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GEVREY HYPOELLIPTICITY FOR PARTIAL DIFFERENTIAL

EQUATIONS WITH CHARACTERISTICS OF HIGHER

MULTIPLICITY

Abstract. We consider a class of partial differential equations with characteristics
of constant multiplicitym ≥ 4. We prove for these equations a result of hypoellip-
ticity and Gevrey hypoellipticity, by using classical Fourier integral operators and
Sm
ρ,δ

arguments.

1. Introduction and statement of the result

This paper concerns the Gevrey hypoellipticity of linear partial differential operators:

(1) P =
∑

|α|≤M

cα(x) Dα .

We use in (1) standard notations, and we assume that the coefficientscα(x) are analytic, defined
in a neighborhood� of a pointx0 ∈ Rn. More generally,P could be assumed in the following
to be a classical analytic pseudo-differential operator, defined as, for example, in Rodino [15],
Trèves [16].

We recall thatP is said to be hypoelliptic at (a neighborhood� of) the pointx0 when

(2) sing supp Pu= sing supp u f or all u∈ D′(�)

and Gevrey d-hypoelliptic, 1< d < +∞, when

(3) d − sing supp Pu= d − sing supp u f or all u∈ D′(�).

In (3) the d-singular support of a distributionu is defined as the smallest closed set in the com-
plement of whichu is a Gd function, 1 < d < +∞, i.e.: it satisfies locally estimates of the
type

|Dα f (x)| ≤ C|α|+1 (α!)d.

We want to study the multiple characteristics case. Namely,consider the principal symbol:

pM (x, ξ) =
∑

|α|=M

cα(x) ξα .

Arguing microlocally, we fixξ0 6= 0 and set:
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DEFINITION 2. We say that P is an operator with characteristics of constantmultiplicity
m ≥ 2 at (x0, ξ0) if in a conic neighborhood0 ⊂ � × (Rn\0) of (x0, ξ0) we may write

pM (x, ξ) = eM−m (x, ξ) a1 (x, ξ)m ,

where eM−m (x, ξ) is an analytic elliptic symbol, homogeneous of order M− m, and the first
order analytic symbol a1(x, ξ) is real- valued and of microlocal principal type, i.e. dx,ξ a1(x, ξ)

never vanishes and it is not parallel to
∑n

j =1 ξ j dxj on

6 = {(x, ξ) ∈ 0 , a1 (x, ξ) = 0}.

Observe that6 is also characteristic manifold ofpM (x, ξ); we understand(x0, ξ0) ∈ 6.
For P satisfying such definition, we want to study hypoellipticity or, more precisely, micro-
hypoellipticity at(x0, ξ0), defined by

(4) 0
⋂

W F Pu = 0
⋂

W F u f or all u ∈ D′(�)

and d-micro-hypoellipticity, defined by

(5) 0
⋂

W Fd Pu = 0
⋂

W Fd u f or all u ∈ D′(�),

for a sufficiently small neighborhood0 of (x0, ξ0). See for example Hörmander [4], Rodino [15]
for the definition of the wave front setW F uand Gevrey wave front setW Fd u of a distribution
u. We observe that (4), (5) imply respectively (2), (3), when satisfied in a conic neighborhood0
of (x0, ξ0) for all ξ0 6= 0.

To express our result we need the so-called subprincipal symbol of P:

p′
M−1 (x, ξ) =

∑

|α|=M−1

cα(x) ξα −
1

2i

n∑

j =1

∂2

∂x j ∂ξ j
pM (x, ξ).

We recall thatp′
M−1 has a geometric invariant meaning at6, see for example Hörmander [4];

we shall write in the following

J0(x, ξ) = p′
M−1 (x, ξ)|6 .

Let us assume for simplicity in0 :

(6) pM (x, ξ) is real − valued and, when m is even, non− negative

(this is not restrictive, if we are allowed to multiply by an elliptic factor passing to the pseudo-
differential frame).
It is then known from Liess-Rodino [6] that in the case= J0(x0, ξ0) 6= 0 we have micro-
hypoellipticity and d-micro-hypoellipticity at(x0, ξ0) for d ≥ m

m−1 . In this paper we shall

allow = J0(x0, ξ0) = 0, but assume< J0(x0, ξ0) 6= 0. To be definite, let us set

(7) < J0(x, ξ) < 0 f or (x, ξ) ∈ 6.

