G. De Donno - L. Rodino

GEVREY HYPOELLIPTICITY FOR PARTIAL DIFFERENTIAL EQUATIONS WITH CHARACTERISTICS OF HIGHER MULTIPLICITY

Abstract

We consider a class of partial differential equations with characteristics of constant multiplicity $m \geq 4$. We prove for these equations a result of hypoellipticity and Gevrey hypoellipticity, by using classical Fourier integral operators and $S_{\rho, \delta}^{m}$ arguments.

1. Introduction and statement of the result

This paper concerns the Gevrey hypoellipticity of linear partial differential operators:

$$
\begin{equation*}
P=\sum_{|\alpha| \leq M} c_{\alpha}(x) D^{\alpha} . \tag{1}
\end{equation*}
$$

We use in (1) standard notations, and we assume that the coefficients $c_{\alpha}(x)$ are analytic, defined in a neighborhood Ω of a point $x_{0} \in \mathbb{R}^{\mathbf{n}}$. More generally, P could be assumed in the following to be a classical analytic pseudo-differential operator, defined as, for example, in Rodino [15], Trèves [16].
We recall that P is said to be hypoelliptic at (a neighborhood Ω of) the point x_{0} when

$$
\begin{equation*}
\text { sing supp } P u=\text { sing supp } u \quad \text { for all } u \in D^{\prime}(\Omega) \tag{2}
\end{equation*}
$$

and Gevrey d-hypoelliptic, $1<d<+\infty$, when

$$
\begin{equation*}
d-\operatorname{sing} \operatorname{supp} P u=d-\operatorname{sing} \operatorname{supp} u \quad \text { for all } u \in D^{\prime}(\Omega) \tag{3}
\end{equation*}
$$

In (3) the d-singular support of a distribution u is defined as the smallest closed set in the complement of which u is a G^{d} function, $1<d<+\infty$, i.e.: it satisfies locally estimates of the type

$$
\left|D^{\alpha} f(x)\right| \leq C^{|\alpha|+1}(\alpha!)^{d}
$$

We want to study the multiple characteristics case. Namely, consider the principal symbol:

$$
p_{M}(x, \xi)=\sum_{|\alpha|=M} c_{\alpha}(x) \xi^{\alpha} .
$$

Arguing microlocally, we fix $\xi_{0} \neq 0$ and set:

DEFINITION 2. We say that P is an operator with characteristics of constant multiplicity $m \geq 2$ at $\left(x_{0}, \xi_{0}\right)$ if in a conic neighborhood $\Gamma \subset \Omega \times\left(\mathbb{R}^{\mathbf{n}} \backslash 0\right)$ of $\left(x_{0}, \xi_{0}\right)$ we may write

$$
p_{M}(x, \xi)=e_{M-m}(x, \xi) a_{1}(x, \xi)^{m}
$$

where $e_{M-m}(x, \xi)$ is an analytic elliptic symbol, homogeneous of order $M-m$, and the first order analytic symbol $a_{1}(x, \xi)$ is real- valued and of microlocal principal type, i.e. $d_{x, \xi} a_{1}(x, \xi)$ never vanishes and it is not parallel to $\sum_{j=1}^{n} \xi_{j} d x_{j}$ on

$$
\Sigma=\left\{(x, \xi) \in \Gamma, a_{1}(x, \xi)=0\right\}
$$

Observe that Σ is also characteristic manifold of $p_{M}(x, \xi)$; we understand $\left(x_{0}, \xi_{0}\right) \in \Sigma$. For P satisfying such definition, we want to study hypoellipticity or, more precisely, microhypoellipticity at (x_{0}, ξ_{0}), defined by

$$
\begin{equation*}
\Gamma \bigcap W F P u=\Gamma \bigcap W F u \text { for all } u \in D^{\prime}(\Omega) \tag{4}
\end{equation*}
$$

and d-micro-hypoellipticity, defined by

$$
\begin{equation*}
\Gamma \bigcap W F_{d} P u=\Gamma \bigcap W F_{d} u \text { for all } u \in D^{\prime}(\Omega), \tag{5}
\end{equation*}
$$

for a sufficiently small neighborhood Γ of $\left(x_{0}, \xi_{0}\right)$. See for example Hörmander [4], Rodino [15] for the definition of the wave front set $W F u$ and Gevrey wave front set $W F_{d} u$ of a distribution u. We observe that (4), (5) imply respectively (2), (3), when satisfied in a conic neighborhood Γ of (x_{0}, ξ_{0}) for all $\xi_{0} \neq 0$.

To express our result we need the so-called subprincipal symbol of P :

$$
p_{M-1}^{\prime}(x, \xi)=\sum_{|\alpha|=M-1} c_{\alpha}(x) \xi^{\alpha}-\frac{1}{2 i} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j} \partial \xi_{j}} p_{M}(x, \xi) .
$$

We recall that p_{M-1}^{\prime} has a geometric invariant meaning at Σ, see for example Hörmander [4]; we shall write in the following

$$
J^{0}(x, \xi)=\left.p_{M-1}^{\prime}(x, \xi)\right|_{\Sigma}
$$

Let us assume for simplicity in Γ :

$$
\begin{equation*}
p_{M}(x, \xi) \text { is real - valued and, when } m \text { is even, non - negative } \tag{6}
\end{equation*}
$$

(this is not restrictive, if we are allowed to multiply by an elliptic factor passing to the pseudodifferential frame).
It is then known from Liess-Rodino [6] that in the case $\mathfrak{J} J^{0}\left(x_{0}, \xi_{0}\right) \neq 0$ we have microhypoellipticity and d-micro-hypoellipticity at $\left(x_{0}, \xi_{0}\right)$ for $d \geq \frac{m}{m-1}$. In this paper we shall allow $\Im J^{0}\left(x_{0}, \xi_{0}\right)=0$, but assume $\Re J^{0}\left(x_{0}, \xi_{0}\right) \neq 0$. To be definite, let us set

$$
\begin{equation*}
\Re J^{0}(x, \xi)<0 \quad \text { for }(x, \xi) \in \Sigma \tag{7}
\end{equation*}
$$

Fixing attention here on the higher multiplicity case $m \geq 3$, we need to consider some other invariants associated to p_{M-1}^{\prime}, cf. Liess-Rodino [7], Mascarello-Rodino [8]:

$$
J^{r}(x, \xi, X)=\frac{1}{r!} \chi^{r} p_{M-1}^{\prime}(x, \xi),
$$

for $(x, \xi, X) \in N(\Sigma), 1 \leq r \leq m-2$, where $N(\Sigma)$ is the normal bundle to the characteristic manifold Σ and χ is a vector field in Γ such that $\chi(x, \xi)$ at $(x, \xi) \in \Sigma$ is in the equivalence class of $X \in N_{(x, \xi)}(\Sigma)$.
Obviously we have:

$$
\begin{equation*}
J^{r}(x, \xi,-X)=(-1)^{r} J^{r}(x, \xi, X) \tag{8}
\end{equation*}
$$

For uniformity of notation we shall also regard J^{0} as a function on $N(\Sigma)$, independent of X at (x, ξ).

