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Preface

The study of Liaison in Algebraic Geometry has flourished again during the last years,
thanks to the contributions of many authors. On one hand there is an interest in the theory in
itself, on the other liaison is a powerful tool for producingspecific examples.

On October 1-5, 2001 J. Migliore and U. Nagel were the main speakers of the School/
Workshop “Liaison and related topics” held at the Department of Mathematics of the Politecnico
di Torino.

The first part of this issue contains the notes of their lectures, with an open problems section.
The second part contains annoucements by some of the partecipants of results which will appear
elsewhere in complete form. In the last part we collect some short research papers.

The organizers would like to thank all the partecipants to the School/Workshop, the contrib-
utors to this issue, and the Dipartement of Mathematics for the warm hospitality. Special thanks
go to the main speakers for their work before, during and after the School/Workshop.

The School/Workshop was partially supported by Italian MIUR in the framework of the
national project “Geometry on algebraic varieties” and by EAGER.

G. Casnati, N. Chiarli, S. Greco, R. Notari, M.L. Spreafico
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Liaison and Rel. Top.

J.C. Migliore - U. Nagel

LIAISON AND RELATED TOPICS: NOTES FROM THE

TORINO WORKSHOP-SCHOOL

Abstract. These are the expanded and detailed notes of the lectures given by the
authors during the school and workshop entitled “Liaison and related topics”, held
at the Politecnico of Torino during the period October 1-5, 2001. In the notes
we have attempted to cover liaison theory from first principles, through the main
developments (especially in codimension two) and the standard applications, to
the recent developments in Gorenstein liaison and a discussion of open problems.
Given the extensiveness of the subject, it was not possible to go into great detail in
every proof. Still, it is hoped that the material that we chose will be beneficial and
illuminating for the principants, and for the reader.

1. Introduction

These are the expanded and detailed notes of the lectures given by the authors during the school
and workshop entitled “Liaison and Related Topics,” held atthe Politecnico di Torino during the
period October 1-5, 2001.

The authors each gave five lectures of length 1.5 hours each. We attempted to cover liaison
theory from first principles, through the main developments(especially in codimension two) and
the standard applications, to the recent developments in Gorenstein liaison and a discussion of
open problems. Given the extensiveness of the subject, it was not possible to go into great detail
in every proof. Still, it is hoped that the material that we chose will be beneficial and illuminating
for the participants, and for the reader.

We believe that these notes will be a valuable addition to theliterature, and give details and
points of view that cannot be found in other expository workson this subject. Still, we would
like to point out that a number of such works do exist. In particular, the interested reader should
also consult [52], [72], [73], [82], [83].

We are going to describe the contents of these notes. In the expository Section 2 we discuss
the origins of liaison theory, its scope and several resultsand problems which are more carefully
treated in later sections.

Sections 3 and 4 have preparatory character. We recall several results which are used later
on. In Section 3 we discuss in particular the relation between local and sheaf cohomology, and
modules and sheaves. Sections 4 is devoted to Gorenstein ideals where among other things we
describe various constructions of such ideals.

The discussions of liaison theory begins in Section 5. Besides giving the basic definitions
we state the first results justifying the name, i.e. showing that indeed the properties of directly
linked schemes can be related to each other.

Two key results of Gorenstein liaison are presented in Section 6: the somewhat surprisingly
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60 J.C. Migliore - U. Nagel

general version of basic double linkage and the fact that linearly equivalent divisors on “nice”
arithmetically Cohen-Macaulay subschemes are Gorensteinlinked in two steps.

The equivalence classes generated by the various concepts of linkage are discussed in Sec-
tions 7 - 10. Rao’s correspondence is explained in Section 7.It is a relation between even
liaison classes and certain reflexive modules/sheaves which gives necessary conditions on two
subschemes for being linked in an even number of steps.
In Section 8 it is shown that these conditions are also sufficient for subschemes of codimension
two. It is the main open problem of Gorenstein liaison to decide if this is also true for subschemes
of higher codimension. Several results are mentioned whichprovide evidence for an affirmative
answer. Examples show that the answer is negative if one links by complete intersections only.
In Section 9 we consider the structure of an even liaison class. For subschemes of codimen-
sion two it is described by the Lazarsfeld-Rao property. Moreover, we discuss the possibility of
extending it to subschemes of higher codimension. In Section 10 we compare the equivalence
relations generated by the different concepts of linkage. In particular, we explain how invariants
for complete intersection liaison can be used to distinguish complete intersection liaison classes
within one Gorenstein liaison class.

Section 11 gives a flavour of the various applications of liaison theory.

Throughout these notes we mention various open problems. Some of them and further
problems related to liaison theory are stated in Section 12.

Although most of the results are true more generally for subschemes of an arithmetically
Gorenstein subscheme, for simplicity we restrict ourselves to subschemes ofPn.

Both authors were honored and delighted to be invited to givethe lectures for this workshop.
We are grateful to the main organizers, Gianfranco Casnati,Nadia Chiarli and Silvio Greco, for
their kind hospitality. We are also grateful to the participants, especially Roberto Notari and
Maria Luisa Spreafico, for their hospitality and mathematical discussions, and for their hard
work in preparing this volume. Finally, we are grateful to Robin Hartshorne and Rosa Miró-
Roig for helpful comments about the contents of these notes,and especially to Hartshorne for
his Example 22.

2. Overview and history

This section will give an expository overview of the subjectof liaison theory, and the subsequent
sections will provide extensive detail. Liaison theory hasits roots dating to more than a century
ago. The greatest activity, however, has been in the last quarter century, beginning with the work
of Peskine and Szpiró [91] in 1974. There are at least three perspectives on liaison that we hope
to stress in these notes:

• Liaison is a very interesting subject in its own right. Thereare many hard open problems,
and recently there is hope for a broad theory in arbitrary codimension that neatly encom-
passes the codimension two case, where a fairly complete picture has been understood for
many years.

• Liaison is a powerful tool for constructing examples. Sometimes a hypothetical situation
arises but it is not known if a concrete example exists to fit the theoretical constraints.
Liaison is often used to find such an example.

• Liaison is a useful method of proof. It often happens that onecan study an object by
linking to something which is intrinsically easier to study. It is also a useful method of
proving that an object does not exist, because if it did then alink would exist to something
which can be proved to be non-existent.
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Let R = K [x0, . . . , xn] whereK is a field. For a sheafF of OPn-modules, we set

H i
∗(F) =

⊕

t∈Z

H i (Pn,F(t))

This is a gradedR-module. One use of this module comes in the following notion.

DEFINITION 1. A subscheme X⊂ Pn is arithmetically Cohen-Macaulayif R/IX is a
Cohen-Macaulay ring, i.e.dim R/I = depthR/I , wheredim is the Krull-dimension.

These notions will be discussed in greater detail in coming sections. We will see in Section
3 thatX is arithmetically Cohen-Macaulay if and only ifH i

∗(IX) = 0 for 1 ≤ i ≤ dim X. When
X is arithmetically Cohen-Macaulay of codimensionc, say, the minimal free resolution ofIX is
as short as possible:

0 → Fc → Fc−1 → · · · → F1 → IX → 0.

(This follows from the Auslander-Buchsbaum theorem and thedefinition of a Cohen-Macaulay
ring.) TheCohen-Macaulay typeof X, or of R/IX , is the rank ofFc. We will take as our
definition thatX is arithmetically Gorensteinif X is arithmetically Cohen-Macaulay of Cohen-
Macaulay type 1, although in Section 4 we will see equivalentformulations (Proposition 6).
For example, thanks to the Koszul resolution we know that a complete intersection is always
arithmetically Gorenstein. The converse holds only in codimension two. We will discuss these
notions again later, but we assume these basic ideas for the current discussion.

Liaison is, roughly, the study of unions of subschemes, and in particular what can be de-
termined if one knows that the union is “nice.” Let us begin with a very simple situation. Let
C1 andC2 be equidimensional subschemes inPn with saturated idealsIC1, IC2 ⊂ R (i.e. IC1
and IC2 are unmixed homogeneous ideals inR). We assume thatC1 andC2 have no common
component. We can study the unionX = C1 ∪ C2, with saturated idealIX = IC1 ∩ IC2 , and
the intersectionZ = C1 ∩ C2, defined by the idealIC1 + IC2. Note that this latter ideal is not
necessarily saturated, soIZ = (IC1 + IC2)

sat. These are related by the exact sequence

(1) 0 → IC1 ∩ IC2 → IC1 ⊕ IC2 → IC1 + IC2 → 0.

Sheafifying gives
0 → IX → IC1 ⊕ IC2 → IZ → 0.

Taking cohomology and forming a direct sum over all twists, we get

0 → IX → IC1 ⊕ IC2 −→ IZ → H1
∗ (IX) → H1

∗ (IC1)⊕ H1
∗ (IC2) → · · ·

↘ ↗

IC1 + IC2
↗ ↘

0 0

So one can see immediately that somehowH1
∗ (IX) (or really a submodule) measures the failure

of IC1 + IC2 to be saturated, and that if this cohomology is zero then the ideal is saturated. More
observations about how submodules ofH1

∗ (IX) measure various deficiencies can be found in
[72].

REMARK 1. We can make the following observations about our unionX = C1 ∪ C2:
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1. If H1
∗ (IX) = 0 (in particular ifX is arithmetically Cohen-Macaulay) thenIC1+ IC2 = IZ

is saturated.

2. IX ⊂ IC1 and IX ⊂ IC2 .

3. [IX : IC1 ] = IC2 and [IX : IC2] = IC1 sinceC1 andC2 have no common component
(cf. [30] page 192).

4. It is not hard to see that we have an exact sequence

0 → R/IX → R/IC1 ⊕ R/IC2 → R/(IC1 + IC2) → 0.

Hence we get the relations

degC1 + degC2 = degX
paC1 + paC2 = paX + 1 − degZ (if C1 andC2 are curves)

wherepa represents the arithmetic genus.

5. Even ifX is arithmetically Cohen-Macaulay, it is possible thatC1 is arithmetically Cohen-
Macaulay butC2 is not arithmetically Cohen-Macaulay. For instance, consider the case
whereC2 is the disjoint union of two lines inP3 andC1 is a proper secant line ofC2. The
union is an arithmetically Cohen-Macaulay curve of degree 3.

6. If C1 andC2 are allowed to have common components then observations 3 and 4 above
fail. In particular, even ifX is arithmetically Cohen-Macaulay, knowing something about
C1 and something aboutX does not allow us to say anything helpful aboutC2. See
Example 3.

The amazing fact, which is the starting point of liaison theory, is that when we restrictX
further by assuming that it is arithmetically Gorenstein, then these problems can be overcome.
The following definition will be re-stated in more algebraiclanguage later (Definition 3).

DEFINITION 2. Let C1,C2 be equidimensional subschemes ofPn having no common com-
ponent. Assume that X:= C1 ∪ C2 is arithmetically Gorenstein. Then C1 and C2 are said to
be (directly) geometrically G-linked byX, and we say that C2 is residualto C1 in X. If X is a
complete intersection, we say that C1 and C2 are (directly) geometrically CI-linked.

EXAMPLE 1. If X is the complete intersection inP3 of a surface consisting of the union of
two planes with a surface consisting of one plane thenX links a lineC1 to a different lineC2.

C1 C2
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Figure 1: Geometric Link
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REMARK 2. 1. Given a schemeC1, it is relatively easy (theoretically or on a computer)
to find a complete intersectionX containingC1. It is much less easy to find one which gives a
geometric link (see Example 2). In any case,X is arithmetically Cohen-Macaulay, and if one
knows the degrees of the generators ofIX then one knows the degree and arithmetic genus ofX
and even the minimal free resolution ofIX , thanks to the Koszul resolution.

2. We will see that whenX is a complete intersection, a great deal of information is passed from
C1 to C2. For example,C1 is arithmetically Cohen-Macaulay if and only ifC2 is arithmetically
Cohen-Macaulay. We saw above that this is not true whenX is merely arithmetically Cohen-
Macaulay. In fact, much stronger results hold, as we shall see. An important problem in general
is to find liaison invariants.

3. While the notion of direct links has generated a theory,liaison theory, that has become an
active and fruitful area of study, it began as an idea that didnot quite work. Originally, it was
hoped that starting withanycurveC1 in P3 one could always find a way to link it to a “simpler”
curve C2 (e.g. one of smaller degree), and use information aboutC2 to studyC1. Based on
a suggestion of Harris, Lazarsfeld and Rao [63] showed that this idea is fatally flawed: for a
general curveC ⊂ P3 of large degree, there is no simpler curve that can be obtained from C in
anynumber of steps.

However, this actually led to a structure theorem for codimension two even liaison classes
[4], [68], [85], [90], often called theLazarsfeld-Rao property, which is one of the main results
of liaison theory.

We now return to the question of how easy it is to find a completeintersection containing
a given schemeC1 and providing a geometric link. Since our schemes are only assumed to be
equidimensional, we will consider a non-reduced example.

EXAMPLE 2. LetC1 be a non-reduced scheme of degree two inP3, a so-calleddouble line.
It turns out (see e.g. [69], [48]) that the homogeneous idealof C1 is of the form

IC1 = (x2
0, x0x1, x

2
1, x0F(x2, x3)− x1G(x2, x3))

whereF,G are homogeneous of the same degree, with no common factor. Suppose that degF =

degG = 100. Then it is easy to find complete intersectionsIX whose generators have degree
≤ 100; a simple example isIX = (x2

0, x
2
1). However, any such complete intersection will have

degree at least 4 along the linex0 = x1 = 0, so it cannot provide a geometric link forC1: it is
impossible to writeX = C1 ∪ C2 as schemes, no matter whatC2 is. However, once we look in
degrees≥ 101, geometric links are possible (since the fourth generator then enters the picture).

As this example illustrates, geometric links are too restrictive. We have to allow common
components somehow. However, an algebraic observation that we made above (Remark 1 (3))
gives us the solution. That is, we will build our definition and theory around ideal quotients.
Note first that ifX is merely arithmetically Cohen-Macaulay, problems can arise, as mentioned
in Remark 1 (6).

EXAMPLE 3. Let IX = (x0, x1)
2 ⊂ K [x0, x1, x2, x3], let C1 be the double line of Exam-

ple 2 and letC2 be the line defined byIC2 = (x0, x1). Then

[ IX : IC1 ] = IC2, but [IX : IC2 ] = IC2 6= IC1 .

As we will see, this sort of problem does not occur when our links are byarithmetically
Gorensteinschemes (e.g. complete intersections). We make the following definition.
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DEFINITION 3. Let C1,C2 ⊂ Pn be subschemes with X arithmetically Gorenstein. Assume
that IX ⊂ IC1 ∩ IC2 and that[ IX : IC1 ] = IC2 and[ IX : IC2 ] = IC1. Then C1 and C2 are said
to be(directly) algebraically G-linked byX, and we say that C2 is residualto C1 in X. We write

C1
X
∼ C2. If X is a complete intersection, we say that C1 and C2 are (directly) algebraically

CI-linked. In either case, if C1 = C2 then we say that the subscheme isself-linkedby X.

REMARK 3. An amazing fact, which we will prove later, is that whenX is arithmetically
Gorenstein (e.g. a complete intersection), then such a problem as illustrated in Example 3 and Re-
mark 1 (5) and (6) does not arise. That is, ifIX ⊂ IC1 is arithmetically Gorenstein, and if we de-
fine IC2 := [ IX : IC1 ] then it automatically follows that
[ IX : IC2 ] = IC1 wheneverC1 is equidimensional (i.e.IC1 is unmixed). It also follows that
degC1 + degC2 = degX.

One might wonder what happens ifC1 is not equidimensional. Then it turns out that

IX : [ IX : IC1 ] = top dimensional part ofC1,

in other words this double ideal quotient is equal to the intersection of the primary components
of IC1 of minimal height (see [72] Remark 5.2.5).

EXAMPLE 4. Let IX = (x0x1, x0 + x1) = (x2
0, x0 + x1) = (x2

1, x0 + x1). Let IC1 =

(x0, x1). Then IC2 := [ IX : IC1] = IC1 . That is,C1 is self-linked byX (see Figure 2). The

��

�
�

�

∩

@
@

@

@
@

@

= ?

' $

?

Figure 2: Algebraic Link

question of when a scheme can be self-linked is a difficult onethat has been addressed by several
papers, e.g. [9], [27], [38], [60], [69], [96]. Most schemesare not self-linked. See also Question
4 of Section 12, and Example 22.

Part of Definition 3 is that the notion of direct linkage is symmetric. The observation above
is that for most schemes it is not reflexive (i.e. most schemesare not self-linked). It is not hard
to see that it is rarely transitive. Hence it is not, by itself, an equivalence relation. Liaison is the
equivalence relationgeneratedby direct links, i.e. the transitive closure of the direct links.

DEFINITION 4. Let C ⊂ Pn be an equidimensional subscheme. TheGorenstein liaison
class ofC (or theG-liaison class ofC) is the set of subschemes which can be obtained from C in
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a finite number of direct links. That is, C′ is in the G-liaison class of C if there exist subschemes
C1, . . . ,Cr and arithmetically Gorenstein schemes X1, . . . , Xr , Xr+1 such that

C
X1
∼ C1

X2
∼ . . .

Xr
∼ Cr

Xr+1
∼ C′.

If r + 1 is even then we say that C and C′ are evenly G-linked, and the set of all subschemes
that are evenly linked to C is theeven G-liaison classof C. If all the links are by complete
intersections then we talk about theCI-liaison class ofC and theeven CI-liaison class ofC
respectively.Liaison is the study of these equivalence relations.

REMARK 4. Classically liaison was restricted to CI-links. The mostcomplete results have
been found in codimension two, especially for curves inP3 ([4], [68], [94], [95], [85], [90]).
However, Schenzel [99] and later Nagel [85] showed that the set-up and basic results for com-
plete intersections continue to hold for G-liaison as well,in any codimension.

As we noted earlier, in codimension two every arithmetically Gorenstein scheme is a com-
plete intersection. Hence the complete picture which is known in codimension two belongs just
as much to Gorenstein liaison theory as it does to complete intersection liaison theory!

The recent monograph [61] began the study of the important differences that arise, and
led to the recent focus on G-liaison in the literature. We will describe much of this work. In
particular, we will see how several results in G-liaison theory neatly generalize standard results
in codimension two theory, while the corresponding statements for CI-liaison are false!

