continuous map K:
� ′(�n) →�

(�n).

DEFINITION 9. A symbol p∈ SGm
l and the corresponding operator P= Op(p) are called

md-elliptic if there exists R> 0 such that

|x| + |ξ | > R ⇒ p(x, ξ) 6= 0

and
|x| + |ξ | > R ⇒ [ p(x, ξ)]−1 ≺ 〈ξ〉−m1 〈x〉−m2 .

Let us denote byESGm
l (�

n) = ESGm
l the subset ofSGm

l of all md-elliptic symbols of order m
and byELGm = Op

(
ESGm

l

)
the corresponding subset of md-elliptic operators. Analogously,

an amplitude p∈ SGm and the corresponding operator P= Op(p) are called md-elliptic and
we write p∈ ESGm(�n) = ESGm if

∃ p̃ ∈ ESGm′

l ,m′ = (m1,m2 + m3) | Op(p)− Op( p̃) ∈ � .

DEFINITION 10. A � -parametrix (or simply parametrix) of aψdo P ∈ LGm is aψdo Q
such that

PQ − I , Q P − I ∈ � ,
where I denotes the identity operator.
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In the following propositions we state some basic properties of the symbols and operators
defined above. We also define and state some properties of the corresponding Sobolev spaces.
Proofs can be found in [11], [38] and the references quoted therein.

PROPOSITION3.

∀m,m′ ∈ �3 : m ≤ m′ ⇒ SGm ⊆ SGm′

,

∀m,m′ ∈ �2 : m ≤ m′ ⇒ SGm
l ⊆ SGm′

l .

Moreover, as direct consequence of the Leibniz rule and the Definition 2,

(7) ∀p ∈ SGm,q ∈ SGr : pq ∈ SGm+r .

(8) ∀p ∈ SGm ∀α, β, γ ∈ �n : ∂αξ ∂
x
β∂

y
γ p ∈ SGm−|α|e1−|β|e2−|γ |e3

PROPOSITION4.

1. The integral in(6) makes sense and, as already observed, defines an element of�(� ) (i.e.,
Op(p) is a linear continuous operator from

�
in itself), which is extendable to a linear

continuous operator from
� ′ in itself.

2. If in (6) p ∈ SGm
l , Definition 6 coincides with the usual one, i.e.,

Op(p)u(x) =

∫
d−ξ ei<x|ξ> p(x, ξ) û(ξ)

whereû(ξ) = � x→ξ (u)(ξ) is the Fourier transform of u.

3. SG−∞ =
�
(�3n), SG−∞

l =
�
(�2n) andLG−∞ = � .

DEFINITION 11. For s = (s1, s2) ∈ �2 the symbolπs denotes the product

(9) πs(x, ξ) = 〈ξ〉s1 〈x〉s2

and5s = Op(πs) the corresponding operator.

DEFINITION 12. The associated family of weighted Sobolev spaces Hs(�n) = Hs, s =

(s1, s2) ∈ �2, is defined in the canonical way:

(10) Hs =
{
u ∈

� ′(�n) | 5su ∈ L2(�n)
}

with the norm‖u‖s = ‖5su‖L2 = ‖5su‖0.

PROPOSITION5. The following results govern the asymptotic expansions of symbols.

1. (Identification of symbols).
For every asymptotic expansion

∑∞
j =1 p j we have:

(11)
1) ∃p ∈ SGm1

l | p ∼
∑∞

j =1 p j ;

2) p′ ∼
∑∞

j =1 p j ⇒ p − p′ ∈
�
(�2n).
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2. (Simplified criterion).
If p ∈ C∞(�2n) satisfies

∀α,β ∈ �n ∃k1(α), k2(β) ∈ R | ∂αξ ∂
x
β p(x, ξ) ≺ 〈ξ〉k1(α) 〈x〉k2(β)

and
∃{lr }r∈�,lr ∈

� | lr → −∞

with p(x, ξ)−
∑r

j =1 p j (x, ξ) ≺ 〈ξ〉lr 〈x〉lr ,

then we have p∼
∑∞

j =1 p j .

3. (Existence of the symbol§ )

∀p ∈ SGm ∃ p̃ ∈ SGm′

l ,m′ = (m1,m2 + m3) | Op(p) = Op( p̃)

and

(12) p̃(x, ξ) ∼
∑

α∈�n

i |α|

α!
Dαξ Dy

α p(x, y, ξ)|y=x .

4. (Symbol of the composition).

∀p ∈ SGm
l , q ∈ SGr

l ∃s ∈ SGm+r
l | Op(p)Op(q) = Op(s)

and

(13) s(x, ξ) ∼
∑

α∈�n

i |α|

α!
Dαξ p(x, ξ)Dx

αq(x, ξ).

In particular, the composition of twoψdos is aψdo the order of which is the sum of the
orders of the two operators.

5. (Order of the commutator).

∀p ∈ SGm
l ,q ∈ SGr

l R = [ P,Q] ∈ LGm+r−e

and

Symp (R) (x, ξ) =
∑

|α|=1

i (Dαξ p(x, ξ)Dx
αq(x, ξ)− Dx

α p(x, ξ)Dαξ q(x, ξ)).

6. (Symbol of the L2-adjoint¶ ).

∀p ∈ SGm
l ∃q ∈ SGm

l | Op(p)? = Op(q)

and

(14) q(x, ξ) ∼
∑

α∈�n

i |α|

α!
Dαξ Dx

α p(x, ξ).

§The equalities of operators like in points 3, 4 and 6 of Proposition 5 are to be understood “modulo� ”.
¶The symbol? will also denote, in some parts of the sequel, the pull-back of an operator or of a function

and the “adjoint” functiona?(x, ξ) = a(ξ, x). The meaning of the symbol in the various situations is
generally clear by the context, since we will never use pull-backs of adjoint operators and functions or
adjoints of pull-backs of operators and functions.
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PROPOSITION6. (Action on Sobolev spaces).

1. ∀P ∈ LGm : P ∈ �
(
Hs, Hs−m).

2. In particular, if s≥ r then Hs is continuously embedded in Hr . If s > r the embedding
Hs ↪→ H r is compact.

PROPOSITION7. (Parametrix of md-elliptic operators).
Every P ∈ ELGm admits a parametrix Q∈ ELG−m and is a Fredholm operator from Hs to
Hs−m for every s∈ �2.

An important property ofSG classes of symbols and operators is their invariance under
coordinate changes in a suitable class of diffeomorphisms of open sets of�n, theSG-compatible
diffeomorphisms (orSG diffeomorphisms). This is the content of Proposition 8 and Theorem 2
below. They allow us to transport the whole structure to a class of manifolds, theSGmanifolds,
which are all those manifolds having anSG-compatible atlas. The precise meaning of this is
given in Definition 17. We introduce now all the necessary notions for these statements.

DEFINITION 13. (Push-forward and pull-back of functions on open subsets of�n).
Let us denote by� (�n) the set of all open sets of�n . Let U, V ∈ � (�n) and letφ ∈ C∞(U, V)
be a diffeomorphism of U onto V with inverseφ = φ−1. Let us denote this byφ ∈ Diffeo(U,V).
For any f ∈ C∞(U) and g∈ C∞(V) define:

f? = φ? f ∈ C∞(V) by f?(y) = f ◦ φ(y) = f (φ(y));(15)

g? = φ?g ∈ C∞(U) by g?(x) = g ◦ φ(x) = g(φ(x)).(16)

DEFINITION 14. (Push-forward and pull-back of functions on open subsets ofT?�n).
Let us take U,V ∈ � (�n), φ ∈ Diffeo(U,V) and f ∈ C∞(T?U), g ∈ C∞(T?V). Denote by
∂φ
∂x the Jacobian matrix of the functionφ and define f? ∈ C∞(T?V) and g? ∈ C∞(T?U) by

f?(y, η) = φ? f (y, η) = f

(
φ(y), η

∂φ

∂x

∣∣∣∣
x=φ(y)

)
;

g?(x, ξ) = φ?g(x, ξ) = g


φ(x), ξ ∂φ

∂y

∣∣∣∣∣
y=φ(x)


 .

The operators? and? induce actions on Hom(C∞(U)) and Hom(C∞(V)) as described in
the following definition.

DEFINITION 15. For all P ∈ Hom(C∞(U)), Q ∈ Hom(C∞(V)), f ∈ C∞(U) and
g ∈ C∞(V) define:

P? = φ?P ∈ Hom(C∞(V)) by (P?g)(y) = (Pg?)(φ(y)) = (Pg?)?(y);

Q? = φ?Q ∈ Hom(C∞(U)) by (Q? f )(x) = (Q f?)(φ(x)) = (Q f?)
?(x).

DEFINITION 16. (SG-compatible diffeomorphisms).
Letφ ∈ Diffeo(U#,V#) with U#,V# ∈ � (�n) satisfy

(17) ∀x ∈ U# ∂x
αφ(x) ≺ 〈x〉1−|α| and ∀y ∈ V# ∂

y
αφ(y) ≺ 〈y〉1−|α| .
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Assume also

(18)
∃U ⊆ U#,V ⊆ V#, δ > 0 | φ|U ∈ Diffeo(U,V)

∀x ∈ U B(x, δ 〈x〉) ⊂ U#

∀y ∈ V B(y, δ 〈y〉) ⊂ V#

where B(x, r ), x ∈ �n, r > 0 is the euclidean ball of�n of center x and radius r . We will
then say thatφ is anSG-compatible diffeomorphism (orSG diffeomorphism) and we will write
φ ∈ SGDiffeo(U#, V#;U, V; δ).

PROPOSITION8. (Invariance ofSGm
l by the action ofSG diffeomorphisms).

For all φ ∈ SGDiffeo(U#,V#;U, V; δ) and all p ∈ SGm
l | supp(p) ⊆ U × �n, q ∈

SGm
l | supp(q) ⊆ V × �n we have p?,q? ∈ SGm

l .

THEOREM2. Letφ ∈ SGDiffeo(U#,V#;U,V ; δ). Then:

Q = Op(q) | q ∈ SGm
l , supp(q) ⊆ V × �n ⇒

⇒ ∃p ∈ SGm
l ∃K ∈ � | supp(p) ⊆ U × �n,

Q? = Op(p)+ K .

Moreover, p− q? ∈ SGm′

l with m′ < m.

To complete this short survey on theSG calculus, we now describe the concept ofSG
manifold. In the following sections we will always work on�n .

DEFINITION 17. (SGmanifolds).
Let X be an n-dimensional manifold. We will say that X is anSG-compatible manifold (or an
SG manifold) if

1. X has a finite atlas�# =
{
(X#

j , φ
#
j )
}

j ∈{1,...,N}
, φ#

j : X#
j → U#

j ∈ � (�n);

2. �# is shrinkable, i.e.,∃� =
{
(X j , φ j )

}
j ∈{1,...,N}

, atlas of X such that

∀ j ∈ {1, . . . , N} : X j ⊆ X#
j

φ j = φ#
j

∣∣∣
X j

∈ Diffeo(X j ,U j ), U j ∈ � (�n),

∃δX > 0 | ∀ j ∈ {1, . . . N} ∀x ∈ U j : B(x, δX 〈x〉) ⊂ U#
j .

The atlas� is called a “good” shrinking of�#.

3. The changes of coordinatesφ#
i j = φ#

j ◦ φ
#
i , i, j ∈ {1, . . . , N} , i 6= j satisfy (17) on the

corresponding open setsφi (X
#
i ∩ X#

j ) where they are defined.

These notations and those introduced in the next Lemma 1 willbe used repeatedly in the sequel.

EXAMPLE 1. (Manifold with finitely many cilindrical ends).
SupposeX is ann-dimensional manifold of the following form:

X = X0 ∪ X1 ∪ · · · ∪ XN ∪ ∂X1 ∪ · · · ∪ ∂XN
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with disjoint union, whereX0, . . . , XN aren-dimensional submanifold and∂X0, . . . , ∂XN are
connected(n − 1)-dimensional submanifolds. Assume thatX0 is relatively compact and its
boundary∂X0 satisfies∂X0 = ∂X1 ∪ · · · ∪ ∂XN . Moreover, for all j = 1, . . . , N, let X j
be diffeomorphic to∂X j × (1,+∞). Then X is anSG manifold. In particular, all compact
manifolds areSGmanifolds.

LEMMA 1. Let X be anSGmanifold. Let us set U#i j = φi (X
#
i ∩ X#

j ), V#
i j = φ j (X

#
i ∩ X#

j ),
Ui j = φi (Xi ∩ X j ) and Vi j = φ j (Xi ∩ X j ). Then all the changes of coordinates satisfy

φ#
i j ∈ SGDiffeo(U#

i j ,V
#
i j ;Ui j ,Vi j ; δX).

DEFINITION 18. (Transfer operators).

Let X be an n-dimensional manifold with atlas
{
(X#

j , φ j )
}

j ∈J
and corresponding open sets

U j = φ j (X
#
j ) ⊆ �n . Denote by? : C∞(X#

j ) → C∞(U j ) the transfer operator from smooth

functions on the manifold to functions on�n, defined as in (15):

∀ f ∈ C∞(X#
j )∀x ∈ U j : f?(x) = f ◦ φ(x).

Similarly, we denote by? : C∞(U j ) → C∞(X#
j ) the transfer operator from smooth functions

on�n to functions on the manifold, defined as in (16):

∀ f ∈ C∞(U j )∀x ∈ X#
j : f ?(x) = f ◦ φ(x).

DEFINITION 19. (Extension operator).
Let f be a function defined on U⊂ �n. Denote bye the extension operator defined by

e f (x) =

{
f (x) x ∈ U
0 x /∈ U.

THEOREM3. AnySGmanifold X admits anSG-compatible partition of unity subordinate
to the atlas�#, i.e., there are functions8 j , j = 1, . . . , N, such that

1. 8 j ∈ C∞(X; [0,1]), supp
(
8 j
)

⊂ X#
j ,
∑N

j =18 j = 1;

2. ∀ j = 1, . . . , N : e(8 j )? ∈ SG0
l , where the transfer? is performed via the correspond-

ing chart mapφ j .

LEMMA 2. Let
{
8 j
}

j ∈{1,...,N}
be the partition of unity of Theorem 3. Then there are

functions2 j = 20
j , j = 1, . . . , N, defined on X such that

1. 2 j ∈ C∞(X; [0, 1]), supp
(
2 j
)

⊂ X#
j ,2 j |supp

(
8 j

) ≡ 1;

2. ∀ j = 1, . . . , N : e(2 j )? ∈ SG0
l .

Moreover, it is possible to build a sequence
{
2k

j

}
k∈�

, j = 1, . . . , N, such that for all k∈ �?

1. 2k
j ∈ C∞(X; [0, 1]), supp

(
2k

j

)
⊂ X#

j ,2
k
j |supp

(
2

k−1
j

) ≡ 1;

2. ∀ j = 1, . . . , N : e(2k
j )? ∈ SG0

l .
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DEFINITION 20. (Space
�
(X)).

Let X be anSGmanifold. Define
�
(X) by

�
(X) =

{
u ∈ C∞(X) | ∀ j = 1, . . . , N u|X j ∈

�
(X j )

}

where �
(X j ) =

{
u ∈ C∞(X j ) | ∀α, β ∈ �n ∃Cαβ > 0 :

∀x ∈ U j xα∂β (φ j )?u(x) ≺ Cαβ
}

i.e., u∈
�
(X) if all its local coordinate expressions satisfy

�
(�n) estimates on their domains.