Fixing attention here on the higher multiplicity casem ≥ 3, we need to consider some other
invariants associated top′

M−1, cf. Liess-Rodino [7], Mascarello-Rodino [8]:

Jr (x, ξ, X) =
1

r !
χr p′

M−1(x, ξ),



Gevrey hypoellipticity 437

for (x, ξ, X) ∈ N(6), 1 ≤ r ≤ m − 2, whereN(6) is the normal bundle to the characteristic
manifold6 andχ is a vector field in0 such thatχ(x, ξ) at (x, ξ) ∈ 6 is in the equivalence
class ofX ∈ N(x,ξ )(6).
Obviously we have:

(8) Jr (x, ξ,−X) = (−1)r Jr (x, ξ, X).

For uniformity of notation we shall also regardJ0 as a function onN(6), independent ofX at
(x, ξ).

THEOREM1. Let P be an operator with characteristics of constant multiplicity m, satisfy-
ing (6), (7). Assume moreover there exists r∗, 0 < r ∗ <

(m−1)
2 , such that

i) = Jr ∗
(x, ξ, X) 6= 0, for all (x, ξ, X) ∈ N(6), X 6= 0,

ii) = Jr ∗
(x, ξ, X)= Jr (x, ξ, X) ≥ 0, for all (x, ξ, X) ∈ N(6), 0 ≤ r < r ∗.

Then P is micro-hypoelliptic and d-micro-hypoelliptic ford ≥ m
m−1−r ∗ .

Let us compare our result with the existing literature. For the sake of brevity, we limit
attention to some models inR2, satisfying (6), (7) atx0

1 = 0, x0
2 = 0, ξ0

1 = 0, ξ0
2 > 0. We

list first the following examples, representative of general classes already considered by other
authors:

(9) Dm
x1

− Dm−1
x2 (m ≥ 2) ,

(10) Dm
x1

− Dm−1
x2 + i x1 Dx1 Dm−2

x2 (m ≥ 3) ,

(11) Dm
x1

− Dm−1
x2 + i x2h

1 Dm−1
x2 (m ≥ 2) ,

(12) Dm
x1

− Dm−1
x2 + i x2h

1 Dm−1
x2 + i x l

1 Dx1 Dm−2
x2 (m ≥ 3) .

The operators (9), (10) are not hypoelliptic; observe also that (10) is not locally solvable, cf. Corli
[1]. The operator (11) is hypoelliptic for anyh ≥ 1, despite the fact that= J0(x0, ξ0) = 0, cf.
Menikoff [9], Popivanov [10], Roberts [14]; the operator (12), having the sameJ0 as (11), is not
hypoelliptic if h is sufficiently large with respect tol ≥ 1, cf. Popivanov-Popov [12], Popivanov
[11].
Theorem 1 gives new conditions onJr , i.e. on the coefficient of the terms
Dr

x1
Dm−r−1

x2 for models of the preceding type, to guarantee hypoellipticity and Gevrey hypoel-
lipticity. We have to assumenowm ≥ 4.
Let us observe that, ifr ∗ is odd, theni), ii) in Theorem 1 and (8) actually imply= Jr ≡ 0 for
evenr < r ∗; as examples of hypoelliptic operators characterized by Theorem 1 consider in this
case

(13) Dm
x1

− Dm−1
x2

+ i Dx1 Dm−2
x2

(r ∗ = 1),

(14) Dm
x1

− Dm−1
x2

+ i x2h
1 Dx1 Dm−2

x2
+ i D3

x1
Dm−4

x2
(r ∗ = 3),
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having the sameJ0 as the non-hypoelliptic operators (9), (10). Ifr ∗ is even, theni), ii) and (8)
imply = Jr ≡ 0 for oddr < r ∗; as corresponding example of hypoelliptic operator consider

(15) Dm
x1

− Dm−1
x2

+ i x2h
1 Dm−1

x2
+ i D2

x1
Dm−3

x2
(r ∗ = 2),

having the sameJ0 as (11), (12). In (13), (14), (15), the orderm has to be chosen sufficiently
large, to satisfy the assumptionm−1

2 > r ∗. Returning to general operators, we may regard
Theorem 1 as extension of a result of Liess-Rodino([7],Theorem 6.3), which prove the same
order of Gevrey hypoellipticity, requiringi) and= Jr = 0 for all r < r ∗, which is stronger
thanii) ; see also Tulovsky [17] for hypoellipticity in theC∞-sense. Observe however that Liess-
Rodino [7] allow 0 < r ∗ ≤ m − 2, whereas we do not know whether our result is valid for
m−1

2 ≤ r ∗ ≤ m − 2.