Here are some natural questions about this equivalence class, which we will discuss and
answer (to the extent possible, or known) in these lectures.In the last section we will discuss
several open questions. We will see that the known results very often hold forevenliaison
classes, so some of our questions focus on this case.

1. Find necessary conditions forC1 andC2 to be in the same (even) liaison class (i.e. find
(even) liaison invariants). We will see that the dimension is invariant, the property of be-
ing arithmetically Cohen-Macaulay is invariant, as is the property of being locally Cohen-
Macaulay, and that more generally, for an even liaison classthe graded modulesH i

∗(IC)

are essentially invariant (modulo shifts), for 1≤ i ≤ dimC. The situation is somewhat
simpler when we assume that the schemes are locally Cohen-Macaulay. There is also a
condition in terms of stable equivalence classes of certainreflexive sheaves.

2. Find sufficient conditions forC1 andC2 to be in the same (even) liaison class. We will
see that for instance being linearly equivalent is a sufficient condition for even liaison, and
that for codimension two the problem is solved. In particular, for codimension two there
is a condition which is both necessary and sufficient for two schemes to be in the same
even liaison class. An important question is to find a condition which is both necessary
and sufficient in higher codimension, either for CI-liaisonor for G-liaison. Some partial
results in this direction will be discussed.

3. Is there a structure common to all even liaison classes? Again, this is known in codimen-
sion two. It is clear that the structure, as it is commonly stated in codimension two, does
not hold for even G-liaison. But perhaps some weaker structure does hold.

4. Are there good applications of liaison? In codimension two we will mention a number
of applications that have been given in the literature, but there are fewer known in higher
codimension.
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5. What are the differences and similarities between G-liaison and CI-liaison? What are the
advantages and disadvantages of either one? See Remark 6 andSection 10.

6. Do geometric links generate the same equivalence relation as algebraic links? For CI-
liaison the answer is “no” if we allow schemes that are not local complete intersections.
Is the answer “yes” if we restrict to local complete intersections? And is the answer “yes”
in any case for G-liaison?

7. We have seen that there are fewer nice properties when we try to allow links by arith-
metically Cohen-Macaulay schemes. It is possible to define an equivalence relation using
“geometric ACM links.” What does this equivalence relationlook like? See Remark 5.

REMARK 5. We now describe the answer to Question 7 above. Clearly if we are going to
studygeometricACM links, we have to restrict to schemes that are locally Cohen-Macaulay in
addition to being equidimensional. Then we quote the following three results:

• ([106]) Any locally Cohen-Macaulay equidimensional subschemeC ⊂ Pn is ACM-
linked in finitely many steps to some arithmetically Cohen-Macaulay scheme.

• ([61] Remark 2.11) Any arithmetically Cohen-Macaulay scheme is CM-linked to a com-
plete intersection of the same dimension.

• (Classical; see [101]) Any two complete intersections of the same dimension are CI-
linked in finitely many steps. (See Open Question 6 on page 119for an interesting related
question for G-liaison.)

The first of these is the deepest result. Together they show that there is only one ACM-liaison
class, so there is not much to study here. Walter [106] does give a bound on the number of steps
needed to pass from an arbitrary locally Cohen-Macaulay scheme to an arithmetically Cohen-
Macaulay scheme, in terms of the dimension. In particular, for curves it can be done in one
step!

So the most general kind of linkage for subschemes of projective space seems to be Goren-
stein liaison. Recent contributions to this theory have been made by Casanellas, Hartshorne,
Kleppe, Lesperance, Migliore, Miró-Roig, Nagel, Notari,Peterson, Spreafico, and others. We
will describe this work in the coming sections.

REMARK 6. To end this section, as a partial answer to Question 5, we would like to mention
two results about G-liaison from [61] that are easy to state,cleanly generalize the codimension
two case, and arefalsefor CI-liaison.

• Let S ⊂ Pn be arithmetically Cohen-Macaulay satisfying propertyG1 (so that linear
equivalence is well-defined; see [50]). LetC1,C2 ⊂ Sbe divisors such thatC2 ∈ |C1 +

t H |, whereH is the class of a hyperplane section andt ∈ Z. ThenC1 andC2 are G-linked
in two steps.

• Let V ⊂ Pn be a subscheme of codimensionc such thatIV is the ideal of maximal
minors of at × (t + c − 1) homogeneous matrix. ThenV can be G-linked to a complete
intersection in finitely many steps.

3. Preliminary results

The purpose of this section is to recall some concepts and results we will use later on. Among
them we include a comparison of local and sheaf cohomology, geometric and algebraic hyper-



Liaison and related topics: notes 67

plane sections, local duality andk-syzygies. Furthermore, we discuss the structure of deficiency
modules and introduce the notion of (cohomological) minimal shift.

Throughout we will use the following notation.A will always denote a (standard) graded
K -algebra, i.e.A = ⊕i≥0[ A] i is generated (as algebra) by its elements of degree 1, [A]0 = K
is a field and [A] i is the vector space of elements of degreei in A. Thus, there is a homogeneous
ideal I ⊂ R = K [x0, . . . , xn] such thatA ∼= R/I . The irrelevant maximal ideal ofA is
m := mA := ⊕i>0[ A] i .

If M is a graded module over the ringA it is always assumed thatM is Z-graded andA
is a gradedK -algebra as above. AllA-modules will be finitely generated unless stated other-
wise. Furthermore, it is always understood that homomorphisms between gradedR-modules are
morphisms in the category of gradedR-modules, i.e. are graded of degree zero.

Local cohomology

There will be various instances where it is preferable to uselocal cohomology instead of the
(possibly more familiar) sheaf cohomology. Thus we recall the definition of local cohomology
and describe the comparison between both cohomologies briefly.

We start with the following

DEFINITION 5. Let M be an arbitrary A module. Then we set

H0
m
(M) := {m ∈ M | mk

A · m = 0 for some k∈ N}.

This construction provides the functorH0
m
( ) from the category ofA-modules into itself. It

has the following properties.

LEMMA 1.

(a) The functor H0
m
( ) is left-exact.

(b) H0
m
(M) is an Artinian module.

(c) If M is graded then H0
m
(M) is graded as well.

EXAMPLE 5. Let I ⊂ R be an ideal with saturationI sat ⊂ R then

H0
m
(R/I ) = I sat/I .

This is left as an exercise to the reader.

Since the functorH0
m
( ) is left-exact one can define its right-derived functors using injective

resolutions.

DEFINITION 6. The i-th right derived functor of H0
m
( ) is called the i-th local cohomology

functor and denoted by Hi
m
( ).

Thus, to each short exact sequence ofA-modules

0 → M ′ → M → M ′′ → 0

we have the induced long exact cohomology sequence

0 → H0
m
(M ′) → H0

m
(M) → H0

m
(M ′′) → H1

m
(M ′) → . . .
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We note some further properties.

LEMMA 2.

(a) All H i
m
(M) are Artinian A-modules (but often not finitely generated).

(b) If M is graded then all Hi
m
(M) are graded as well.

(c) The Krull dimension and the depth of M are cohomologically characterized by

dim M = max{i | H i
m
(M) 6= 0}

depthM = min{i | H i
m
(M) 6= 0}

Slightly more than stated in part (b) is true: The cohomologysequence associated to a short
exact sequence of graded modules is an exact sequence of graded modules as well.

Part (a) implies that a local cohomology module is Noetherian if and only if it has finite
length. Part (c) immediately provides the following.

COROLLARY 1. The module M is Cohen-Macaulay if and only if Hi
m
(M) = 0 for all

i 6= dim M.

As mentioned in the last section, a subschemeX ⊂ Pn is calledarithmetically Cohen-
Macaulay if its homogeneous coordinate ringR/IX is Cohen-Macaulay, i.e. a Cohen-Macaulay-
module over itself.

Now we want to relate local cohomology to sheaf cohomology.

The projective spectrumX = Proj A of a gradedK -algebraA is a projective scheme of
dimension(dim A − 1). Let F be a sheaf of modules overX. Its cohomology modules are
denoted by

H i
∗(X,F) =

⊕

j ∈Z

H i (X,F( j )).

If there is no ambiguity on the schemeX we simply writeH i
∗(F).

There are two functors relating gradedA-modules and sheaves of modules overX. One
is the “sheafification” functor which associates to each graded A-moduleM the sheafM̃. This
functor is exact.

In the opposite direction there is the “twisted global sections” functor which associates to
each sheafF of modules overX the gradedA-moduleH0

∗ (X,F). This functor is only left exact.

If F is quasi-coherent then the sheaf̃H0
∗ (X,F) is canonically isomorphic toF . However, ifM

is a gradedA-module then the moduleH0
∗ (X, M̃) is not isomorphic toM in general. In fact,

even if M is finitely generated,H0
∗ (X, M̃) needs not to be finitely generated. Thus the functors

˜ and H0
∗ (X, ) do not establish an equivalence of categories between graded A-modules and

quasi-coherent sheaves of modules overX. However, there is the following comparison result
(cf. [105]).

PROPOSITION1. Let M be a graded A-module. Then there is an exact sequence

0 → H0
m
(M) → M → H0

∗ (X, M̃) → H1
m
(M) → 0

and for all i ≥ 1 there are isomorphisms

H i
∗(X, M̃) ∼= H i+1

m
(M).
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The result is derived from the exact sequence

0 → H0
m
(M) → M → H0(M) → H1

m
(M) → 0

whereH0(M) = lim
−→
n

HomR(m
n,M). Note thatH0(M) ∼= H0

∗ (X, M̃).

COROLLARY 2. Let X ⊂ Pn = ProjR be a closed subscheme of dimension d≤ n − 1.
Then there are graded isomorphisms

H i
∗(IX) ∼= H i

m
(R/IX ) for all i = 1, . . . ,d + 1.

Proof. SinceH i
m
(R) = 0 if i ≤ n the cohomology sequence of

0 → IX → R → R/IX → 0

implies H i
m
(R/IX) ∼= H i+1

m
(IX) for all i < n. Thus, the last proposition yields the claim.

REMARK 7. Let M be a gradedR-module. Then itsCastelnuovo-Mumford regularityis the
number

regM := min{m ∈ Z | [H i
m
(M)] j −i = 0 for all j > m}.

For a subschemeX ⊂ Pn we put regIX = regIX . The preceding corollary shows that this last
definition agrees with Mumford’s in [84].

It is convenient and common to use the following names.

DEFINITION 7. Let X ⊂ Pn be a closed subscheme of dimension d. Then the graded R-
modules Hi

∗(IX), i = 1, . . . , d, are called the deficiency modules of X. If X is1-dimensional
then H1

∗ (IX) is also called theHartshorne-Rao moduleof X.

The deficiency modules reflect properties of the scheme. For example, as mentioned in the
first section, it follows from what we have now said (Corollary 1 and Corollary 2) thatX is
arithmetically Cohen-Macaulay if and only ifH i

∗(IX) = 0 for 1 ≤ i ≤ dim X. Note that a
schemeX ⊂ Pn is said to beequidimensionalif its homogeneous idealIX ⊂ R is unmixed, i.e.
if all its components have the same dimension. In particular, an equidimensional scheme has no
embedded components.

LEMMA 3. For a subscheme X⊂ Pn we have

(a) X is equidimensional and locally Cohen-Macaulay if and only if all its deficiency modules
have finite length.

(b) X is equidimensional if and only ifdim R/Ann H i
∗(IX) ≤ i −1 for all i = 1, . . . ,dim X.

By a curve we always mean an equidimensional scheme of dimension 1. In particular, a
curve is locally Cohen-Macaulay since by definition it does not have embedded components.
Thus, we have.

COROLLARY 3. A 1-dimensional scheme X⊂ Pn is a curve if and only if its Hartshorne-
Rao module H1∗ (IX) has finite length.
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Hyperplane sections

Let H ⊂ Pn be the hyperplane defined by the linear forml ∈ R. Thegeometric hyperplane
section(or simply thehyperplane section) of a schemeX ⊂ Pn is the subschemeX ∩ H . We
usually considerX ∩ H as a subscheme ofH ∼= Pn−1, i.e. its homogeneous idealIX∩H is
an ideal ofR̄ = R/ l R. The algebraic hyperplane sectionof X is given by the idealIX :=
(IX + l R)/ l R ⊂ R̄. IX is not necessarily a saturated ideal. In fact, the saturation of IX is just
IX∩H . The difference between the hyperplane section and the algebraic hyperplane section is
measured by cohomology.

LEMMA 4.
H0

m
(R/IX + l R) ∼= IX∩H /IX

If the ground fieldK contains sufficiently many elements we can always find a hyperplane
which is general enough with respect to a given schemeX. In particular, we get dimX ∩ H =

dim X − 1 if X has positive dimension. In order to relate properties ofX to the ones of its
hyperplane section we note some useful facts. We use the following notation.

For a gradedA-moduleM we denote byhM and pM its Hilbert function and Hilbert poly-
nomial, respectively, wherehM ( j ) = rank[M] j . The Hilbert function and Hilbert polynomial of
a subschemeX ⊂ Pn are the corresponding functions of its homogeneous coordinate ringR/IX .
For a numerical functionh : Z → Z we define its first difference by1h( j ) = h( j )− h( j − 1)
and the higher differences by1i h = 1(1i−1h) and10h = h.

REMARK 8. SupposeK is an infinite field and letH ⊂ Pn be a hyperplane.

(i) If dim X > 0 andH is general enough then we have

IX∩H = IX if and only if H1
∗ (IX) = 0.

(ii) If X ⊂ Pn is locally or arithmetically Cohen-Macaulay of positive dimension thenX∩H
has the same property for a general hyperplaneH . The converse is false in general.

(iii) Suppose X ⊂ Pn is arithmetically Cohen-Macaulay of dimensiond. Let
l1, . . . , ld+1 ∈ R be linear forms such that̄A = R/(IX + (l1, . . . , ld+1)) has dimension
zero. ThenĀ is called anArtinian reductionof R/IX . For its Hilbert function we haveh Ā =

1d+1hR/IX .

Minimal free resolutions

Let R = K [x0, . . . , xn] be the polynomial ring. By our standard conventions a homomor-
phismϕ : M → N of gradedR-modules is graded of degree zero, i.e.ϕ([M] j ) ⊂ [N] j for all
integersj . Thus, we have to use degree shifts when we consider the homomorphismR(−i ) → R
given by multiplication byxi

0. Observe thatR(−i ) is not a gradedK -algebra unlessi = 0.

DEFINITION 8. Let M be a graded R-module. Then N6= 0 is said to be a k-syzygy of M
(as R-module) if there is an exact sequence of graded R-modules

0 → N → Fk
ϕk

−→ Fk−1 → . . . → F1
ϕ1

−→ M → 0

where the modules Fi , i = 1, . . . , k, are free R-modules. A module is called a k-syzygy if it is a
k-syzygy of some module.
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Note that a(k + 1)-syzygy is also ak-syzygy (not for the same module). Moreover, every
k-syzygyN is a maximalR-module, i.e. dimN = dim R.

Chopping long exact sequences into short ones we easily obtain

LEMMA 5. If N is a k-syzygy of the R-module M then

H i
m
(N) ∼= H i−k

m
(M) for all i < dim R.

If follows that the depth of ak-syzygy is at leastk.

The next concept ensures uniqueness properties.

DEFINITION 9. Letϕ : F → M be a homomorphism of R-modules where F is free. Then
ϕ is said to be a minimal homomorphism ifϕ ⊗ idR/m : F/mF → M/mM is the zero map in
case M is free and an isomorphism in caseϕ is surjective.

In the situation of the definition above, N is said to be a minimal k-syzygy of M if the
morphismsϕi , i = 1, . . . , k, are minimal. If N happens to be free then the exact sequenceis
called a minimal free resolution of M.

Nakayama’s lemma implies easily that minimalk-syzygies ofM are unique up to isomor-
phism and that a minimal free resolution is unique up to isomorphism of complexes.

Note that every finitely generated projectiveR-module is free.

REMARK 9. Let

0 → Fs
ϕs

−→ Fs−1 → . . . → F1
ϕ1

−→ F0 → M → 0

be a free resolution ofM. Then it is minimal if and only if (after choosing bases forF0, . . . , Fs)
the matrices representingϕ1, . . . , ϕs have entries in the maximal idealm = (x0, . . . , xn) only.

Duality results

Later on we will often use some duality results. Here we statethem only for the polynomial
ring R = K [x0, . . . , xn]. However, they are true, suitably adapted, over any gradedGorenstein
K -algebra.

Let M be a gradedR-module. Then we will consider two types of dual modules, theR-dual
M∗ := HomR(M, R) and theK -dual M∨ := ⊕ j ∈Z HomK ([M]− j , K ).

Now we can state a version of Serre duality (cf. [100], [105]).

PROPOSITION2. Let M be a graded R-module. Then for all i∈ Z, we have natural
isomorphisms of graded R-modules

H i
m
(M)∨ ∼= Extn+1−i

R (M, R)(−n − 1).

The K -dual of the top cohomology module plays a particular role.

DEFINITION 10. The module KM := Extn+1−dim M
R (M, R)(−n − 1) is called the canoni-

cal module of M. The canonical module KX of a subscheme X⊂ Pn is defined as KR/IX .
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REMARK 10. (i) For a subschemeX ⊂ Pn the sheafωX := K̃X is the dualizing sheaf of
X.

(ii) If X ⊂ Pn is arithmetically Cohen-Macaulay with minimal free resolution

0 → Fc
ϕc

−→ Fc−1 → . . . → F1 → IX → 0

then dualizing with respect toR provides the complex

0 → R → F∗
1 → . . . → F∗

c−1
ϕ∗

c
−→ F∗

c → cokerϕ∗
c → 0

which is a minimal free resolution of cokerϕ∗
c

∼= KX(n + 1).

If the schemeX is equidimensional and locally Cohen-Macaulay, one can relate the co-
homology modules ofX and its canonical module. More generally, we have ([100], Corollary
3.1.3).

PROPOSITION3. Let M be a graded R-module such that Hi
m
(M) has finite length if i 6=

d = dim M. Then there are canonical isomorphisms for i= 2, . . . ,d − 1

Hd+1−i
m

(KM ) ∼= H i
m
(M)∨.

Observe that the first cohomologyH1
m
(M) is not involved in the statement above.

Restrictions for deficiency modules

Roughly speaking, it will turn out that there are no restrictions on the module structure of
deficiency modules, but there are restrictions on the degrees where non-vanishing pieces can
occur.

In the following result we will assumec ≤ n − 1 because subschemes ofPn with codimen-
sionn are arithmetically Cohen-Macaulay.