REMARK 1. We may introduce as standard the space of the distributions on the manifold
X, cf. [22]. In view of Definitions 17 and 20, we may also refer inthe same way to the space� ′(X). Once aC∞ densitydµ is fixed on X, we may identify� ′(X) with the space of the
continuous linear forms onC∞

0 (X). Basing on Definition 4 and Theorem 2 we may also easily

defineHs(X) for s ∈ �2.

DEFINITION 21. (Symbols onSGmanifolds).
Let X be anSGmanifold and let pj ∈ C∞(U#

j × �n), j = 1, . . . , N.

1. p ∈ SGm
l (U

#
j ) ⇔ ∀2 ∈ SG0

l | supp(2) ⊂ U#
j × �n : e(p2) ∈ SGm

l ;

2. SGm
l (X) =

{
p = (p1, . . . , pN ) | ∀ j = 1, . . . , N : p j ∈ SGm

l (U
#
j )
}
.

DEFINITION 22. (Smoothing operators andψdos onSG manifolds).
Let X be anSGmanifold. We denote by� (X) the set of smoothing operators on X:

� (X) =

{
K ∈ Hom(

�
(X)) | ∃k ∈

�
(X × X) : Ku(x) =

∫

X
k(x, y)u(y)dµ(y)

}
,

where dµ(y) is a C∞ density of classSG0
l in local coordinates. We say that P:

�
(X) →

�
(X)

is in LGm(X) with symbol p= Sym(P) ∈ SGm
l (X) if ∀2 ∈ SG0

l (X) such that2 is ξ -

independent andsupp(2) ⊂ X#
j there exists K2 ∈ � (X) such that:

∀u ∈
�
(X) : P(2u) = K2u + (Op

(
ep j

)
(e(2u)∗))

∗.

Analogously we may define P∈ ELGm(X).

LEMMA 3. By construction, theψdos defined above satisfy the usual properties, i.e.:

1. P ∈ LG r (X) and Q∈ LGs(X) imply P+ Q ∈ LGmax(r,s)(X);

2. P ∈ LG r (X) and Q∈ LGs(X) imply R= PQ ∈ LGr+s(X) and, in local coordinates,
Sym(R) has the asymptotic expansion given by (13);

3. P ∈ ELG r (X) admits a parametrix and extends to a bounded Fredholm operator P :
Hs(X) → Hs−m(X) for all s ∈ �2.

3. Continuity in
�
(�n) and

� ′(�n)

In subsection 3.1 we give the precise definition of the class of phase functions to be considered
in our context. We further show the relation between Type I and Type II FIOs and explain why it
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suffices to make explicit calculation only with Type I operators throughout this section. Explicit
expressions for the transpose operators of our FIOs will also be given in subsection 3.1; they
will be used in subsection 3.2 to show the continuity in

�
(�n) of our FIOs and their extension

to
� ′(�n), as well as in the next subsection.

3.1. Phase functions. Transpose and adjoint operators

DEFINITION 23. (Phase functions. Regular phase functions). We will call phase function
or simply phase any real valuedϕ ∈ SGe

l satisfying

(19)
c 〈x〉 ≤

〈
∇ξϕ

〉
≤ C 〈x〉

and c〈ξ〉 ≤ 〈dxϕ〉 ≤ C 〈ξ〉

for suitable constants C, c > 0 and denote by� the set of all such phases. Moreover, we define
the set� ε, ε > 0 of all regular phases as follows:

(20) � ε =
{
ϕ ∈ � | ∀x, ξ :

∣∣∣det
(
∂x
i ∂

j
ξ
ϕ
)∣∣∣ ≥ ε

}
.

DEFINITION 24. (Transpose and adjoint functions.) Let us set, from now on:

∀x, ξ tϕ(x, ξ) = ϕ(ξ, x)

and
∀x, ξ a?(x, ξ) = a(ξ, x).

Using the standard properties of the oscillatory integrals, see for example Boggiatto, Buzano,
Rodino [4], we see easily that Type I and Type II FIOs define continuous maps from

�
to

� ′.
This allows us to state the following proposition.

PROPOSITION9. If A is a Type I FIO as defined in(2), then its transposet A is given by

t Aϕ,a = � ◦ Atϕ,t a ◦ � −1.

Here transposition is formed with respect to the customary pairing of elements of
�

, namely
< u, v >=

∫
uv, so that< t Au, v > =< u, Av > holds for all u, v ∈

�
. Moreover,t� = � ,

t (� −1) = � −1 and, by definition of the transpose of a linear operator on
�

, for any couple of
such linear operatorst (PQ) = t Qt P.

Proof. By Definition 2 we have foru, v ∈
�

< t Aϕ,au, v > = < u, Aϕ,av >=

∫
dx u(x)

∫
d−ξ eiϕ(x,ξ )a(x, ξ)v̂(ξ)

=

∫
dxd−ξdy eiϕ(x,ξ )a(x, ξ)e−i<y|ξ>u(x)v(y)

=

∫
dy

(∫
dξ e−i<ξ |y>

∫
d−xeiϕ(x,ξ )a(x, ξ)ŵ(x)

)
v(y)

= < (� ◦ Atϕ,t a ◦ � −1)u, v >

where we used standard properties of oscillatory integrals, u(x) = ŵ(x) ⇔ w = � −1(u) and
Definition 24. For the transpose of the Fourier transform we have obviously:

< t� u, v >=< � u, v >



Fourier integral operators inSG classes 261

and analogously

< t (� −1)u, v >=< � −1u, v > .

The last result follows immediately from

< t (PQ)u, v >=< u, PQv >=< t Pu, Qv >=< t Qt Pu, v > .

REMARK 2. By Definition 24 and Proposition 9 above, we have immediately

t (t Aϕ,a) = t Atϕ,t a = At (tϕ),t (t a) = Aϕ,a,

as expected.

REMARK 3. Since, in particular,P = Op(p) = A<.|..>,p for any P ∈ LGm, we also have
t P = � ◦ Op

(t p
)
◦ � −1.

REMARK 4. By operating in a completely similar way to that used in Proposition 9, for all
Type II FIOs we also havet Bϕ,b = � ◦ Btϕ,t b ◦ � −1.

PROPOSITION10. The Type I FIO Aϕ,a defined in(2) is the L2-adjoint of the Type II FIO
Bϕ,a defined as in(3) and viceversa.

Proof. Immediate by the definitions, operating as in the proof of Proposition 9.

REMARK 5. By comparing the two definitions (2) and (3), we also haveBϕ,b = (2π)n� −1◦

A−tϕ,b? ◦ � −1 ⇔ Aϕ,a = (2π)−n� ◦ B−tϕ,a? ◦ � .

3.2. Continuity in
�
(�n). Extension to

� ′(�n)

THEOREM4. The FIO defined in (2) withϕ ∈ � and a∈ SGm
l is continuous from

�
(�n)

in itself.

For the proof we need the following two lemmas.

LEMMA 4. ϕ ∈ SGe
l ⇒ ∂α

ξ
∂x
β

eiϕ = bα
β

eiϕ with bα
β

∈ SG(|β|,|α|)
l .

Proof. By induction on|α| and|β|.

LEMMA 5. Let us consider the operator L defined by:

(21) L =
1 −1ξ

〈
∇ξϕ

〉2
− i1ξϕ
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such that Leiϕ = eiϕ . Assume alsoϕ ∈ � and denote by� the division by d=
〈
∇ξϕ

〉2
− i1ξϕ

operator (i.e.,�q =
q
d ), so that L= � (1 −1ξ ). Then, for any s∈ �? :

(22) (t L)s = (1 −1ξ )� . . . (1 −1ξ )�︸ ︷︷ ︸
s times

= � s + Q(� , 1ξ )

where Q is a suitable polynomial of total degree2s in the variables� , 1ξ , whose terms contains

exactly s� factors and at least one1ξ . Then we have, for all orders m∈ �2, (t L)s : SGm
l →

SGm−2se2
l and Q(� , 1ξ ) : SGm

l → SGm−2e1−2se2
l .

Proof. We obviously have

t L = t (1 −1ξ )
t� = (1 −1ξ )�

which implies the first part of (22). The second part of (22) isobtained immediately by induction.
To prove the last part of the lemma it is enough to observe that

ϕ ∈ � ⇒ |d| = |
〈
∇ξϕ

〉2
− i1ξϕ| ≥

〈
∇ξϕ

〉2
� 〈x〉2 ⇒ d ∈ ESG(0,2)l ⇔

⇔
1

d
∈ ESG(0,−2)

l

⇒ � : SGm
l → SGm−2e2

l(23)

by (7). (23) gives the desired conclusions, since obviously, by (8), 1−1ξ : SGm
l → SGm

l and

1ξ : SGm
l → SGm−2e1

l .

Proof of Theorem 4.Since it is possible to differentiate under the integral sign in (2), we find,
with the notations of Lemma 4,

∀α,β ∈ �n : xα∂x
β

∫
eiϕ(x,ξ )a(x, ξ)û(ξ)d−ξ =

∑

0≤γ≤β

(
β

γ

)∫
eiϕ(x,ξ )xα(b0

γ ∂
x
β−γ a)(x, ξ)û(ξ)d−ξ,

so we only need to show that for anỹa ∈ SGm̃
l

∫
eiϕ(x,ξ )ã(x, ξ)û(ξ)d−ξ ≺ |u|� ,k = sup

|γ+δ|≤k,x∈
�

n
|xγ ∂δu(x)|

for suitablek. Let us use the operatorL defined in (22). Since integration by parts is admissible,
by Lemma 5 we find:

∀r ∈ �
∫

eiϕ(x,ξ )ã(x, ξ)û(ξ)d−ξ =

∫
(L)r eiϕ(x,ξ )ã(x, ξ)û(ξ)d−ξ =

=

∫
eiϕ(x,ξ )

{
ã(x, ξ)

(d(x, ξ))r
û(ξ)+ Q(� , 1ξ )

[
ã(x, ξ)û(ξ)

]}
d−ξ

=

∫
eiϕ(x,ξ )


 ã(x, ξ)

(d(x, ξ))r
û(ξ)+

∑

|γ |≤2r

cγ (̃a,d)∂
γ
ξ

û(ξ)


 d−ξ(24)
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with coefficientscγ ∈ SGm̃−2re2
l depending only oña andd. In fact, the maximum order of

differentiation ofû in (24) is 2r , and, by Lemma 5, every monomial ofQ contains exactlyr

� -factors. So,cγ ∈ SGm̃−2re2
l follows by (23), Leibniz rule and Proposition 3. Then, recalling

u ∈
�

, it is easily seen by means of (24) that:

∀r ∈ �
∫

eiϕ(x,ξ )ã(x, ξ)û(ξ)d−ξ ≺ 〈x〉m̃2−2r |u|� ,k

∫
〈ξ〉−n−1 d−ξ ≺ |u|� ,k,

choosingr ≥ m̃2/2 and‖ k ≥ 2r + [n + 1+ m̃1]+. In fact, as already said, the maximum order
of derivatives of̂u in (24) is 2r and for the convergence of the integral we can use∀γ |∂

γ
ξ

û(ξ)| ≺

〈ξ〉−n−1−m̃1 . Summing up, we have proved that

∀p ∈ � ∃k ∈ � | |Aϕ,au|� ,p ≺ |u|� ,k

and we can conclude invoking the Closed Graph Theorem.

THEOREM5. Aϕ,a with ϕ ∈ � and a∈ SGm
l extends countinously from

� ′(�n) in itself.

Proof. Since
�
↪→

� ′ and is dense in
� ′, it is enough to prove the continuity oft Aϕ,a restricted

to
�

. Using Proposition 9:

< t Aϕ,au, v > = < u, Aϕ,av >

= < (� ◦ Atϕ,t a ◦ � −1)u, v > .

Since tϕ and ta behave likeϕ and a (symmetry in the role of variable and covariable, with
simple exchange of the order components for the amplitude),Atϕ,t a is continuous from

�
in

itself, as we have proved in Theorem 4. So, the same is true fort Aϕ,a, since it turns out to be a
composition of operators which are all continuous from

�
in itself.

THEOREM6. Bϕ,b is an element of�(� ) extendable to an element of�(� ′).

Proof. Immediate, by Remark 5 and Theorems 4 and 5.

4. Composition theorems

In subsection 4.1 we prove the Composition Theorem already quoted in the introduction. In
subsection 4.2 we deal with other composition theorems. Those which involve FIOs andψdos
are consequences of the Composition Theorem 7 while the results about the composition of FIOs
of Type I and Type II will be needed in particular in subsection 4.3, where elliptic FIOs and their
parametrices are introduced. In subsection 4.4 an example of application of all the composition
theorems is given, analyzing the action ofSG-compatible change of variables on operators in
LG classes. In subsection 4.5 we analyze the action of our FIOs on the Sobolev spaces of
Definition 11, which also will require the use of the composition theorems. In section 4.6 an
adapted version of the Egorov Theorem is obtained and used torecover the expected result about
the action of FIOs with regular phase on wave front sets.

‖[a]+ = max{a,0} and [a]− = max{−a,0} denote respectively the positive and negative part ofa ∈
�

.
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4.1. The main composition theorem

THEOREM 7. Given a FIO A= Aϕ,a of Type I such thatϕ ∈ � and a ∈ SGm
l (�

n) and
a ψdo P = Op(p) with p ∈ SGt

l (�
n), then the composed operator H= P A is, modulo

smoothing operators, a FIO of Type I. In fact, H= Hϕ,h whereϕ is the same phase function

and the amplitude h∈ SGm+t
l (�n) admits the following asymptotic expansion:

(25) h(x, ξ) ∼
∑

α∈�n

1

α!
(∂αξ p)(x, dxϕ(x, ξ))D

y
α

[
eiψ(x,y,ξ )a(y, ξ)

]
y=x

.

Here

(26) ψ(x, y, ξ) = ϕ(y, ξ)− ϕ(x, ξ)− 〈y − x|dxϕ(x, ξ)〉 ,

and, as usual, Dyα = (−i )|α|∂
y
α .

To prove Theorem 7 we will need many lemmas. In particular, Lemma 6 below, dealing
with the y-derivatives of the exponential function involved in the asymptotic expansion (25),
will be important also in future developments concerning the hyperbolic Cauchy problems (see
[13]).

LEMMA 6. Let us setψ(x, y, ξ) = ϕ(y, ξ) − ϕ(x, ξ)− < y − x|dxϕ(x, ξ) > as in (26).
Then we have, for|α| ≥ 1:

Dy
αeiψ = σαeiψ

=
[(

dyϕ − dxϕ
)α

+

+
∑

j1

c j1
(
dyϕ − dxϕ

)θ j1

n1 j1∏

j2=1

∂
y
β j1 j2

ϕ +(27)

+
∑

j1

c′
j1

n2 j1∏

j2=1

∂
y
γ j1 j2

ϕ


 eiψ

with suitable cj1, c
′
j1

, β j1 j2 andγ j1 j2 such that:

|β j1 j2|, |γ j1 j2| ≥ 2(28)

θ j1 +

n1 j1∑

j2=1

β j1 j2 =

n2 j1∑

j2=1

γ j1 j2 = α(29)

where dxϕ = dxϕ(x, ξ), dyϕ = dyϕ(y, ξ), ∂x
αϕ = ∂x

αϕ(x, ξ) and ∂ y
αϕ = ∂

y
αϕ(y, ξ) is to be

understood.