THEOREM 1. Let P be an operator with characteristics of constant multiplicity m, satisfying (6), (7). Assume moreover there exists $r^{*}, 0<r^{*}<\frac{(m-1)}{2}$, such that
i) $\Im J^{r^{*}}(x, \xi, X) \neq 0$, for all $(x, \xi, X) \in N(\Sigma), X \neq 0$,
ii) $\mathfrak{J} J^{r^{*}}(x, \xi, X) \Im J^{r}(x, \xi, X) \geq 0$, for all $(x, \xi, X) \in N(\Sigma), 0 \leq r<r^{*}$.

Then P is micro-hypoelliptic and d-micro-hypoelliptic for $d \geq \frac{m}{m-1-r^{*}}$.
Let us compare our result with the existing literature. For the sake of brevity, we limit attention to some models in \mathbb{R}^{2}, satisfying (6), (7) at $x_{1}^{0}=0, x_{2}^{0}=0, \xi_{1}^{0}=0, \xi_{2}^{0}>0$. We list first the following examples, representative of general classes already considered by other authors:

$$
\begin{gather*}
D_{x_{1}}^{m}-D_{x_{2}}^{m-1}(m \geq 2) \tag{9}\\
D_{x_{1}}^{m}-D_{x_{2}}^{m-1}+i x_{1} D_{x_{1}} D_{x_{2}}^{m-2} \quad(m \geq 3) \tag{10}\\
D_{x_{1}}^{m}-D_{x_{2}}^{m-1}+i x_{1}^{2 h} D_{x_{2}}^{m-1} \quad(m \geq 2) \tag{11}\\
D_{x_{1}}^{m}-D_{x_{2}}^{m-1}+i x_{1}^{2 h} D_{x_{2}}^{m-1}+i x_{1}^{l} D_{x_{1}} D_{x_{2}}^{m-2}(m \geq 3) \tag{12}
\end{gather*}
$$

The operators (9), (10) are not hypoelliptic; observe also that (10) is not locally solvable, cf. Corli [1]. The operator (11) is hypoelliptic for any $h \geq 1$, despite the fact that $\mathfrak{I} J^{0}\left(x_{0}, \xi_{0}\right)=0$, cf. Menikoff [9], Popivanov [10], Roberts [14]; the operator (12), having the same J^{0} as (11), is not hypoelliptic if h is sufficiently large with respect to $l \geq 1$, cf. Popivanov-Popov [12], Popivanov [11].
Theorem 1 gives new conditions on J^{r}, i.e. on the coefficient of the terms
$D_{x_{1}}^{r} D_{x_{2}}^{m-r-1}$ for models of the preceding type, to guarantee hypoellipticity and Gevrey hypoellipticity. We have to assumenow $m \geq 4$.
Let us observe that, if r^{*} is odd, then i), ii) in Theorem 1 and (8) actually imply $\Im J^{r} \equiv 0$ for even $r<r^{*}$; as examples of hypoelliptic operators characterized by Theorem 1 consider in this case

$$
\begin{equation*}
D_{x_{1}}^{m}-D_{x_{2}}^{m-1}+i D_{x_{1}} D_{x_{2}}^{m-2} \quad\left(r^{*}=1\right) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
D_{x_{1}}^{m}-D_{x_{2}}^{m-1}+i x_{1}^{2 h} D_{x_{1}} D_{x_{2}}^{m-2}+i D_{x_{1}}^{3} D_{x_{2}}^{m-4} \quad\left(r^{*}=3\right) \tag{14}
\end{equation*}
$$

having the same J^{0} as the non-hypoelliptic operators (9), (10). If r^{*} is even, then i), ii) and (8) imply $\mathfrak{\Im} J^{r} \equiv 0$ for odd $r<r^{*}$; as corresponding example of hypoelliptic operator consider

$$
\begin{equation*}
D_{x_{1}}^{m}-D_{x_{2}}^{m-1}+i x_{1}^{2 h} D_{x_{2}}^{m-1}+i D_{x_{1}}^{2} D_{x_{2}}^{m-3} \quad\left(r^{*}=2\right) \tag{15}
\end{equation*}
$$

having the same J^{0} as (11), (12). In (13), (14), (15), the order m has to be chosen sufficiently large, to satisfy the assumption $\frac{m-1}{2}>r^{*}$. Returning to general operators, we may regard Theorem 1 as extension of a result of Liess-Rodino([7],Theorem 6.3), which prove the same order of Gevrey hypoellipticity, requiring i) and $\mathfrak{J} J^{r}=0$ for all $r<r^{*}$, which is stronger than $i i$); see also Tulovsky [17] for hypoellipticity in the C^{∞}-sense. Observe however that LiessRodino [7] allow $0<r^{*} \leq m-2$, whereas we do not know whether our result is valid for $\frac{m-1}{2} \leq r^{*} \leq m-2$.

The proof of Theorem 1 will be reduced, after conjugation by classical Fourier integral operators, to a simple $S_{\rho, \delta}^{m}$ argument (let us refer in particular to the result of Kajitani-Wakabayashi [5] in the Gevrey frame).

2. Gevrey hypoellipticity for a class of differential polynomials.

In this section we begin to study a pseudo-differential model in suitable simplectic co-ordinates. The conclusion of the proof of Theorem 1 will be given in the subsequent Section 3. As before we denote by $x=\left(x_{1}, \ldots, x_{n}\right)$ the real variables in Ω, open subset of $\mathbb{R}^{\mathbf{n}} ; \xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$, $\xi_{2}>0$, the dual variables of x. We consider the conic neighborhood $\Lambda=\left\{0<\xi_{1}^{2}+\right.$ $\left.|\zeta|^{2}<C \xi_{2}^{2}\right\}$ of the axis $\xi_{2}>0$, where $\zeta=\left(\xi_{3}, \ldots, \xi_{n}\right) \in \mathbb{R}^{\mathbf{n - 2}}$, for a suitable constant C. Moreover we take $q, m, r, s \in \mathbb{N}$ such that $m \geq 2,1 \leq q<m$, and (r, s) belong to the set $I=\left\{(r, s) \in \mathbb{N}^{2}: 0<q r+m s<q m\right\}$.