The proof of Theorem 1 will be reduced, after conjugation by classical Fourier integral op-
erators, to a simpleSm

ρ,δ
argument (let us refer in particular to the result of Kajitani-Wakabayashi

[5] in the Gevrey frame).

2. Gevrey hypoellipticity for a class of differential polynomials.

In this section we begin to study a pseudo-differential model in suitable simplectic co-ordinates.
The conclusion of the proof of Theorem 1 will be given in the subsequent Section 3. As before
we denote byx = (x1, ..., xn) the real variables in�, open subset ofRn; ξ = (ξ1, ξ2, ..., ξn),
ξ2 > 0, the dual variables ofx. We consider the conic neighborhood3 = {0 < ξ2

1 +

|ζ |2 < Cξ2
2 } of the axisξ2 > 0, whereζ = (ξ3, ..., ξn) ∈ R

n−2, for a suitable constantC.
Moreover we takeq, m, r, s ∈ N such thatm ≥ 2, 1 ≤ q < m, and(r, s) belong to the set
I = { (r, s) ∈ N2 : 0 < qr + ms < qm}.

Let the function in� × 3 = 0

(16) p(x, ξ) = ξm
1 − h0,q(x, ξ) ξ

q
2 +

∑

(r,s)∈I

hr,s(x, ξ) ξ r
1ξs

2 ,

be a differential polynomial, symbol of a (micro) pseudo-differential operatorP(x, D), where
h(·,·) : 0 → C , h(·,·) = < h(·,·) + i= h(·,·), < h(·,·) , = h(·,·) : 0 → R, < h(·,·) , = h(·,·) ∈

G1(0), see below.

We define the sets, fork ∈ N, 0 < k < qm:

Ik = { (r, s) ∈ N
2 : qr + ms = k }

and fixk = k∗ such thatq(m − 1
2) < k∗ < qm. We use the notationk− for all k < k∗ and

k+ for all k > k∗. We may splitI = I−
⋃

Ik∗
⋃

I+, with I− =
⋃

Ik− , I+ =
⋃

Ik+ .

LEMMA 1. Let p(x, ξ) be the function(16),where h(·,·) is assumed to be homogeneous of
order zero with respect toξ and analytic, which implies for some constant L> 0

(17) |Dα
x Dβ

ξ
h(·,·)| ≤ L |α| + |β| + 1 α!β! (1 + |ξ |)−|β|.

Assume moreover Ik∗ consists of one couple(r ∗, s∗), k∗ = qr∗ + ms∗, such that:

(i) = hr ∗,s∗(x, ξ) 6= 0, for all (x, ξ) ∈ 0,
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(ii) = hr ∗,s∗(x, ξ) = hr,s(x, ξ) ξ r ∗+r
1 ξs+s∗

2 ≥ 0, for all (x, ξ) ∈ 0, k∗ < k+ = qr+ms <

qm ,

(iii) = h0,q(x, ξ)= hr ∗,s∗(x, ξ) ξ r ∗

1 ξ
q+s∗

2 ≤ 0, for all (x, ξ) ∈ 0,

(iv) < h0,q(x, ξ) 6= 0, for all (x, ξ) ∈ 0.

Then for all α, β ∈ Zn
+, for all K ⊂⊂ �, we have for new positive constants L and B

independent ofα , β:

(18)
|Dα

x Dβ
ξ

p(x, ξ)| |ξ |ρ|β| − δ|α|

|p(x, ξ)|
≤ L |α| + |β| + 1 α!β! , |ξ | > B ,

whereρ =
k∗ − q (m−1)

m , δ =
qm− k∗

m . Observe that we haveδ < ρ, since we have assumed

k∗ > q(m − 1
2)

REMARK 1. Hypothesis(ii) implies that= hr ∗,s∗(x, ξ) and= hr,s(x, ξ) are both positive or
both negative (= hr,s(x, ξ) may vanish, too), and thatr is according (both even or both odd) to
r ∗ for all r such thatk∗ < k+. Otherwise (r is not according tor ∗), = hr,s(x, ξ) has to vanish
in 0.

Hypothesis(iii) induces= h0,q(x, ξ) ≡ 0 if r ∗ is odd.

REMARK 2. By formula (18) and by Kajitani-Wakabayashi([5], Theorem 1.9), we have that
the operatorP(x, D), associated to the symbolp(x, ξ) in (16), isGd-microlocally hypoelliptic

in 0 for d ≥ max
{

1
ρ , 1

1−δ

}
= 1

ρ .