Proof. By induction on|α| (see section A.1.)

REMARK 6. Note that, by (28) and (29), we have, in any term of (27)
wheren1 j1,n2 j1 ≥ 1:

|α| ≥

n1 j1∑

j2=1

|β j1 j2| ≥ 2n1 j1, |α| ≥

n2 j1∑

j2=1

|γ j1 j2| ≥ 2n2 j1 ⇒ n1 j1, n2 j1 ≤
|α|

2
.
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LEMMA 7. With the sameψ of Lemma 6, forϕ ∈ SGe
l we have:

(30) ∂
y
αeiψ(x,y,ξ )

∣∣∣
y=x

∈ SG([|α|/2],[−|α|/2])
l ⇒ ∂

y
αeiψ(x,y,ξ )

∣∣∣
y=x

≺ 〈ξ〉
|α|
2 〈x〉−

|α|
2

([a] denotes the integer part of a) and

(31)
|y − x| ≤ k 〈x〉 , k ∈ (0; 1)

⇒ ∂
y
αeiψ(x,y,ξ ) ≺ (1 + |y − x| 〈y − x〉 〈ξ〉)|α| 〈ξ〉

|α|

2 〈x〉−
|α|

2

Proof. (30) is immediate by Lemma 6, Remark 6 andϕ ∈ SGe
l , observing that the first term and

the first sum of (27) vanish fory = x, as well asψ(x, x, ξ) = 0, and, of course,n1 j1,n2 j1 ≤

|α|/2 ⇒ n1 j1,n2 j1 ≤ [|α|/2]. For what concerns (31), we obviously have:

∂i ϕ(y, ξ)− ∂i ϕ(x, ξ) =

∫ 1

0
dt ∂i j ϕ(x + t (y − x), ξ)(y j − x j ) ⇒

⇒ ∂
y
i ϕ − ∂x

i ϕ ≺

≺ |y − x| sup
t∈[0;1];i, j

|∂i j ϕ(x + t (y − x), ξ)| ≺

≺ |y − x| sup
t∈[0;1]

〈ξ〉 〈x + t (y − x)〉−1

≺ |y − x| 〈y − x〉 〈ξ〉 〈x〉−1 .

Moreover, note that
|y − x| ≤ k 〈x〉 , k ∈ (0; 1) ⇒ 〈x〉 ∼ 〈y〉

We then have the following estimates:
(
dyϕ − dxϕ

)α
≺ (|y − x| 〈y − x〉 〈ξ〉)|α| 〈x〉−|α|

≺ (1 + |y − x| 〈y − x〉 〈ξ〉)|α| 〈ξ〉
|α|
2 〈x〉−

|α|
2

(
dyϕ − dxϕ

)θ j1

n1 j1∏

j2=1

∂
y
β j1 j2

ϕ ≺ (|y − x| 〈y − x〉 〈ξ〉 〈x〉−1)|θ j1| 〈ξ〉n1 j1

〈y〉
n1 j1−

∑n1 j1
j2=1 |β j1 j2|

≺ (|y − x| 〈y − x〉 〈ξ〉)|α| 〈ξ〉
|α|
2

〈x〉
n1 j1−(|θ j1|+

∑n1 j1
j2=1 |β j1 j2|)

≺ (1 + |y − x| 〈y − x〉 〈ξ〉)|α| 〈ξ〉
|α|

2 〈x〉−
|α|

2

n2 j1∏

j2=1

∂
y
γ j1 j2

ϕ ≺ 〈ξ〉n2 j1 〈y〉
n2 j1−

∑n2 j1
j2=1 |γ j1 j2|

≺ 〈ξ〉
|α|
2 〈x〉−

|α|
2

≺ (1 + |y − x| 〈y − x〉 〈ξ〉)|α| 〈ξ〉
|α|
2 〈x〉−

|α|
2

which prove (31).
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LEMMA 8. If ϕ ∈ � , ψ is defined as in Lemma 6, p∈ SGt
l and a∈ SGm

l , the expression

(32)
∑

α∈�n

1

α!
cα(x, ξ) =

∑

α∈�n

1

α!
(∂αξ p)(x, dxϕ(x, ξ))D

y
α

[
eiψ(x,y,ξ )a(y, ξ)

]
y=x

is an asymptotic expansion which defines an amplitude h∈ SGm+t
l .

Proof. Using Lemmas 6 and 7 witha ∈ SGm
l , we see that

Dy
α

[
eiψ(x,y,ξ )a(y, ξ)

]
y=x

=
∑

0≤β≤α

(
α

β

)
Dy
β

eiψ(x,y,ξ )Dy
α−β

a(y, ξ)

∣∣∣∣∣∣
y=x

≺
∑

0≤β≤α

〈ξ〉
|β|
2 〈x〉−

|β|
2 〈ξ〉m1 〈x〉m2−|α|+|β|

≺ 〈ξ〉m1+
|α|
2 〈x〉m2−

|α|
2 .

Using (19), we also easily have:

(∂αξ p)(x, dxϕ(x, ξ)) ≺ 〈dxϕ(x, ξ)〉t1−|α| 〈x〉t2 ≺ 〈ξ〉t1−|α| 〈x〉t2 .

So, we obtain:

∀α ∈ �n cα(x, ξ) ≺ 〈ξ〉m1+t1−
|α|
2 〈x〉m2+t2−

|α|
2

which proves the lemma, invoking the first point of Proposition 5.

LEMMA 9. Let us consider the operator M= −i
∑n

j =1
x j −y j

|x−y|2
∂

j
η . M is well defined on

supp(1 − χ) for χ ∈ 41(k), k ∈ (0; 1), it has the property Mei<x−y|ξ> = ei<x−y|ξ> and,
∀r ∈ �? :

(33) (t M)r = (−i )r
∑

|θ |=r

cθ
(x − y)θ

|x − y|2r
∂θη

for suitable cθ ∈ �? . Moreover, it is possible to show that

(34) |y − x| ≥ k 〈x〉 ⇒ ∃k′ > 0 | |y − x| ≥ k′ 〈y〉 ⇒ |y − x| � 〈x〉 + 〈y〉 ≥ (〈x〉 〈y〉)
1
2 .

Proof. (33) can be proved by induction onr . For its proof and some hints about (34) see the
appendix of [14].

LEMMA 10. Letω = ω(y) be a smooth function such that|dyω| 6= 0 and let us set

(35) U =
i

|dyω|2

n∑

k=1

∂
y
kω∂

y
k

so that Ue−iω = e−iω . Then

(36) ∀r ∈ � (tU )r =
1

|dyω|4r

∑

|α|≤r

Pα,r ∂
y
α
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with

(37) Pα,r =
∑

cα,r
γ δ1...δr

(dyω)
γ ∂

y
δ1
ω . . . ∂

y
δr
ω

where in the sum

|γ | = 2r,(38)

|δ j | ≥ 1,
r∑

j =1

|δ j | + |α| = 2r

and cα,r
γ δ1...δr

are suitable constants.

Proof. By induction onr .

LEMMA 11. If ϕ ∈ � , χ ∈ 41(k), a ∈ SGm
l and p∈ SGt

l then the function h2 = h2(x, ξ)
defined by

h2(x, ξ) =

∫
dyd−η ei (ϕ(y,ξ )−ϕ(x,ξ )−<y−x|η>)(1 − χ(x, y))a(y, ξ)p(x, η)

is in
�

.

Proof. Using the operatorsL =
1−1y

〈∇yϕ〉
2
−i1yϕ

, analogous to that defined in (21), andM, defined

in Lemma 9, we have, for anyr, s ∈ �? :

h2(x, ξ) =

∫
dyd−η ei (ϕ(y,ξ )−ϕ(x,ξ )−<y−x|η>)(1 − χ(x, y))a(y, ξ)

[
(t M)r p

]
(x, η)

=

∫
dyd−η ei (ϕ(y,ξ )−ϕ(x,ξ )+<x|η>)(t L)s

[
e−i<y|η>)q(x, y, ξ, η)

]
(39)

having set
q(x, y, ξ, η) = (1 − χ(x, y))a(y, ξ)

[
(t M)r p

]
(x, η).

Let us analyze they derivatives ofq. By Lemma 9, we find∗∗

∂αy q(x, y, ξ, η) =

= ∂αy


(1 − χ(x, y))a(y, ξ)(−i )r

∑

|θ |=r

cθ
(x − y)θ

|x − y|2r
(∂θη p)(x, η)




=
∑

|θ |=r

(∂θη p)(x, η)
∑

α1+α2+α3=α

α!

α1!α2!α3!
(δ|α1|,0 − (∂

y
α1χ)(x, y))

(∂
y
α2a)(y, ξ)

∑

β1+β2=α3

α3!

β1!β2!
cθβ1(x − y)θ−β1

Pβ2(x − y)

|x − y|2(r+|β2|)

∗∗We denote byδ j ,k the Kronecker symbol such that

δ j ,k =

{

1 if j = k
0 if j 6= k
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with Pβ2 homogeneous polynomial of degree|β2|. So, by obvious calculations:

∂αy q(x, y, ξ, η) ≺

≺
∑

|θ |=r

〈x〉t2 〈η〉t1−|θ |
∑

α1+α2+α3=α

〈y〉−|α3| 〈ξ〉m1 〈y〉m2−|α2|

∑

β1+β2=α3

|x − y||θ |−|β1|+|β2|−2r−2|β2|

≺ 〈x〉t2 〈η〉t1−r 〈ξ〉m1
∑

α1+α2+α3=α

〈y〉m2−|α1|−|α2| |x − y|−r−|α3|.

Since only the domain in which|y−x| ≥ k
2 〈x〉 is relevant here (q identically vanishes elsewhere)

and since from (34)

|y − x| ≥
k

2
〈x〉 ⇒ |y − x| � 〈y〉 ⇒ |y − x| � 〈x〉 + 〈y〉 ≥ (〈x〉 〈y〉)

1
2

we can conclude

(40) ∂αy q(x, y, ξ, η) ≺ 〈ξ〉m1 〈η〉t1−r 〈x〉t2−
r
2 〈y〉m2− r

2−|α|

so thatq has aSG behaviour also with respect toy. Let us now analyze the integrand of (39).

As shown in Lemma 5, once setd =
〈
∇yϕ(y, ξ)

〉2
− i1yϕ(y, ξ) � 〈ξ〉2, we have:

(t L)s
[
e−i<y|η>q(x, y, ξ, η)

]
=

=
e−i<y|η>q(x, y, ξ, η)

ds + Q(� , 1y)
[
e−i<y|η>q(x, y, ξ, η)

]

as in (24). Due to the presence of the exponential in the argument of Q(� , 1y), in the second
term there are powers ofη of heigth not greater than 2s. Owing to (40) we have at last:

h2(x, ξ) ≺ 〈ξ〉m1−2s 〈x〉t2−
r
2

∫
dy〈y〉m2−

r
2

∫
dη 〈η〉t1−r+2s .

so that

∀α, β ∈ �n ξαxβh2(x, ξ) ≺ 〈ξ〉m1−2s+|α| 〈x〉t2−
r
2+|β|

∫
dy〈y〉m2−

r
2

∫
dη 〈η〉t1−r+2s ≺ 1

provided

s >
m1 + |α|

2
,

r > max{2(t2 + |β|), t1 + 2s + n,2(n + m2)}.

Since then, differentiating under the integral sign,

∀α,β ∈ �n ∂αξ ∂
x
βh2(x, ξ) =

∑

j

∫
dyd−ηei (ϕ(y,ξ )−ϕ(x,ξ )−<y−x|η>)χ j (x, y)a j (y, ξ)p j (x, η)(41)
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with suitableχ j , a j and p j in someSGclasses andχ j having support in the domain|y − x| ≥
k
2 〈x〉, we can also conclude

∀α,β, γ, δ ∈ �n ξαxβ∂γξ ∂
x
δ h2(x, ξ) ≺ 1,

by applying the same procedure illustrated above to every integral in the sum (41).

Proof of Theorem 7.We can now prove the Composition Theorem. Writing explicitly P Aϕ,au(x)
with P = Op(p) ∈ LG t , we find:

P Aϕ,au(x) =

=

∫
d−ξei<x|ξ> p(x, ξ)

∫
dye−i<y|ξ>

∫
d−ηeiϕ(y,η)a(y, η)û(η)

=

∫
d−ηeiϕ(x,η)

[∫
dyd−ξei (ϕ(y,η)−ϕ(x,η)−<y−x|ξ>)a(y, η)p(x, ξ)

]
û(η)

=

∫
d−ξeiϕ(x,ξ )

[∫
dyd−ηei (ϕ(y,ξ )−ϕ(x,ξ )−<y−x|η>)a(y, ξ)p(x, η)

]
û(ξ)

=

∫
d−ξeiϕ(x,ξ )h(x, ξ)û(ξ).

We have to show

h(x, ξ) =

∫
dyd−ηei (ϕ(y,ξ )−ϕ(x,ξ )−<y−x|η>)a(y, ξ)p(x, η) ∈ SGm+t

l .

Choosingχ ∈ 41(k) we can write

h(x, ξ) = h1(x, ξ)+ h2(x, ξ)

=

∫
dyd−ηei (ϕ(y,ξ )−ϕ(x,ξ )−<y−x|η>)χ(x, y)a(y, ξ)p(x, η)

+

∫
dyd−ηei (ϕ(y,ξ )−ϕ(x,ξ )−<y−x|η>)(1 − χ(x, y))a(y, ξ)p(x, η),

with h2 ∈
�

, by Lemma 11. We will proveh1 ∈ SGm+t
l by showing that it admits the asymptotic

expansion already studied in Lemma 8. In fact, settingη = dxϕ(x, ξ) + θ in the expression of
h1 and using the Taylor expansion

p(x, η) =
∑

|α|<M

θα

α!
(∂αξ p)(x, dxϕ(x, ξ))+

∑

|α|=M

M

α!
θαrα(x, ξ, θ)

rα(x, ξ, θ) =

∫ 1

0
dt(1 − t)M−1(∂αξ p)(x, dxϕ(x, ξ)+ tθ),
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we have:

h1(x, ξ) =

=
∑

|α|<M

(∂α
ξ

p)(x, dxϕ(x, ξ))

α!
� −1
θ→x

[
θα� y→θ

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)]

+
∑

|α|=M

M

α!
� −1
θ→x

[
θαrα(x, ξ, θ)� y→θ

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)]

=
∑

|α|<M

(∂α
ξ

p)(x, dxϕ(x, ξ))

α!
Dy
α

[
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

]
y=x

+
∑

|α|=M

M

α!

∫
d−θei<x|θ>rα(x, ξ, θ)� y→θ

[
Dy
α

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)]
.