Let the function in $\Omega \times \Lambda=\Gamma$

$$
\begin{equation*}
p(x, \xi)=\xi_{1}^{m}-h_{0, q}(x, \xi) \xi_{2}^{q}+\sum_{(r, s) \in I} h_{r, s}(x, \xi) \xi_{1}^{r} \xi_{2}^{s} \tag{16}
\end{equation*}
$$

be a differential polynomial, symbol of a (micro) pseudo-differential operator $P(x, D)$, where $h_{(\cdot, \cdot)}: \Gamma \rightarrow \mathbb{C}, h_{(\cdot, \cdot)}=\mathfrak{R} h_{(\cdot, \cdot)}+i \mathfrak{F} h_{(\cdot, \cdot)}, \mathfrak{\Re} h_{(\cdot, \cdot)}, \mathfrak{J} h_{(\cdot, \cdot)}: \Gamma \rightarrow \mathbb{R}, \mathfrak{R} h_{(\cdot, \cdot)}, \mathfrak{F} h_{(\cdot, \cdot)} \in$ $G^{1}(\Gamma)$, see below.
We define the sets, for $k \in \mathbb{N}, 0<k<q m$:

$$
I_{k}=\left\{(r, s) \in \mathbb{N}^{2}: q r+m s=k\right\}
$$

and fix $k=k^{*}$ such that $q\left(m-\frac{1}{2}\right)<k^{*}<q m$. We use the notation k^{-}for all $k<k^{*}$ and k^{+}for all $k>k^{*}$. We may split $I=I_{-} \bigcup I_{k^{*}} \bigcup I_{+}$, with $I_{-}=\bigcup I_{k^{-}}, I_{+}=\bigcup I_{k^{+}}$.

LEMMA 1. Let $p(x, \xi)$ be the function (16), where $h_{(\cdot,)}$ is assumed to be homogeneous of order zero with respect to ξ and analytic, which implies for some constant $L>0$

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{\xi}^{\beta} h_{(\cdot, \cdot)}\right| \leq L^{|\alpha|+|\beta|+1} \alpha!\beta!(1+|\xi|)^{-|\beta|} \tag{17}
\end{equation*}
$$

Assume moreover $I_{k^{*}}$ consists of one couple $\left(r^{*}, s^{*}\right), k^{*}=q r^{*}+m s^{*}$, such that:
(i) $\mathfrak{\Im} h_{r^{*}, s^{*}}(x, \xi) \neq 0$, for all $(x, \xi) \in \Gamma$,
(ii) $\Im h_{r^{*}, s^{*}}(x, \xi) \Im h_{r, s}(x, \xi) \xi_{1}^{r^{*}+r} \xi_{2}^{s+s^{*}} \geq 0$, forall $(x, \xi) \in \Gamma, k^{*}<k^{+}=q r+m s<$ $q m$,
(iii) $\Im h_{0, q}(x, \xi) \Im h_{r^{*}, s^{*}}(x, \xi) \xi_{1}^{*^{*}} \xi_{2}^{q+s^{*}} \leq 0$, for all $(x, \xi) \in \Gamma$,
(iv) $\Re h_{0, q}(x, \xi) \neq 0$, for all $(x, \xi) \in \Gamma$.

Then for all $\alpha, \beta \in \mathbb{Z}_{+}^{\mathbf{n}}$, for all $K \subset \subset \Omega$, we have for new positive constants L and B independent of α, β :

$$
\begin{equation*}
\frac{\left|D_{x}^{\alpha} D_{\xi}^{\beta} p(x, \xi)\right||\xi|^{\rho|\beta|-\delta|\alpha|}}{|p(x, \xi)|} \leq L^{|\alpha|+|\beta|+1} \alpha!\beta!,|\xi|>B \tag{18}
\end{equation*}
$$

where $\rho=\frac{k^{*}-q(m-1)}{m}, \delta=\frac{q m-k^{*}}{m}$. Observe that we have $\delta<\rho$, since we have assumed $k^{*}>q\left(m-\frac{1}{2}\right)$

REmARK 1. Hypothesis (ii) implies that $\Im h_{r^{*}, s^{*}}(x, \xi)$ and $\Im h_{r, s}(x, \xi)$ are both positive or both negative ($\Im h_{r, s}(x, \xi)$ may vanish, too), and that r is according (both even or both odd) to r^{*} for all r such that $k^{*}<k^{+}$. Otherwise (r is not according to r^{*}), $\Im h_{r, s}(x, \xi)$ has to vanish in Γ.
Hypothesis (iii) induces $\Im h_{0, q}(x, \xi) \equiv 0$ if r^{*} is odd.
Remark 2. By formula (18) and by Kajitani-Wakabayashi([5], Theorem 1.9), we have that the operator $P(x, D)$, associated to the symbol $p(x, \xi)$ in (16), is G^{d}-microlocally hypoelliptic in Γ for $d \geq \max \left\{\frac{1}{\rho}, \frac{1}{1-\delta}\right\}=\frac{1}{\rho}$.

REmARK 3. When $\rho<1$, and $\delta>0$, one can prove by means of interpolation theory as in Wakabayashi([18], Theorem 2.6) that (18) is valid for any $\alpha, \beta \in \mathbb{Z}_{+}^{\mathbf{n}}$, if (18) holds for $|\alpha+\beta|=1$. Hence it is sufficient to verify (18) for $|\alpha+\beta|=1$ because $\rho=\frac{k^{*}-q(m-1)}{m}<$ $\frac{q}{m}<1$, and $\delta=\frac{q m-k^{*}}{m}>0$.

Remark 4. For the proof of Theorem 1 it will be sufficient to apply Lemma 1 for $q=$ $m-1$. The general case $1 \leq q<m$ leads to a more involved geometric invariant statement, which we shall detail in a future paper.

Proof of Lemma 1. We first estimate the numerator of (18), then we give some lemmas to estimate the denominator of (18).
If $|\alpha|=1,|\beta|=0$, we get

$$
\begin{aligned}
\left|D_{x_{j}} p(x, \xi)\right||\xi|^{-\delta} & =\left|\sum_{(r, s) \in I} D_{x_{j}} h_{r, s}(x, \xi) \xi_{1}^{r} \xi_{2}^{s}-D_{x_{j}} h_{0, q}(x, \xi) \xi_{2}^{q}\right||\xi|^{-\delta} \\
& \leq L_{1}\left(\sum_{(r, s) \in I}\left|\xi_{1}\right|^{r} \xi_{2}^{s}+\xi_{2}^{q}\right)|\xi|^{-\delta}, j=1, \ldots, n
\end{aligned}
$$

for a suitable constant L_{1} in view of the assuption (17).
If $|\alpha|=0,|\beta|=1$, then

$$
\begin{array}{r}
\left|D_{\xi_{j}} p(x, \xi)\right||\xi|^{\rho} \leq L_{2}\left(\sum_{(r, s) \in I}\left|\xi_{1}\right|^{r} \xi_{2}^{s}+\xi_{2}^{q}\right)|\xi|^{\rho}(1+|\xi|)^{-1} \tag{19}\\
j=3, \ldots, n
\end{array}
$$

for a suitable constant L_{2}, in view of (17).
Moreover:

$$
\begin{align*}
\left|D_{\xi_{1}} p(x, \xi)\right||\xi|^{\rho} & \leq\left(m\left|\xi_{1}\right|^{m-1}+L_{3} \sum_{(r, s) \in I}\left|\xi_{1}\right|^{r-1} \xi_{2}^{s}\right)|\xi|^{\rho} \tag{20}\\
& +L_{4}\left(\sum_{(r, s) \in I}\left|\xi_{1}\right|^{r} \xi_{2}^{s}+\xi_{2}^{q}\right)|\xi|^{\rho}(1+|\xi|)^{-1}
\end{align*}
$$

and

$$
\begin{align*}
\left|D_{\xi_{2}} p(x, \xi)\right||\xi|^{\rho} & \leq\left(q L_{0, q} \xi_{2}^{q-1}+L_{5} \sum_{(r, s) \in I}\left|\xi_{1}\right|^{r} \xi_{2}^{s-1}\right)|\xi|^{\rho} \tag{21}\\
& +L_{6}\left(\sum_{(r, s) \in I}\left|\xi_{1}\right|^{r} \xi_{2}^{s}+\xi_{2}^{q}\right)|\xi|^{\rho}(1+|\xi|)^{-1}
\end{align*}
$$

for suitable constants $L_{3}, L_{4}, L_{5}, L_{6}, L_{0, q}$ in view of (17).
On the other hand, we have:

$$
\begin{equation*}
|\xi|^{\rho}(1+|\xi|)^{-1} \leq|\xi|^{-\delta}, \text { for all } \xi \in \Lambda \tag{22}
\end{equation*}
$$

in fact, by multiplying by $|\xi|^{\delta}(1+|\xi|)$ on both sides of (22), we obtain

$$
|\xi|-|\xi|^{p}+1 \geq 0, \text { for all } \xi \in \Lambda
$$

where $p=\rho+\delta<1$.
Then in the right-hand side of (19), (20), (21) we may further estimate $|\xi|^{\rho}(1+|\xi|)^{-1}$ by $|\xi|^{-\delta}$. Therefore, to prove (18), it will be sufficient to show the boundedness in Γ, for $|\xi|>B$, of the functions

$$
\begin{gathered}
Q_{1}(\xi)=\frac{\left(\sum_{(r, s) \in I}\left|\xi_{1}\right|^{r} \xi_{2}^{s}+\xi_{2}^{q}\right)|\xi|^{-\delta}}{|p(x, \xi)|} \\
Q_{2}(\xi)=\frac{\left(m\left|\xi_{1}\right|^{m-1}+L_{3} \sum_{(r, s) \in I}\left|\xi_{1}\right|^{r-1} \xi_{2}^{s}\right)|\xi|^{\rho}}{|p(x, \xi)|} \\
Q_{3}(\xi)=\frac{\left(q L_{0, q}\left|\xi_{2}\right|^{q-1}+L_{5} \sum_{(r, s) \in I}\left|\xi_{1}\right|^{r} \xi_{2}^{s-1}\right)|\xi|^{\rho}}{|p(x, \xi)|}
\end{gathered}
$$

(we observe that terms of the type Q_{2}, Q_{3} were already considered in De Donno [2]).
First introduce in the cone Λ, three regions:

$$
\begin{array}{lc}
R_{1}: & c \xi_{2}^{q} \leq\left|\xi_{1}\right|^{m} \leq C \xi_{2}^{q} \\
R_{2}: & \left|\xi_{1}\right|^{m} \geq C \xi_{2}^{q} \tag{23}\\
R_{3}: & \left|\xi_{1}\right|^{m} \leq c \xi_{2}^{q}
\end{array}
$$

where the constants c, C satisfy $c \ll \min \left\{\frac{1}{2} \min _{(x, \xi) \in \Gamma}\left|\Re h_{0, q}(x, \xi)\right|, 1\right\}$, and $C \gg$ $\max \left\{2 \max _{(x, \xi) \in \Gamma}\left|\Re h_{0, q}(x, \xi)\right|, 1\right\}$.
The following inequalities then hold:

$$
|\xi|^{-\delta} \leq\left\{\begin{array}{cll}
C^{\frac{\delta}{q}}\left|\xi_{1}\right|^{-\delta \frac{m}{q}} & , \quad \xi \in \Lambda \bigcap R_{1} \tag{24}\\
\left|\xi_{1}\right|^{-\delta} & , \quad \xi \in \Lambda \bigcap R_{2} \\
\xi_{2}^{-\delta} & , \quad \xi \in \Lambda \bigcap R_{3}
\end{array}\right.
$$

note that (II) and (III) hold for all $\xi \in \Lambda$, but for our aim we may limit ourselves to consider them respectively in $\Lambda \bigcap R_{2}$ and in $\Lambda \bigcap R_{3}$. By abuse of notation, in the following we shall also denote by R_{1}, R_{2}, R_{3} the sets $\Omega \times R_{1}, \Omega \times R_{2}, \Omega \times R_{3}$; recall that $\Gamma=\Omega \times \Lambda$.

We will show in Lemma 2, Lemma 3 and Lemma 4, that there are positive constants $K_{1}<$ $1, K_{2}<1, K_{3}<1, B$, such that:

$$
\begin{equation*}
|p(x, \xi)| \geq K_{1}\left|\Im h_{r^{*}, s^{*}}(x, \xi)\right|\left|\xi_{1}\right|^{r^{*}} \xi_{2}^{s^{*}}, \quad \text { in } \Gamma \bigcap R_{1},|\xi|>B \tag{25}
\end{equation*}
$$

$$
\begin{array}{r}
|p(x, \xi)| \geq K_{2}\left|\xi_{1}\right|^{m}, \quad \text { in } \Gamma \bigcap R_{2},|\xi|>B \\
|p(x, \xi)| \geq K_{3} \xi_{2}^{q}, \quad \text { in } \Gamma \bigcap R_{3},|\xi|>B \tag{27}
\end{array}
$$

In (25) we may further estimate $\left|\Im h_{r^{*}, s^{*}}(x, \xi)\right|>\lambda$ for $\lambda>0$, in view of (i) in Lemma 1.
We first consider $Q_{1}(\xi)$ separately in the regions R_{1}, R_{2}, R_{3}, to prove boundedness.
In R_{1} by (24),(25), we get easily, writing as before $k=q r+m s$:

$$
Q_{1}(\xi) \leq \mathrm{const}\left(\sum_{k} \frac{1}{\left|\xi_{1}\right|^{m-\frac{k}{q}}}+1\right),|\xi|>B
$$

where $m-\frac{k}{q}>0$ by definition of I and $I_{k}-$ sets.
In the regions R_{2}, R_{3} by using respectively (24),(26) and (24),(27), we have for a constant $\epsilon>0$ which we may take as small as we want by fixing B sufficiently large:

$$
Q_{1}(\xi) \leq \operatorname{const}\left(\sum_{k} \frac{1}{\left|\xi_{1}\right|^{m+q-\frac{k}{q}-\frac{k^{*}}{m}}}+\frac{1}{\left|\xi_{1}\right|^{\delta}}\right)<\epsilon,|\xi|>B
$$

and

$$
Q_{1}(\xi) \leq \mathrm{const}\left(\sum_{k} \frac{1}{\left|\xi_{2}\right|^{2 q-\frac{k}{m}-\frac{k^{*}}{m}}}+\frac{1}{\left|\xi_{2}\right|^{\delta}}\right)<\epsilon,|\xi|>B
$$