PROPOSITION4. Suppose the ground field K is infinite. Let c be an integer with2 ≤ c ≤

n − 1 and let M1, . . . ,Mn−c be graded R-modules of finite length. Then there is an integral
locally Cohen-Macaulay subscheme X⊂ Pn of codimension c such that

H i
∗(IX) ∼= Mi (−t) for all i = 1, . . . ,n − c

for some integer t .

Proof. Choose a smooth complete intersectionV ⊂ Pn such that

IV = ( f1, . . . , fc−2) ⊂

n−c⋂

i=1

Ann Mi

whereIV = 0 if c = 2.

Let Ni denote a(i + 1)-syzygy of Mi as R/IV -module and letr be the rank ofN =

⊕n−c
i=1 Ni . For s � 0 the cokernel of a general mapϕ : Rr−1 → N is torsion-free of rank

one, i.e. isomorphic toI (t) for some integert where I ⊂ A = R/IV is an ideal such that
dim A/I = dim A − 2. Moreover,I is a prime ideal by Bertini’s theorem. The preimage ofI
under the canonical epimorphismR → A is the defining ideal of a subschemeX ⊂ Pn having
the required properties. For details we refer to [79].
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REMARK 11. (i) The previous result can be generalized as follows. Let M1, . . . ,Mn−c
be graded (not necessarily finitely generated)R-modules such thatM∨

i is finitely generated of
dimension≤ i −1 for all i = 1, . . . , n−c. Then there is an equidimensional subschemeX ⊂ Pn

of codimensionc such that

H i
∗(IX) ∼= Mi (−t) for all i = 1, . . . , n − c

for some integert . Details will appear in [86]. Note that the condition on the modulesM1, . . . ,

Mn−c is necessary according to Lemma 3.

(ii) A more general version of Proposition 4 for subschemes of codimension two is shown
in [36].

Now we want to consider the question of which numberst can occur in Proposition 4. The
next result implies that witht also t + 1 occurs. The name of the statement will be explained
later on.

LEMMA 6 (BASIC DOUBLE LINK). Let 0 6= J ⊂ I ⊂ R be homogeneous ideals such that
codim I = codimJ + 1 and R/J is Cohen-Macaulay. Let f∈ R be a homogeneous element of
degree d such that J: f = J . Then the ideal̃I := J + f I satisfiescodim Ĩ = codimI and

H i
m
(R/ Ĩ ) ∼= H i

m
(R/I )(−d) for all i < dim R/I .

In particular, I is unmixed if and only if̃I is unmixed.

Proof. Consider the sequence

(2) 0 → J(−d)
ϕ

−→ J ⊕ I (−d)
ψ

−→ Ĩ → 0

whereϕ andψ are defined byϕ( j ) = ( f j , j ) andψ( j , i ) = j − f i . It is easy to check that this
sequence is exact. Its cohomology sequence implies the claim on the dimension and cohomology
of R/ Ĩ . The last claim follows by Lemma 3.

PROPOSITION5. Suppose that K is infinite. Let M• = (M1, . . . ,Mn−c) (2 ≤ c < n)
be a vector of graded (not necessarily finitely generated) R-modules such that M∨i is finitely
generated of dimension≤ i − 1 for all i = 1, . . . ,n − c and not all of these modules are
trivial. Then there is an integer t0 such that there is an equidimensional subscheme X⊂ Pn of
codimension c with

H i
∗(IX) ∼= Mi (−t) for all i = 1, . . . ,n − c

for some integer t if and only if t≥ t0.

Proof. If the ground fieldK is infinite we can choose the elementf in Lemma 6 as a linear
form. Thus, in spite of this lemma and Remark 11 it suffices to show that

H i
∗(IX) ∼= Mi (−t) for all i = 1, . . . , n − c

is impossible for a subschemeX ⊂ Pn of codimensionc if t � 0. But this follows if dimX = 1
because we have for every curveC ⊂ Pn

(3) h1(IC( j − 1)) ≤ max{0, h1(IC( j ))− 1} if j ≤ 0

by [21], Lemma 3.4 or [70]. By taking general hyperplane sections of X, the general case is
easily reduced to the case of curves. See also Proposition 1.4 of [18].
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The last result allows us to make the following definition.

DEFINITION 11. The integer t0, which by Proposition 5 is uniquely determined, is called
the (cohomological) minimal shift of M•.

EXAMPLE 6. Let M• = (K ). Then the estimate (3) for the first cohomology of a curve in
the last proof shows that the minimal shiftt0 of M• must be non-negative. Since we have for a
pair C of skew linesH1

∗ (IC) ∼= K we obtaint0 = 0 as minimal shift of(K ).

4. Gorenstein ideals

Before we can begin the discussion of Gorenstein liaison, wewill need some basic facts about
Gorenstein ideals and Gorenstein algebras. In this sectionwe will give the definitions, properties,
constructions, examples and applications which will be used or discussed in the coming sections.
Most of the material discussed here is treated in more detailin [72].

We saw in Remark 8 that ifX is arithmetically Cohen-Macaulay of dimensiond with co-
ordinate ringA = R/IX then we have theArtinian reductionĀ of X (or of R/IX ). Its Hilbert
function was given ash Ā = 1d+1hR/IX . SinceĀ is finite dimensional as aK -vector space, we
have thath Ā is a finite sequence of integers

1 c h2 h3 . . . hs 0 . . .

This sequence is called theh-vectorof X, or of A. In particular,c is theembedding codimension
of X. In other words,c is the codimension ofX inside the smallest linear space containing it. Of
course, the Hilbert function ofX can be recovered from theh-vector by “integrating.”

Now suppose thatX is arithmetically Cohen-Macaulay and non-degenerate inPn, of codi-
mensionc, and thatR/IX has minimal free resolution

0 → Fc → Fc−1 → · · · → F1 → R → R/IX → 0.

Suppose thatFc =
⊕r

i=1 R(−ai ) and leta = maxi {ai }. As mentioned in Section 2,r = rankFc
is called theCohen-Macaulay typeof X (or of A). Furthermore, we have the relation

(4) a − c = s = regIX − 1

wheres is the last degree in which theh-vector is non-zero and regIX is the Castelnuovo-
Mumford regularity ofIX (cf. Remark 7). We now formally make the definition referred to in
Section 2:

DEFINITION 12. The subscheme X⊂ Pn is arithmetically Gorensteinif it is arithmeti-
cally Cohen-Macaulay of Cohen-Macaulay type 1. We often saythat IX is Gorenstein or IX is
arithmetically Gorenstein.

EXAMPLE 7. A line in P3 is arithmetically Gorenstein since its minimal free resolution is

0 → R(−2) → R(−1)2 → IX → 0,

andR(−2) has rank 1. More generally, any complete intersection inPn is arithmetically Goren-
stein thanks to the Koszul resolution. The last free module in the resolution of the complete
intersection of forms of degreed1, . . . , dc is R(−d1 − · · · − dc).
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REMARK 12. In Remark 8 (ii) it was noted that ifX is arithmetically Cohen-Macaulay of
dimension≥ 1 then the general hyperplane sectionX∩H is also arithmetically Cohen-Macaulay.
(In fact this is true for any proper hyperplane section.) It was remarked that the converse is false
in general. However, there are situations in which the converse does hold.

First, if X is assumed to be equidimensional (i.e.IX is unmixed) and locally Cohen-Macau-
lay of dimension≥ 2 then it is not hard to show that the converse holds. Indeed, let L be a
general linear form defining the hyperplaneH and consider the exact sequence

H i (IX(s − 1))
×L
−→ H i (IX(s)) → H i (IX∩H |H (s)) → H i+1(IX(s − 1))

×L
−→ H i+1(IX(s))

If X ∩ H is arithmetically Cohen-Macaulay and 1≤ i ≤ dim X ∩ H = dim X − 1 then the
multiplication map on the left is surjective for alls and the one on the right is injective for alls.
Both of these are impossible unlessX is itself arithmetically Cohen-Macaulay, becauseH i (IX)

has finite length for 1≤ i ≤ dim X (cf. Lemma 3).

Obviously if X is the union of an arithmetically Cohen-Macaulay scheme anda point (possi-
bly embedded) then it is not arithmetically Cohen-Macaulaybut its general hyperplane section is
arithmetically Cohen-Macaulay. Also, clearly ifX is a curve which is not arithmetically Cohen-
Macaulay then its general hyperplane section is arithmetically Cohen-Macaulay since it is a
finite set of points, but again,X is not arithmetically Cohen-Macaulay. A fascinating question
is whether there are conditions onX ∩ H which force a curveX to be arithmetically Cohen-
Macaulay. The best results in this direction come whenX ∩ H is arithmetically Gorenstein.
Several authors have contributed to this question, but we mention in particular [58] and [103].

There are several other conditions which are equivalent to being arithmetically Cohen-
Macaulay with Cohen-Macaulay type 1, and which could be usedin the definition of arith-
metically Gorenstein subschemes ofPn.

PROPOSITION6. Let X ⊂ Pn be arithmetically Cohen-Macaulay. The following are equiv-
alent:

(i) X has Cohen-Macaulay type 1 (i.e. is arithmetically Gorenstein);

(ii) R/IX ∼= KX(`) for somè ∈ Z, where KX is the canonical module of X (cf. Definition
10);

(iii) The minimal free resolution of R/IX is self-dual up to twisting by n+ 1.

Proof. Note that` is whatever twist moves the module so that it starts in degree0. The main
facts used in the proof are that

KX = ExtcR(R/IX , R)(−n − 1)
and IX = AnnR(KX)

Details of the proof can be found in [72].

COROLLARY 4. Let X be arithmetically Gorenstein. ThenOX ∼= ωX(`) for somè ∈ Z.

COROLLARY 5. Let X be arithmetically Gorenstein. Then the h-vector of X issymmetric.

Proof. This follows from the fact that the Gorenstein property is preserved in passing to the
Artinian reduction, and the Hilbert function of the canonical module of the Artinian reduction is
given by reading theh-vector backwards (cf. [72]).
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The integer̀ in Proposition 6 is related to the integers in the equation (4). In fact, we have

COROLLARY 6. Let X be arithmetically Gorenstein with minimal free resolution

0 → R(−a) → Fc−1 → · · · → F1 → R → R/IX → 0

and assume thatOX ∼= ωX(`). Then` = n + 1 − a.

If A is Gorenstein then the integers, the last degree in which theh-vector is non-zero, is
called thesocle degreeof Ā, the Artinian reduction ofA = R/IX .

There is a very useful criterion for zeroschemes to be arithmetically Gorenstein. To explain
it, we will need a new notion. For now we will assume that our zeroschemes are reduced,
although the necessity for this was removed by Kreuzer [62].

DEFINITION 13. Let Z ⊂ Pn be a finite reduced set of points. Assume that s+1 = reg(IX),
i.e. s is the last degree in which the h-vector of Z is non-zero. Then Z has theCayley-Bacharach
property(CB) if, for every subset Y⊂ Z consisting of|Z| − 1 points, we have hR/IY (s − 1) =

hR/IZ (s− 1). Z has theUniform Position property(UPP) if any two subsets Y,Y′ of (the same)
arbitrary cardinality have the same Hilbert function, which necessarily is

hR/IY (t) = min{hR/IZ (t), |Y|} for all t .

EXAMPLE 8. The Cayley-Bacharach property is a weaker version of the Uniform Position
Property. For example, inP2 consider the following examples.

'
&

$
%• •

•

•

•

•

h-vector 1 2 2 1 (complete intersection
on a conic)

This has UPP.

•

•

•

•

•

• h-vector 1 2 2 1 (complete intersection)

This has CB but not UPP.

• •

•

•

•

•

h-vector 1 2 2 1

This has neither CB nor UPP.

THEOREM 1 ([31]). A reduced set of points Z is arithmetically Gorenstein if andonly if
its h-vector is symmetric and it has the Cayley-Bacharach property.

EXAMPLE 9. A set ofn + 2 points inPn in linear general position is arithmetically Goren-
stein. In particular, a set of 5 points inP3 is arithmetically Gorenstein, so we see that 4 points
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in linear general position are G-linked to one point. This was the first illustration of the fact
that G-liaison behaves quite differently from CI-liaison,since it follows from work of Ulrich and
others that 4 points in linear general position are not CI-linked to a single point in any number
of steps.

REMARK 13. Theorem 1 was used by Bocci and Dalzotto [12] to produce (and verify) nice
concrete examples of arithmetically Gorenstein sets of points inP3, and this work is described
in this volume. Generalizations of this construction have been given by Bocci, Dalzotto, Notari
and Spreafico [13].

A very useful construction of arithmetically Gorenstein schemes is the following.

THEOREM 2 (SUMS OF GEOMETRICALLY LINKED IDEALS). Let V1,V2 ⊂ Pn be arith-
metically Cohen-Macaulay subschemes of codimension c withno common component. Assume
that V1 ∪ V2 = X is arithmetically Gorenstein, i.e. IV1 ∩ IV2 = IX with R/IX Gorenstein. Then
IV1 + IV2 is Gorenstein of codimension c+ 1 (i.e. V1 ∩ V2 is arithmetically Gorenstein).

Proof. From the exact sequence (1) we can build up the diagram

0 0
↓ ↓

R(−a) Ac ⊕ Bc
↓ ↓

Fc−1 Ac−1 ⊕ Bc−1
↓ ↓
.
.
.

.

.

.

↓ ↓

F1 A1 ⊕ B1
↓ ↓

0 → IX −→ IV1 ⊕ IV2 −→ IV1 + IV2 → 0
↓ ↓

0 0

The mapping cone then gives the long exact sequence

0 → R(−a) → Fc−1 ⊕ Ac ⊕ Bc → Fc−2 ⊕ Ac−1 ⊕ Bc−1 → . . .

· · · → F1 ⊕ A2 ⊕ B2 → A1 ⊕ B1 −→ R → R/(IV1 + IV2) → 0
↘ ↗

IV1 + IV2
↗ ↘

0 0

Of course there may be some splitting. However,V1 ∩ V2 has codimension≥ c + 1 sinceV1
andV2 have no common component. This resolution has homological dimension at mostc + 1.
Therefore it has homological dimension exactlyc + 1 andV1 ∩ V2 is arithmetically Cohen-
Macaulay of codimensionc + 1 with Cohen-Macaulay type 1, i.e. is arithmetically Gorenstein.

This construction has been used to good effect in constructing arithmetically Gorenstein
schemes with nice properties. To illustrate, let us consider some natural questions.
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QUESTION 1. What are the possible Hilbert functions (resp. minimal free resolutions) of
Artinian Gorenstein ideals?

QUESTION 2. What are the possible Hilbert functions (resp. minimal free resolutions) of
the ideals ofreducedarithmetically Gorenstein subschemes ofPn?

The general question of which Artinian ideals, or which properties of Artinian ideals, can
be lifted to reduced sets of points is a very interesting one.We will discuss some of the known
answers to Questions 1 and 2 according to the codimension.

Case I: Codimension 2

What are the possible arithmetically Gorenstein subschemes X? We know the beginning
and the end of the resolution:

0 → R(−a) → ( ??) → R → R/IX → 0.

By considering the rank, the middle term in this resolution has to have rank 2. Therefore, we
have established the well known fact (mentioned before) that every arithmetically Gorenstein
subscheme ofPn of codimension two is a complete intersection.This answers the question about
the minimal free resolution, so the Hilbert functions are known as well. In fact, theh-vectors
must be symmetric of the form

1 2 3 . . . s − 1 s s . . . s s− 1 . . . 3 2 1.

Case II: Codimension 3

Everything that is known in this case follows from the famousstructure theorem of Buchs-
baum and Eisenbud [22]. For a Gorenstein idealI we have a minimal free resolution

0 → R(−a) → F2
A

−→ F1 → R → R/I → 0.

One can choose bases so thatA is skew-symmetric. In particular, the number of generators
must be odd! Diesel used this result to completely describe the possible graded Betti numbers
for Artinian Gorenstein ideals. De Negri and Valla (and others) described the possible Hilbert
functions. In particular, not only must it be symmetric, butthe “first half” must be a so-called
differentiable O-sequence. This means that the first difference of the “first half” of theHilbert
function must grow in a way that is permissible for standardK -algebras. For example, the
sequence

1 3 6 7 9 7 6 3 1

is not a possible Hilbert function for an Artinian Gorenstein algebra (even though it itself satisfies
Macaulay’s growth condition) since the first difference of the “first half” is

1 2 3 1 2

and the growth from degree 3 to degree 4 in the first differenceexceeds Macaulay’s growth
condition (cf. [66]). This describes the answers to Question 1.

For Question 2, Geramita and Migliore [44] showed that any set of graded Betti numbers
which occurs at the Artinian level in fact occurs for a reduced set of points (or for a stick figure
curve, or more generally a “generalized stick figure” configuration of linear varieties). The idea
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was to use Theorem 2 and add the ideals of geometrically linked stick figure curves inP3 (or
suitable surfaces inP4, etc.) in suitable constructed complete intersections. Ragusa and Zappalà
[92], [93] have used the “sum of geometrically linked ideals” construction to obtain other nice
results on the Hilbert functions and resolutions of codimension three Gorenstein ideals.

Case III: Codimension≥ 4

To date no one has determined what Hilbert functions can occur, so certainly we do not
know what minimal free resolutions can occur. In codimension ≥ 5 it is known that the Hilbert
function of an Artinian Gorenstein algebra does not even have to be unimodal [10], [14], [15].
This is open in codimension 4. However, the situation that one would expect to be the “general”
one is better understood:

DEFINITION 14. An Artinian algebra R/I has theWeak Lefschetz propertyif, for a general
linear form L, the multiplication map

×L : (R/I )i → (R/I )i+1

has maximal rank, for all i .

When the socle degree is fixed, a result of Watanabe [108] saysthat the “general” Artinian
Gorenstein algebra has the Weak Lefschetz property.

When the whole Hilbert function is fixed, a similar result is not possible in general because
the parameter space for the corresponding Gorenstein algebras can have several components if
the codimension is at least four. However, since having the Weak Lefschetz property is an open
condition by semicontinuity, the general Artinian Gorenstein algebra of a component has the
Weak Lefschetz property if and only if the component contains one algebra with this property.

In any case, Harima [46] classified the possible Hilbert functions for Artinian Gorenstein al-
gebras with the Weak Lefschetz property, in any codimension. In particular, he showed that these
Hilbert functions are precisely the Stanley-Iarrobino (SI) sequences, namely they are symmetric,
unimodal and the “first half” is a differentiable O-sequence.