Now, since every derivative ofχ vanishes in a neighbourhood of the diagonal1 = {(x, y) ∈

�2n | x = y} andχ(x, x) = 1, by an obvious use of the Leibniz rule in the last formula, wecan
write:

h1(x, ξ) =
∑

|α|<M

1

α!
cα(x, ξ)+

∑

|α|=M

M

α!
Rα(x, ξ)

where thecα are the terms of the asymptotic expansion (32) and

Rα =

∫
d−θei<x|θ>rα(x, ξ, θ)� y→θ

[
Dy
α

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)]
.

Let us now estimateRα : these estimates will prove the convergence of the integraldefiningh1
and will allow the use of the point 2 of Proposition 5 to complete our proof. To our aim, let us
chooseχ? ∈ C∞

0 such that

χ?(x) =

{
1 |x| ≤

ε

2
0 |x| ≥ ε

with ε > 0 to be fixed later. Let us denote byEε,ξ the set
{
θ ∈ �n | |θ | ≤ ε 〈ξ〉

}
, so that

supp
(
χ?
(
.

〈ξ 〉

))
⊆ Eε,ξ . Rα can obviously be expressed by the sum of the two following

integrals:

I =

∫
d−θei<x|θ>rα(x, ξ, θ)χ

?

(
θ

〈ξ〉

)
� y→θ

[
Dy
α

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)]
;

K =

∫
d−θei<x|θ>rα(x, ξ, θ)

[
1 − χ?

(
θ

〈ξ〉

)]
·

·� y→θ

[
Dy
α

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)]
.

1. Estimate of I .
Let us set

fα(x, ξ, .) = � −1
θ→.

[
rα(x, ξ, θ)χ?

(
θ

〈ξ〉

)]
.
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Then, we have:

I =

∫
d−θdyei<x|θ>rα(x, ξ, θ)χ

?

(
θ

〈ξ〉

)
·

·e−i<y|θ>Dy
α

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)

=

∫
dy

[∫
d−θei<x−y|θ>rα(x, ξ, θ)χ

?

(
θ

〈ξ〉

)]
·

·Dy
α

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)

=

∫
dy fα(x, ξ, x − y)Dy

α

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)
.

Remembering our choice ofχ? andϕ ∈ � , we have:

∀α,β ∈ �n ∂
β
θ

rα(x, ξ, θ)

≺ 〈x〉t2
∫ 1

0
dt 〈dxϕ(x, ξ)+ tθ〉t1−|α|−|β| (1 − t)M−1 t |β|(42)

≺ 〈ξ〉t1−|α|−|β| 〈x〉t2 .

In fact, the presence ofχ? in the integrand ofI and t ∈ [0; 1] imply |θ | ≤ ε 〈ξ〉 ⇒

|tθ | ≤ ε 〈ξ〉. Moreover

ϕ ∈ � ⇒ 〈dxϕ(x, ξ)〉 ∼ 〈ξ〉 ⇒

⇒

{
〈dxϕ(x, ξ)+ tθ〉2 = 〈dxϕ(x, ξ)〉2 + t2|θ |2 ≤ (C2

2 + ε2) 〈ξ〉2

〈dxϕ(x, ξ)+ tθ〉2 = 〈dxϕ(x, ξ)〉2 + t2|θ |2 ≥ C2
1 〈ξ〉2 .

We have also:

(43)
∀α,β ∈ �n

∣∣∣uβ fα(x, ξ,u)
∣∣∣ =

∣∣∣� −1
θ→u

[
Dβ
θ

(
rα(x, ξ, θ)χ?

(
θ

〈ξ 〉

))]∣∣∣
≺ µθ (Eε,ξ ) supθ∈Eε,ξ

∣∣∣Dβθ
(
rα(x, ξ, θ)χ?

(
θ

〈ξ 〉

))∣∣∣ .

In view of (42), a good estimate for the last expression in (43) can be easily found. In
fact:

∂
β
θ

(
rα(x, ξ, θ)χ?

(
θ

〈ξ〉

))
(44)

≺
∑

γ≤β

∣∣∂γ
θ

rα(x, ξ, θ)
∣∣
∣∣∣∣∂
β−γ
θ

χ?
(
θ

〈ξ〉

)∣∣∣∣

≺
∑

γ≤β

〈ξ〉t1−|α|−|γ | 〈x〉t2 〈ξ〉|γ |−|β|

≺ 〈ξ〉t1−|α|−|β| 〈x〉t2

and also

(45) µθ (Eε,ξ ) =

∫

|θ |≤ε〈ξ 〉
dθ = 〈ξ〉n

∫

|η|≤ε
dη ≺ 〈ξ〉n

by the linear change of variableθ = 〈ξ〉 η.
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So, (42), (44) and (45) imply

∀α, β ∈ �n
∣∣∣uβ fα(x, ξ,u)

∣∣∣ ≺ 〈ξ〉t1+n−|α|−|β| 〈x〉t2 ⇔

∀α, β ∈ �n
∣∣∣(u 〈ξ〉)β

∣∣∣ | fα(x, ξ,u)| ≺ 〈ξ〉t1+n−|α| 〈x〉t2 ⇒

∀α ∈ �n , ∀ j ∈ � (|u| 〈ξ〉) j | fα(x, ξ,u)| ≺ 〈ξ〉t1+n−|α| 〈x〉t2

which finally implies

∀α ∈ �n , ∀L > 0 (1 + |u| 〈ξ〉)L | fα(x, ξ,u)|

≤ (1 + |u| 〈ξ〉)[L]+1 | fα(x, ξ,u)| ≺ 〈ξ〉t1+n−|α| 〈x〉t2 ⇒

∀α ∈ �n , ∀L > 0 | fα(x, ξ,u)| ≺ (1 + |u| 〈ξ〉)−L 〈ξ〉t1+n−|α| 〈x〉t2 .

So, settingL = L1 + L2 with L1, L2 > 0, we can say that

∀L1, L2 > 0 ∀α ∈ �n

I ≺ 〈ξ〉t1+n−|α| 〈x〉t2 ·

· sup
y

[∣∣∣Dy
α

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)∣∣∣ (1 + |y − x| 〈ξ〉)−L1
]

·(46)

·

∫
dy(1 + |y − x| 〈ξ〉)−L2.

For what concerns the integral in (46), by the translationy − x → y and the transform
θ = 〈ξ〉 η, it turns out to be estimated by〈ξ〉n, by choosingL2 large enough to assure its
convergence. The supy is easily estimated by observing that

∂
y
α

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)
=

=
∑

β+γ+δ=α

α!

β!γ !δ!
∂

y
β

eiψ(x,y,ξ ) (∂
y
γ χ)(x, y) (∂ y

δ
a)(y, ξ)

≺
∑

β+γ+δ=α

(1 + |y − x| 〈y − x〉 〈ξ〉)|β| 〈ξ〉
|β|
2 〈x〉−

|β|
2 ·

· 〈y〉−|γ | 〈ξ〉m1 〈y〉m2−|δ|

≺ (1 + |y − x| 〈y − x〉 〈ξ〉)|α| 〈ξ〉m1+
|α|
2 ·

·
∑

β+γ+δ=α

〈x〉m2−
|β|

2 −
|γ |

2 −
|δ|
2

≺ 〈ξ〉m1+
|α|
2 〈x〉m2−

|α|
2 (1 + |y − x| 〈y − x〉 〈ξ〉)|α|,

where we used (31) and the fact that〈x〉 ∼ 〈y〉 (owing to the presence ofχ). We conclude
that

I ≺ 〈ξ〉m1+t1+2n−
|α|
2 〈x〉m2+t2−

|α|
2 sup

y

(1 + |y − x| 〈y − x〉 〈ξ〉)|α|

(1 + |y − x| 〈ξ〉)L1

≺ 〈ξ〉m1+t1+2n−
|α|
2 〈x〉m2+t2−

|α|
2

for L1 > 2|α|.
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2. Estimate of K .
Let us set

(47)
ω(x, y, ξ, θ) =< y|θ > −ψ(x, y, ξ)
=< y|θ > −(ϕ(y, ξ)− ϕ(x, ξ)− < y − x|dxϕ(x, ξ) >)

which implies

dyω(x, y, ξ, θ) = θ − (dyϕ(y, ξ)− dxϕ(x, ξ))

= θ − (dyϕ − dxϕ)

≺ 〈θ〉 + 〈ξ〉 .

We begin by using the operatorW = 1−1θ

〈x〉2 = t W, such that∀s1 ∈ � Ws1ei<x|θ>

= ei<x|θ>, in the integral definingK , to obtain, for alls1 ∈ � ,

K =

∫
d−θei<x|θ>Ws1

{
rα(x, ξ, θ)

[
1 − χ?

(
θ

〈ξ〉

)]
·

· � y→θ

[
Dy
α

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)]}

=
∑

j

∫
d−θei<x|θ>r j

α(x, ξ, θ)χ
?
j

(
θ

〈ξ〉

)
·(48)

·� y→θ

[
yβ j Dy

α

(
eiψ(x,y,ξ )χ(x, y)a(y, ξ)

)]

with, for any j ,

χ?j ≺ 1, supp
(
χ?j

(
.

〈ξ〉

))
⊆
{
θ | |θ | ≥

ε

2
〈ξ〉
}

;(49)

r j
α ≺ 〈x〉t2−2s1 if α satisfiest1 − |α| ≤ 0 ;(50)

|β j | ≤ 2s1.(51)

This can be proved by induction ons1. From now on, we will consider only one of the
integrals in the sum (48), since all the estimates we will findwill not depend onj . Writing
explicitly the Fourier transform and the derivative byy in one of such integrals and using
Definition (47) and the notation in Lemma 6, we have to estimate

K =
∑

β+γ+δ=α

α!

β!γ !δ!

∫
d−θdye−iω(x,y,ξ,θ)r j

α(x, ξ, θ)χ
?
j

(
θ

〈ξ〉

)
·(52)

·σβ (x, y, ξ) ∂ y
γ χ(x, y) yβ j ∂

y
δ

a(y, ξ)

under the conditions (49), (50) and (51). We will write

f j
βγ δ

(x, y, ξ) = σβ (x, y, ξ) ∂ y
γ χ(x, y) yβ j ∂

y
δ

a(y, ξ)

for the sake of brevity. Note that

(53) f j
βγ δ

∈ SG(|α|+m1,0,m2+2s1),

owing to
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- (27), which impliesσβ ∈ SG(|β|,0,0) ⊆ SG(|α|,0,0);

- χ ∈ SG(0,0,0) ⇒ ∂
y
γ χ ∈ SG(0,0,−|γ |) ⊆ SG(0,0,0);

- (51) anda ∈ SGm
l ⇒ yβ j a(y, ξ) ∈ SG(m1,0,m2+|β j |) ⊆

SG(m1,0,m2+2s1).

Let us now use in each integral in the sum (52) the operatorU defined in (35). This is
admissible since

∃C > 0 | |dyω| = |θ − (dyϕ − dxϕ)|

≥ |θ | − |dyϕ − dxϕ)|(54)

≥ C(〈θ〉 + 〈ξ〉) � (〈θ〉 〈ξ〉)
1
2 ,

providedk ∈ (0; 1) in the definition ofχ is suitably small. In fact, owing to the presence
of theχ?j , we have here|θ | ≥ ε

2 〈ξ〉 and also

∀C1 ∈ (0; 1) |θ | ≥
C1√

1 − C2
1

⇒ |θ | ≥ C1 〈θ〉 ;

|θ | ≥
ε

2
〈ξ〉 , ε ∈ (0; 1) ⇒ 〈θ〉 ≥

ε

2
〈ξ〉 .

Choosing, as is possible,

C1 |
ε

2
≥

C1√
1 − C2

1

we have|θ | ≥ ε
2 〈ξ〉 ⇒ |θ | ≥ ε

2 ⇒ |θ | ≥ C1 〈θ〉, which gives

|dyω| ≥ |θ | − |dyϕ − dxϕ)|

≥ C1 〈θ〉 − C2k 〈ξ〉

=
C1

2
〈θ〉 +

C1

2
〈θ〉 − C2k 〈ξ〉

≥
C1

2
〈θ〉 +

(
C1ε

4
− C2k

)
〈ξ〉

which implies (54) for 0< k < C1ε
4C2

. Note also thattU acts only onf j
βγ δ

, leavingr j
α

andχ?j unchanged, so that we can use the estimates (49) and (50) for them. By applying
formulae (36), (37), (52) and (53) we find:

∫
dye−iω f j

βγ δ =

=

∫
dye−iω(tU )s2 f j

βγ δ

=

∫
dye−iω 1

|dyω|4s2

∑

|τ |≤s2

Pτ,s2∂
y
τ f j
βγ δ
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which implies

K ≺ 〈x〉t2−2s1
∑

j ,β+γ+δ=α

∫
dθdy(〈θ〉 + 〈ξ〉)−4s2 ·

·
∑

|τ |≤s2

〈ξ〉m1+|α| 〈y〉m2+2s1−|τ | ·

·
∑
(〈θ〉 + 〈ξ〉)2s2 〈y〉|τ |−s2 (〈θ〉 + 〈ξ〉)s2

≺ 〈x〉t2−2s1 〈ξ〉m1+|α|

∫
dy 〈y〉m2+2s1−s2

∫
dθ(〈θ〉 + 〈ξ〉)−s2

≺ 〈x〉t2−2s1 〈ξ〉m1+|α|−
s2
2

∫
dθ 〈θ〉−

s2
2

≺ 〈x〉t2−2s1 〈ξ〉m1+|α|−
s2
2

provided
s2 > max{2n,m2 + 2s1 + n}.

By all the estimates we showed above, it is now possible to conclude as follows. For an arbitrary
ρ ∈ � , fix α such that

t1 − |α| ≤ 0;

ρ + m1 + t1 + 2n −
|α|

2
≤ 0;

ρ + m2 + t2 −
|α|

2
≤ 0.

Then, withk andε fixed by the above discussion about the estimate ofK , fix s1 such that

ρ + t2 − 2s1 ≤ 0

ands2 such that

s2 > m2 + n + 2s1;

s2 > 2n;

ρ + m1 + |α| −
s2

2
≤ 0.

This shows that∀ρ ∈ � ∃M ∈ � such that:

(〈ξ〉 〈x〉)ρ


h1(x, ξ)−

∑

|α|<M

1

α!
cα(x, ξ)


 =

= (〈ξ〉 〈x〉)ρ
∑

|α|=M

M

α!
Rα(x, ξ) ≺ 1

which gives the desired result, invoking point 2 of Proposition 5.
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4.2. Further composition theorems

The next three theorems are immediate consequences of the Composition Theorem 7.

THEOREM8. Under the hypotheses of Theorem 7, the composed operator V= Aϕ,a P is,
modulo smoothing operators, a FIO of Type I. In fact, V= Vϕ,v whereϕ is the same phase
function and the transposetv of the amplitudev ∈ SGm+t

l admits the asymptotic expansion (25)
with p changed int p, a changed inta andϕ changed intϕ.

Proof. Using Proposition 9, Remarks 2 and 3 and Theorem 7, we have

Aϕ,a P = t (t Pt Aϕ,a)

= t
[
(� ◦ Op

(t p
)
◦ � −1) ◦ (� ◦ Atϕ,t a ◦ � −1)

]

= t
[
� ◦ (Op

(t p
)
◦ Atϕ,t a) ◦ � −1

]

= t
[
� ◦ Atϕ,h ◦ � −1

]

= t (� −1) ◦ t Atϕ,h ◦ t�

= � −1 ◦ � ◦ Aϕ,t h ◦ � −1 ◦ �
= Aϕ,t h.