We have therefore proved that $Q_{1}(\xi)$ is bounded. Let us estimate $Q_{2}(\xi), Q_{3}(\xi)$. As above in the regions R_{1}, R_{2}, R_{3}, we obtain

$$
\begin{gathered}
Q_{2}(\xi) \leq \mathrm{const}\left(1+\sum_{k} \frac{1}{\left|\xi_{1}\right|^{m-\frac{k}{q}}}\right) \\
Q_{3}(\xi) \leq \operatorname{const}\left(\frac{1}{\left|\xi_{1}\right|^{\frac{m}{q}-1}}+\sum_{k} \frac{1}{\left|\xi_{1}\right|^{\left(m+\frac{m}{q}-1\right)-\frac{k}{q}}}\right)<\epsilon
\end{gathered}
$$

in R_{1} for $|\xi|>B$,

$$
\begin{gathered}
Q_{2}(\xi) \leq \operatorname{const}\left(\frac{1}{\left|\xi_{1}\right|^{m-\frac{k^{*}}{q}}}+\sum_{k} \frac{1}{\left|\xi_{1}\right|^{2 m-\frac{k}{q}-\frac{k^{*}}{q}}}\right)<\epsilon \\
Q_{3}(\xi) \leq \operatorname{const}\left(\frac{1}{\left|\xi_{1}\right|^{\left(m+\frac{m}{q}-1\right)-\frac{k^{*}}{q}}}+\sum_{k} \frac{1}{\left|\xi_{1}\right|^{\left(2 m+\frac{m}{q}-1\right)-\left(\frac{k}{q}+\frac{k^{*}}{q}\right)}}\right)<\epsilon,
\end{gathered}
$$

in R_{2} for $|\xi|>B$,

$$
\begin{gathered}
Q_{2}(\xi) \leq \operatorname{const}\left(\frac{1}{\left|\xi_{2}\right|^{q-\frac{k^{*}}{m}}}+\sum_{k} \frac{1}{\left|\xi_{2}\right|^{2 q-\frac{k}{m}-\frac{k^{*}}{m}}}\right)<\epsilon, \\
Q_{3}(\xi) \leq \operatorname{const}\left(\frac{1}{\left|\xi_{2}\right|^{\left(1+q-\frac{q}{m}\right)-\frac{k^{*}}{m}}}+\sum_{k} \frac{1}{\left|\xi_{2}\right|^{\left(2 q+1-\frac{q}{m}\right)-\left(\frac{k}{m}-\frac{k^{*}}{m}\right)}}\right)<\epsilon,
\end{gathered}
$$

in R_{3} for $|\xi|>B$.
Now Lemma 2, Lemma 3 and Lemma 4 complete the proof.

Lemma 2. Let $p(x, \xi)$ be the function (16), such that (17) and (i), (ii), (iii) in Lemma 1 hold. Then there are positive constants $K_{1}<1, B$, such that:

$$
|p(x, \xi)| \geq K_{1}\left|\Im h_{r^{*}, s^{*}}(x, \xi)\right|\left|\xi \xi_{1}\right|^{r^{*}} \xi_{2}^{s^{*}}, \quad(x, \xi) \in \Gamma \bigcap R_{1},|\xi|>B
$$

Proof. We have that

$$
\begin{aligned}
|p(x, \xi)|^{2} & =\left(\xi_{1}^{m}-\Re h_{0, q}(x, \xi) \xi_{2}^{q}+\sum_{(r, s) \in I} \Re h_{r, s}(x, \xi) \xi_{1}^{r} \xi_{2}^{s}\right)^{2}+ \\
& +\left(\Im h_{r^{*}, s^{*}}(x, \xi) \xi_{1}^{r^{*}} \xi_{2}^{s^{*}}+\sum_{(r, s) \in I_{-}} \Im h_{r, s}(x, \xi) \xi_{1}^{r} \xi_{2}^{s}+\right. \\
& \left.+\sum_{(r, s) \in I_{+}} \Im h_{r, s}(x, \xi) \xi_{1}^{r} \xi_{2}^{s}-\Im h_{0, q}(x, \xi) \xi_{2}^{q}\right)^{2}
\end{aligned}
$$

by removing the terms rising from the real part of $p(x, \xi)$, we can write

$$
|p(x, \xi)|^{2} \geq \Im h_{r^{*}, s^{*}}(x, \xi)^{2} \xi_{1}^{2 r^{*}} \xi_{2}^{2 s^{*}}+\sum_{j=1}^{4} J_{j}(x, \xi)
$$

where

$$
\begin{align*}
J_{1}(x, \xi)= & \left(\sum_{(r, s) \in I_{-}} \Im h_{r, s}(x, \xi) \xi_{1}^{r} \xi_{2}^{s}+\right. \tag{29}\\
& \left.\sum_{(r, s) \in I_{+}} \Im h_{r, s}(x, \xi) \xi_{1}^{r} \xi_{2}^{s}-\Im h_{0, q}(x, \xi) \xi_{2}^{q}\right)^{2},
\end{align*}
$$

$$
\begin{equation*}
J_{2}(x, \xi)=2 \Im h_{r^{*}, s^{*}}(x, \xi) \sum_{(r, s) \in I_{-}} \Im h_{r, s}(x, \xi) \xi_{1}^{r^{*}+r} \xi_{2}^{s^{*}+s} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
J_{3}(x, \xi)=2 \Im h_{r^{*}, s^{*}}(x, \xi) \sum_{(r, s) \in I_{+}} \Im h_{r, s}(x, \xi) \xi_{1}^{r^{*}+r} \xi_{2}^{\xi^{*}+s} \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
J_{4}(x, \xi)=-2 \Im h_{r^{*}, s^{*}}(x, \xi) \Im h_{0, q}(x, \xi) \xi_{1}^{r^{*}} \xi_{2}^{s^{*}+q} \tag{32}
\end{equation*}
$$

(29) is non-negative for all $(x, \xi) \in \Gamma$, (31) and (32) are also non negative by hypotheses (ii), (iii) for all $(x, \xi) \in \Gamma$.