REMARK 3. Whenρ < 1, andδ > 0, one can prove by means of interpolation theory
as in Wakabayashi([18], Theorem 2.6) that (18) is valid for any α, β ∈ Zn

+, if (18) holds for

|α + β| = 1. Hence it is sufficient to verify (18) for|α + β| = 1 becauseρ =
k∗−q(m−1)

m <
q
m < 1, andδ =

qm−k∗

m > 0.

REMARK 4. For the proof of Theorem 1 it will be sufficient to apply Lemma 1 for q =

m − 1. The general case 1≤ q < m leads to a more involved geometric invariant statement,
which we shall detail in a future paper.

Proof of Lemma 1.We first estimate the numerator of (18), then we give some lemmas to esti-
mate the denominator of (18).
If |α| = 1, |β| = 0, we get

|Dx j p(x, ξ)| |ξ |−δ =

∣∣∣
∑

(r,s) ∈ I Dx j hr,s(x, ξ) ξ r
1ξs

2 − Dx j h0,q(x, ξ) ξ
q
2

∣∣∣ |ξ |−δ

≤ L1

(∑
(r,s) ∈ I |ξ1|r ξs

2 + ξ
q
2

)
|ξ |−δ, j = 1, ...,n;

for a suitable constantL1 in view of the assuption (17).
If |α| = 0, |β| = 1, then

|Dξ j p(x, ξ)| |ξ |ρ ≤ L2


 ∑

(r,s) ∈ I

|ξ1|r ξs
2 + ξ

q
2


 |ξ |ρ (1 + |ξ |)−1,(19)

j = 3, ...,n;
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for a suitable constantL2, in view of (17).
Moreover:

(20)
|Dξ1 p(x, ξ)| |ξ |ρ ≤

(
m|ξ1|m−1 + L3

∑
(r,s) ∈ I |ξ1|r−1ξs

2

)
|ξ |ρ

+L4

(∑
(r,s) ∈ I |ξ1|r ξs

2 + ξ
q
2

)
|ξ |ρ (1 + |ξ |)−1

and

(21)
|Dξ2 p(x, ξ)| |ξ |ρ ≤

(
qL0,qξ2

q−1 + L5
∑

(r,s) ∈ I |ξ1|
r ξs−1

2

)
|ξ |ρ

+L6

(∑
(r,s) ∈ I |ξ1|r ξs

2 + ξ
q
2

)
|ξ |ρ (1 + |ξ |)−1,

for suitable constantsL3, L4, L5, L6, L0,q in view of (17).
On the other hand, we have:

(22) |ξ |ρ (1 + |ξ |)−1 ≤ |ξ |−δ, f or all ξ ∈ 3,

in fact, by multiplying by|ξ |δ(1 + |ξ |) on both sides of (22), we obtain

|ξ | − |ξ |p + 1 ≥ 0 , f or all ξ ∈ 3,

wherep = ρ + δ < 1.
Then in the right-hand side of (19), (20), (21) we may furtherestimate|ξ |ρ (1 + |ξ |)−1 by |ξ |−δ .
Therefore, to prove (18), it will be sufficient to show the boundedness in0, for |ξ | > B, of the
functions

Q1(ξ) =

(∑
(r,s) ∈ I |ξ1|r ξs

2 + ξ
q
2

)
|ξ |−δ

|p(x, ξ)|
,

Q2(ξ) =

(
m|ξ1|m−1 + L3

∑
(r,s) ∈ I |ξ1|r−1ξs

2

)
|ξ |ρ

|p(x, ξ)|
,

Q3(ξ) =

(
qL0,q|ξ2|q−1 + L5

∑
(r,s) ∈ I |ξ1|r ξs−1

2

)
|ξ |ρ

|p(x, ξ)|

(we observe that terms of the typeQ2, Q3 were already considered in De Donno [2]).
First introduce in the cone3, three regions:

(23)
R1 : c ξ

q
2 ≤ |ξ1|m ≤ C ξ

q
2 ,

R2 : |ξ1|m ≥ C ξ
q
2 ,

R3 : |ξ1|m ≤ c ξ
q
2 ;

where the constantsc, C satisfy c << min
{

1
2 min(x,ξ )∈0 |< h0,q(x, ξ)|, 1

}
, and C >>

max
{
2max(x,ξ )∈0 |< h0,q(x, ξ)|, 1

}
.