THEOREM 9. Given a FIO B= Bϕ,b of Type II such thatϕ ∈ � and b∈ SGm
l (�

n) and
a ψdo P = Op(p) with p ∈ SGt

l (�
n), the composed operator G= B P is, modulo smoothing

operators, a FIO of Type II. In fact G= Gϕ,h, whereϕ is the same phase function and the

amplitude h∈ SGm+t
l (�n) admits the following asymptotic expansion:

(55) h(x, ξ) ∼
∑

α∈�n

1

α!
(∂αξ q)(x, dxϕ(x, ξ))D

y
α

[
eiψ(x,y,ξ )b(y, ξ)

]
y=x

where
ψ(x, y, ξ) = ϕ(y, ξ)− ϕ(x, ξ)− 〈y − x|dxϕ(x, ξ)〉

and q is given by equation(14).

Proof. By Proposition 10 and Theorem 7 we immediately have

((Bϕ,bP)?u, v)L2 = (P?B?ϕ,bu, v)L2

= (P?Aϕ,bu, v)L2

= (G?ϕ,hu, v)L2

which gives the desired result, recalling also point 6 of Proposition 5.

THEOREM 10. Under the hypotheses of Theorem 9, the operator W= P Bϕ,b is, modulo
smoothing operators, a FIO of Type II. In fact, W= Wϕ,w whereϕ is the same phase function
and the transposetw of the amplitudew ∈ SGm+t

l admits the asymptotic expansion(55) with q
changed intq, b changed intb andϕ changed intϕ.
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Proof. Immediate, using the same technique of Theorem 8 and recalling Remark 4 and Theorem
9.

The subsequent Theorems 13 and 14 deal with the composition of a Type I operator with a
Type II operator. They will be useful in subsections 4.5, where we will show continuity of the
FIOs in the Sobolev spaces of Definition 12, and 4.3, where elliptic FIOs will be introduced and
their parametrices computed. First of all, we give a simple sufficient condition for maps to be
SG diffeomorphisms in open subsets of�n. Then, we put it in relation with regular phases. In
the following lemmasφ and its inverseφ−1 = φ are smooth functions defined on open subsets
of �n , vector valued in�n .

LEMMA 12. Let f ∈ SGm and g vector valued in�n such that g∈ SGe1 and 〈g〉 ∼ 〈ξ〉.
Then f(x, y, g(x, y, ξ)) ∈ SGm.

Proof. The desired estimates can be obtained by induction.

REMARK 7. Of course, the requirements forg in Lemma 12 need to be satisfied on supp( f )
only. By applying repeatedly Lemma 12, we obtain also:

f ∈ SGm, g j ∈ SGej | 〈g1〉 ∼ 〈ξ〉 , 〈g2〉 ∼ 〈x〉 , 〈g3〉 ∼ 〈y〉

⇒ f (g2(x, y, ξ), g3(x, y, ξ), g1(x, y, ξ)) ∈ SGm.

LEMMA 13. Letφ = φ(y) ∈ C∞ be such that∀α ∈ �n | |α| = 1: ∂ y
αφ(y) = aα(φ(y))

with aα(x) ∈ SG0
l and

〈
φ(y)

〉
∼ 〈y〉. Thenφ(y) ∈ SGe2

l .

Proof. It is obvious that∂ y
αφ(y) ≺ 〈y〉1−|α| for |α| ≤ 1. The other estimates can be obtained by

induction on|α|.

LEMMA 14. Let φ = φ(x) ∈ SGe2
l and

∣∣∣det ∂φ
∂x

∣∣∣ ≥ ε > 0. Then the inverse function

φ = φ(y) is such that

∀α ∈ �n | |α| = 1 : ∂ y
αφ(y) = aα(φ(y))

with aα(x) ∈ SG0
l .

Proof. Obviously, the hypotheses imply det∂φ
∂x ∈ ESG0

l . Since

(
∂φ

∂x

)−1
=

(
det

∂φ

∂x

)−1
M

where the adjoint matrixM is made of determinants of submatrices of∂φ
∂x , we also obtain

(
∂φ
∂x

)−1
∈ SG0

l . The result is then a consequence of the inverse function theorem and the

composition Lemma 12.
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LEMMA 15. If φ ∈ Diffeo(U#,V#), satisfies(18) and also

φ(x) ∈ SGe2
l ;

〈φ(x)〉 ∼ 〈x〉 ;∣∣∣∣det
∂φ

∂x

∣∣∣∣ ≥ ε > 0

for a suitable constantε > 0 thenφ ∈ SGDiffeo(U#,V#;U,V; δ).

Proof. We only have to proveφ(y) ∈ SGe2
l . This is an immediate consequence of Lemmas 13

and 14.

PROPOSITION11. Letφ = φ(x, y; ξ) ∈ SGe1 be such that〈φ〉 ∼ 〈ξ〉 and |
∂φ
∂ξ

| ≥ ε > 0.

Then, settingη = φ(x, y; ξ) ⇔ ξ = φ(x, y; η), φ and its inverse both satisfySG0 estimates
with respect to x and y. We will briefly speak in such case ofSG diffeomorphisms withSG0

parameter dependence.

Proof. φ satisfies the required estimates with respect toη in view of the obvious variant of
Lemma 15 toξ, η variables. For what concerns the estimates with respect tox andy, it is enough
to use the Riemann-Dini theorem about derivatives of implicit functions and an inductive process
completely analogous to that used in Lemma 13.

PROPOSITION12. If ϕ ∈ � ε, according to Definition 23, thenξ → dxϕ(x, ξ) and x →

∇ξϕ(x, ξ) are two globalSGdiffeomorphisms withSG0 parameter dependence.

Proof. The property of beingSG diffeomorphisms is immediate from Proposition 11, since all
the hypotheses made aboutφ there are expressed by the propertiesdxϕ ∈ SGe1

l , ∇ξϕ ∈ SGe2
l ,

(19) and (20). The globality is a consequence of the following theorem (see Berger [3], page
221):

THEOREM11. Let us assume that̃φ ∈ C1(X,Y) with X and Y Banach spaces. Thenφ̃ is

a diffeomorphism of X onto Y if and only if̃φ is proper and∂φ̃
∂x (x) is a linear homeomorphism

for each x∈ X.

The condition on∂φ̃
∂x with φ̃ = dxϕ(x, .) or φ̃ = ∇ξϕ(., ξ) is satisfied, owing to the hypoth-

esisϕ ∈ � ε. The fact that̃φ is proper in the two cases again descends fromϕ ∈ � ε. In fact,
we have the following characterization of proper mappings in finite dimensional Banach spaces
(see [3], page 102):

THEOREM 12. If X and Y are finite dimensional Banach spaces andφ̃ ∈ C0(X,Y), then
φ̃ is proper if and only if it is coercive, i.e.,lim‖x‖→+∞ ‖ f (x)‖ = +∞.

For the first case we have, at least for largeξ ,

|dxϕ(x, ξ)| =

√
〈dxϕ(x, ξ)〉2 − 1 ≥

√
C 〈ξ〉2 − 1,

which implies the required coercivity of the mapping in�n , so that it is proper and therefore
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global owing to Theorem 11. The same is obviously true also for ∇ξϕ(., ξ).

THEOREM 13. Let A = Aϕ,a be a Type I and B= Bϕ,b a Type II FIO withϕ ∈ � ε,
a ∈ SGr

l and b ∈ SGs
l . Then the operator P= AB is, modulo smoothing operators, aψdo

with amplitude p∈ SGm (given in equation (62) below); m is related to r and s by m=
(r1 + s1, r2, s2).

Proof. Let us write explicitly the composition foru ∈
�

. We find

Aϕ,aBϕ,bu(x) =

∫
d−ξ eiϕ(x,ξ ) a(x, ξ)

∫
dy e−iϕ(y,ξ ) b(y, ξ)u(y)

=

∫
d−ξdy eiψ(x,y,ξ ) c(x, y, ξ)u(y)

where we have setψ(x, y, ξ) = ϕ(x, ξ)− ϕ(y, ξ) andc(x, y, ξ) = a(x, ξ)b(y, ξ) ∈ SGm. Let
us chooseχ ∈ 41(k) and write

Aϕ,aBϕ,bu(x) =

∫
d−ξdy eiψ(x,y,ξ ) q1(x, y, ξ)u(y)

+

∫
d−ξdy eiψ(x,y,ξ ) q2(x, y, ξ)u(y)

= (I1 + I2)u(x)

with q1(x, y, ξ) = χ(x, y)c(x, y, ξ) andq2(x, y, ξ) = (1 − χ(x, y))c(x, y, ξ). We begin by
showing thatI2 is a smoothing operator, then we will show how to rewriteI1 as an operator in
LGm with suitable amplitudep.

1. I2 is smoothing.

First of all, note that supp(q2) ⊆
{
(x, y, ξ) | |x − y| ≥ k

2 〈x〉
}

= Re. So, the use of the

operatorU = −i
|∇ξψ |2

∑n
k=1 ∂

j
ξ
ψ∂

j
ξ

, analogous to that defined in (35), is allowed inI2.

In fact, let us setv = ∇ξϕ(x, ξ) andw = ∇ξϕ(y, ξ). By making use of Proposition 12
and byϕ ∈ SGe

l , we can write

|x − y| = |(∇ξϕ)
−1(v, ξ)− (∇ξϕ)

−1(w, ξ)|

=

∣∣∣∣∣

∫ 1

0
dt < v − w|dx(∇ξϕ)

−1(tv + (1 − t)w, ξ) >

∣∣∣∣∣

≤ |v − w| sup
�

n×
�

n
‖dx(∇ξϕ)

−1(z, ξ)‖

≤ M|∇ξϕ(x, ξ)− ∇ξϕ(y, ξ)|

= M|∇ξψ(x, y, ξ)|.

So we have

(56) |∇ξψ(x, y, ξ)| � |x − y| � 〈x〉 + 〈y〉

in the regionRe. Then, acting as above and using (36), (37), (38) and againϕ ∈ SGe
l , for

all h ∈ �

I2u(x) =

∫
d−ξdy eiψ ((tU )hq2)u
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and

(tU)hq2(x, y, ξ) =
1

|∇ξψ |4h

∑

|α|≤h

Pα,h∂
α
ξ q2(x, y, ξ)

≺

∑
|α|≤h 〈x〉m2 〈y〉m3 〈ξ〉m1−|α| (〈x〉 + 〈y〉)3h 〈ξ〉|α|−h

(〈x〉 + 〈y〉)4h

=

∑
|α|≤h 〈x〉m2 〈y〉m3 〈ξ〉m1−h

(〈x〉 + 〈y〉)h

≺
〈ξ〉m1−h 〈x〉m2 〈y〉m3

(〈x〉 + 〈y〉)h
.(57)

Let us write

I2u(x) =

∫
dy u(y)

∫
d−ξ eiψ(x,y,ξ ) (tU)hq2(x, y, ξ)

=

∫
dy f(x, y)u(y).

Since〈x〉 + 〈y〉 ≥ (〈x〉 〈y〉)
1
2 , we easily see that

∀α,β, γ, δ ∈ �n xα yβ∂x
γ ∂

y
δ

f (x, y) ≺ 1 ⇔ f ∈
�
(�2n).

This is trivial for γ = δ = 0 by the estimate (57), choosingh > max{m1 + n,2(m2 +

|α|),2(m3 + |β|)}. For what concerns the case|γ + δ| > 0, since it is possible to
differentiate under the integral sign, any derivative produces a sum of terms of analogous
form with differentSGorders, so that the result is also true for anyγ andδ: this concludes
the proof ofI2 ∈ � .

2. I1 is in LGm.
Here we have supp(q1) ⊆ {(x, y, ξ) | |x − y| ≤ k 〈x〉} = Ri ⇒ 〈x〉 ∼ 〈y〉. Let us define

(58) d̃xϕ(x, y; ξ) =

∫ 1

0
dθdxϕ(y + θ(x − y), ξ).

We can write

d̃xϕ(x, y; ξ) = dxϕ(y, ξ)

+

∫ 1

0

∫ 1

0
dθ1dθ2 < θ1(x − y)|d2

xϕ(y + θ1θ2(x − y), ξ) >

⇒
∂

∂ξ
d̃xϕ(x, y; ξ) =

∂

∂ξ
dxϕ(y, ξ)

+

∫ 1

0

∫ 1

0
dθ1dθ2 θ1 < x − y|

∂

∂ξ
d2

xϕ(y + θ1θ2(x − y), ξ) > .(59)

The integrand in (59) can be estimated as follows

(xk − yk) ∂x
kj ∂

i
ξϕ(y + θ1θ2(x − y), ξ)

≺ |x − y| sup
θ1,θ2∈[0;1]

〈y + θ1θ2(x − y)〉−1

≺ k 〈x〉 〈y〉−1 ≺ k,
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so that the jacobian of̃dxϕ(x, y; ξ) is a small perturbation of that ofdxϕ(y, ξ). Then by
choosingk suitably small and recallingϕ ∈ � ε, we can assume (see, e.g., the appendix
of [14]) ∣∣∣∣det

∂

∂ξ
d̃xϕ(x, y; ξ)

∣∣∣∣ ≥
ε

2
> 0.

Moreover

∂αξ ∂
x
β ∂

y
γ d̃xϕ(x, y; ξ) =

=

∫
dθ θ |β|(1 − θ)|γ |(∂αξ ∂

x
β+γ ϕ)(y + θ(x − y), ξ)(60)

≺ 〈ξ〉1−|α| 〈y〉−|β+γ | = 〈ξ〉1−|α| 〈x〉−|β| 〈y〉−|γ | ,

since〈x〉 ∼ 〈y〉, so that̃dxϕ(x, y; ξ) satisfiesSGe1 estimates in the regionRi . We want
now to prove

(61)
〈
d̃xϕ(x, y; ξ)

〉
∼ 〈ξ〉 .

The first inequality
〈
d̃xϕ(x, y; ξ)

〉
≺ 〈ξ〉 is easily proved by

〈
d̃xϕ(x, y; ξ)

〉2
= 1 +

n∑

j =1

∣∣∣∣∣

∫ 1

0
dθ ∂x

j ϕ(y + θ(x − y), ξ)

∣∣∣∣∣

2

≤

≤ 1 +

n∑

j =1

(∫ 1

0
dθ |∂x

j ϕ(y + θ(x − y), ξ)|

)2

≺ 1 +

n∑

j =1

〈ξ〉2 ≺ 〈ξ〉2 .

We also have

〈
d̃xϕ(x, y; ξ)

〉2
= 1 +

n∑

j =1

(
∂x

j ϕ(y, ξ)+
∫ 1

0

∫ 1

0
dθ1dθ2 θ1 < x − y|dx∂ j ϕ(y + θ1θ2(x − y), ξ) >

)2

= 〈dxϕ(y, ξ)〉
2

+2
n∑

j =1

F j︷ ︸︸ ︷

∂x
j ϕ(y, ξ)

∫ 1

0

∫ 1

0
dθ1dθ2 θ1 < x − y|dx∂ j ϕ(y + θ1θ2(x − y), ξ) >

+

n∑

j =1

(∫ 1

0

∫ 1

0
dθ1dθ2 θ1 < x − y|dx∂ j ϕ(y + θ1θ2(x − y), ξ) >

)2

︸ ︷︷ ︸
G j

.