For Question 2, Migliore and Nagel [77] have shown that any SI-sequence is theh-vector
of some arithmetically Gorenstein reduced set of points, ormore generally a reduced union of
linear varieties. The method of proof again used sums of geometrically linked ideals, but the
new twist here was that the ideals were G-linked and not CI-linked. Furthermore, they gave
sharp bounds on the graded Betti numbers of Gorenstein ideals of any codimension,among
ideals with the Weak Lefschetz property. Partial results along these lines had been obtained by
Geramita, Harima and Shin [40]. In codimension 4, Iarrobinoand Srinivasan (in progress) have
some results on the possible resolutions. There remains a great deal to do in this area.

REMARK 14. Theorem 2 shows how to use geometrically linked, codimension c, arith-
metically Cohen-Macaulay subschemes ofPn to construct a codimensionc + 1 arithmetically
Gorenstein subscheme. Later, in Corollary 12, we will see how to use very special linked arith-
metically Cohen-Macaulay codimensionc subschemes (not necessarily geometrically linked) to
construct an arithmetically Gorenstein subscheme which isalso of codimensionc. In fact, every
Gorenstein ideal arises in this way (Remark 18)!

One problem with the construction of Theorem 2 is that it is very desirable, from the point
of view of liaison, to be able to start with a schemeV and find a “good” (which often means
“small”) Gorenstein schemeX containing it. This is not so easy to do with sums of geometrically
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linked ideals. Another very useful construction for Gorenstein ideals potentially will solve this
problem (based on experimental evidence). To describe it wewill need a little preparation.

Consider a homogeneous map

t+r⊕

i=1

R(−ai )
φ

−→

t⊕

j =1

R(−b j ).

The mapφ is represented by a homogeneoust × (t + r )matrix. We assume furthermore that the
ideal of maximal minors ofφ defines a scheme of the “expected” codimensionr + 1. Let Bφ be
the kernel ofφ. ThenBφ is aBuchsbaum-Rim module. Let Mφ be the cokernel ofφ. We have
an exact sequence

0 → Bφ →
⊕t+r

i=1 R(−ai )
φ

−→
⊕t

j =1 R(−b j ) → Mφ → 0.
|| ||

F G

Sheafifying this gives

0 → B̃φ →

t+r⊕

i=1

OPn(−ai )
φ

−→

t⊕

j =1

OPn(−b j ) → M̃φ → 0.

If r = n then M̃ = 0 and B̃φ is locally free. In any case,̃Bφ is theBuchsbaum-Rim sheaf
associated toφ.

THEOREM 3 ([78], SECTIONS OFBUCHSBAUM-RIM SHEAVES). Assume that r is odd.
Let s be aregularsection ofB̃φ. Let I be the ideal corresponding to the vanishing of s. Then the
top dimensional part of I is arithmetically Gorenstein of codimension r . Denoting by J this top
dimensional part, the minimal free resolution of R/J can be written in terms of F and G.

This can be used to find an arithmetically Gorenstein scheme (of the same dimension) con-
taining a given one by means of the following corollary.

COROLLARY 7. If codimV = r , a regular section of H0∗ (P
n, B̃φ⊗IV ) has top dimensional

part which is an arithmetically Gorenstein scheme, X, containing V .

Theorem 3 is just a small sample (the application relevant toliaison) of the possible results
on sections of Buchsbaum-Rim sheaves, and we refer the interested reader to [78] for more
general results.

Our final construction requires a little preparation.

DEFINITION 15. A subscheme S⊂ Pn satisfies condition Gr if every localization of R/IS
of dimension≤ r is a Gorenstein ring. Gr is sometimes referred to as “Gorenstein in codimen-
sion≤ r ”, i.e. the “bad locus” has codimension≥ r + 1.

DEFINITION 16. Let S⊂ Pn be an arithmetically Cohen-Macaulay subscheme and let F be
a homogeneous polynomial of degree d not vanishing on any component of S (i.e. IS : F = IS).
Then HF is the divisor on S cut out by F. We call HF thehypersurface section ofScut out by
F . As a subscheme ofPn, HF is defined by the ideal IS + (F). Note that this ideal is saturated,
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since S is arithmetically Cohen-Macaulay. (The idea is the same as that in Lemma 4 and Remark
8.)

Hartshorne [50] has developed the theory of divisors, and inparticular linear equivalence, on
schemes having at leastG1. Using the notion of linear equivalence, the following theorem gives
our construction. In subsequent sections we will give some important applications for liaison.

THEOREM4 ([61], TWISTED ANTICANONICAL DIVISORS). Let S⊂ Pn be an arithmeti-
cally Cohen-Macaulay subscheme satisfying G1 and let K be a canonical divisor of S. Then
every effective divisor in the linear system|d H − K |, viewed as a subscheme ofPn, is arithmeti-
cally Gorenstein.

Proof. (Sketch) LetX ∈ |d H − K | be an effective divisor. Choose a sufficiently large integer`

such that there is a regular section ofωS(`) defining a twisted canonical divisorY. Let F ∈ IY
be a homogeneous polynomial of degreed + ` such thatF does not vanish on any component
of Sand letHF be the corresponding hypersurface section.

ThenX is linearly equivalent to the effective divisorHF − Y and we have isomorphisms

(IX/IS) (d) ∼= IX|S(d) ∼= OS((d + `)H − X) ∼= OS(Y) ∼= ωS(`).

BecauseS is arithmetically Cohen-Macaulay, this gives

0 → IS → IX → H0
∗ (ωS)(`− d) → 0.

Then considering a minimal free resolution ofIS and the corresponding one forKS = H0
∗ (ωS)

(cf. Remark 10) we have a diagram (ignoring twists)

0
↓

0 R
↓ ↓

Fc F∗
1

↓ ↓
.
.
.

.

.

.

↓ ↓

F1 F∗
c

↓ ↓

0 → IS → IX → KS → 0
↓ ↓

0 0

Then the Horseshoe Lemma ([109] 2.2.8, p. 37) shows thatIX has a free resolution in which the
last free module has rank one. Since codimX = c, this last free module cannot split off, soX is
arithmetically Gorenstein as claimed.

EXAMPLE 10. LetSbe a twisted cubic curve inP3. Then a canonical divisorK has degree
−2, so the linear system| − K + d H| (for d ≥ 0) consists of all effective divisors of degree≡ 2
(mod 3). Any such scheme is arithmetically Gorenstein.
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5. First relations between linked schemes

In this section we begin to investigate the relations between linked ideals. In particular, we will
compare the Hilbert functions of directly linked ideals andcover some of the results announced
in Section 2.

All the ideals will be homogeneous ideals of the polynomial ring R = K [x0, . . . , xn].
Analogously to linked schemes we define linked ideals. This includes linkage of Artinian ideals
corresponding to empty schemes.

DEFINITION 17. (i) Two unmixed ideals I, J ⊂ R of the same codimension are said to
be geometrically CI-linked (resp. geometrically G-linked) by the idealc if I and J do not have
associated prime ideals in common andc = I ∩ J is a complete intersection (resp. a Gorenstein
ideal).

(ii) Two ideals I, J ⊂ R are said to be (directly) CI-linked (resp. (directly) G-linked) by the
ideal c if c is a complete intersection (resp. a Gorenstein ideal) and

c : I = J and c : J = I .

In this case we write I
c

∼ J .

If a statement is true for CI-linked ideals and G-linked ideals we will just speak of linked
ideals.

REMARK 15. (i) If we want to stress the difference between (i) and (ii) we say in case (ii)
that the ideals are algebraically linked.

(ii) If two ideals are geometrically linked then they are also algebraically linked.

(iii) Since Gorenstein ideals of codimension two are complete intersections CI-linkage is
the same as G-linkage for ideals of codimension two.

If the subschemesV andW are geometrically linked byX then degX = degV + degW.
We will see that this equality is also true ifV and W are only algebraically linked. For this
discussion we will use the following.

Notation. I , c ⊂ R denote homogeneous ideals wherec is a Gorenstein ideal of codimen-
sionc. Excluding only trivial cases we assumec ≥ 2.

LEMMA 7. If I " c thenc : I is an unmixed ideal of codimension c.

Proof. Let c = q1 ∩ . . . ∩ qs be a shortest primary decomposition ofc. Then the claim follows
because

c : I =

s⋂

i=1

(qi : I )

and

qi : I =

{
R if I ⊂ qi

Rad(qi )− primary otherwise.

The next observation deals with the difference between geometric and algebraic linkage.
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COROLLARY 8. Suppose the ideals I and J are directly linked byc. Then we have:

(a) Rad(I ∩ J) = Radc.

(b) I and J are unmixed of codimension c.

(c) If I and J do not have associated prime ideals in common then I and J are geometrically
linked byc

Proof. (a) By definition we have
I · J ⊂ c ⊂ I ∩ J.

Since Rad(I · J) = Rad(I ∩ J) the claim follows.

(b) is an immediate consequence of the preceding lemma.

(c) We have to show thatI ∩ J = c.

The inclusionc ⊂ I ∩ J is clear. For showing the other inclusion assume on the contrary
that there is a homogeneous polynomialf 6= 0 in (I ∩ J) \ c. Let c = q1 ∩ . . . ∩ qs be a
shortest primary decomposition ofc. We may assume thatf /∈ q1 and Radq1 ∈ AssR(R/I ).
The assumption on the associated prime ideals ofI andJ guarantees that there is a homogeneous
polynomialg ∈ J such thatg /∈ p for all p ∈ AssR(R/I ). SinceI = c : J we get f g ∈ c ⊂ q1.
Thus,g /∈ Radq1 implies f ∈ q1, a contradiction.

Claim (a) of the statement above says for schemesV,W linked by X that we have (as sets)
Vred ∪ Wred = Xred.

In order to identify certain degree shifts we need the following number. It is well-defined
because the Hilbert function equals the Hilbert polynomialin all sufficiently large degrees.

DEFINITION 18. The regularity index of a finitely generated graded R-moduleM is the
number

r (M) := min{t ∈ Z | hM ( j ) = pM ( j ) for all j ≥ t}.

EXAMPLE 11. (i) r (K [x0, . . . , xn]) = −n.

(ii) If A is an Artinian gradedK -algebra withs = max{ j ∈ Z | [ A] j 6= 0} thenr (A) =

s + 1.

(iii) Let c ∈ R be a Gorenstein ideal with minimal free resolution

0 → R(−t) → Fc−1 → . . . → F1 → c → 0.

Then it is not to difficult to see thatr (R/c) = t − n (cf. also Corollary 6).

The index of regularity should not be confused with the Castelnuovo-Mumford regularity.
There is the following comparison result.

LEMMA 8. Let M be a graded R-module. Then we have

regM − dim M + 1 ≤ r (M) ≤ regM − depthM + 1.

In particular, r(M) = regM − dim M + 1 if M is Cohen-Macaulay.

This lemma generalizes Example 11(ii) and is a consequence of the following version of the
Riemann-Roch theorem [102] which we will use again soon.
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LEMMA 9. Let M be a graded R-module. Then we have for all j∈ Z

hM ( j )− pM ( j ) =
∑

i≥0

(−1)i rankK [H i
m
(M)] j .

We are now ready for a crucial observation.

LEMMA 10 (STANDARD EXACT SEQUENCES). Suppose thatc ⊂ I and both ideals have
the same codimension c. Put J:= c : I . Then there are exact sequences (of graded R-modules)

0 → c → J → KR/I (1 − r (R/c)) → 0

and
0 → KR/I (1 − r (R/c)) → R/c → R/J → 0.

Proof. We have to show thatJ/c ∼= KR/I (1 − r (R/c)).

There are the following isomorphisms

J/c ∼= (c : I )/c ∼= HomR(R/I , R/c) ∼= HomR/c(R/I , R/c)

and
KR/I (1 − r (R/c)) ∼= ExtcR(R/I , R)(−r (R/c)− n).

Thus, our claim follows from the isomorphism

HomR(R/I , R/c) ∼= ExtcR(R/I , R)(−r (R/c)− n),

which is easy to see ifc is a complete intersection. In the general case it follows from a more
abstract characterization of the canonical module.

Before drawing first consequences we recall that the Hilbertpolynomial of the graded mod-
ule M can be written in the form

pM ( j ) = h0(M)

(
j

d − 1

)
+ h1(M)

(
j

d − 2

)
+ . . .+ hd−1(M)

whered = dim M andh0(M), . . . , hd−1(M) are integers. Moreover, ifd > 0 then degM =

h0(M) is positive and called the degree ofM. However, if M = R/I for an ideal I then
by abuse of notation we define degI := degR/I . For a subschemeX ⊂ Pn we have then
degX = degIX .

COROLLARY 9. Let I be an ideal of codimension c which contains the Gorenstein ideal c.
Put J := c : I and s := r (R/c)− 1. Then we have

(a)
degJ = degc − degI ,

and if c< n and I is unmixed then

h1(R/J) =
1

2
(s − n + c + 1)[degI − degJ] + h1(R/I ).



Liaison and related topics: notes 85

(b) If I is unmixed and R/I is locally Cohen-Macaulay then also R/J is locally Cohen-
Macaulay and

H i
m
(R/J) ∼= Hn+1−c−i

m
(R/I )∨(−s) (i = 1, . . . ,n − c)

and
pR/J( j ) = pR/c( j )+ (−1)n−c pR/I (s − j ).

(c) If R/I is Cohen-Macaulay then also R/J has this property and

hR/J( j ) = hR/c( j )+ (−1)n−chR/I (s − j ).

Proof. Consider the version of Riemann-Roch (Lemma 9)

hR/I ( j )− pR/I ( j ) =
∑

i≥0

(−1)i rankK [H i
m
(R/I )] j .

Since the degree of the Hilbert polynomial ofH i
m
(R/I ) is at mosti − 1, we obtain for allj � 0

−pR/I ( j ) = (−1)n+1−c rankK [Hn+1−c
m

(R/I )] j + O( j n−1−c)

= (−1)n+1−c rankK [KR/I ]− j + O( j n−1−c).

Combined with the standard exact sequence this provides

pR/J( j ) = pR/c( j )+ (−1)n−c pR/I (s − j )+ O( j n−1−c).

Comparing coefficients we get ifc ≤ n

degJ = degc − degI .

Assume now that the idealI is unmixed. Lemma 3 implies that then the degree of the Hilbert
polynomial ofH i

m
(R/I ) is at mosti − 2. Thus, we obtain as above

pR/J S( j ) = pR/c( j )+ (−1)n−c pR/I (s − j )+ O( j n−2−c).

Hence, we get ifc < n

h1(R/J) = (s − n + 1 + c) degI + h1(R/I ) + h1(R/c).

But by duality we have
h1(R/c) = (s − n + 1 + c) degc.

Combining the last two equalities proves the second statement in (a).

The isomorphisms

H i
m
(R/J) ∼= Hn+1−i

m
(R/I )∨(−s) (i = 1. . . . ,n − c)

follow essentially from the long exact cohomology sequenceinduced by the standard sequence
taking into account Proposition 3.

The remaining claims in (a) - (c) are proved similarly as above. For details we refer to
[85].

REMARK 16. If I is unmixed but not locally Cohen-Macaulay then the formula in claim
(b) relating the local cohomologies ofI andJ is not true in general. For example, it is never true
if I defines a non-locally Cohen-Macaulay surface inP4.
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The last statement applies in particular to directly linkedideals. Thus, we obtain.

COROLLARY 10. Let V and W be directly linked. Then we have:

(a) V is arithmetically Cohen-Macaulay if and only if W is arithmetically Cohen-Macaulay.

(b) V is locally Cohen-Macaulay if and only if W has this property.

Before turning to examples we want to rewrite Claim (a) in Corollary 9 for curves in a more
familiar form.

REMARK 17. Let C1,C2 ⊂ Pn be curves linked by an arithmetically Gorenstein sub-
schemeX. Let g1 and g2 denote the arithmetic genus ofC1 and C2, respectively. Since by
definitiongi = 1 − h1(R/IXi ), Corollary 9 provides the formula

g1 − g2 =
1

2
(r (R/IX )− 1) · [degC1 − degC2].

In particular, ifX is a complete intersection cut out by hypersurfaces of degree d1, . . . ,dn−1 we
obtain

g1 − g2 =
1

2
(d1 + . . .+ dn−1 − n − 1) · [degC1 − degC2]

because the index of regularity ofX is

r (R/IX ) = d1 + . . .+ dn−1 − n.

EXAMPLE 12. (i) LetC ⊂ P3 be the twisted cubic parameterized by(s3, s2t, st2, t3). It is
easy to see thatC is contained in the complete intersectionX defined by

c := (x0x3 − x1x2, x0x2 − x2
1) ⊂ IC .

Then Corollary 9 shows thatc : IC has degree 1. In fact, we easily getc : IC = (x0, x1)

defining the lineL . Thus,C andL are geometrically linked byX andC is arithmetically Cohen-
Macaulay.

(ii) Let C ⊂ P3 be the rational quartic parameterized by(s4, s3t, st3, t4). C is contained in
the complete intersectionX defined by

c := (x0x3 − x1x2, x0x2
2 − x2

1x3) ⊂ IC .

Hencec : IC has degree 2. Indeed, it is easy to see that

c : IC = (x0, x1) ∩ (x2, x3).

This implies thatC is geometrically linked to a pair of skew lines. ThereforeC is not arithmeti-
cally Cohen-Macaulay (thanks to Example 6).

(iii) We want to illustrate Corollary 9 (c). LetI := (x2, xy, y4) ⊂ R := K [x, y] and let
c := (x3, y4) ⊂ I . We want to compute the Hilbert function ofR/J. Consider the following
table

j 0 1 2 3 4 5 6
hR/I ( j ) 1 2 1 1 0 0 0

hR/c( j ) 1 2 3 3 2 1 0

hR/J(5 − j ) 0 0 2 2 2 1 0
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The second row shows thatr (R/c) = 6. Thus by Corollary 9 (c), the last row is the second
row minus the first row. We get thatR/J has the Hilbert function 1,2, 2,2, 0, . . ..

We justify now Remark 3.

COROLLARY 11. Suppose I is an unmixed ideal of codimension c. If the Gorenstein ideal
c is properly contained in I then the idealsc : I and I are directly linked byc.

Proof. We have to show the equality

c : (c : I ) = I .

It is clear thatI ⊂ c : (c : I ). Corollary 9 (a) provides

deg[c : (c : I )] = degc − deg(c : I ) = degI .