The following inequalities then hold:

(24) |ξ |−δ ≤





C
δ
q |ξ1|

−δ m
q , ξ ∈ 3

⋂
R1 (I )

|ξ1|−δ , ξ ∈ 3
⋂

R2 (I I )

ξ−δ
2 , ξ ∈ 3

⋂
R3 ; (I I I )

note that(II) and(III) hold for all ξ ∈ 3, but for our aim we may limit ourselves to consider
them respectively in3

⋂
R2 and in3

⋂
R3. By abuse of notation, in the following we shall

also denote byR1, R2, R3 the sets� × R1,� × R2,� × R3; recall that0 = � × 3.
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We will show in Lemma 2, Lemma 3 and Lemma 4, that there are positive constantsK1 <

1, K2 < 1, K3 < 1, B, such that:

(25) |p(x, ξ)| ≥ K1
∣∣=hr ∗,s∗(x, ξ)

∣∣ |ξ1|r
∗
ξs∗

2 , in 0
⋂

R1, |ξ | > B,

(26) |p(x, ξ)| ≥ K2 |ξ1|m , in 0
⋂

R2, |ξ | > B,

(27) |p(x, ξ)| ≥ K3 ξ2
q , in 0

⋂
R3, |ξ | > B.

In (25) we may further estimate
∣∣=hr ∗,s∗(x, ξ)

∣∣ > λ for λ > 0, in view of (i) in Lemma 1.
We first considerQ1(ξ) separately in the regionsR1, R2, R3, to prove boundedness.
In R1 by (24),(25), we get easily, writing as beforek = qr + ms:

Q1(ξ) ≤ const


∑

k

1

|ξ1|
m− k

q

+ 1


 , |ξ | > B ,

wherem − k
q > 0 by definition ofI and Ik − sets.

In the regionsR2, R3 by using respectively (24),(26) and (24),(27), we have for aconstantε > 0
which we may take as small as we want by fixingB sufficiently large:

Q1(ξ) ≤ const


∑

k

1

|ξ1|
m+q− k

q − k∗
m

+
1

|ξ1|δ


 < ε , |ξ | > B ,

and

Q1(ξ) ≤ const


∑

k

1

|ξ2|2q− k
m− k∗

m

+
1

|ξ2|δ


 < ε , |ξ | > B .

We have therefore proved thatQ1(ξ) is bounded. Let us estimateQ2(ξ), Q3(ξ). As above in
the regionsR1, R2, R3, we obtain

Q2(ξ) ≤ const


1 +

∑

k

1

|ξ1|
m− k

q


 ,

Q3(ξ) ≤ const


 1

|ξ1|
m
q −1

+
∑

k

1

|ξ1|
(m+ m

q −1)− k
q


 < ε ,

in R1 for |ξ | > B,

Q2(ξ) ≤ const


 1

|ξ1|
m− k∗

q

+
∑

k

1

|ξ1|
2m− k

q − k∗
q


 < ε ,

Q3(ξ) ≤ const


 1

|ξ1|
(m+ m

q −1)− k∗
q

+
∑

k

1

|ξ1|
(2m+ m

q −1)−( k
q + k∗

q )


 < ε ,
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in R2 for |ξ | > B,

Q2(ξ) ≤ const


 1

|ξ2|q− k∗
m

+
∑

k

1

|ξ2|2q− k
m− k∗

m


 < ε ,

Q3(ξ) ≤ const


 1

|ξ2|(1+q−
q
m )− k∗

m

+
∑

k

1

|ξ2|(2q+1−
q
m)−( k

m− k∗
m )


 < ε ,

in R3 for |ξ | > B.
Now Lemma 2, Lemma 3 and Lemma 4 complete the proof.

LEMMA 2. Let p(x, ξ) be the function(16), such that(17) and (i), (ii), (iii) in Lemma1
hold. Then there are positive constants K1 < 1, B, such that:

|p(x, ξ)| ≥ K1
∣∣=hr ∗,s∗(x, ξ)

∣∣ |ξ1|r
∗
ξs∗

2 , (x, ξ) ∈ 0
⋂

R1, |ξ | > B.

Proof. We have that

(28)

|p(x, ξ)|2 =
(
ξm
1 − < h0,q(x, ξ) ξ

q
2 +

∑
(r,s)∈I < hr,s(x, ξ) ξ r

1ξs
2

)2
+

+
(
= hr ∗,s∗(x, ξ)ξ r ∗

1 ξs∗

2 +
∑

(r,s)∈I− = hr,s(x, ξ) ξ r
1ξs

2 +

+
∑

(r,s)∈I+ = hr,s(x, ξ) ξ r
1ξs

2 − = h0,q(x, ξ) ξ
q
2

)2
;

by removing the terms rising from the real part ofp(x, ξ), we can write

|p(x, ξ)|2 ≥ = hr ∗,s∗(x, ξ)2 ξ2r ∗

1 ξ2s∗

2 +

4∑

j =1

J j (x, ξ)

where

J1(x, ξ) =


 ∑

(r,s)∈I−

= hr,s(x, ξ)ξ r
1ξs

2+(29)