282 S. Coriasco

Let us now estimateF j andG j :

F j ≺ 〈ξ〉 |x − y| 〈ξ〉

∫ 1

0

∫ 1

0
dθ1dθ2 〈y + θ1θ2(x − y)〉−1

≺ k 〈ξ〉2 〈x〉 〈y〉−1

≺ k 〈ξ〉2

and similarly

G j ≺ k2 〈ξ〉2 .

We have now all we need to show (61). Since〈dxϕ(y, ξ)〉2 ≥ C1 〈ξ〉2 we have

〈
d̃xϕ(x, y; ξ)

〉2
≥

≥ C1 〈ξ〉2 − 2
n∑

j =1

|F j | −

n∑

j =1

G j

≥ 〈ξ〉2
[
C1 − kn(2C2 + kC3)

]

which implies
〈
d̃xϕ(x, y; ξ)

〉
� 〈ξ〉 for k suitably small. This completes the proof of (61).

Then, with a suitable choice ofk, d̃xϕ(x, y; ξ) satisfies all the requirements of Proposition
11, and, for(x, y, .) ∈ Ri , d̃xϕ(x, y; ξ) is anSG diffeomorphism withSG0 parameter
dependence. With this in mind, the operatorI1 is an integral extended toRi which we
can rewrite as

I1u(x) =

∫
d−ξdy ei (ϕ(x,ξ )−ϕ(y,ξ )) q1(x, y, ξ)u(y)

=

∫
d−ηdy ei<x−y|d̃xϕ(x,y;η)> q1(x, y, η) u(y).

In the regionRi we can perform the substitution

ξ = d̃xϕ(x, y; η) ⇔ η = (d̃xϕ)
−1(x, y; ξ)

so that we can conclude

I1u(x) =

∫
dyd−ξ ei<x−y|ξ> q1(x, y, (d̃xϕ)

−1(x, y; ξ))

∣∣∣∣det
∂

∂ξ
(d̃xϕ)

−1(x, y; ξ)

∣∣∣∣ u(y)

=

∫
dyd−ξ ei<x−y|ξ> p(x, y, ξ)u(y)

setting

(62) p(x, y, ξ) = q1(x, y, (d̃xϕ)
−1(x, y; ξ))

∣∣∣∣det
∂

∂ξ
(d̃xϕ)

−1(x, y; ξ)

∣∣∣∣ .

By (60), Lemma 12 and Proposition 11 we findp ∈ SGm, which concludes the proof.



Fourier integral operators inSG classes 283

THEOREM 14. Let A = Aϕ,a be a Type I and B= Bϕ,b a Type II FIO withϕ ∈ � ε,
a ∈ SGr

l and b∈ SGs
l . Then the operator P= B A is, modulo smoothing operators, aψdo with

symbol p∈ SGm
l , m = r + s, which admits the asymptotic expansion given in equation(66)

below.

Proof. Again, let us begin by writing explicitly the composition for u ∈
�

. We find

Bϕ,bAϕ,au(x) =

=

∫
d−ξ ei<x|ξ>

∫
dy e−iϕ(y,ξ ) b(y, ξ)

∫
d−η eiϕ(y,η) a(y, η) û(η)

=

∫
d−η ei<x|η>

(∫
dyd−ξ ei (ϕ(y,η)−ϕ(y,ξ )−<x|η−ξ>) a(y, η)b(y, ξ)

)
û(η)

=

∫
d−ξ ei<x|ξ>

(∫
dyd−η eiω(x,y,ξ,η) c(ξ, η, y)

)
û(ξ)

where we setψ(ξ, η, y) = ϕ(y, ξ) − ϕ(y, η), ω(x, y, ξ, η) = ψ(ξ, η, y)− < x|ξ − η > and
c(ξ, η, y) = a(y, ξ)b(y, η) ∈ SGt , with t = (r2 + s2, r1, s1). The theorem is proved if we can
show that

p(x, ξ) =

∫
dyd−η eiω(x,y,ξ,η) c(ξ, η, y) ∈ SGm

l .

Let us chooseχ ∈ 41(k) as above and set

p(x, ξ) =

∫
dyd−η eiω(x,y,ξ,η) c(ξ, η, y) χ(ξ, η)

+

∫
dyd−η eiω(x,y,ξ,η) c(ξ, η, y) (1 − χ(ξ, η))

=

∫
dyd−η eiω(x,y,ξ,η) q1(ξ, η, y)

+

∫
dyd−η eiω(x,y,ξ,η) q2(ξ, η, y)

= (I1 + I2).

Again, we analyze separatelyI1 and I2.

1. I2 ∈
�
(�2n).

The proof is very similar to the one in Theorem 13 above, showing that the operator asso-
ciated withI2 is smoothing. In fact, we are in the regionRe, so that we have, analogously
to (56),

|dyψ(ξ, η, y)| � |ξ − η| � 〈ξ〉 + 〈η〉 .

This implies that the operatorU = −i
|dyψ |2

∑n
j =1 ∂

y
j ψ∂

y
j , identical to that used above

(apart a change of names of variables) can be used inI2. Then for allα, β ∈ �n and
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arbitrarys ∈ � ,

I2 = ξαxβ
∫

d−ηdy ei<x|η−ξ> eiψ(ξ,η,y) q2(ξ, η, y)

=

∫
d−ηdy xβei<x|η> ei (ψ(ξ,η,y)−<x|ξ>) ξαq2(ξ, η, y)

=

∫
d−ηdy Dβη ei<x|η> ei (ψ(ξ,η,y)−<x|ξ>) ξαq2(ξ, η, y)

= (−1)|β|

∫
d−ηdy ei<x|η> Dβη

(
ei (ψ(ξ,η,y)−<x|ξ>) ξαq2(ξ, η, y)

)

=
∑

j

∫
d−ηdy ei<x|η−ξ> eiψ(ξ,η,y) q̃2 j (ξ, η, y)(63)

for suitablẽq2 j ∈ SG
m j
l , wherem j depends ont , α andβ. We find, just as above,

ξαxβ I2 ≺ 1

if we useUseiψ = eiψ in each of the integrals of the sum (63) withs large enough.
Again, for ξαxβ∂γ

ξ
∂x
δ

I2 we have to act in the same way on a sum of integrals similar to
(63), since differentiation under the sign simply producesa sum of terms in the integrands
which are still amplitudes with orders depending on the multi-indices of the derivatives.

2. I1 defines a symbol in SGml .

In the regionRi = {(ξ, η, y) | |ξ − η| ≤ k 〈ξ〉} defined as in the proof of Theorem 13 it
is possible to consider theSGdiffeomorphism withSG0 parameter dependence

∇̃ξϕ(ξ, η; y) =

∫ 1

0
dθ ∇ξϕ(y, η + θ(ξ − η))

analogous to that defined in (58) (symmetry in the role of variable and covariable for
ϕ ∈ � ε). Let us perform the change of variables

z = ∇̃ξϕ(ξ, η; y) ⇔ y = (∇̃ξϕ)
−1(ξ, η; z)

recalling that obviously

ψ(ξ, η, y) =< ∇̃ξϕ(ξ, η; y)|ξ − η >=< z|ξ − η >,

and set

I1 =

∫
dzd−η ei<z−x|ξ−η> q̃1(ξ, η, z)

with

q̃1(ξ, η, z) = q1(ξ, η, (∇̃ξϕ)
−1(ξ, η; z)) χ(ξ, η) ·

·

∣∣∣∣det
∂

∂z
(∇̃ξϕ)

−1(ξ, η; z)

∣∣∣∣ ∈ SGt
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(again, we are following the proof of Theorem 13). We can now show thatI1 ∈ SGm
l by

writing for it an asymptotic expansion. Let us setζ = η − ξ ⇔ η = ζ + ξ , so that

I1 =

∫
d−ζei<x|ζ>

∫
dze−i<z|ζ>q̃1(ξ, ξ + ζ, z)

=
∑

|α|<M

1

α!
� −1
ζ→x

[
ζα�z→ζ

(
(∂αη q̃1)(ξ, ξ, z)

)]
+

∑

|α|=M

M

α!
Rα

=
∑

|α|<M

i |α|

α!
(Dz
αDαη q̃1)(ξ, ξ, x) +

∑

|α|=M

M

α!
Rα(64)

having used the Taylor expansion with respect to the second variableη of q̃1 with

Rα =

∫
d−ζdz ei<x−z|ζ> ζα

∫ 1

0
dθ (1 − θ)M−1 (∂αη q̃1)(ξ, ξ + θζ, y).

Now, the sum for|α| < M in (64) has the same behaviour (apart a change in role of
variables and covariables) of the asymptotic expansion associated to a generic amplitude
defined in (12). The first term obviously has orderm = (r1 + s1, r2 + s2). So, we simply
have to estimateRα , to make possible the use of the simplified criterion for asymptotic
expansions in point 6 of Proposition 5. Let us note, first of all, that the presence ofχ in
q̃1 implies

|ζ | = |ξ − η| ≤ k 〈ξ〉 ⇒

| 〈ξ + θζ 〉 − 〈ξ〉 | ≤ θ |ζ | ≤ |ζ | ≤ k 〈ξ〉

⇒ 〈ξ + θζ 〉 ∼ 〈ξ〉 .(65)

Then setz − x = w in Rα , to find

Rα(x, ξ) =

∫
d−ζdw ei<w|ζ>

∫ 1

0
dθ (1 − θ)M−1(Dz

α∂
α
η q̃1)(ξ, ξ + θζ, x + w).

Let us now take into account the operatorsW =
1−1ζ

〈w〉2 = t W andW̃ = 1−1w

〈ζ 〉2 = t W̃

(having obviously the same properties of theW used in the proof of Theorem 7). We
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have, for alls1, s2 ∈ � ,

Rα(x, ξ) =

∫
d−ζdw ei<w|ζ> ·

∫ 1

0
dθ (1 − θ)M−1(t W)s1(t W̃)s2

[
(Dz
α∂
α
η q̃1)(ξ, ξ + θζ, x +w)

]

=

∫
d−ζdw ei<w|ζ>

∫ 1

0
dθ (1 − θ)M−1 ·

{
(Dz
α∂
α
η q̃1)(ξ, ξ + θζ, x +w)

〈w〉2s1 〈ζ 〉2s2

+
1

〈w〉2s1

s1∑

j1=1

(
s1
j1

)
(−1ζ )

j1 ·


 1

〈ζ 〉2s2

s2∑

j2=1

(
s2
j2

)
(−1w)

j2(Dz
α∂
α
η q̃1)(ξ, ξ + θζ, x + w)







≺

∫
dζdw

∫ 1

0
dθ

〈x + w〉t1−|α| 〈ξ〉t2 〈ξ + θζ 〉t3−|α|

〈w〉2s1 〈ζ 〉2s2

≺ 〈x〉t1−|α| 〈ξ〉t2+t3−|α|

∫
dw 〈w〉|t1−|α||−2s1

∫
dw 〈ζ 〉−2s2 ,

since all the terms in the sum have lower order than the first term, due to the action of
the Laplacians. We have used Peetre inequality and (65) in the last estimate. Then, with
M = |α| fixed, chooses1 ands2 such that

|t1 − |α|| − 2s1 < −n;

−2s2 < −n.

This implies

∑

|α|=M

M

α!
Rα ≺ 〈ξ〉m1−M 〈x〉m2−M

⇒ I1 ∼
∑

α

i |α|

α!
(Dz
αDαη q̃1)(ξ, η, x)|η=ξ .(66)

From the calculations described above, it turns out thatp(x, ξ) is a symbol with asymptotic
expansion given by (66), i.e., a symbol inSGm

l as desired.

4.3. Elliptic FIOs and parametrices

DEFINITION 25. A Type I Aϕ,a or a Type II Bϕ,b FIO is said md-elliptic ifϕ ∈ � ε and the
amplitude a or b is md-elliptic.

LEMMA 16. If Aϕ,a is md-elliptic, then the twoψdos Aϕ,a A?ϕ,a and A?ϕ,a Aϕ,a are md-
elliptic as well.



Fourier integral operators inSG classes 287

Proof. It is enough to prove that the principal part of the asymptotic expansion of the two
symbols is md-elliptic. In fact, let us pick a generic symbolr with md-elliptic principal part
r0 ∈ SGm

l such thatr − r0 = r1 ∈ SGm−δe
l with δ > 0. We have

r −1 = (r0 + r1)
−1 = r −1

0 (1 +
r1

r0
)−1

which implies

r −1 ≺ 〈ξ〉−m1 〈x〉−m2 .

Now, from Theorem 13, cf. (62), the symbol ofAϕ,a A?ϕ,a has principal part

p0(x, ξ) = a(x, η)a(x, η)
∣∣∣
η=(dxϕ)−1(x,ξ )

∣∣∣det ∂
∂ξ
(dxϕ)

−1(x, ξ)
∣∣∣ = h(x, ξ)E(x, ξ).

h(x, ξ) = a(x, η)a(x, η)
∣∣∣
η=(dxϕ)−1(x,ξ )

is md-elliptic of order 2m, owing to the hypothesis on

the amplitudea, to the property ofdϕ(., ξ) of being anSGdiffeomorphism withSG0 parameter
dependence and to the composition properties inSG classes expressed by Lemma 12.E ∈

ESG0
l because it is the jacobian determinant of anSGdiffeomorphism (see the proof of the next

Proposition 13). With similar arguments, it turns out that also A?ϕ,a Aϕ,a is md-elliptic.

THEOREM15. Any md-elliptic FIO A admits a parametrix, A−1. If A is of Type I, A−1 is
of Type II and viceversa.

Proof. Let us denote byP−1 the parametrix ofP = AA? and byQ−1 the parametrix ofQ =

A?A, which exist owing to Lemma 16. We have

P P−1 = I − R1, P−1P = I − R2,

QQ−1 = I − R3, Q−1Q = I − R4,

with R1, R2, R3, R4 ∈ � . Let us setFl = Q−1A? andFr = A?P−1. We then have

Fl A = (A?A)−1(A?A) = I − R4,

AFr = (AA?)(AA?)−1 = I − R1,

Fl AFr = (I − R4)Fr ⇒ Fl − Fl R1 = Fr − R4Fr ⇔ Fl = Fr mod� ,

so thatFr or Fl can be chosen as parametrices ofA. With similar arguments it is possible to
find a parametrix forA?, namely settingGr = AQ−1 andGl = P−1A. The second part of the
theorem follows from the composition Theorems 7, 8, 9 and 10.

4.4. Example: the action of SG-compatible change of variables on SG operators

As an example, we reexamine here the pull-back of aψdo in LGm in terms of FIOs. In all
this subsectionφ ∈ SGDiffeo(U#,V#;U,V ; δ) with U#,V#,U, V ∈ � (�n), δ > 0 and p ∈

SGm
l | supp(p) ⊂ U × �n. Note also that the properties required to the phaseϕ in the various

composition theorems examined in the preceding subsections need to be fulfilled only on the
supports of the various amplitudes and symbols involved, asit will be in our calculations here.
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Finally, it could appear that we cannot use here Theorems 13 and 14 to compose FIOs of Type I
and Type II (which is required at some point in this subsection), since we cannot use Theorems
11 and 12 to show that̃∇ξϕ(x; ξ, η) is aSG-diffeomorphism withSG0 parameter dependence
(x lives in an open subset of�n). However, in this case we can show directly this property (see
(68) below), so that results analogous to those expressed byTheorems 13 and 14 hold.