Let us fix attention on $J_{2}(x, \xi)$ defined by (30). We have for all $\epsilon>0$

$$
\left(\Im h_{r^{*}, s^{*}}(x, \xi)\right)^{2} \xi_{1}^{2 r^{*}} \xi_{2}^{2 s^{*}}+J_{2}(x, \xi) \geq(1-\epsilon)\left(\Im h_{r^{*}, s^{*}}(x, \xi)\right)^{2} \xi_{1}^{2 r^{*}} \xi_{2}^{2 s^{*}}
$$

in $\Gamma \bigcap R_{1},|\xi|>B$. In fact, assuming for simplicity $\xi_{1} \geq 0$, by (17), (23) in $\Gamma \bigcap R_{1}$ and hypothesis (i), for all $\epsilon>0$ we get for B sufficiently large

$$
\begin{gathered}
\frac{\left|J_{2}(x, \xi)\right|}{\left(\Im h_{r^{*}, s^{*}}(x, \xi)\right)^{2} \xi_{1}^{2 r^{*}} \xi_{2}^{2 s^{*}}} \leq \mathrm{const} \sum_{(r, s) \in I_{-}} \frac{\xi_{1}^{r^{*}+r} \xi_{2}^{s^{*}+s}}{\xi_{1}^{2 r^{*}} \xi_{2}^{2 s^{*}}} \leq \\
\leq \mathrm{const} \sum_{(r, s) \in I_{-}} \frac{\xi_{1}^{r^{*}+r+\left(s^{*}+s\right) \frac{m}{q}}}{\xi_{1}^{2 r^{*}+2 s^{*} \frac{m}{q}}}<\epsilon, \quad|\xi|>B
\end{gathered}
$$

we remark that $k^{*}=q r^{*}+m s^{*}>k^{-}=q r+m s$.
Then,

$$
|p(x, \xi)| \geq K_{1}\left|\Im h_{r^{*}, s^{*}}(x, \xi)\right|\left|\xi_{1}\right|^{r^{*}} \xi_{2}^{s^{*}}, \quad(x, \xi) \in \Gamma \bigcap R_{1},|\xi|>B
$$

for a suitable constant K_{1}.

Lemma 3. Let $p(x, \xi)$ be the function (16),such that (17) holds. Then there are positive constants $K_{2}<1, B$, such that:

$$
|p(x, \xi)| \geq K_{2}\left|\xi_{1}\right|^{m}, \quad(x, \xi) \in \Gamma \bigcap R_{2},|\xi|>B
$$

Proof. We write $|p(x, \xi)|^{2}$ as in (28); by removing the terms arising from the imaginary part of $p(x, \xi)$, we get

$$
\begin{equation*}
|p(x, \xi)|^{2} \geq\left(\xi_{1}^{m}-\Re h_{0, q}(x, \xi) \xi_{2}^{q}\right)^{2}+W_{1}(x, \xi)+W_{2}(x, \xi) \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{1}(x, \xi)=\left(\sum_{(r, s) \in I} \Re h_{r, s}(x, \xi) \xi_{1}^{r} \xi_{2}^{s}\right)^{2} \tag{34}
\end{equation*}
$$

(35) $W_{2}(x, \xi)=2 \sum_{(r, s) \in I} \Re h_{r, s}(x, \xi) \xi_{1}^{r+m} \xi_{2}^{s}-2 \Re h_{0, q}(x, \xi) \sum_{(r, s) \in I} \Re h_{r, s}(x, \xi) \xi_{1}^{r} \xi_{2}^{s+q}$.

Observe first that for $\lambda>0$ sufficiently small

$$
\left(\xi_{1}^{m}-\mathfrak{R} h_{0, q}(x, \xi) \xi_{2}^{q}\right)^{2}>\lambda \xi_{1}^{2 m}
$$

in fact

$$
\left(\xi_{1}^{m}-\Re h_{0, q}(x, \xi) \xi_{2}^{q}\right)^{2} \geq \xi_{1}^{2 m}-2 \Re h_{0, q}(x, \xi) \xi_{1}^{m} \xi_{2}^{q}
$$

and using (23) in $\Gamma \bigcap R_{2}$, we have for $\mathfrak{\Re ~} h_{0, q} \xi_{1} \geq 0$

$$
\xi_{1}^{2 m}-2 \Re h_{0, q}(x, \xi) \xi_{1}^{m} \xi_{2}^{q} \geq\left(1-\frac{2}{C} \Re h_{0, q}(x, \xi)\right) \xi_{1}^{2 m}>\lambda \xi_{1}^{2 m}
$$

since $C>2 \max _{(x, \xi) \in \Gamma}\left|\mathfrak{R} h_{0, q}(x, \xi)\right|$.
(34) is non negative for all $(x, \xi) \in \Gamma$. We denote (35) by $\Upsilon_{1}(x, \xi)-\Upsilon_{2}(x, \xi)$, then

$$
|p(x, \xi)|^{2} \geq \lambda \xi_{1}^{2 m}+\Upsilon_{1}(x, \xi)-\Upsilon_{2}(x, \xi)
$$

Arguing on $\Upsilon_{1}, \Upsilon_{2}$ in the same way as we have done in Lemma 2, it is possible to show that for all $\epsilon>0$

$$
\lambda \xi_{1}^{2 m}+\Upsilon_{1}(x, \xi)-\Upsilon_{2}(x, \xi) \geq(\lambda-\epsilon) \xi_{1}^{2 m}, \quad(x, \xi) \in \Gamma \bigcap R_{2},|\xi|>B
$$

then

$$
|p(x, \xi)| \geq K_{2}\left|\xi_{1}\right|^{m}, \quad(x, \xi) \in \Gamma \bigcap R_{2},|\xi|>B
$$

where $K_{2}=(\lambda-\epsilon)^{\frac{1}{2}}$.

Lemma 4. Let $p(x, \xi)$ be the function (16), such that (17) and (iv) in Lemma 1 hold. Then there are positive constants $K_{3}<1, B$, such that:

$$
|p(x, \xi)| \geq K_{3} \xi_{2}^{q}, \quad(x, \xi) \in \Gamma \bigcap R_{3},|\xi|>B
$$

Proof. We apply again (33), (34), (35) to $|p(x, \xi)|^{2}$. Observe that in $\Gamma \cap R_{3}$, arguing as above, since $c<\frac{1}{2} \min _{(x, \xi) \in \Gamma}\left|\Re h_{0, q}(x, \xi)\right|$, we obtain for a suitable constant $\mu>0$

$$
\left(\xi_{1}^{m}-\mathfrak{R} h_{0, q}(x, \xi) \xi_{2}^{q}\right)^{2}>\mu \xi_{2}^{2 q}
$$

About the terms in (34) and (35), the remarks we have done in Lemma 3 hold by replacing $\lambda \xi_{1}^{2 m}$ with $\mu \xi_{2}^{2 q}$, then we have

$$
|p(x, \xi)| \geq K_{3} \xi_{2}^{q}, \quad(x, \xi) \in \Gamma \bigcap R_{3},|\xi|>B
$$

where $K_{3}=(\mu-\epsilon)^{\frac{1}{2}}$.