∑

(r,s)∈I+

=hr,s(x, ξ)ξ r
1ξs

2 − =h0,q(x, ξ)ξ
q
2




2

,

(30) J2(x, ξ) = 2= hr ∗,s∗(x, ξ)
∑

(r,s)∈I−

= hr,s(x, ξ) ξ r ∗+r
1 ξs∗+s

2 ,

(31) J3(x, ξ) = 2= hr ∗,s∗(x, ξ)
∑

(r,s)∈I+

= hr,s(x, ξ) ξ r ∗+r
1 ξs∗+s

2 ,

(32) J4(x, ξ) = −2= hr ∗,s∗(x, ξ)= h0,q(x, ξ) ξ r ∗

1 ξ
s∗+q
2 .
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(29) is non-negative for all(x, ξ) ∈ 0, (31) and (32) are also non negative by hypotheses
(i i ), (i i i ) for all (x, ξ) ∈ 0.
Let us fix attention onJ2(x, ξ) defined by (30). We have for allε > 0

(
=hr ∗,s∗(x, ξ)

)2
ξ1

2r ∗
ξ2s∗

2 + J2(x, ξ) ≥ (1 − ε)
(
=hr ∗,s∗(x, ξ)

)2
ξ1

2r ∗
ξ2s∗

2 ,

in 0
⋂

R1, |ξ | > B. In fact, assuming for simplicityξ1 ≥ 0,by (17), (23) in0
⋂

R1 and
hypothesis (i), for allε > 0 we get forB sufficiently large

|J2(x, ξ)|
(
=hr ∗,s∗(x, ξ)

)2
ξ1

2r ∗
ξ2s∗

2

≤ const
∑

(r,s)∈I−

ξ r ∗+r
1 ξs∗+s

2

ξ1
2r ∗

ξ2s∗

2

≤

≤ const
∑

(r,s)∈I−

ξ
r ∗+r+(s∗+s) m

q
1

ξ
2r ∗+2s∗ m

q
1

< ε , |ξ | > B;

we remark thatk∗ = qr∗ + ms∗ > k− = qr + ms.
Then,

|p(x, ξ)| ≥ K1
∣∣=hr ∗,s∗(x, ξ)

∣∣ |ξ1|r
∗
ξs∗

2 , (x, ξ) ∈ 0
⋂

R1, |ξ | > B,

for a suitable constantK1.

LEMMA 3. Let p(x, ξ) be the function(16),such that(17) holds. Then there are positive
constants K2 < 1, B, such that:

|p(x, ξ)| ≥ K2 |ξ1|
m , (x, ξ) ∈ 0

⋂
R2, |ξ | > B.

Proof. We write|p(x, ξ)|2 as in (28); by removing the terms arising from the imaginary part of
p(x, ξ), we get

(33) |p(x, ξ)|2 ≥
(
ξm
1 − < h0,q(x, ξ)ξ

q
2

)2
+ W1(x, ξ) + W2(x, ξ)

where

(34) W1(x, ξ) =


 ∑

(r,s)∈I

< hr,s(x, ξ) ξ r
1ξs

2




2

,

(35) W2(x, ξ) = 2
∑

(r,s)∈I

< hr,s(x, ξ) ξ r+m
1 ξs

2 − 2< h0,q(x, ξ)
∑

(r,s)∈I

< hr,s(x, ξ) ξ r
1ξ

s+q
2 .

Observe first that forλ > 0 sufficiently small

(
ξm
1 − < h0,q(x, ξ)ξ

q
2

)2
> λξ2m

1 ;

in fact (
ξm
1 − < h0,q(x, ξ)ξ

q
2

)2
≥ ξ2m

1 − 2< h0,q(x, ξ) ξm
1 ξ

q
2 ,
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and using (23) in0
⋂

R2, we have for< h0,q ξ1 ≥ 0

ξ2m
1 − 2< h0,q(x, ξ) ξm

1 ξ
q
2 ≥

(
1 −

2

C
< h0,q(x, ξ)

)
ξ2m
1 > λ ξ2m

1 ,

sinceC > 2 max(x,ξ )∈0 |< h0,q(x, ξ)|.
(34) is non negative for all(x, ξ) ∈ 0. We denote (35) byϒ1(x, ξ) − ϒ2(x, ξ), then

|p(x, ξ)|2 ≥ λξ2m
1 + ϒ1(x, ξ) − ϒ2(x, ξ) .