PROPOSITION13. Let us setϕ1(x, ξ) =< φ(x)|ξ >, ϕ2(y, η) =< φ(y)|η > for x ∈

U#, y ∈ V#, ξ, η ∈ �n . Thenϕ1 andϕ2 have the same properties of the phasesϕ ∈ � ε , for
x ∈ U#, y ∈ V#.

Proof. We will prove the result only forϕ1, since calculations are identical forϕ2. ϕ1 ∈ SGe
l is

immediate fromφ ∈ SGDiffeo, owing to (17).
〈
∇ξϕ(x, ξ)

〉
= 〈φ(x)〉 ∼ 〈x〉 again follows from

the hypotheses onφ. In fact,φ(x) ≺ 〈x〉 ⇒ 〈φ(x)〉 ≺ 〈x〉 is the caseα = 0 of the first of (17).
From the second of (17):

φ(y) ≺ 〈y〉 ⇒
〈
φ(y)

〉
≺ 〈y〉 ⇒ 〈x〉 =

〈
φ(φ(x))

〉
≺ 〈φ(x)〉 ⇒ 〈φ(x)〉 � 〈x〉 .

Since

dxϕ1(x, ξ) = ξ
∂φ

∂x
(x),

the inequality〈dxϕ1(x, ξ)〉 ≺ 〈ξ〉 is trivial from (17), since the components of∂ f
∂x , are bounded

from above. For the other estimate, since∂φ
∂x is invertible, we can write

ξ = dxϕ1(x, ξ)
∂φ

∂y
(φ(x))

and, recalling the same argument as above, this implies〈ξ〉 ≺ 〈dxϕ1(x, ξ)〉 as required. Now, let
us note thatE(x) = det ∂φ

∂x (x) ∈ ESG0
l . In fact, we obviously haveE ∈ SG0

l . Moreover, owing

to the invertibility of ∂φ
∂x (x) on allU#, we also find:

I =
∂φ

∂x
(x)

∂φ

∂y
(φ(x)), det

∂φ

∂y
≺ 1 ⇒

1

det ∂φ
∂y (φ(x))

= det
∂φ

∂x
� 1.

This gives the regularity of the phase. In fact,

(
∂x

j ∂
i
ξϕ1(x, ξ)

)
=
(
∂ j φ

i
)

=
∂φ

∂x
,

and

E ∈ ESG0
l ⇒

∣∣∣det
(
∂x

j ∂
i
ξϕ1(x, ξ)

)∣∣∣ ≥ ε > 0

with suitableε.

We have thus showed that the operatorsAϕ1,1 and Aϕ2,1 are well defined md-elliptic FIOs
with regular phases. The following lemma is immediate.

LEMMA 17. With the notations of Proposition 13, Aϕ1,1 = A−1
ϕ2,1

.
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Proof. We have, for allu ∈
�

supported inU ,

(Aϕ1,1 Aϕ2,1u)(x) =

=

∫
d−ξ ei<φ(x)|ξ>

∫
dw e−i<w|ξ>

∫
d−ζ ei<φ(w)|ζ>

∫
dy e−i<y|ζ>u(y)

= � −1
.→φ(x)

(�
u ◦ φ

)

= u(φ ◦ φ(x)) = u(x)

and analogous result for the compositionAϕ2,1 Aϕ1,1.

We obtain now the following more precise version of Theorem 2.

EXAMPLE 2. For all P ∈ LGm we have forP? as in Definition 15:

(67) P? = Aϕ1,1P Aϕ2,1

and Sym
(
P?
)

can be described by means of Theorems 8 and 14.

Proof. (67) is immediate from the definitionP?u = (Pu?)? if we note that

v?(x) = (� −1
ξ→φ(x)� .→ξ )v = Aϕ1,1v(x),

u?(y) = (� −1
ζ→φ(y)

� .→ζ )u = Aϕ2,1u(y).

From Theorem 15 and Lemma 17 we also find

P? = Aϕ1,1P A−1
ϕ1,1

= Aϕ1,1(P C)A?ϕ1,1
mod�

whereC is the parametrix of the md-ellipticψdo Q = A?
ϕ1,1

Aϕ1,1. From (66), with an arbitrary

χ ∈ 41(k)

q(x, ξ) ∼
∑

α

i |α|

α!
Dαη Dz

α q̃(ξ, ξ, x)

with

q̃(ξ, η, x) = χ(ξ, η)

∣∣∣∣det
∂

∂x
(∇̃ξϕ1)

−1(x; ξ, η)

∣∣∣∣

= χ(ξ, η)

∣∣∣∣det
∂

∂w
∇̃ξϕ1(w; ξ, η)

∣∣∣∣
−1

w=(∇̃ξϕ1)
−1(x;ξ,η)

.

Since in this case

∇̃ξϕ1(w; ξ, η) =

∫ 1

0
dθ ∇ξϕ1(w, ξ + θ(η − ξ)) = φ(w)

⇔ (∇̃ξϕ1)
−1(x; ξ, η) = φ(x),(68)

so that̃q depends onξ andη only throughχ , we have, modulo� ,

q(x, ξ) =

∣∣∣∣det
∂φ

∂w

∣∣∣∣
−1

w=φ(x)
.
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Q is then a multiplication operator, whose inverse (and parametrix) has symbol

c = c(x) =

∣∣∣∣det
∂φ

∂w

∣∣∣∣
w=φ(x)

.

Let us setS = PC. Then, from (13),

s(x, ξ) ∼
∑

α

i |α|

α!
Dαξ p(x, ξ)Dx

αc(x).

Let us compute the symbol oft S Atϕ1,1 = Atϕ1,h. From Theorem 7, choosing an arbitrary

χ ∈ 41(k),

h(x, ξ) ∼
∑

α

1

α!
(∂αξ (

ts))(x, (dx(
tϕ1))(x, ξ))D

y
α

(
eiψ(x,y,ξ ) χ(x, y)

)
y=x

,

where

ψ(x, y, ξ) = (tϕ1)(y, ξ)− (tϕ1)(x, ξ)− < y − x|(dx(
tϕ1)(x, ξ)) >

= < φ(ξ)|y > − < φ(ξ)|x > − < y − x|(dx < φ(ξ)|x >) >

= < y − x|φ(ξ) > − < y − x|φ(ξ) >= 0.

Then

Dy
α(e

iψχ) =

{
1 α = 0
0 α 6= 0

so that

h(x, ξ) ∼ (ts)(x, φ(ξ)) = s(φ(ξ), x)

and, from Theorem 8,

Aϕ1,1S= t (t SAtϕ1,1) = Aϕ1,
t h

with

t h(x, ξ) = h(ξ, x) ∼ s(φ(x), ξ).

At last, the amplitudẽp of P? can be then expressed using Theorem 14, as the amplitude of
Aϕ1,

t h A?
ϕ1,1

. Let us set

M(x, y) =

∫ 1

0
dθ

∂φ

∂x
(y + θ(x − y))

⇒ (d̃xϕ1)
−1(x, y; ξ) = ξM−1(x, y),

SinceM is obviously invertible for|x − y| ≤ k 〈x〉. We have

p̃(x, y, ξ) = χ(x, y)th(x, (d̃xϕ1)
−1(x, y; ξ))

∣∣∣∣det
∂

∂ξ
(d̃xϕ1)

−1(x, y; ξ)

∣∣∣∣

∼ χ(x, y)
∑

α

i |α|

α!
(Dθξ p)(φ(x), ξM−1(x, y)) |detM(x, y)|−1 Dx

αc(x)

From this we may deduce the asymptotic expansion of the symbol. It is easy to verify that the
first term is the same of the analogous one described in [38], cf. the previous Theorem 2.
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4.5. Action on the Sobolev spaces

Theorem 16 here below could be proved as in [4], that is, as an adapted version of the general
L2-boundedness result of Asada-Fujiwara [1]: the proof whichfollows these lines is in section
A.2 of the appendix. However, we can make here full use of Theorem 13 and of the usualL2-
boundedness result forψdos inLG0 (special case of Proposition 6) to skip long calculations
completely.

THEOREM16. Let A= Aϕ,a be a Type I FIO withϕ ∈ � ε and a∈ SG0
l . Then A∈ �(L2).

Proof. We have easily, foru ∈ L2,

‖Au‖2 = (Au, Au) = (A?Au,u) ≤ ‖A?Au‖ ‖u‖ ≤ ‖A?A‖�(L2) ‖u‖2,

and the result follows immediately since, by hypothesis andTheorem 13,A?A ∈ LG0 ⊂ �(L2).

To prove the general continuity Theorem 17 below we have to examine the inverse of the op-
erator5 used in (10). We also give, for sake of completeness, an alternative equivalent definition
of Sobolev spaces (10). The proof of Lemma 19 is contained in [11].

LEMMA 18. For t ∈ �2 let us set̃πt (y, ξ) = 〈ξ〉t1 〈y〉t2, which we consider as x-independent
amplitude, and apply (6). Then, for all s∈ �2, 5̃−s = Op(π̃−s) = 5−1

s where5s is defined
in (9).

Proof. The proof is immediate. In fact, for an arbitraryu ∈
�

we have

5̃−s5su(x) =

∫
d−ξdy ei<x−y|ξ> 〈ξ〉−s1 〈y〉−s2

∫
d−η ei<y|η> 〈η〉s1 〈y〉s2 û(η)

=

∫
d−ξ ei<x|ξ> 〈ξ〉−s1

∫
dy e−i<y|ξ>

∫
d−η ei<y|η> 〈η〉s1 û(η)

=

∫
d−ξ ei<x|ξ> 〈ξ〉−s1 〈ξ〉s1 û(ξ)

= u(x)

and an analogous result for5s5̃−s.

LEMMA 19. For all s ∈ �2 the space

H̃s =
{
u ∈

� ′(�n) | 5̃su ∈ L2(�n)
}

has the same elements of the Sobolev space of equation (10) and equivalent norm‖u‖H̃s =

‖5̃su‖L2.

Proof. Using Lemma 18 we have

u ∈ Hs ⇔ 5su ∈ L2 ⇒ 5̃su = (5̃s5̃−s)(5su) ∈ L2,(69)

u ∈ H̃s ⇔ 5̃su ∈ L2 ⇒ 5su = (5s5−s)(5̃su) ∈ L2,(70)
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since5̃s5̃−s as well as5s5−s are in�(L2), because they are order 0ψdos . The equivalence
of the norms is a consequence of (69) and (70) since

‖u‖H̃s = ‖5̃su‖L2 = ‖(5̃s5̃−s)(5su)‖L2

≤ ‖5̃s5̃−s‖�(L2)‖5su‖L2 ≤ M‖u‖Hs

‖u‖Hs = ‖5su‖L2 = ‖(5s5−s)(5̃su)‖L2

≤ ‖5s5−s‖�(L2)‖5̃su‖L2 ≤ M‖u‖H̃s

for a suitableM > 0.

THEOREM17. For all s ∈ �2, a ∈ SGm
l , ϕ ∈ � ε: Aϕ,a ∈ �(Hs, Hs−m).

Proof. For anyu ∈ Hs we find

‖Aϕ,au‖Hs−m = ‖5s−mAϕ,au‖L2 = ‖(5s−mAϕ,a5̃−s)(5su)‖L2

≤ ‖5s−mAϕ,a5̃−s‖�(L2)‖5su‖L2

≤ M‖u‖Hs,

where we have used Lemma 19 and Theorems 7 and 8 to get5s−mAϕ,a5̃−s = Aϕ,h with

h ∈ SG0
l , Theorem 16 to achieve theL2-continuity of Aϕ,h andu ∈ Hs ⇔ 5su ∈ L2.

REMARK 8. Owing to Remark 5, and since the Fourier transform is anL2-isometry, Theo-
rems 16 and 17 are also true for a Type II operatorBϕ,b with ϕ ∈ � ε andb ∈ SG0

l or b ∈ SGm
l

respectively.

4.6. Wave front sets

We begin recalling the definition of the so-called “wave front space” (see [11]).

DEFINITION 26. (Directional compactification of�n)
Let � n denote the “directional compactification” of�n , i.e. � n consists of�n and the “infinite
set” {∞x0 : x0 ∈ �n |x0| = 1}.

Let B1(0) denote the unitary open ball centered in the origin. The function

(71) s : �n → B1(0) : x 7→
x

〈x〉

is a homeomorphism of�n onto B1(0) which is extendable to a homeomorphism of� n onto
B1(0) = {x ∈ �n | |x| ≤ 1}, mapping the boundary∂� n of � n onto Sn−1. So we can identify
the points∞x of ∂� n by means of the correspondingx of Sn−1.

DEFINITION 27. (Wave front space)
Let us consider the cotangent bundle T?�n = �n × �n and its compatification� n × � n . We
call “wave front space” the subset� = �n × ∂� n of ∂(� n × � n ).

We will define the wave front set of a temperate distributionu as a subset of� . We now
give the definition ofSG-microregularity.
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DEFINITION 28. (SG-microregularity)
Let u ∈

� ′ be given. We say that u isSG-microregular at a point(x0,∞ξ0) ∈ � if there exist

- a neighbourhood of(x0,∞ξ0) of the form U = � × 0 where� ⊆ �n is an open
neighbourhood of x0 and0 is of the form̃0 ∩ {ξ : |ξ | > R ≥ 0} with 0̃ open conical
neighbourhood ofξ0 in �n ;

- aψdo P = Op(p) such that p∈ SG0
l , p � 1 in U and Pu∈

�
(�n).

DEFINITION 29. (Wave front set of a temperate distribution)
We define the wave front setWF(u) of a distribution u∈

� ′ as

WF(u) = � \ {(x0,∞ξ0) ∈ � | u isSG-microregular in(x0,∞ξ0)}

To obtain an adapted version of the Egorov theorem, we first need the expression of Symp
(

AP A−1
)
,

whereA = Aϕ,a is an elliptic FIO of Type I whileP = Op(p) is aψdo with p ∈ SGt
l . We

generalize here the calculations of subsection 4.4.

PROPOSITION14. Let A = Aϕ,a be an elliptic FIO of Type I with a∈ ESGm
l and P =

Op(p) aψdo with p∈ SGt
l . Then, settingη = (dxϕ)

−1(x, ξ) we have

Symp

(
AP A−1

)
(x, ξ) = p((∇ξϕ)(x, η), η).

Proof. Let us setC = AA?, so that, in view of Theorem 15,A−1 = A?C−1. By Theorem 13
we immediately have

Symp (C) (x, ξ) = |a(x, (dxϕ)
−1(x, ξ))|2

∣∣∣∣det
∂

∂ξ
(dxϕ)

−1(x, ξ)

∣∣∣∣ .

By Theorem 10 we then have

tSymp
(
P A?