Sincec : (c : I ) and I are unmixed ideals of the same codimension they must be equal.

Finally, we want to show how CI-linkage can be used to produceGorenstein ideals. To this
end we introduce.

DEFINITION 19. An ideal I ⊂ R is called an almost complete inter if R/I is Cohen-
Macaulay and I can be generated bycodimI + 1 elements.

EXAMPLE 13. The ideal(x0, x1)
2 is an almost complete inter.

The twisted cubicC ⊂ P3 is also an almost complete inter.

COROLLARY 12. Let I ⊂ R be an almost complete inter and letc ( I be a complete
intersection such thatcodimI = codimc and I = c + f R for some f∈ R. Then J:= c : I is a
Gorenstein ideal.

Proof. Consider the standard exact sequence

0 → c → c + f R → KR/J(1 − r (R/c)) → 0.

It shows thatKR/J has just one minimal generator (asR-module).

Let

0 → Fc
ϕc

−→ . . . → F1 → J → 0

be a minimal free resolution. Then the beginning of the minimal free resolution ofKR/J has the
form

. . . → F∗
c−1

ϕ∗
c

−→ F∗
c → KR/J(n + 1) → 0.

It follows that Fc must have rank 1, i.e.J is a Gorenstein ideal.

REMARK 18. Every Gorenstein ideal arises as in the previous corollary.

We only sketch the argument. Given a GorensteinJ of codimensionc we choose a complete
intersectionc of codimensionc which is properly contained inJ. Then I := c : J is an almost
complete inter andJ = c : I .
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6. Some basic results and c3onstructions

We begin this section by proving one of the results mentionedin Remark 6.

THEOREM 5. Let S ⊂ Pn be arithmetically Cohen-Macaulay satisfying property G1 (so
that linear equivalence is well-defined; see Definition 15 and the discussion preceding Theorem
4). Let C1,C2 ⊂ S be divisors such that C2 ∈ |C1 + t H |, where H is the class of a hyperplane
section and t∈ Z. Then C1 and C2 are G-linked in two steps.

Proof. Let Y be an effective twisted canonical divisor. Choose an integer a ∈ Z such that [IY ]a
contains a formA not vanishing on any component ofS. HenceHA − Y is effective onS.

Now, recall that

C2 ∈ |C1| ⇔ C2 − C1 is the divisor of a rational function onS

⇔ there existF,G of the same degree such that
(

F
G

)
= C2 − C1

(where
(

F
G

)
is the divisor of the rational functionFG )

⇔ there exists a divisorD such that
HF = C2 + D
HG = C1 + D

(in particular,F ∈ IC2 andG ∈ IC1).

Similarly,

C2 ∈ |C1 + t H | ⇔ there existF,G with degF = degG + t and a divisorD such that
HF = C2 + D
HG = C1 + D

(in particular,F ∈ IC2 andG ∈ IC1).

Note that the effective divisorHAF − Y is arithmetically Gorenstein, by Theorem 4. Then one
checks ifS is smooth that

(HAF − Y)− C2 = (HA − Y)+ (HF − C2) = (HA − Y)+ D

and
(HAG − Y)− C1 = (HA − Y)+ (HG − C1) = (HA − Y)+ D

ThereforeC2 is directly linked to(HA − Y) + D by the Gorenstein idealHAF − Y andC1 is
directly linked to the same(HA − Y)+ D by the Gorenstein idealHAG − Y. This concludes the
proof in the special case. For the general case we refer to [61], Proposition 5.12.

Theorem 5 was the first result that really showed that Gorenstein liaison is a theory about
divisors on arithmetically Cohen-Macaulay schemes, just as Hartshorne [50] had shown that CI-
liaison is a theory about divisors on complete intersections. It is fair to say that most of the
results about Gorenstein liaison discovered in the last fewyears use this result either directly or
at least indirectly.

REMARK 19. As pointed out to us by R. Hartshorne, there is an interesting point lurking
in the background here. Following [68] and [50], we say that asubschemeV2 ⊂ Pn is obtained
from a subschemeV1 ⊂ Pn by anelementary CI-biliaisonif there is a complete intersectionS in
Pn such thatV2 ∼ V1 + h H on S for some integerh ≥ 0, where∼ denotes linear equivalence.
It is not hard to show, and has long been known, thatV1 andV2 are CI-linked in two steps. It is
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a theorem ([50]) that the equivalence relation generated byelementary CI-biliaisons is the same
as the equivalence relation of even CI-liaison (see Definition 21).

Now, Theorem 5 naturally suggests the idea of saying thatV2 is obtained fromV1 by an
elementary G-biliaisonif there is an arithmetically Cohen-Macaulay schemeS with property
G1 such thatV2 ∼ V1 + h H on S for some integerh ≥ 0. It is an open problem to determine
if the equivalence relation generated by elementary G-biliaisons is the same as the equivalence
relation of even G-liaison. It is conceivable that schemesV1 andV2 could be evenly G-linked,
but no sequence of elementary G-biliaisons beginning withV1 can arrive atV2.

As mentioned above, many of the results about Gorenstein liaison in fact use elementary
G-biliaisons, so the results are actually slightly stronger in this sense.

Theorem 5 clearly needs theG1 assumption since linear equivalence was used. In general,
without G1, it is not always possible to talk about divisors of the formHA − Y. However, we
will see now that there is a notion of “adding” a hypersurfacesection even if theG1 assumption
is relaxed. This construction was given in Lemma 6 and was called “Basic Double Link” there.
Now we will see why this name was chosen. In Lemma 6 almost no assumption was made on
the idealJ. Here we present it in more geometric language, and we have toassume at leastG0
in order to get a liaison result.

PROPOSITION7 (BASIC DOUBLE G-LINKAGE ). Let S⊂ Pn be an arithmetically Cohen-
Macaulay subscheme satisfying G0. Let C ⊂ S be an equidimensional subscheme of codimen-
sion 1 and let A∈ R be homogeneous with IS : A = IS (i.e. A does not vanish on any component
of S). Then IC and IS + A · IC are G-linked in two steps.

REMARK 20. As we will see, the idealIS + A · IC represents the divisorC + HA on S. If
degA = d andSsatisfiesG1 then the schemeY defined by the idealIY + IS + A · IC is in the
linear system|C + d H|. But in our level of generality, linear systems may not make sense. See
[73] for a more detailed discussion of these divisors.

Proof of Proposition 7(sketch)

The unmixedness statement in Lemma 6 shows that in particular, IY = IS + A · IC is
saturated. Furthermore, from the exact sequence (2) we can make a Hilbert function calculation:

hR/IY (t) = hR/IS(t)− hR/IS(t − d)+ hR/IC (t − d).

It follows that
degY = degC + d · degS

= degC + degHA.

The idea of the proof is to mimic the proof of Theorem 5 in an algebraic way. We proceed in
four steps:

Step I: Let c = codimS. TheG0 hypothesis is enough to guarantee that there exists aGorenstein
ideal J ⊂ R with IS ⊂ J, codimJ = c + 1 andJ/IS is Cohen-Macaulay of Cohen-Macaulay
type 1 (cf. [61]). Since codimC > codimS, there existsB ∈ IC of some degree,e, such that
IS : B = IS (i.e. B does not vanish on any component ofS).

Step II: One checks thatIS + B · J is Gorenstein andIS + B · J ⊂ IC . HenceIS + B · J links
IC to some ideala which is unmixed.
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Step III: IS + AB · J is Gorenstein and is contained inIY = IS + A · IC . HenceIS + AB · J
links IY to some idealb which is unmixed.

Step IV: One can check thata ⊂ b and compute that dega = degb. Since both are unmixed of
the same dimension, it follows thata = b. HenceIC is G-linked toIY in two steps.

REMARK 21. A special case of Proposition 7 is worth mentioning. Suppose thatS is a
complete intersection,IS = (F1, . . . , Fc), and IY = A · IC + (F1, . . . , Fc). Then all the
links in Proposition 7 are complete intersections. This construction is calledBasic Double CI-
Linkage; cf. [63], [18], [43]. As an even more special case, suppose that c = 1 and hence
codimC = 2. LetF ∈ IC and assume thatA, F have no common factor. ThenIY = A· IC+(F).
This construction is central to the Lazarsfeld-Rao property, which we will discuss below. This
property is only known in codimension two.

A different way of viewing Basic Double Linkage, as a specialcase of Liaison Addition,
will be discussed next.

Liaison Addition was part of the Ph.D. thesis of Phil Schwartau [101]. The problem which
he originally considered was the following. Consider curves C1,C2 ⊂ P3. Suppose that
H1

∗ (IC1) = M1 and H1
∗ (IC2) = M2. Find an explicit construction of a curveC for which

H1
∗ (IC) = M1 ⊕ M2.

The first observation to make is that this is impossible in general!! We give a simple exam-
ple.

EXAMPLE 14. Let C1 and C2 be two disjoint sets of two skew lines. We have noticed
(Example 6) thatH1

∗ (IC1) = H1
∗ (IC2) = K , a graded module of dimension 1 occurring in

degree 0. So the question is whether there exists a curveC with H1(IC) = K 2, a 2-dimensional
module occurring in degree 0. Suppose that such a curve exists. LetL be a general linear form
defining a hyperplaneH . We have the long exact sequence

0 → H0(IC) → H0(IC(1)) → H0(IC∩H |H (1)) → H1(IC) → H1(IC(1)) → . . .

|| || || ||

0 0 2 0

Note thath0(IC(1)) = 0 since otherwiseC would be a plane curve, hence a hypersurface
and hence arithmetically Cohen-Macaulay. But this means that C is a curve whose general
hyperplane section lies on a pencil of lines inP2. This forces degC = 1, henceC is a line and
is thus arithmetically Cohen-Macaulay. Contradiction.

However, an important idea that we have seen in Section 3 is that theshiftof the modules is
of central importance. Hence the refined problem that Schwartau considered is whether there is
a construction of a curveC for which H1

∗ (IC) = M1 ⊕ M2 up to shift. As we will see, he was
able to answer this question and even a stronger one (allowing the modules to individually have
different shifts), and his work was for codimension two in general. The version that we will give
is a more general one, however, from [43]. The statement, butnot the proof, were inspired by
[101], which proved the caser = 2.

THEOREM 6. Let V1, . . . ,Vr be closed subschemes ofPn, with 2 ≤ r ≤ n. Assume that
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codimVi ≥ r for all i . Choose homogeneous polynomials

Fi ∈
⋂

1 ≤ j ≤ r
j 6= i

IVj for 1 ≤ i ≤ r

such that(F1, . . . , Fr ) form a regular sequence, hence defining a complete intersection, V ⊂ Pn.
Let di = degFi . Define the ideal I= F1 · IV1 + · · · + Fr · IVr . Let Z be the closed subscheme
of Pn defined by I (which a priori is not saturated). Then

(a) As sets, Z= V1 ∪ · · · ∪ Vr ∪ V ;

(b) For all 1 ≤ j ≤ n − r = dim V we have

H j
∗ (IZ) ∼= H j

∗ (IV1)(−d1)⊕ · · · ⊕ H j
∗ (IVr )(−dr );

(c) I is saturated.

We will not give the proof of this theorem, but refer the reader to [43] or to [72].

REMARK 22. Note that we allowV1, . . . ,Vr to be of different codimensions, we allow
them to fail to be locally Cohen-Macaulay or equidimensional, and we even allow them to be
empty. In fact, this latter possibility gives another approach to Basic Double CI-Linkage (cf.
Remark 21). Indeed, if we letV2 = · · · = Vr = ∅, with IV2 = · · · = IVr = R, and setV1 = C
andV = Sas in Remark 21, then the ideal

I = F1 · IV1 + · · · + Fr · IVr
= F1 · IV1 + (F2, . . . , Fr )

is precisely the ideal of the Basic Double CI-Linkage.

An application of Liaison Addition is to the construction ofarithmetically Buchsbaum
curves, or more generally arithmetically Buchsbaum subschemes of projective space. We will
give the basic idea here and come back to it in Section 11.

DEFINITION 20. A curve C⊂ Pn is arithmetically Buchsbaumif H 1
∗ (IC) is annihilated

by the “maximal ideal” m = (x0, . . . , xn). A subscheme V⊂ Pn of dimension d≥ 2 is
arithmetically Buchsbaum if Hi∗(IV ) is annihilated bym for 1 ≤ i ≤ d and furthermore the
general hyperplane section V∩ H is an arithmetically Buchsbaum scheme in H= Pn−1.

Buchsbaum curves inP3, especially, are fascinating objects which have been studied exten-
sively. A rather large list of references can be found in [72]. Liaison Addition can be used to
construct examples of arithmetically Buchsbaum curves with modules whose components have
any prescribed dimensions, up to shift. Indeed, Schwartau’s original work [101] already pro-
duced examples of modules of any dimension, concentrated inone degree. The more general
result was obtained in [17]. The idea is to use sets of two skewlines as a “building block” to
build bigger curves. We will give the basic idea with an example, omitting the proof of the
general result.

EXAMPLE 15. Recall (Example 6) that the deficiency module of a set of two skew lines is
one-dimensional as aK -vector space, and the non-zero component occurs in degree 0. Further-
more, this is the minimal shift for that module. LetC1 andC2 be two such curves. HowC1 and
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C2 meet (i.e. whether they are disjoint from each other, meet infinitely many points or contain
common components) is not important. LetF1 ∈ IC2 andF2 ∈ IC1 such thatF1 andF2 have no
common factor. Note that degFi ≥ 2. Then the curveC obtained byIC = F1 · IC1 + F2 · IC2 is
arithmetically Buchsbaum and its deficiency module is the direct sum of twists of the deficiency
modules ofC1 andC2. In particular, this module is 2-dimensional as aK -vector space. The
components occur in degrees degF1 and degF2. In particular, the components can be arbitrar-
ily far apart, and regardless of how far apart they are, the leftmost component occurs in degree
≥ 2. Furthermore, an example can be obtained for which this component is in degree exactly
2 (for instance by choosingF1 with degF1 = 2 and thenF2 of appropriate degree). Note that
2 = 2 · 2 − 2 (see Proposition 8).

An arithmetically Buchsbaum curve whose module is 3-dimensional as aK -vector space
can then be constructed by taking the Liaison Addition ofC with another set of two skew lines,
and it is clear that this process can be extended to produce any module (up to shift) which is
annihilated bym. Furthermore, if we produce in this way a curve whose deficiency module has
dimensionN as aK -vector space, a little thought shows that this can be done insuch a way that
the leftmost non-zero component occurs in degree≥ 2N − 2, and that a sharp example can be
constructed. We refer to [17] for details.

This approach was also used in [43] to construct arithmetically Buchsbaum curves inP4,
and in [19] to construct certain arithmetically Buchsbaum surfaces inP4 with nice properties.

One would like to have an idea of “how many” of the Buchsbaum curves can be constructed
using this approach together with Basic Double Linkage (which preserves the module but shifts
it to the right, adding a complete intersection to the curve). The first step was obtained in [41]:

PROPOSITION8. Let C ⊂ P3 be an arithmetically Buchsbaum curve. Let

N = dim H1
∗ (IC) =

∑

t∈Z

hi (IC(t)).

Then the first non-zero component of H1
∗ (IC) occurs in degree≥ 2N − 2.

Proof. The proof is an easy application of a result of Amasaki ([1], [42]) which says thatC lies
on no surface of degree< 2N. We refer to [41] for the details.

It follows that the construction of Example 15 provides curves which are in the minimal
shift for their module. We will see below that the Lazarsfeld-Rao property then gives an incred-
ible amount of information about all arithmetically Buchsbaum curves, once we know even one
curve in the minimal shift. It will turn out that this construction together with Basic Double
Linkage, givesall arithmetically Buchsbaum curves inP3 up to deformation. Furthermore, this
construction will even give us information about arithmetically Buchsbaum stick figures.

7. Necessary conditions for being linked

Since (direct) linkage is symmetric, the transitive closure of this relation generates an equivalence
relation, called liaison. However, it will be useful to study slightly different equivalence classes.

As in the previous sections we will restrict ourselves to subschemes ofPn and ideals ofR =

K [x0, . . . , xn], although the results are more generally true for subschemes of an arithmetically
Gorenstein scheme.
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DEFINITION 21. Let I ⊂ R denote an unmixed ideal. Then the even G-liaison class of I is
the set

LI = {J ⊂ R | I
c1
∼ I1

c2
∼ . . .

c2k
∼ J}

wherec1, . . . , c2k are Gorenstein ideals. If we require that all idealsc1, . . . , c2k are complete
intersections that we get the even CI-liaison class of I .

The even G-liaison class and the even CI-liaison class of an equidimensional subscheme
V ⊂ Pn are defined analogously.

REMARK 23. It is clear from the definition that every G-liaison classconsists of at most
two even G-liaison classes and that every CI-liaison class consists of at most two even CI-liaison
classes.

A liaison class can agree with an even liaison class, for example, if it contains a self-linked
element. On the other hand, it was shown by Rao [96] that thereare liaison classes that coincide
with even liaison classes but contain no self-linked elements, the simplest being the liaison class
of two skew lines inP3.

The next result has been shown in various levels of generality by Chiarli, Schenzel, Rao,
Migliore.

LEMMA 11. If V ⊂ Pn is an equidimensional locally Cohen-Macaulay subscheme and
W ∈ LV then there is an integer t such that

H i
∗(IW) ∼= H i

∗(IV )(t) for all i = 1, . . . , dimV.

Proof. This follows immediately from the comparison of the cohomology of directly linked
locally Cohen-Macaulay subschemes (Corollary 9) because we have for every finitely generated
gradedR-moduleM that(M∨)∨ ∼= M.

Our next goal is to show that there is a stronger result which is true even ifV is not locally
Cohen-Macaulay. For this we have to consider certain types of exact sequences. The names have
been coined by Martin-Deschamps and Perrin [68].

DEFINITION 22. Let I ⊂ R be a homogeneous ideal of codimension c≥ 2.

(i) An E-type resolution of I is an exact sequence of finitely generated graded R-modules

0 → E → Fc−1 → . . . → F1 → I → 0

where the modules F1, . . . , Fc−1 are free.

(ii) An N-type resolution of I is an exact sequence of finitelygenerated graded R-modules

0 → Gc → . . . → G2 → N → I → 0

where G2, . . . ,Gc are free R-modules and Hi
m
(N) = 0 for all i with n + 2 − c ≤ i ≤ n.