Arguing onϒ1, ϒ2 in the same way as we have done in Lemma 2, it is possible to showthat for
all ε > 0

λξ2m
1 + ϒ1(x, ξ) − ϒ2(x, ξ) ≥ (λ − ε)ξ2m

1 , (x, ξ) ∈ 0
⋂

R2, |ξ | > B ,

then
|p(x, ξ)| ≥ K2 |ξ1|m , (x, ξ) ∈ 0

⋂
R2, |ξ | > B ,

whereK2 = (λ − ε)
1
2 .

LEMMA 4. Let p(x, ξ) be the function(16),such that(17) and (iv) in Lemma1 hold. Then
there are positive constants K3 < 1, B, such that:

|p(x, ξ)| ≥ K3 ξ2
q , (x, ξ) ∈ 0

⋂
R3, |ξ | > B.

Proof. We apply again (33), (34), (35) to|p(x, ξ)|2. Observe that in0
⋂

R3, arguing as above,
sincec < 1

2 min(x,ξ )∈0 |< h0,q(x, ξ)|, we obtain for a suitable constantµ > 0

(
ξm
1 − < h0,q(x, ξ)ξ

q
2

)2
> µ ξ

2q
2 .

About the terms in (34) and (35), the remarks we have done in Lemma 3 hold by replacingλ ξ2m
1

with µ ξ
2q
2 , then we have

|p(x, ξ)| ≥ K3 ξ2
q , (x, ξ) ∈ 0

⋂
R3, |ξ | > B ,

whereK3 = (µ − ε)
1
2 .

3. Fourier integral operators and proof of Theorem 1

We consider in this section an operator mapping a fuction (ordistribution, or ultradistribution)u
into

(36) (2π)−n
∫

a(x, ξ )̂u(ξ) eiϕ(x,ξ ) dξ .

The phase functionϕ(x, ξ) is assumed to be analytic real-valued, homogenuous of degree 1 with
respect toξ ; (36) is called a Fourier integral operator (F.I.O.). Concerning the symbola(x, ξ),
we suppose it belongs toSk(�), the space of the classical analytic symbols of orderk. The
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function û(ξ) is the Fourier transform of the functionu. The particular caseϕ(x, ξ) = x · ξ

corresponds to the usual pseudo-differential operators.
The machinery of the F.I.O.’s (see Hörmander [4], Trèves [16], Rodino [15]) may lead to relevant
simplifications in the study of the micro-operatorP = P(x, D) in (1). Precisely, letχ be
a homogeneous analytic canonical transformation acting from the conic neighborhood0 of the
pointρ0 = (x0, ξ0) to a conic neighborhood0

′
of the pointχ(ρ0) = (y0, η0); thatχ is canonical

means that it preserves the symplectic two-formσ =
∑n

j =1 dxj ∧ dξ j .
Then we may consider the Fourier integral operatorF with phase functionϕ corresponding to
χ ; this is a mapF : Md(0) → Md(0

′
), 1 < d ≤ ∞ with inverseF−1 : Md(0

′
) → Md(0)

whereMd(0) denotes the factor spaceD
′
(�)/ ∼, whereu ∼ v means that0

⋂
W Fd(u−v) =

∅, for u, v ∈ D
′
(�), with W F∞ u = W F u. More details are, for example, in Rodino [14].

We then have:

(37) W Fd (Fu) = χ(W Fd u), W Fd (F−1v) = χ−1 (W Fd v),

moreover
P̃ = F P F−1 : Md(0

′
) → Md(0

′
)

is a micro-pseudo-differential operator, with homogeneous analytic principal symbol

p̃m(y, η) = pm

(
χ−1(y, η)

)
.

On the other hand, as it follows from (37)

(38)
P̃ is micro− hypoelli ptic or d− micro− hypoelli ptic

i f and only i f P is such.

Moreover, if we assumeρ0 ∈ 6 and denote bỹ6 the characteristic manifold of̃P, thenχ(ρ0) ∈

6̃ and6̃ = χ(6) in 0
′
.

In this way, by fixing a suitable canonical transformationχ , we may reduce ourselves to the
study of operators̃P of a truly elementary form. Particular simplification in theexpression ofP̃
can be obtained by means of the following theorem.