)
(x, ξ) = (tSymp

(
P?
)
)(x, (dx(

tϕ))(x, ξ)) (ta)(x, ξ)

= p((∇ξϕ)(ξ, x), x) a(ξ, x) ⇒

⇒ Symp
(
P A?

)
(x, ξ) = p((∇ξϕ)(x, ξ), ξ) a(x, ξ).

Finally, settingB = P A? andη = (dxϕ)
−1(x, ξ), owing to Theorem 13 we find

(72)
Symp

(
AP A?

)
(x, ξ) = Symp (AB) (x, ξ)

= |a(x, η)|2
∣∣∣det ∂

∂ξ
(dxϕ)

−1(x, ξ)
∣∣∣ p((∇ξϕ)(x, η), η).

Since obviously Symp
(
C−1

)
= (Symp (C))−1, (72) implies

Symp

(
AP A−1

)
(x, ξ) = Symp

(
AP A?

)
(x, ξ) Symp

(
C−1

)
(x, ξ) = p((∇ξϕ)(x, η), η)

as desired.
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Let us denote by8 the canonical transform ofT?�n into itself generated byϕ, i.e. 8 :
(x, ξ) 7→ (y, η) is defined by

(73)

{
y = (∇ξϕ)(x, η)
ξ = (dxϕ)(x, η).

Let us assume in (73) homogeneity of degree 1 with respect toη for ϕ(x, η) (for largeη). We
denote then by the same symbol8 the transform that (73) induces on� . We can now state an
adapted version of the theorem concerning the action of FIOS on wave fronts.

THEOREM18. For any elliptic FIO A of Type I and any distribution u∈
� ′ we have

(74) WF(Au) = 8−1(WF(u))

Proof. Let u beSG-microregular in(y0,∞η0) and letP ∈ LG0 be the operator of Definition
28. Let us setQ = AP A−1 ⇔ Q A = AP. Then, by Definition 28 and Theorem 4, we have
Q Au ∈

�
⇔ APu ∈

�
. By Proposition 14 and (73), we have Symp (Q) = p ◦8, so thatAu is

SG-microregular in8−1(y0,∞η0). This means that

(75) � \ WF(Au) = 8−1(� \ WF(u)).

Complementing (75) with respect to� and recalling that8 is a bijection, we obtain (74).

Appendix

A.1. Derivatives of the exponential functioneiψ

PROPOSITION15. Let us setψ(x, y, ξ) = ϕ(y, ξ)− ϕ(x, ξ)−
< y − x|dxϕ(x, ξ) > as in (26). Then we have, for|α| ≥ 1:

Dy
αeiψ = σαeiψ

= eiψ [(dyϕ − dxϕ
)α

+

+
∑

j1

c j1
(
dyϕ − dxϕ

)θ j1

n1 j1∏

j2=1

∂
y
β j1 j2

ϕ +(76)

+
∑

j1

c′
j1

n2 j1∏

j2=1

∂
y
γ j1 j2

ϕ




with suitable cj1, c′
j1

, β j1 j2 andγ j1 j2 such that:

|β j1 j2|, |γ j1 j2| ≥ 2(77)

θ j1 +

n1 j1∑

j2=1

β j1 j2 =

n2 j1∑

j2=1

γ j1 j2 = α(78)

where dxϕ = dxϕ(x, ξ), dyϕ = dyϕ(y, ξ), ∂x
αϕ = ∂x

αϕ(x, ξ) and ∂ y
αϕ = ∂

y
αϕ(y, ξ) is to be

understood.
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Proof. For |α| = 1 (76) holds with only the first term:

−i ∂ y
j eiψ = eiψ (∂

y
j ϕ − ∂x

j ϕ).

For |α| = 2 (76) holds without the first sum: in fact

−∂
y
jkeiψ = eiψ

[
(∂

y
j ϕ − ∂x

j ϕ)(∂
y
k ϕ − ∂x

k ϕ)− i ∂ y
jkϕ

]
.

For |α| = 3 (76) holds with all the terms:

i ∂ y
jkl e

iψ =

= eiψ
[
(∂

y
j ϕ − ∂x

j ϕ)(∂
y
k ϕ − ∂x

k ϕ)(∂
y
l ϕ − ∂x

l ϕ)− i ∂ y
jkϕ(∂

y
l ϕ − ∂x

l ϕ)

−i ∂ y
j l ϕ(∂

y
k ϕ − ∂x

k ϕ)− i ∂ y
klϕ(∂

y
j ϕ − ∂x

j ϕ)− ∂
y
jklϕ

]
.

In all the three cases above (77) and (78) trivially hold. Letus proceed by induction assuming
(76), (77) and (78) true for allα such that 1≤ |α| ≤ p with p ≥ 3. Differentiating (76) we
obtain

Dy
α+em

eiψ = −i ∂ y
m

(
σαeiψ

)
=
[(
∂

y
mϕ − ∂x

mϕ
)
σα − i ∂ y

mσα

]
eiψ
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so that

σα+em =

=
(
dyϕ − dxϕ

)α+em

+
∑

j1

c j1
(
dyϕ − dxϕ

)θ j1+em

n1 j1∏

j2=1

∂
y
β j1 j2

ϕ +
∑

j1

c′
j1

(
∂

y
mϕ − ∂x

mϕ
) n2 j1∏

j2=1

∂
y
γ j1 j2

ϕ

+

n∑

k=1

(−i )αk








n∏

j = 1
j 6= k

(
∂

y
j ϕ − ∂x

j ϕ
)α j




(
∂

y
k ϕ − ∂x

k ϕ
)αk−1





∂
y
kmϕ

+
∑

j1

n∑

k=1

(−i )c j1θ j1k








n∏

l = 1
l 6= k

(
∂

y
j ϕ − ∂x

j ϕ
)θ j1l




(
∂

y
k ϕ − ∂x

k ϕ
)θ j1k−1





·

·


∂ y

kmϕ

n1 j1∏

j2=1

∂
y
β j1 j2

ϕ




+
∑

j1

n1 j1∑

k=1

(−i )c j1
(
dyϕ − dxϕ

)θ j1



∂

y
β j1k+em

ϕ

n1 j1∏

j2 = 1
j2 6= k

∂
y
β j1 j2

ϕ




+
∑

j1

n2 j1∑

k=1

(−i )c′
j1
∂

y
γ j1k+em

ϕ

n2 j1∏

j2 = 1
j2 6= k

∂
y
γ j1 j2

ϕ.

The terms obtained are all of the correct type, as it is clear by the calculation above. Also the
fact that (77) still holds is trivial, so that we only have to check (78) on the above formula. By
the inductive hypothesis we have

- for the first sum:

θ ′
j1

+

n′
1 j1∑

j2=1

β′
j1 j2

= θ j1 + em +

n1 j1∑

j2=1

β j1 j2 = α + em;

- for the second sum:

θ ′
j1

+

n′
1 j1∑

j2=1

β′
j1 j2

= em +

n2 j1∑

j2=1

γ j1 j2 = α + em;
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- for the third sum:

θ ′
j1

+

n′
1 j1∑

j2=1

β′
j1 j2

= α − ek + ek + em = α + em;

- for the fourth sum:

θ ′
j1

+

n′
1 j1∑

j2=1

β′
j1 j2

= θ j1 − ek +

n1 j1∑

j2=1

β j1 j2 + ek + em = α + em;

- for the fifth sum:

θ ′
j1

+

n′
1 j1∑

j2=1

β′
j1 j2

= θ j1 +

n1 j1∑

j2=1

β j1 j2 + em = α + em.

- for the sixth sum:

n′
2 j1∑

j2=1

γ ′
j1 j2

=

n2 j1∑

j2=1

γ j1 j2 + em = α + em.

Formula (76) with (77) and (78) is then proved for allα.

A.2. Direct proof of continuity in Sobolev spaces

We give here an alternative proof of Theorem 16 as an adapted version of a generalL2-boundedness
result of Asada-Fujiwara ([1]), very close to the analogousone in [4] (Theorem 12.1). We will
need the following classical Schur’s lemma.

LEMMA 20. If H ∈ C(�n × �n) and

sup
y

∫
dx |H(x, y)| ≤ T, sup

x

∫
dy |H(x, y)| ≤ T,

then the integral operator with kernel H has norm≤ T in �(L2).

Proof of Theorem 16.Let us choose a non-increasingψ ∈ C∞(� ) such thatψ(t) = 1 for t < 1
2

andψ(t) = 0 for t > 1. Then set, forw = (s, σ ) ∈ �n × �n ,

ψw(x, ξ) =
ψ(|x − s|)ψ(|ξ − σ |)∫

dsdσψ(|x − s|)ψ(|ξ − σ |)
,

so that

supp(ψw) ⊆ Uw =
{
(x, ξ) ∈ �n × �n | |x − s| ≤ 1, |ξ − σ | ≤ 1

}
,(79)

max
|α+β|≤m

sup
(x,ξ )∈

�
n×
�

n
|∂αξ ∂

x
βψw(x, ξ)| ≤ Cm,(80)

∀x, ξ
∫

dsdσ ψw(x, ξ) = 1,
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where the constantsCm do not depend onw. For fixedw, let us set

aw(x, ξ) = ψw(x, ξ)a(x, ξ),(81)

Aw = Aϕ,aw .

(79), (80) and (81) implyAw ∈ Hom(C∞
0 ,C∞

0 ) and‖Awu‖L2 ≤ C‖u‖L2 with constantC
independent ofw. In fact,aw has compact support and (80) holds. Moreover,

ψw ∈ C∞
0 ⇒ ψw ∈

�
⇒ aw ∈ SG0

l

and

Aϕ,au(x) = lim
N→∞

∫

|w|≤N
dw Awu(x),

where the limit exists pointwise for allx ∈ �n and with respect to the strong topology ofL2.
We will prove the theorem if we can show that for all compact sets K ⊂ �n × �n

∥∥∥∥
∫

K
dw Awu(.)

∥∥∥∥
L2

≤ M‖u‖L2, u ∈ C∞
0(82)

with constantM independent ofu and K . To this aim, we will use Cotlar’s lemma (see, e.g.,
[22]), which, adapted to our operatorsAw, can be stated in the following form.

LEMMA 21. Let h(w,w′) and k(w,w′) be two positive functions on�2n × �2n such that

‖AwA?w′‖ ≤ h(w,w′)2, ‖A?wAw′‖ ≤ k(w,w′)2.(83)

If h and k statisfy
∫

dw h(w,w′) ≤ M,
∫

dw k(w,w′) ≤ M,(84)

then (82) holds for the same value M.

Here we shall not use Theorem 13, but observe that the kernelHw,w′ (x, y) of AwA?
w′ can

be easily written in the form

(85) Hw,w′ (x, y) =

∫
d−ξ ei (ϕ(x,ξ )−ϕ(y,ξ )) qw,w′ (x, y, ξ)

with
qw,w′ (x, y, ξ) = aw(x, ξ)aw′ (y, ξ).

We now want to show thatHw,w′ in (85) satisfies the hypotheses of Lemma 20 for a suitableT .
Let us introduce the operator

� = d−1(1 − L)

where

L = i
n∑

j =1

∂
j
ξ
(ϕ(x, ξ)− ϕ(y, ξ)) ∂ j

ξ
,

d = 1 +
∣∣∇ξ (ϕ(x, ξ)− ϕ(y, ξ))

∣∣2 ,
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so that

�ei (ϕ(x,ξ )−ϕ(y,ξ )) = ei (ϕ(x,ξ )−ϕ(y,ξ )).

Take note that

∣∣∇ξ (ϕ(x, ξ)− ϕ(y, ξ))
∣∣ � |x − y| ⇒ d � 〈x − y〉2

(see the first part of the proof of Theorem 13, and also, setting � f = f/d,

� :
�
(�n × �n × �n) →

�
(�n × �n × �n),

L :
�
(�n × �n × �n) →

�
(�n × �n × �n),

supp
(
qw,w′

)
⊆ {(x, y, ξ) : | |x − s| ≤ 1, |y − s′| ≤ 1, |ξ − σ | ≤ 1, |ξ − σ ′| ≤ 1}

⇒ qw,w′ ∈
�
(�n × �n × �n).

Since for(t�)m a formula analogous to (22) holds, by the hypotheses and the above observations
we have, for arbitrarym ∈ � and a suitable polynomialQm in the variables� , L ,

Hw,w′ (x, y) =

=

∫
d−ξ �m ei (ϕ(x,ξ )−ϕ(y,ξ )) qw,w′ (x, y, ξ)

=

∫
d−ξ ei (ϕ(x,ξ )−ϕ(y,ξ )) (t�)m qw,w′ (x, y, ξ)

=

∫
d−ξ ei (ϕ(x,ξ )−ϕ(y,ξ )) (�m + Qm(� , L))qw,w′ (x, y, ξ)

⇒ Hw,w′ (x, y) ≺ τ

(
σ − σ ′

2

)
τ(x − s) τ(y − s′) (1 + |x − y|2)−m(86)

whereτ = χB(0,1) is the characteristic function of the unit ball in�n. Then:

sup
y

∫
dx |Hw,w′ (x, y)| ≺

≺ τ

(
σ − σ ′

2

)
sup

y∈B(s′,1)

∫

u∈B(0,1)
du (1 + |u + (s − y)|2)−m

≺ τ

(
σ − σ ′

2

)
sup

y∈B(s′,1)
(1 + |s − y|2)−m

≺ τ

(
σ − σ ′

2

)
(1 + |s − s′|2)−m

and analogously for supx
∫

dy |Hw,w′ (x, y)|, owing to the symmetry in the estimate (86). So,
all requirements of Lemma 20 are satisfied and summing up, we have:

|σ − σ ′| ≥ 2 ⇒ AwA?
w′ = 0

|σ − σ ′| ≤ 2 ⇒ ‖AwA?w′‖ ≺ (1 + |s − s′|2)−m.
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An analogous estimate can be obtained forA?wAw′ . In fact, using Remark 5,

A?wAw′ = Bϕ,aw Aϕ,aw′

= (2π)n� −1 ◦ A−tϕ,a?
w

◦ � −1 ◦ � ◦ (2π)−n B−tϕ,a?
w′

◦ �

= � −1 ◦ A−tϕ,a?
w

A?
−tϕ,a?

w′
◦ �

= � −1 ◦ Ãw Ã?
w′ ◦ �

which implies

‖A?wAw′‖�(L2) ≤ ‖Ãw Ã?
w′‖�(L2)

since the Fourier transform is anL2-isometry. Of course, also the kernel of̃Aw Ã?
w′ satisfies

estimate (86), due to the usual symmetry in the role of variables and covariables in phases and
amplitudes. Then, also the requirements (83) and (84) of Lemma 21 are satisfied, and the theorem
is proved.
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Boston 1995 (2nd edition).
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actéristiques Multiples. II, Jap. J. Math.40 (1971) 63–104.

[34] MORIMOTO Y., Fundamental Solutions for a Hyperbolic Equation with Involutive Char-
acteristics of Variable Multiplicity, Comm. in Partial Differential Equations4 6 (1979),
609–643.



302 S. Coriasco

[35] PARENTI C.,Operatori pseudodifferenziali in�n e applicazioni, Ann. Mat. Pura Appl.93
(1972), 359–389.

[36] SATAKE I., Linear Algebra, Marcel Dekker, Inc., New York 1975.
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