REMARK 24. (i) The existence of anE-type resolution is clear because it is just the be-
ginning of a free resolution ofI . For the existence of anN-type resolution we refer to [85].
However, we will see that for an unmixed ideal the existence follows by liaison.

(ii) It is easy to see that

H i
m
(N) ∼= H i−1

m
(R/I ) for all i ≤ n + 1 − c
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and
H i

m
(E) ∼= H i−c

m
(R/I ) for all i ≤ n.

This shows that the modulesE andN “store” the deficiency modules ofR/I .

(iii) The sheafificationsẼ and Ñ are vector bundles if and only ifI defines an equidimen-
sional locally Cohen-Macaulay subscheme.

By definition, the moduleE is ac-syzygy. It is not to difficult to check thatN must be a
torsion-free module. However, if the idealI is unmixed then these modules have better proper-
ties.

LEMMA 12. Using the notation of Definition 21 the following conditionsare equivalent:

(a) The ideal I is unmixed.

(b) The module N is reflexive, i.e. the bilinear map N× N∗ → R, (m, ϕ) 7→ ϕ(m), induces
an isomorphism N→ N∗∗.

(c) The module E is a(c + 1)-syzygy.

Proof. This follows from the cohomological characterization of these concepts.

The next result establishes the crucial fact thatE-type andN-type resolutions are inter-
changed under direct linkage.

PROPOSITION9. Let I, J ⊂ R be homogeneous ideals of codimension c which are directly
linked byc. Suppose I has resolutions of E- and N-type as in Definition 21. Let

0 → Dc → . . . → D1 → c → 0

be a minimal free resolution ofc. Put s= r (R/c)+ n. Then J has an N-type resolution

0 → F∗
1 (−s) → Dc−1 ⊕ F∗

2 (−s) → . . . → D2 ⊕ F∗
c−1(−s) → D1 ⊕ E∗(−s) → J → 0

and an E-type resolution

0 → N∗(−s) → Dc−1 ⊕ G∗
2(−s) → . . . → D1 ⊕ G∗

c(−s) → J → 0.

Proof. We want to produce anN-type resolution ofJ. We proceed in several steps.

(I) ResolvingE we get an exact sequence

. . . → Fc+1
ϕc+1
−→ Fc

ϕc
−→ Fc−1 → . . . → F1

ϕ1
−→ I → 0.

↘ ↗

E
↗ ↘

0 0

Dualizing with respect toR gives a complex

0 → R → F∗
1 → . . . → F∗

c−1
ϕ∗

c
−→ F∗

c
ϕ∗

c+1
−→ F∗

c+1

and an exact sequence

0 → E∗ → F∗
c
ϕ∗

c+1
−→ F∗

c+1.
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If follows kerϕ∗
c+1

∼= E∗, thus ExtcR(R/I , R) ∼= E∗/ imϕ∗
c . Moreover, we get by duality that

kerϕ∗
i+1/ imϕ∗

i
∼= ExtiR(R/I , R) ∼= Hn+1−i

m
(R/I )∨(1 − r (R)) = 0 if i < c

because dimR/I = n + 1 − c. Therefore we can splice the two complexes above together and
the resulting diagram

0 → R → F∗
1 → . . . → F∗

c−1 −→ E∗ → ExtcR(R/I , R) → 0
↘ ↗

imϕ∗
c

↗ ↘

0 0

is exact.

(II) The self-duality of the minimal free resolution ofR/c and Corollary 6 provideDc =

R(−s) andD∗
c−i

∼= Di (s) for all i = 1, . . . , c − 1.

(III) Put r := r (R/c)−1. The standard exact sequence provides the following diagram with
exact rows and column:

0
↓

KR/J(−r )
↓

0 → R(−s) → Dc−1 → . . . → D1 → R → R/c → 0
↓

0 → E → Fc−1 → . . . → F1 → R → R/I → 0
↓

0.

Since the modulesD1, . . . , Dc−1 are free the epimorphismR/c → R/I lifts to a morphism of
complexes. Thus, using steps (I) and (II) we get by dualizingwith respect toR the commutative
exact diagram:

Extc−1
R (KR/J, R)(−r )

↓

0 → R → F∗
1 → . . . → F∗

c−1 → E∗ → ExtcR(R/I , R) → 0
‖ ↓ ↓ ↓ ↓ α

0 → R → Dc−1(s) → . . . → D1(s) → R(s) → ExtcR(R/c, R) → 0.

SinceKR/J has dimensionn+1−c we obtain by duality Extc−1
R (KR/J , R) = 0. Moreover, we

have already seen that Extc
R(R/I , R) ∼= KR/I (n + 1) and ExtcR(R/c, R) ∼= R/c(s). It follows

that α is injective and, by comparison with the standard exact sequence, cokerα ∼= R/J(s).
Thus, the mapping cone procedure provides an exact sequencewhich begins withR/J(s) and
ends withR. However, it can be shown that this last module can be canceled. The result is the
N-type resolution ofJ as claimed becauseE∗ meets the cohomological requirements (cf. [3],
Theorem 4.25 and [37], Theorem 3.8).

The claimedE-type resolution ofJ can be obtained by similar arguments.

Using Remark 24 we obtain as first consequence the generalization of Lemma 11.
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COROLLARY 13. Let V,W ⊂ Pn be equidimensional subschemes. If W∈ LV then there
is an integer t such that

H i
∗(IW) ∼= H i

∗(IV )(t) for all i = 1, . . . , dimV.

This result gives necessary conditions forV andW being in the same even liaison class. In
order to state a stronger consequence of Proposition 9 we need.

DEFINITION 23. The E-type and the N-type resolution, respectively, of I aresaid to mini-
mal if it is not possible to cancel free direct summands. Theyare uniquely determined by I up to
isomorphism of complexes.

Letϕ(I ) denote the last non-vanishing module in a minimal E-type resolution of I , and let
ψ(I ) denote the second non-vanishing module in a minimal N-type resolution of I .

We considerϕ andψ as maps from the set of ideals into the set of maximalR-modules.
If the E-type andN-type resolutions in Definition 22 are minimal then we haveϕ(I ) = E and
ψ(I ) = N. Basically we will ignore possible free direct summands ofϕ(I ) andψ(I ). This is
formalized as follows.

DEFINITION 24. Two graded maximal R-modules M and N are said to be stably equivalent
if there are finitely generated, free R-modules F,G and an integer t such that

M ⊕ F ∼= N(t)⊕ G.

The stable equivalence class of M is the set

[M] := {N | N is stably equivalent to M}.

Using Proposition 9 repeatedly we get the following relation between even liaison and cer-
tain stable equivalence classes.

THEOREM 7 (RAO’ S CORRESPONDENCE). The mapϕ induces a well-defined map8 :
Mc → ME,LI 7→ [ϕ(I )], from the setMc of even liaison classes of unmixed ideals in R
of codimension c into the setME of stable equivalence classes of finitely generated(c + 1)-
syzygies.

The mapψ induces a well-defined map9 : Mc → MN ,LI 7→ [ψ(I )], from the set
Mc of even liaison classes into the setMN of stable equivalence classes of finitely generated
reflexive modules N which satisfy Hi

m
(N) = 0 for all i with n − c + 2 ≤ i ≤ n.

REMARK 25. (i) Rao’s correspondence provides the following diagram with two commut-
ing squares

Mc
8

−→ ME
↓ α ↓ β

Mc
9

−→ MN
↓ α ↓ β

Mc
8

−→ ME

whereα is induced by direct linkage andβ is induced by dualization with respect toR.

(ii) Combining Rao’s correspondence with Horrocks’ classification of stable equivalence
classes of vector bundles onPn in terms of cohomology groups and extensions [55] gives a
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stronger result than Corollary 13 in the case of locally Cohen-Macaulay subschemes. Hor-
rocks’ result gives for example: ifC is a curve then the stable equivalence class ofψ(IC) is
determined byH1

∗ (IC) ∼= H2
m
(ψ(IC)). For a locally Cohen-Macaulay surfaceS ⊂ Pn the sta-

ble equivalence class ofψ(IS) is determined by the triple(H2
m
(ψ(IS)), H3

m
(ψ(IS)), η) where

η ∈ Ext2R(H
3
m
(ψ(IS)), H2

m
(ψ(IS))). For the modules associated to schemes of dimension≥ 3

Horrocks’ classification becomes less elegant.

In particular, the modulesH1
∗ (IS) andH2

∗ (IS) are not enough to determine the even liaison
class. This is illustrated, for instance, in Example 16.

The next result gives more information on Rao’s correspondence.

PROPOSITION10. For every c≥ 2 the maps8 and9 occurring in Rao’s correspondence
are surjective.

Proof. Fixing c it suffices to show the claim for one of the maps according to the previous
remark.

Let c = 2. Let M ∈ MN be a module of rankr . Then fors � 0 a sufficiently general map
Rr−1(−s) → M provides an exact sequence

0 → Rr−1(−s) → M → I (t) → 0

wheret is an integer andI is an unmixed ideal of codimension two. This result is sometimes
referred to as Theorem of Bourbaki.

Forc ≥ 3 the claim is shown in [2].

Rao’s correspondence gives the strongest known necessary conditions for two subschemes
belonging to the same even G-liaison class. For even CI-liaison classes of ideals of codimension
c ≥ 3 there are additional necessary conditions (cf. [57], [61]).

The next example illustrates the fact that Rao’s correspondence provides stronger necessary
conditions than Corollary 13.

EXAMPLE 16. The Koszul complex resolves the idealm = (x0, . . . , x4) over
R := K [x0, . . . , x4]

0 → R(−5) → R5(−4) −→ R10(−3) → R10(−2) −→ R5(−1) → m → 0.
↘ ↗ ↘ ↗

�3 �1

↗ ↘ ↗ ↘

0 0 0 0

The modules�3 and�1 are defined as the indicated syzygy modules.

There is a surfaceS⊂ P4 admitting an exact sequence

0 → (�3(−1))2
α

−→ R(−4)⊕ (�1(−3))2 → IS → 0.

If the mapα is general enough thenS is a smooth rational surface of degree 10 ([32], Example
B1.15). Moreover, its deficiency modules are

H1
∗ (IS) ∼= K 2(−3)

H2
∗ (IS) ∼= K 2(−1).
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Denote by�2 the second syzygy module ofm in the Koszul complex above. There is a surface
T ⊂ P4 such that there is an exact sequence

0 → R15(−4) → (�2)2 ⊕ (�1(−2))2 → IT → 0.

The deficiency modules ofT are

H1
∗ (IT ) ∼= K 2(−2)

H2
∗ (IT ) ∼= K 2.

Thus, we obtain
H i

∗(IS) ∼= H i
∗(IT )(−1) for i = 1, 2.

This leaves open the possibility thatS andT are evenly linked. But in fact,S andT belong to
different even liaison classes becauseϕ(IS) andϕ(IT ) are not stably equivalent ([87], Example
7.4). Taking concrete examples forS andT this can be checked by looking at their hyperplane
sections. LetH ⊂ P4 be a general hyperplane. It is not difficult to see thatS ∈ LT would imply
S∩ H ∈ LT∩H , but the latter is impossible because

m · H1
∗ (IT∩H ) = 0, but m · H1

∗ (IS∩H ) 6= 0.

In other words, the surfaceT is arithmetically Buchsbaum, but the surfaceS is not arithmetically
Buchsbaum. Using Rao’s correspondence one can show that theproperty of being arithmetically
Buchsbaum is preserved under direct linkage (cf. [99]. [87]) which again impliesS /∈ LT .

8. Sufficient conditions for being linked

In Section 7 we have seen that Rao’s correspondence relates even liaison classes to certain stable
equivalence classes. Moreover, this correspondence is surjective. Thus, an ideal result would be
an affirmative answer to the following.

MAIN QUESTION1. Are the maps8 and9 in Rao’s correspondence injective for allc ≥ 2?

In this section we will discuss this question. It is worthwhile to point out special cases of
the Main question. We begin with a definition.

DEFINITION 25. A subscheme V⊂ Pn is licci if it is in the CI-liaison class of a complete
intersection. V isglicci if it is in the G-liaison class of a complete intersection.

REMARK 26. (i) Since for an arithmetically Cohen-Macaulay subscheme V the modules
8(IV ) and9(IV ) are free, i.e. stably equivalent to the zero module, in this case the Main
question takes the form:

Question 1: Is it true that a subschemeV is arithmetically Cohen-Macaulay if and only if
it is glicci, i.e. in the G-liaison class of a complete intersection?

(ii) Let C, D ⊂ Pn be two curves. Then it is not to difficult to see, and it is a special case of
Horrocks’ results [55], that the following conditions are equivalent:

(a) 8(IC) and8(ID) are stably equivalent.

(b) 9(IC) and9(ID) are stably equivalent.

(c) H1
∗ (IC) ∼= H1

∗ (ID)(t) for somet ∈ Z.



Liaison and related topics: notes 99

Hence, for curves the main question specializes to:

Question 2: Is it true that two curvesC, D ⊂ Pn belong to the same even G-liaison class if
and only if H1

∗ (IC) ∼= H1
∗ (ID)(t) for somet ∈ Z?

(iii) Strictly speaking we should ask the Main question and the two questions above for
G-liaison and CI-liaison, separately. We state only the Main question for CI-liaison.

Question 3:Let V,W ⊂ Pn be two equidimensional subschemes of the same codimension.
Is it true thatV andW belong to the same even CI-liaison class if and only if8(IV ) and8(IW)
are stably equivalent?

For subschemes of codimension two the answer to all these questions is ‘yes’ because of
the following result which is essentially due to Rao [94] (cf. also [90], [85]).

THEOREM8. Let I, I ′ ⊂ R be unmixed homogeneous ideals of codimension2 with N-type
resolutions

0 →

s⊕

i=1

R(−ai )
δ

−→ N → I → 0

and

0 →

s⊕

i=1

R(−bi )
ε

−→ N(h) → I ′ → 0.

Then I and I′ belong to the same even liaison class.

Proof. We only outline the proof but give enough details to see wherethe problems are in ex-
tending the argument for ideals of higher codimension.

Case 1:SupposeN is a freeR-module. ThenI and I ′ are standard determinantal ideals
and the claim follows from the more general Theorem 9.

Case 2:Suppose thatN is not free. Then, possibly after linkingI and I ′ in an even number
of steps to new ideals, we may assume thatN does not have a free direct summand.

Write imδ = (m1, . . . ,ms) and imε = (n1, . . . ,ns) wheremi R = δ(R(−ai )) andni R =

ε(R(−bi )). Suppose thatmi = ni for i < t ≤ s.

We want to show that we can find idealsI1 ∈ LI and I ′
1 ∈ LI ′ havingN-type resolutions

wheremi = ni for i ≤ t . Then, repeating this process at mosts times our statement follows.

Choose an integerp � 0 and elementsu, v ∈ [N] p whose imagesf1, f2 in I andg1, g2
in I ′ generate complete intersectionsc and c′, respectively. PutJ = c : I and J ′ = c′ : I ′.
According to Proposition 9 these ideals haveE-type resolutions as follows:

0 → N∗(−2p) → R2(−p)⊕

s⊕

i=1

R(ai − 2p) → J → 0,

0 → N∗(2h − 2p) → R2(h − p)⊕

s⊕

i=1

R(bi + 2h − 2p) → J ′ → 0.

Let f ∈ J be the generator of the image ofR(at − 2p) in J and letg ∈ J ′ be the generator
of the image ofR(bt + 2h − 2p); f andg are not zero becauseN does not have a free direct
summand. Since{ f1, f2} and {g1, g2} are regular sequences it is possible to findλ,µ ∈ K
such thatd = ( f, f ′) andd′ = (g, g′) are complete intersections wheref ′ = λ f1 + µ f2 and
g′ = λg1 + µg2. Put I1 = d : J and I ′

1 = d′ : J ′. SinceN does not have a free direct
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summand theE-type resolutions ofJ and J ′ above must be minimal. It follows thatf, f ′ are
minimal generators ofJ and thatg, g′ are minimal generators ofJ ′. Therefore we can split off
R(−p)⊕ R(at − 2p) respectivelyR(h − p)⊕ R(bt + 2h − 2p) in the N-type resolution ofI1
respectivelyI ′

1 given by Proposition 9. The resulting resolutions are:

0 →
⊕

i 6=t

R(at − ai − p)⊕ R(at − 2p)
α

−→ N(at − p) → I1 → 0,

0 →
⊕

i 6=t

R(bt − bi + h − p)⊕ R(bt + 2h − 2p)
α′

−→ N(bt + h − p) → I ′
1 → 0

where the image ofα is generated bym1, . . . ,mt−1,mt+1, . . . ,ms, λu + µv and the image of
α′ is generated byn1, . . . ,nt−1,nt+1, . . . , ns, λu + µv. This means that we have reached our
goal by replacingmt andnt , respectively, byλu + µv.

Let us look at this proof in case the codimension ofI and I ′ is at least three. We can still
split off terms in theN-type resolutions ofI1and I ′

1 at the end of these resolutions (as in the
proof above). But since the resolutions are longer this is not enough to guarantee the splitting at
the beginning of the resolution which would be needed to complete the argument.

As pointed out in Remark 26, the last result has an implication for space curves.

COROLLARY 14. Let C, D ⊂ P3 be two curves. Then D∈ LC if and only if H1
∗ (IC) ∼=

H1
∗ (ID)(t) for some t∈ Z.

We still have to prove Case 1 in the previous proposition, which is a result of Gaeta. It can
be generalized to arbitrary codimension [61]. For this we recall the following.

DEFINITION 26. If A is a homogeneous matrix, we denote by I(A) the ideal of maximal
minors of A. Ifϕ : F → G is a homomorphism of free graded R-modules then we define
I (ϕ) = I (A) for any homogeneous matrix A representingϕ after a choice of basis for F and
G. A codimension c+ 1 ideal I ⊂ R will be called astandard determinantal idealif I X = I (A)
for some homogeneous t× (t + c)matrix, A. In a similar way we define standard determinantal
subscheme ofPn.

It is well-known that every standard determinantal subscheme is arithmetically Cohen-
Macaulay.

Now we can state one of the main results of [61]. The case of codimension two was due to
Gaeta, and this generalization thus bears his name.

THEOREM 9 (GENERALIZED GAETA THEOREM). Every standard determinantal ideal is
glicci.

Proof. The proof is essentially an algorithm describing how the required links can be achieved.
We outline the steps of this algorithm but refer to [61], Theorem 3.6 for the complete proof. The
interested reader is invited to run the algorithm with a concrete example.