3. Fourier integral operators and proof of Theorem 1

We consider in this section an operator mapping a fuction (or distribution, or ultradistribution) u into

$$
\begin{equation*}
(2 \pi)^{-n} \int a(x, \xi) \widehat{u}(\xi) e^{i \varphi(x, \xi)} d \xi \tag{36}
\end{equation*}
$$

The phase function $\varphi(x, \xi)$ is assumed to be analytic real-valued, homogenuous of degree 1 with respect to ξ; (36) is called a Fourier integral operator (F.I.O.). Concerning the symbol $a(x, \xi)$, we suppose it belongs to $S^{k}(\Omega)$, the space of the classical analytic symbols of order k. The
function $\widehat{u}(\xi)$ is the Fourier transform of the function u. The particular case $\varphi(x, \xi)=x \cdot \xi$ corresponds to the usual pseudo-differential operators.
The machinery of the F.I.O.'s (see Hörmander [4], Trèves [16], Rodino [15]) may lead to relevant simplifications in the study of the micro-operator $P=P(x, D)$ in (1). Precisely, let χ be a homogeneous analytic canonical transformation acting from the conic neighborhood Γ of the point $\rho_{0}=\left(x_{0}, \xi_{0}\right)$ to a conic neighborhood Γ^{\prime} of the point $\chi\left(\rho_{0}\right)=\left(y_{0}, \eta_{0}\right)$; that χ is canonical means that it preserves the symplectic two-form $\sigma=\sum_{j=1}^{n} d x_{j} \wedge d \xi_{j}$.
Then we may consider the Fourier integral operator F with phase function φ corresponding to χ; this is a map $F: M^{d}(\Gamma) \rightarrow M^{d}\left(\Gamma^{\prime}\right), 1<d \leq \infty$ with inverse $F^{-1}: M^{d}\left(\Gamma^{\prime}\right) \rightarrow M^{d}(\Gamma)$ where $M^{d}(\Gamma)$ denotes the factor space $D^{\prime}(\Omega) / \sim$, where $u \sim v$ means that $\Gamma \bigcap W F_{d}(u-v)=$ \emptyset, for $u, v \in D^{\prime}(\Omega)$, with $W F_{\infty} u=W F u$. More details are, for example, in Rodino [14].
We then have:

$$
\begin{equation*}
W F_{d}(F u)=\chi\left(W F_{d} u\right), \quad W F_{d}\left(F^{-1} v\right)=\chi^{-1}\left(W F_{d} v\right), \tag{37}
\end{equation*}
$$

moreover

$$
\tilde{P}=F P F^{-1}: M^{d}\left(\Gamma^{\prime}\right) \rightarrow M^{d}\left(\Gamma^{\prime}\right)
$$

is a micro-pseudo-differential operator, with homogeneous analytic principal symbol
$\tilde{p_{m}}(y, \eta)=p_{m}\left(\chi^{-1}(y, \eta)\right)$.
On the other hand, as it follows from (37)

$$
\begin{gather*}
\tilde{P} \text { is micro - hypoelliptic or } d \text { - micro - hypoelliptic } \\
\text { if and only if } P \text { is such. } \tag{38}
\end{gather*}
$$

Moreover, if we assume $\rho_{0} \in \Sigma$ and denote by $\tilde{\Sigma}$ the characteristic manifold of \tilde{P}, then $\chi\left(\rho_{0}\right) \in$ $\tilde{\Sigma}$ and $\tilde{\Sigma}=\chi(\Sigma)$ in Γ^{\prime}.
In this way, by fixing a suitable canonical transformation χ, we may reduce ourselves to the study of operators \tilde{P} of a truly elementary form. Particular simplification in the expression of \tilde{P} can be obtained by means of the following theorem.

THEOREM 2. Let A be a classical pseudo-differential operator of microlocal principal type of first order, the function a_{1} (principal symbol of A) be real and $a_{1}\left(x_{0}, \xi_{0}\right)=0, x_{0} \in \Omega$, $\xi_{0} \neq 0$. Then there exists a F.I.O. F, such that $\tilde{A}=F A F^{-1}$, and \tilde{A} is a pseudo-differential operator of first order, whose symbol is equal to η_{k} in a conic neighborhood of the point (y_{0}, η_{0}) corresponding to $\left(x_{0}, \xi_{0}\right)$ for some $k, 1 \leq k \leq n$.

For the proof see, for example in the C^{∞} frame, Egorov-Schulze([3], cap. 6, Theorem 9).
We apply Theorem 2 to the operator $P(x, D)$ with characteristics of constant multiplicity at $\left(x_{0}, \xi_{0}\right)$, such that in a conic neighborhood Γ its principal symbol admits a decomposition as in Definition 2:

$$
p_{M}(x, \xi)=e_{M-m}(x, \xi) a_{1}(x, \xi)^{m}
$$

The symbol of $P(x, D)$ is given by

$$
p(x, \xi)=e_{M-m}(x, \xi) a_{1}(x, \xi)^{m}+P_{M-1}(x, \xi)
$$

where $P_{M-1}(x, \xi)$ is of order $M-1$ and, by passing to the operators:

$$
P(x, D)=e_{M-m}(x, D) a_{1}(x, D)^{m}+R(x, D),
$$

or

$$
e_{M-m}(x, D)^{-1} P(x, D)=a_{1}(x, D)^{m}+e_{M-m}(x, D)^{-1} R(x, D)
$$

where $R(x, D)$ is of order $M-1$.
$P(x, D)$ is micro-hypoelliptic if and only if $a_{1}(x, D)^{m}+e_{M-m}(x, D)^{-1} R(x, D)$ is microhypoelliptic, then by (38) if and only if

$$
Q(y, D)=F^{-1} a_{1}(x, D)^{m} F+F^{-1} e_{M-m}(x, D)^{-1} R(x, D) F
$$

is micro-hypoelliptic, and by Theorem 2 we get that:

$$
F a_{1}(x, D)^{m} F^{-1}=\underbrace{F a_{1}(x, D) F^{-1} \cdots F a_{1}(x, D) F^{-1}}_{m \text { times }}=b(y, D),
$$

such that $b(y, \eta)=\eta_{k}^{m}$ for some $k, 1 \leq k \leq n$. Then

$$
q(y, \eta) \sim \eta_{k}^{m}+\sum_{j=1}^{\infty} q_{m-j}(y, \eta)
$$

Let us assume $k=1$ and use again the notation $p(x, \xi)$ in the role of $q(y, \eta)$; we may also suppose $\xi_{2} \geq 0$ in the corresponding Γ. We can rewrite further $p(x, \xi)$ as:

$$
p(x, \xi)=\xi_{1}^{m}+\sum_{j=1}^{m-1} p_{m-j}(x, \xi)+\underbrace{p_{0}(x, \xi)}_{\text {order } 0} ;
$$

that becomes for Taylor formula stopped at order $\mathrm{m}-\mathrm{j}$

$$
\xi_{1}^{m}+\sum_{j=1}^{m-1} \sum_{r=0}^{m-j-1}[\frac{1}{r!} \frac{\left.\partial_{\xi_{1}^{r}}^{r} p_{m-j}(x, \xi)\right|_{\xi_{1}=0}}{\xi_{2}^{s}} \xi_{1}^{r} \xi_{2}^{s}+\xi_{1}^{m-j} \underbrace{r_{(m-j)}(x, \xi)}_{\text {order } 0}]+p_{0}(x, \xi),
$$

with $r+s=m-j$.
Let us set:

$$
h_{r, s}(x, \xi)=\frac{1}{r!} \frac{\left.\partial_{\xi_{1}}^{r} p_{m-j}(x, \xi)\right|_{\xi_{1}=0}}{\xi_{2}^{s}}
$$

so, we have:

$$
\begin{equation*}
\xi_{1}^{m}+h_{0, m-1}(x, \xi) \xi_{2}^{m-1}+\sum_{r+s \leq m-1} h_{r, s}(x, \xi) \xi_{1}^{r} \xi_{2}^{s} \tag{39}
\end{equation*}
$$

where $(r, s) \neq(0, m-1)$ in the sum and $h_{m-j, 0}(x, \xi)=r_{(m-j)}(x, \xi), h_{0,0}(x, \xi)=p_{0}(x, \xi)$. All the terms $h_{r, s}(x, \xi)$ are homogeneous of order zero, but $h_{0,0}$, which will not play any role when checking the $S_{\rho, \delta}^{m}$ estimates; observe also that for $(r, s) \neq(m-j, 0)$ the symbol $h_{r, s}(x, \xi)$ is actually ξ_{1}-independent.
Formula (39) gives the model that we have studied in Section 2 with $q=m-1$.
The characteristic manifold of $p(x, \xi)$, in the new symplectic co-ordinates, is the subset $\Sigma^{\prime}=\left\{\xi_{1}=0\right\}$ of $\mathbb{R}^{2 n}$, so in this case we obtain $p_{m-1}^{\prime}=p_{m-1}$ and $J^{0}(x, \xi)=$ $\left.p_{m-1}(x, \xi)\right|_{\xi_{1}=0}=h_{0, m-1}(x, \xi) \xi_{2}^{m-1}$.

Hypotheses (6), (7) and i), ii) in Theorem 1 are clearly transported by symplectic transformations and multiplication by elliptic factors. Moreover it is simple to verify that, taking χ proportional to $\frac{\partial}{\partial \xi_{1}}$ by a factor which we again denote ξ_{1} after differentation:

$$
\frac{1}{r!} \chi^{r} p_{m-1}^{\prime}(x, \xi)=\left.\frac{1}{r!} \partial_{\xi_{1}}^{r} p_{m-1}(x, \xi)\right|_{\xi_{1}=0} \xi_{1}^{r}=h_{r, s}(x, \xi) \xi_{1}^{r} \xi_{2}^{s}
$$

with $r+s=m-1$.
Immediately we can see that the hypotheses of the Theorem 1 are equivalent to the hypotheses of the Lemma 1, that gives our result.

References

[1] Corli A., On local solvability of linear partial differential operators with multiple characteristics, J. Diff. Eq. 81 (1989), 275-293.
[2] De Donno G., Gevrey hypoellipticity for a class of differential polynomials with analytic coefficients, Quad. Dip. Mat. Univ. Torino 40 (1998).
[3] Egorov Y.V. and Schulze D.W., Pseudo-differential operators, singularities, applications, Birkhäuser Verlag, Basel-Boston -Berlin 1997.
[4] Hörmander L., The analysis of linear partial differential operators, I, II, III, IV, Springer-Verlag, Berlin 1983-85.
[5] Kajitani K. and Wakabayashi S., Hypoelliptic operators in Gevrey classes; in: "Recent developments in hyperbolic equations" (Cattabriga L., Colombini F., Murthy M.K.V. and Spagnolo S. eds.), Longman, London 1988, 115-134.
[6] Liess O. and Rodino L., Inhomogeneous Gevrey classes and related pseudo-differential operators, Boll. Un. Mat. Ital. Sez. IV 3-C (1984), 133-223.
[7] Liess O. and Rodino L., Linear partial differential equations with multiple involutive characteristics; in: "Microlocal analysis and spectral theory" (L.Rodino ed.), Kluwer, Dordrecht 1997, 1-38.
[8] Mascarello M. and Rodino L., Partial differential equations with multiple characteristics, Wiley-VCH, Berlin 1997.
[9] Menikoff A., On hypoelliptic operators with double characteristics, Ann. Scuola Norm. Sup. Pisa Sez IV 4 (1977), 689-724.
[10] Popivanov P.R., On the local solvability of a class of pseudo-differential equations with double characteristics, Trudy Sem. Petrovsk. 1 (1975), 237-278; transl. Am. Math. Soc. Transl. 118 (1982), 51-90.
[11] Popivanov P.R., letter addressed to L. Rodino, Sofia, 7-12/1993.
[12] Popivanov P.R. and Popov G.S., Microlocal properties of a class of pseudo-differential operators with multiple characteristics, Serdica 6(1980), 169-183.
[13] Rauch J., Partial differential equations, Springer- Verlag, New York 1991.
[14] Roberts G.B., Quasi-subelliptic estimates for operators with multiple characteristics, Comm. Partial Diff. Eq. 11 (1986), 231-320.
[15] Rodino L., Linear partial differential operators in Gevrey spaces, World Scientific, Singapore 1993.
[16] Trèves F., Introduction to pseudo-differential operators and Fourier integral operators, I, II, Plenum Publ. Corp., New York 1980.
[17] TULOVSKY V.N., Propagation of singularities of operators with characteristics of constant multiplicity, Trudy Mosc. Mat. Obsc. 39 (1979); Trans. Moscow Math. Soc. (1981), 121-144.
[18] WAKABAYASHi S., Singularities of solution of the Cauchy problem for hyperbolic system in Gevrey classes, Japan J. Math. 11 (1985), 157-201.

AMS Subject Classification: 35S05.

Giuseppe DE DONNO and Luigi RODINO
Dipartimento di Matematica
Università di Torino
Via Carlo Alberto 10
10123 Torino, ITALY
e-mail: dedonno@dm.unito.it, rodino@dm.unito.it
Lavoro pervenuto in redazione il 17.05.1999e in forma definitiva il 20.01.2000.