THEOREM2. Let A be a classical pseudo-differential operator of microlocal principal type
of first order, the function a1 (principal symbol of A) be real and a1(x0, ξ0) = 0, x0 ∈ �,
ξ0 6= 0. Then there exists a F.I.O. F, such thatÃ = FAF−1, and Ã is a pseudo-differential
operator of first order, whose symbol is equal toηk in a conic neighborhood of the point(y0, η0)

corresponding to(x0, ξ0) for some k,1 ≤ k ≤ n.

For the proof see, for example in theC∞ frame, Egorov-Schulze([3], cap. 6, Theorem 9).

We apply Theorem 2 to the operatorP(x, D) with characteristics of constant multiplicity at
(x0, ξ0), such that in a conic neighborhood0 its principal symbol admits a decomposition as in
Definition 2:

pM (x, ξ) = eM−m (x, ξ) a1 (x, ξ)m .

The symbol ofP(x, D) is given by

p(x, ξ) = eM−m (x, ξ) a1 (x, ξ)m + PM−1(x, ξ)

wherePM−1(x, ξ) is of orderM − 1 and, by passing to the operators:

P(x, D) = eM−m (x, D) a1 (x, D)m + R(x, D),
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or
eM−m(x, D)−1 P(x, D) = a1 (x, D)m + eM−m(x, D)−1 R(x, D),

whereR(x, D) is of orderM − 1.
P(x, D) is micro-hypoelliptic if and only ifa1 (x, D)m + eM−m(x, D)−1 R(x, D) is micro-
hypoelliptic, then by (38) if and only if

Q(y, D) = F−1a1 (x, D)m F + F−1eM−m(x, D)−1 R(x, D) F

is micro-hypoelliptic, and by Theorem 2 we get that:

F a1 (x, D)m F−1 = F a1 (x, D) F−1 · · · F a1 (x, D) F−1
︸ ︷︷ ︸

m times

= b(y, D),

such thatb(y, η) = ηm
k for somek, 1 ≤ k ≤ n. Then

q(y, η) ∼ ηm
k +

∞∑

j =1

qm− j (y, η).

Let us assumek = 1 and use again the notationp(x, ξ) in the role ofq(y, η); we may also
supposeξ2 ≥ 0 in the corresponding0. We can rewrite furtherp(x, ξ) as:

p(x, ξ) = ξm
1 +

m−1∑

j =1

pm− j (x, ξ) + p0(x, ξ)︸ ︷︷ ︸
order 0

;

that becomes for Taylor formula stopped at order m-j

ξm
1 +

m−1∑

j =1

m− j −1∑

r=0




1

r !

∂r
ξ1

pm− j (x, ξ)|ξ1=0

ξs
2

ξ r
1ξs

2 + ξ
m− j
1 r(m− j )(x, ξ)

︸ ︷︷ ︸
order 0


 + p0(x, ξ),

with r + s = m − j .
Let us set:

hr,s(x, ξ) =
1

r !

∂r
ξ1

pm− j (x, ξ)|ξ1=0

ξs
2

,

so, we have:

(39) ξm
1 + h0,m−1(x, ξ)ξm−1

2 +
∑

r+s≤m−1

hr,s(x, ξ) ξ r
1ξs

2 ,

where(r, s) 6= (0, m−1) in the sum andhm− j ,0(x, ξ) = r(m− j )(x, ξ), h0,0(x, ξ) = p0(x, ξ).
All the termshr,s(x, ξ) are homogeneous of order zero, buth0,0, which will not play any role
when checking theSm

ρ,δ
estimates; observe also that for(r, s) 6= (m− j , 0) the symbolhr,s(x, ξ)

is actuallyξ1−independent.
Formula (39) gives the model that we have studied in Section 2with q = m − 1.

The characteristic manifold ofp(x, ξ), in the new symplectic co-ordinates, is the sub-
set 6

′
= {ξ1 = 0} of R2n, so in this case we obtainp

′

m−1 = pm−1 and J0(x, ξ) =

pm−1(x, ξ)|ξ1=0 = h0,m−1(x, ξ)ξm−1
2 .
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Hypotheses (6), (7) andi), ii) in Theorem 1 are clearly transported by symplectic trans-
formations and multiplication by elliptic factors. Moreover it is simple to verify that, takingχ
proportional to ∂

∂ξ1
by a factor which we again denoteξ1 after differentation:

1

r !
χr p

′

m−1(x, ξ) =
1

r !
∂r
ξ1

pm−1(x, ξ)|ξ1=0 ξ r
1 = hr,s(x, ξ) ξ r

1 ξs
2,

with r + s = m − 1.
Immediately we can see that the hypotheses of the Theorem 1 are equivalent to the hypotheses
of the Lemma 1, that gives our result.
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