Let I ⊂ R be a standard determinantal ideal of codimensionc + 1. Thus, there is a homo-
geneoust × (t + c)matrix A with entries inR such thatI = I (A). If t = 1 thenI is a complete
intersection and there is nothing to prove. Lett > 1. Then our assertion follows by induction on
t if we have shown thatI is evenly G-linked to a standard determinantal schemeI ′ generated by
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the maximal minors of a(t − 1) × (t + c − 1) matrix A′. Actually, we will see thatA′ can be
chosen as the matrix which we get after deleting an appropriate row and column of the matrix
A and that thenI and I ′ are directly G-linked in two steps. In order to do that we proceed in
several steps.

StepI: Let B be the matrix consisting of the firstt + c − 1 columns ofA. Then the ideal
a := I (B) has codimensionc, i.e. it is a standard determinantal ideal.

Possibly after elementary row operations we may assume thatthe maximal minors of the
matrix A′ consisting of the firstt − 1 rows of B generate an ideal of (maximal) codimension
c + 1. Denote this standard determinantal ideal byI ′ := I (A′).

StepII: Possibly after elementary column operations we may assume that the maximal mi-
nors of the matrixA1 consisting of the firstt − 1 columns ofA generate an ideal of (maximal)
codimension two. PutJ = I (A1). Let d be the determinant of the matrix which consists of the
first (t − 1) and the last column ofA. Then one can show that

(i) a : d = a.

(ii) I = (a + d R) : J.

(iii) a + d Jc−1 is a Gorenstein ideal of codimensionc + 1.

(iv) dega + d Jc−1 = degd · dega + deg(a + Jc−1).

StepIII: Consider fori = 0, . . . , c the idealsIS + J i . These are Cohen-Macaulay ideals of
degree

deg(a + J i ) = i · [degd · dega − degI ].

The proof involves in particular a deformation argument.

StepIV: Comparing degrees it is now not to difficult to check that

(a + d Jc−1) : I = a + Jc.

StepV: Let d′ be the determinant of the matrix which consists of the first(t − 1) columns
of A′. Then, similarly as above,a + d′ Jc−1 is a Gorenstein ideal of codimensionc + 1 and

(a + d′ Jc−1) : I ′ = a + Jc.

StepVI: Step V says that the idealI ′ is directly G-linked toa + Jc while Step IV gives that
I is directly G-linked toa + Jc. Hence the proof is complete.

EXAMPLE 17. Let C ⊂ Pn denote a rational normal curve. It is well-known that after
a change of coordinates we may assume that the homogeneous ideal of C is generated by the
maximal minors of the matrix (

x0 . . . xn−1
x1 . . . xn

)
.

Hence,C is standard determinantal and therefore glicci by Gaeta’s theorem.

On the other hand the curveC has a linear free resolution, i.e. its minimal free resolution
has the shape

0 → Rβn−1(−n) → . . . → Rβ1(−2) → IC → 0.

Hence, [57], Corollary 5.13 implies forn ≥ 4 that the curveC is not licci, i.e. not in the CI-
liaison class of a complete intersection.
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Let us look back to the questions posed at the beginning of this section. The previous
example shows that the answer to Question 3 is ‘no’, i.e. Rao’s correspondence is not injective
for CI-liaison in codimension≥ 3. Gaeta’s theorem indicates that the situation might be different
for G-liaison. In fact, there is more evidence that Question1 could have an affirmative answer.
To this end we consider certain monomial ideals.

DEFINITION 27. A monomial ideal J⊂ R is said to bestableif

m = xa0
0 · · · xan

n ∈ J and ai > 0 imply
x j

xi
· m ∈ J

for all 1 ≤ j < i ≤ n.

THEOREM 10. Suppose that the ground field K is infinite. Then every Cohen-Macaulay
Borel-fixed monomial ideal is glicci.

Proof. The main tools are basic double links and liftings of monomial ideals (cf. [75]). We
only outline the main steps of the proof and refer for detailsto [76]. Moreover, we assume for
simplicity thatK has characteristic zero.

Step I: Let J ⊂ R be a Cohen-Macaulay stable monomial ideal of codimensionc + 1.
Denote by

α := min{t ∈ Z | [ I ]t 6= 0}

its initial degree. Then there are uniquely determined Artinian stable idealsI0, . . . , Iα ⊂ T :=
K [x1, . . . , xc] such that

I0 ⊂ I1 ⊂ . . . ⊂ Iα = T

and
J = I0R + x0I1R + x2

0 I2R + · · · + xα0 IαR

= I0R + x0I ′

whereI ′ = I1R + x0I2R + · · · + xα−1
0 IαR.

It follows that

(i) I0R is a Cohen-Macaulay ideal of codimensionc.

(ii) I0R ⊂ I ′ becauseI0R ⊂ I1R ⊂ I ′.

(iii) I ′ is a Cohen-Macaulay ideal of codimensionc + 1.

Step II: Now we want to lift monomial ideals inT to reduced ideals inS := T [x0].

Consider the lifting mapλ : {monomials inT} → {monomials inS} given by

c∏

j =1

x
a j
j 7→

c∏

j =1




a j −1∏

i=0

(x j + i x0)


 .

(Here the assumption on the characteristic is used. In general, one just has to choose sufficiently
general linear forms in order to replace monomials by products of linear forms as above.) For
example, we getλ(x3

1x2
2) = x1(x1 + x0)(x1 + 2x0)x2(x2 + x0).

The properties of the lifting map ensure thatλ(I0) is a reduced ideal defining a set of points
in Pc. Therefore this set has the propertyG1.
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Step III: Using the stability ofJ one can show thatλ(I0)R ⊂ I ′ and

J = λ(I0)R + x0I ′.

Thus,J is a basic double link ofI ′ and Proposition 7 shows thatI ′ ∈ LJ . But the initial degree
of I ′ is α − 1. Repeating this argument successively we see thatI0R + x0R ∈ LJ . Hence it is
sufficient to show thatI0R + x0R is glicci. But this follows becauseI0R is glicci by induction
on the codimension. The claim is clearly true for ideals of codimension one.

Theorem 10 is of a more general nature than it is apparent fromits formulation.

REMARK 27. Let V ⊂ Pn be an arithmetically Cohen-Macaulay subscheme. It is well-
known its generic initial idealgin(IV ) is a stable ideal and defines an arithmetically Cohen-
Macaulay subscheme which is a deformation of the original schemeV . Indeed, the fact that
gin(IV ) is stable is due to Galligo [39]; that it gives a flat deformation is due to Bayer [6];
that it is again Cohen-Macaulay follows from a result of Bayer and Stillman (cf. [35], Theorem
15.13). Thus our result says that every arithmetically Cohen-Macaulay subscheme admits a flat
deformation which is glicci. In other words, we have found anaffirmative answer to Question 1
“up to flat deformation.”

In view of Remark 27, we consider Theorem 10 as the strongest evidence that Question 1
might have an affirmative answer. However, there is also other evidence.

REMARK 28. The results about linear systems (Theorem 5) can be used to show that many
arithmetically Cohen-Macaulay subschemes are glicci. This becomes particularly effective for
divisors on arithmetically Cohen-Macaulay subschemes with known Picard group. Some typical
results of this approach are

(i) All arithmetically Cohen-Macaulay curves on a general smooth rational arithmetically
Cohen-Macaulay surface inP4 are glicci ([61], Corollary 8.9).

(ii) Let S ⊂ P4 be a general arithmetically Cohen-Macaulay surface such that all the entries
of its Hilbert-Burch matrix have positive degree. Then all arithmetically Cohen-Macaulay
curves onSare glicci ([26]).

(iii) Effective arithmetically Cohen-Macaulay divisors on a smooth rational normal scroll are
glicci ([24]).

(iv) Every general set of points inP3 on a nonsingular quadric surface is glicci ([53]). More
generally, every general set of points on a smooth rational surface scroll is glicci ([24],
Theorem 3.4.2).

One of the few sufficient conditions for linkage in higher codimension was mentioned in
Remark 5, and now we sketch the proof.

PROPOSITION11. Any two complete intersections of the same codimension are CI-linked.

Proof. (Sketch of proof from [101])

The proof rests on the following observation: IfIX1 = (F1, . . . , Fc−1, F) and IX2 =

(F1, . . . , Fc−1,G) are two complete intersections of codimensionc then they are directly linked
by the complete intersectionIX = (F1, . . . , Fc−1, FG). Then the proof follows by changing
one entry at a time.
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From this it would follow that if one could show that every arithmetically Gorenstein scheme
is glicci, then all arithmetically Gorenstein schemes are in the same G-liaison class. However,
this is not known. It is true if the codimension is at most three. Then an arithmetically Gorenstein
subscheme is even licci ([107]).

Moreover, Hartshorne [53] has proposed interesting examples. He suspects that a set of 20
general points inP3 as well as the general curve in the irreducible component of the Hilbert
scheme of curves inP4 of degree 20 and genus 26 containing standard determinantalcurves is
not glicci.

There are also some results for non-arithmetically Cohen-Macaulay subschemes indicating
that even the Main question might have an affirmative answer:

• Hartshorne [53] and Lesperance [64] independently showed that any two sets of two skew
lines inP4 are G-linked. (See also the Conjecture at page 111.) Hartshorne also obtained
partial results on other curves with Rao modulek.

• Lesperance [64] showed that curves inP4 consisting of unions of two plane curves are (at
least “usually”) linked if and only if they have the same Rao module.

• Lesperance [65] showed that ifC andC′ are degenerate arithmetically Buchsbaum curves
in P4 (not necessarily in the same hyperplane) thenC andC′ are evenly G-linked if and
only if they have isomorphic Rao modules up to shift.

• Casanellas and Miró-Roig [25], [26] showed the same for many subschemes of small
degree (not necessarily curves), especially unions of linear varieties; their idea was to
view them as divisors on a suitable rational normal scroll.

• Nagel, Notari and Spreafico [89] proved for double lines inPn and for some other non-
reduced curves on lines, that they are evenly linked if and only if they have isomorphic
Rao modules up to shift.

The proof of the last result differs from the others by not using the result about the G-liaison
classes of divisors on arithmetically Cohen-Macaulay subschemes with the propertyG1. Indeed,
the non-reduced curves that are considered are not even divisors on a generically Gorenstein
surface.

Note also that the Hartshorne-Rao modules of the curves considered in the first results men-
tioned above are rather simple while the curves studied in [88], [89] can have a rather complicated
Hartshorne-Rao module.

9. The structure of an even liaison class

We have seen a rather complete description of when two subschemes are linked in codimension
two. The main result is Theorem 8, and it is one of the main results of liaison theory. We
have discussed to some extent the possibility of extending this result to higher codimension (e.g.
Theorem 9), and we will continue to discuss it below. As we saw, it is more natural to consider
evenliaison.

Another natural question is whether the even liaison classes possess a common structure of
any sort. We will see that in codimension two there is a nice answer. Again, one can try to extend
it to higher codimension, and we will also discuss the evidence for and against this idea. The
following remark sets up the background.

REMARK 29. LetV ⊂ Pn be an equidimensional closed subscheme of codimensionc. Let
Mi = H i

∗(IV ) for 1 ≤ i ≤ dim V = n − c. LetLV be the even liaison class ofV . Note that
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• The vector of graded modulesM• = (M1, . . . ,Mn−c) is an invariant ofLV , up to shift
(Lemma 11).

• There is a minimal shift of this vector that can occur among subschemes ofPn (Proposi-
tion 5; see Definition 11 for the definition of minimal shift).

• Hence there is a minimal shift of this vector among elements of LV (which is not neces-
sarily the same as the minimal shift among all subschemes inPn with vectorLV , except
for curves inP3).

• Although leftward shifts ofM• may not exist, any rightward shift ofM• does exist thanks
to Basic Double Linkage (Lemma 6, Remark 22).

DEFINITION 28. If an element W∈ LV has cohomology which achieves the minimal shift,
among elements ofLV , guaranteed by Proposition 5, we say that W is aminimal element of its
even liaison class, or that W is in the minimal shift ofLV . We write W∈ L0

V .

EXAMPLE 18. Let Z1 be the disjoint union inP3 of a line,λ, and a conic,Y. We have the
exact sequence

0 → IZ1 → Iλ ⊕ IY −→ R → H1
∗ (IZ1) → 0

↘ ↗

Iλ + IY
↗ ↘

0 0

SinceIλ+ IY contains three independent linear forms, we conclude thatH1
∗ (IZ1)

∼= K [x]/(x2)

for some linear formx. Therefore the module is one-dimensional in each of degrees0 and 1,
and zero everywhere else. However, notice that the module structure is not trivial: multiplication
from the degree 0 component to the degree 1 component by the linear formx is not zero.

Note further that this curve is in the minimal shift of its even liaison class, thanks to the
bound (3) which says that in negative degree the dimensions have to be strictly increasing.

Now consider a Buchsbaum curveZ2, obtained via Liaison Addition as in Example 15, with
deficiency module which is 1-dimensional in each of two consecutive degrees. The smallest such
curve that can be so constructed is obtained by choosingC1 andC2 in Example 15 to each be a
pair of skew lines, and degF1 = 2, degF2 = 3. Then the first non-zero component ofH1

∗ (IZ1)

occurs in degree 2 which, thanks to Proposition 8, is the minimal shift.

Note that thestructureof these two modules,H1
∗ (IZ1) andH1

∗ (IZ2), is different (the latter
is annihilated by all linear forms), even though dimensionally they are the same. Hence they are
not in the same (even) liaison class.

For an example of surfaces where even the modules are isomorphic but the liaison classes
are different, see Example 16.

REMARK 30. LetV ⊂ Pn be temporarily an equidimensional scheme of codimensionc ≥

2. Then it is clear how to adapt the above definition ofL0
V . Note, that we have already defined

the (cohomological) minimal shift in Definition 11. Strictly speaking we should distinguish even
a third notion of minimal shift suggested by Rao’s correspondence. This provides the following
list:

(i) The (cohomological) minimal shift ofV is the integer

c(V) := min

{
t ∈ Z |

There is a subschemeW ⊂ Pn of codimensionc with
H i

∗(IW) ∼= H i
∗(IV )(−t)

}
.
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(ii) The minimal Rao shift ofV is the integer

r (V) := min

{
t ∈ Z |

There is a subschemeW ⊂ Pn of codimensionc with
ϕ(IV )⊕ F ∼= ϕ(IW)(−t)⊕ G for free R-modulesF,G

}
.

(iii) The minimal shift of the even G-liaison classLV is the integer

l (V) := min

{
t ∈ Z |

There is a subschemeW ∈ LV with
ϕ(IV )⊕ F ∼= ϕ(IW)(−t)⊕ G for free R-modulesF,G

}
.

According to Remark 24 and Rao’s correspondence we have the following inequalities

c(V) ≤ r (V) ≤ l (V).

Moreover, ifV is a curve thenc(V) = r (V), but if the dimension ofV is at least 2 we can have
c(V) < r (V).

If the codimension ofV is two we getr (V) = l (V) due to Theorem 8. It would be in-
teresting to know if this equality is also true in codimension c ≥ 3. This would follow from
an affirmative answer to the Main question 1, but it is conceivable that the Main question has a
negative answer andr (V) = l (V) is still always true.

In [85], Proposition 5.1 a lower bound forr (V) is given which cannot be improved in
general. It would be interesting to have a priori estimates for c(V) andl (V) as well.

We now describe a structure of an even liaison class, generally called theLazarsfeld-Rao
property. As remarked above, this property is only known to hold in codimension two, so we
now make this assumption. Later we will discuss the possibility of extending it.

Let L be an even liaison class of codimension two subschemes ofPn. For simplicity we
will assume that the elements ofL are locally Cohen-Macaulay, and of course they must be
equidimensional. (The locally Cohen-Macaulay assumptionwas removed by Nagel [85] and by
Nollet [90].)

As we have seen (e.g. Theorem 9), the arithmetically Cohen-Macaulay codimension two
subschemesforman even liaison class. (In this case any two schemes are both evenly and oddly
linked.) We thus assume that the elements ofL arenotarithmetically Cohen-Macaulay, soM• is
not zero (i.e. at least one of the modules, not necessarily all, is non-zero). Then it follows from
Remark 29 that we can partitionL according to the shift ofM•:

L = L0 ∪ L1 ∪ L2 ∪ · · · ∪ Lh ∪ . . . .

Here,L0 was defined in Definition 28 and consists of the minimal elements. ThenLh consists of
those elements ofL whose deficiency modules are shiftedh degrees to the right of the minimal
shift.

In Remark 21 we saw the notion of Basic Double CI-Linkage and in particular we gave
the version for codimension two: LetV1 be a codimension two subscheme ofPn and choose
F2 ∈ IV1 of degreed2 and F1 ∈ R of degreed1 such that(F1, F2) forms a regular sequence
(i.e. a complete intersection). ThenF1 · IV1 + (F2) is the saturated ideal of a schemeZ which is
CI-linked toV1 in two steps. Furthermore,

H i
∗(IZ) ∼= H i

∗(IV1)(−d1) for i = 1, . . . ,n − 2.

As sets,Z = V1 ∪ V whereV is the complete intersection defined by(F1, F2). Note that if
V1 ∈ Lh thenZ ∈ Lh+d1. A concrete description of the two links can be given as follows (first
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noted in [63]): LetA ∈ IV1 be any homogeneous polynomial having no component in common
with F2. Then linkV1 to some intermediate schemeY using the complete intersection(A, F2),
and linkY to Z using the complete intersection(AF1, F2).

One can also check, using various methods, that theE-type resolutions ofV1 and Z are
related as follows. IfIV1 has anE-type resolution

0 → E →

m⊕

i=1

OPn(−ai ) → IV1 → 0,

whereH1
∗ (E) = 0, thenIZ has anE-type resolution

(5) 0 → E(−d1)⊕ OPn(−d1 − d2) →

m⊕

i=1

OPn(−d1 − ai )⊕ OPn(−d2) → IZ → 0,

Note that the stable equivalence ofE andE(−d1)⊕ OPn(−d1 − d2) is obvious.

The Lazarsfeld-Rao property says, basically, that in an even liaison class, all the minimal
elements look alike and that the entire class can be built up from an arbitrary minimal element
using Basic Double Linkage and deformation. More precisely, we have the following statement.

THEOREM 11 (LAZARSFELD-RAO PROPERTY). Let L be an even liaison class of codi-
mension two subschemes ofPn.

(a) If V1,V2 ∈ L0 then there is a flat deformation from one to the other through subschemes
all in L0.

(b) If V0 ∈ L0 and V ∈ Lh (h ≥ 1) then there is a sequence of subschemes V0,V1, . . . , Vt
such that for all i ,1 ≤ i ≤ t , Vi is a basic double link of Vi−1, and V is a deformation of
Vt through subschemes all inLh.

We stress that the deformations mentioned in Theorem 11 are carried out entirely within the
even liaison classL. They preserve cohomology, not only dimensionally but evenstructurally.

Theorem 11 was first proved for codimension two locally Cohen-Macaulay subschemes of
Pn in [4]. At approximately the same time, it was proved (as partof a much broader theory) for
curves inP3 in [68]. It was proved for codimension two subschemes of a smooth arithmetically
Gorenstein subscheme in [20]. Finally, in codimension two it was later extended to arbitrary
unmixed ideals in [85] and [90]. We now give the general idea of the proof of [4], and refer the
reader to that paper for the details, as well as to [68], [85] and [90].

Proof. (Sketch) There are three basic components of the proof.

1. (Bolondi, [16]) If V1,V2 ∈ Lh (in particular they have the same deficiency modules) and
if they have the same Hilbert function then the desired deformation can be found. So it is
reduced to a question of Hilbert functions.

2. If V1,V2 ∈ Lh and if they donothave the same Hilbert function then by studying locally
freeN-type resolutions one can show that there is a “smaller”V ′ in the even liaison class
(i.e.V ′ ∈ Lh′

for someh′ < h). Combined with the first part, this proves that the minimal
elements all lie in the same flat family.
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3. GivenV0 ∈ L0 andV ∈ Lh, by studying (5) and knowing thatV0 andV are linked in
an even number of steps, it is possible to “predict” what basic double links are needed
to start withV0 and arrive at a schemeVt with E-type resolution which agrees (except
for the maps) with that ofV , up to trivially adding free summands to both modules in
the resolution. This means thatV andVt have the same Hilbert function and deficiency
modules, so we again apply the first part.

REMARK 31. (i) From the name “Lazarsfeld-Rao property” one would naturally expect that
the paper [63] of Lazarsfeld and Rao was important in the development of the above theorem. In
fact, it really inspired it (although many people doubted that something so general would hold).
We can state the main result of [63] in the following way. For acurveC ⊂ P3, let

e(C) := max{t |h2(IC(t)) 6= 0} = max{t |h1(OC(t)) 6= 0} = max{t |h0(ωC(−t)) 6= 0}.

Then

a. If C lies on no surface of degreee(C) + 3 thenLC has the Lazarsfeld-Rao property and
C ∈ L0

C .

b. If C lies on no surface of degreee(C)+ 4 then furthermoreC is theonly element ofL0
C.

For example, suppose thatC ⊂ P3 is a set of≥ 2 skew lines. Thene(C) = −2. Thus since
C cannot lie on a surface of degree 1, part a. gives thatC ∈ L0

C. If C furthermore does not lie
on a quadric surface thenC is the only minimal element of its even liaison class.

Similarly, one can apply it to rational curves, wheree(C) = −1, and get analogous state-
ments: a rational curve lying on a quadric surface is not minimal (it is linked to a set of skew
lines), one lying on a cubic surface is minimal but not unique(it moves in a linear system) and
one not lying on a cubic surface is the unique minimal curve. Adifferent, more geometric ap-
proach to the minimality of skew lines and rational curves (not using [63]), and other related
questions, can be found in [70].

(ii) Let us recall the concept of elementary CI-biliaison (in the case of curves). LetC ⊂ Pn

be a curve which is an effective divisor on a complete intersection surfaceS ⊂ Pn. Let F1 be a
hypersurface meetingS transversally such thatC ⊂ S∩ F1. Let C′ be the curve linked toC by
S∩ F1. Choose a hypersurfaceF2 such that it meetsS transversally andC′ ⊂ S∩ F2. Denote by
C′′ the curve linked toC′ by S∩ F2. Then it is said thatC′′ is obtained fromC by anelementary
CI-biliaison on S. It is calledascendingif degF2 − degF1 ≥ 0, otherwisedescending. As
already indicated in Remark 19C′′ is obtained fromC by an elementary CI-biliaison onS if and
only if C′′ ∼ C + h H. Observe that elementary CI-biliaison is a generalizationof basic double
CI-linkage (cf. Remark 21). Recently, in [104] R. Strano hasobtained the following variant
of the Lazarsfeld-Rao property: LetC ⊂ P3 be a curve which is not arithmetically Cohen-
Macaulay. ThenC can be obtained from a minimal curve in its even liaison classby finitely
many ascending elementary CI-biliaisons. Thus, using the more general elementary biliaison
instead of basic double links we can avoid the possible final deformation which is allowed in
Theorem 11.

REMARK 32. If one knows the Hilbert function of a curveC in P3 (or of a codimension two
subscheme in general) then one can write the Hilbert function of all possible basic double links
from C. Hence the Lazarsfeld-Rao property can be used to give a complete list of all possible
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(d, g) = (degree,genus) combinations that occur in an even liaison class (g is thearithmetic
genus), if one only knows it for a minimal element.

For example consider curves inP3 that are arithmetically Buchsbaum but not arithmeti-
cally Cohen-Macaulay. In Example 15 we saw one way to construct them, such that the result
has its leftmost component in degree 2N − 2 (whereN = dimk H1

∗ (IC)), which according to
Proposition 8 makes it a minimal element of its even liaison class. Hence its degree, genus,
and even its Hilbert function, are uniquely determined, thanks to the Lazarsfeld-Rao property.
The following, from [72], is a complete list of the possible(d, g) that can occur for arithmeti-
cally Buchsbaum curves inP3 whend ≤ 10. It includes two curves for whichN = 2: one
with (d, g) = (8,5) andH1

∗ (IC) concentrated in degree 2, and one with(d, g) = (10, 10) and
dimk H1

∗ (IC)2 = dimk H1
∗ (IC)3 = 1. The rest have dimk H1

∗ (IC) = 1.

degree 2 3 4 5 6 7 8 9 10
genus −1 d.n.e. 0 1 3 4,6 5,6,8 10 8, 9, 15 10, 11, 13, 15, 21

Note that there is no such curve of degree 3.

As was the case with the necessary and sufficient conditions for G-linkage, the biggest
open problem is to find a way to extend these results to higher codimension. One intermediate
situation was studied in [20] (cf. also [85]), where liaisonwas studied not in projective space but
rather on a smooth arithmetically Gorenstein subvarietyX of projective space. It was shown that
codimension two liaison here behaves almost identically tothat in Pn, even though of course
the objects being linked have codimension greater than two in Pn. These results have been
further generalized in [85] to codimension two subschemes of an arbitrary integral arithmetically
Gorenstein subscheme.

One interesting difference concerns arithmetically Cohen-Macaulay subvarieties. Here we
mean arithmetically Cohen-Macaulay in projective space (i.e. the deficiency modules vanish),
but such a subvariety need not have a finite resolution over the Gorenstein coordinate ringR/IX .
It was shown that the notion of minimality still makes sense,viewed not in terms of the shift of
the modules (which are zero) but rather in terms ofN-type resolutions. Then it was shown that
the Lazarsfeld-Rao property holds in such a situation onX.

Note that the linkage onX is by complete intersections onX, which however are only
arithmetically Gorenstein as subschemes ofPn. But if we turn to Gorenstein liaison inPn with
no such restriction, the situation becomes much less optimistic.

First, we can see right away that there is no hope for a statement which is identical to that
for codimension two. The following example was taken from [72]. Consider the non-degenerate
curve inP4 in the following configuration:

B
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This curve is arithmetically Gorenstein. As such, it links two skew lines to a curve of degree 3
consisting of the disjoint union of a line and two lines meeting in a point. One checks that both
of these curves have Rao module which is one dimensional, occurring in degree 0. Since this is
the minimal shift, it is clear that the elements ofL0 do not all have the same degree, hence are
not in a flat family.

So if there is a nice structure for an even liaison class underGorenstein liaison, what should
the statement be? The next natural guess, due to Hartshorne [53] is that perhaps the elements of
L0 satisfy the property that while there may be curves of different degrees, those curves of the
same degree at least lie in a flat family. He showed this for theliaison class of two skew lines.
However, it was shown to be false in general by Lesperance [64], who gave an example of two
sets of curves “usually” in the same even liaison class whichare in the minimal shift and have
the same degree and even arithmetic genus, but which do not lie in the same flat family. His
example was extended somewhat by Casanellas [24], who looked at the same kind of curves but
in P5. (Lesperance was not able to show that all of his curves are inthe same even liaison class,
even though they do have the same Rao module. Casanellas showed that this obstacle disappears
in P5.)

So at the moment no one has a good idea of how to find an analog to the Lazarsfeld-Rao
property for Gorenstein liaison of subschemes ofPn of codimension≥ 3. A first problem seems
to be to find a good concept of a minimal element of an even G-liaison class. In the even liaison
classL of a non-arithmetically Cohen-Macaulay subscheme of codimension two, the minimal
elements are the elements of smallest degree inL and all these elements have the same Hilbert
function. In particular, a non-arithmetically Cohen-Macaulay curve of degree two inP3 must be
minimal in its even liaison class. In higher codimension thesituation is very different. It is still
true that two curves of degree two inPn are in the same even liaison class if and only if their
Hartshorne-Rao modules are isomorphic according to [88], but such curves can have different
genera.

A naive idea would be to define the minimal elements in an even G-liaison class as the
ones achieving the minimal shift and having minimal Hilbertpolynomial. Consider the curves
of degree two inPn whose Hartshorne-Rao module is isomorphic to the ground field K . Such a
curve can have every arithmetic genusg satisfying−n−1

2 ≤ g ≤ −1, but it is non-degenerate

if and only if −n−1
2 ≤ g ≤ 2 − n ([88]). Thus, forn ≥ 4 minimal curves in the sense just

discussed were degenerate.

It should be remarked that the authors wonder if the Lazarsfeld-Rao property, even as it is
stated in codimension two, might hold for CI-liaison in higher codimension. There are some
encouraging result in [57].

10. Remarks on the different liaison concepts

We have already seen that for subschemes whose codimension is at least three, G-linkage and
CI-linkage generate very different equivalence classes. In this section we want to discuss these
differences a bit more systematically. Finally, we comparebriefly the equivalence classes gener-
ated by (algebraic) CI-linkage and geometric CI-linkage.

As we have mentioned in Section 7, Rao’s correspondence gives the only known method
for distinguishing between G-liaison classes. The situation is different for CI-liaison. There are
various invariants, numerical ([56]) as well as structural([23], [57], [61]), which allow one to
distinguish between CI-liaison classes of arithmeticallyCohen-Macaulay subschemes. In order
to give the flavour of such invariants, we state a particularly clean result which has been shown
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in [23] by algebraic means, whereas a more geometric proof has been given in [61], Proposition
6.8.

THEOREM 12. Suppose V,W ⊂ Pn, n ≥ 4, are arithmetically Cohen-Macaulay sub-
schemes of codimension3. If V and W belong to the same CI-liaison class then there are
isomorphisms of graded R-modules

H i
m
(KV ⊗R IV ) ∼= H i

m
(KW ⊗R IW) for all i = 1, . . . , n − 3.

In other words, the modulesH i
m
(KV ⊗R IV ) are invariants of the CI-liaison class ofV .

They must vanish ifV is licci.

COROLLARY 15. Let V ⊂ Pn, n ≥ 4, be an arithmetically Cohen-Macaulay subscheme of
codimension3. If V is licci then Hi

m
(KV ⊗R IV ) = 0 for all i = 1, . . . ,n − 3.

Proof. Let I ⊂ R be a complete intersection of codimension three. Then we have the following
isomorphisms (ignoring degree shifts)

KR/I ∼= R/I ;

thus
KR/I ⊗R I ∼= I /I 2 ∼= (R/I )3.

SinceH i
m
(R/I ) = 0 for i ≤ n − 3 becauseR/I is Cohen-Macaulay, Theorem 12 proves the

claim.

For example, this result can used to reprove that the rational normal curve inP4 is not licci
(cf. Example 17).

In [61], the previous theorem has been used to investigate CI-liaison classes of curves on a
Castelnuovo surface.

EXAMPLE 19. LetS ⊂ P4 be a general Castelnuovo surface, i.e. the blow-up of a set of8
general points inP3 embedded intoP4 by the linear system| 4E0 − 2E1 − E2 − . . . − E8 |.
Note thatS is an arithmetically Cohen-Macaulay surface of degree 5 which contains a rational
normal curveC of P4. Denote byHS the general hyperplane section ofS. Furthermore, denote
by C j any curve in the linear system| C + j HS |. Then we have (cf. [61], Example 7.9)

(a) The curveC j is not licci if j ≥ 0.

(b) The curvesCi andC j belong to different CI-liaison classes whenever 1≤ i < j and
j ≥ 3.

Since we know that all arithmetically Cohen-Macaulay curves on S are glicci (cf. Remark 28)
we obtain that the G-liaison class ofC contains infinitely many CI-liaison classes.

So far CI-liaison invariants beyond the G-liaison invariants given by Rao’s correspondence
are known only for arithmetically Cohen-Macaulay subschemes. It seems plausible to expect
such additional invariants also for non-arithmetically Cohen-Macaulay subschemes. The prob-
lem of finding them deserves further investigation. Here is possibly the simplest situation. In
[71] the following conjecture was made.

Conjecture. If C is a set of two skew lines inP4, spanning a hyperplaneH , and if C′ is
another set of two skew lines inP4, spanning a hyperplaneH ′, thenC is in the CI-liaison class
of C′ if and only if H = H ′.
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This conjecture would say that somehow the hyperplaneH is a geometric invariant of the
CI-liaison class ofC, so there must be some other algebraic invariant in additionto the Rao
module. We have seen above that Hartshorne and Lesperance independently showed thatC and
C′ are in the same G-liaison class, so this invariant would not hold for G-liaison.

We have seen that liaison in codimension two has two natural generalizations in higher
codimension: CI-liaison and G-liaison. The former can be understood as a theory about divisors
on complete intersections while G-liaison is a theory aboutdivisors on arithmetically Cohen-
Macaulay schemes with propertyG1. Thus, G-liaison is a much coarser equivalence relation
than CI-liaison. It has the advantage that it is well suited for studying linear systems. The even
CI-liaison classes are rather small. In fact, it seems very difficult to find enough invariants which
would completely characterize an even CI-liaison class.

It is also worth mentioning two disadvantages of G-liaison.The first is related to our thin
knowledge of arithmetically Gorenstein subschemes. Givena subschemeV , it is difficult to find
“good” G-links of V ; i.e. “good” arithmetically Gorenstein subschemesX containingV , where
“good” often means small. For example, it is not too difficultto determine the smallest degree
of a complete intersection containingV , while it is not known how to find an arithmetically
Gorenstein subscheme of smallest degree containingV .

The second concerns lifting the information on hyperplane sections. IfV,W ⊂ Pn are
arithmetically Cohen-Macaulay subschemes andH ⊂ Pn is a general hyperplane such that
V ∩ H and W ∩ H are linked by the complete intersection̄X ⊂ H then there is a complete
intersectionX ⊂ Pn linking V to W such thatX̄ = X ∩ H . The corresponding conclusion fails
if we replace “complete intersection” by “arithmetically Gorenstein” (cf. [61], Example 2.12).

In Section 5 we defined geometric CI-linkage. It is also a symmetric relation, thus its tran-
sitive closure is an equivalence relation which is essentially the same as CI-liaison. However, we
have to be a little bit careful what we mean here. IfV is not a generic complete intersection then
clearly it does not participate in a geometric CI-link. Thus, we make the following definition.

DEFINITION 29. Let H(c, n) denote the set of all equidimensional generic complete inter-
sections ofPn of codimension c.

Note that this differs from the corresponding definition of Rao [94] not only in allowing
arbitrary codimension, but also in removing his assumptionthat the schemes are locally Cohen-
Macaulay.

Geometric CI-liaison is an equivalence relation onH(c, n) while CI-liaison is an equiva-
lence relation of the set of all equidimensional subschemesof Pn having codimensionc. But if
we restrict the latter toH(c, n) we get the following:

THEOREM13. Algebraic and geometric CI-linkage generate the same equivalence relation
on H(c,n). That is, if V,W ∈ H(c,n) are two generic complete intersections such that there is
a sequence of (algebraic) CI-links

V ∼ V1 ∼ . . .Vs ∼ W

with all Vi ∈ H(c,n) then there is a sequence of geometric CI-links from V to W.

For the proof we refer to [61], Theorem 4.14. The result generalizes Rao’s Theorem 1.7 in
[94] which deals with the casec = 2.

The last result leaves open the following problem. Suppose there areV,W ∈ H(c, n) such
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that there is a sequence of algebraic CI-links

V ∼ V1 ∼ . . .Vs ∼ W

where some of theVi arenotgeneric complete intersections. Is there still a sequence of geometric
CI-intersections fromV to W?

The answer is known in codimension two. It uses the observation of Rao ([94], Remark 1.5)
that for a givenf ∈ IV whereV ∈ H(2,n) there is always a formg ∈ IV of sufficiently large
degree such that the complete intersection defined by( f, g) links V to a schemeV ′ which is also
a generic complete intersection. Combining this fact with an analysis of the arguments which
establish injectivity of Rao’s correspondence in codimension two one gets the following:

THEOREM 14. Let V,W ∈ H(2,n) be two subschemes such that there is a sequence of
(algebraic) CI-links

V ∼ V1 ∼ . . .Vs ∼ W.

Then there is a sequence of geometric CI-links from V to W.

For details of the proof we refer to [61],Theorem 4.16.

It is an open question if the analogue of Theorem 14 is also true for subschemes of codi-
mensionc ≥ 3.

11. Applications of liaison

In this section we mention some applications of liaison thathave been made in the literature. It
is not at all intended to be a complete list.

11.1. Construction of arithmetically Gorenstein schemes with nice properties

Here we describe in somewhat more detail the result of [77] mentioned on page 79. It represents
one of the few applications so far of Gorenstein liaison as opposed to complete intersection
liaison.

It is an open question to determine what Hilbert functions are possible for Artinian Goren-
stein gradedK -algebras. Indeed, this seems to be intractable at the moment. However, it was
shown by Harima [46] that the Hilbert functions of the Artinian Gorenstein gradedK -algebras
with the Weak Lefschetz property(cf. Definition 14) are precisely the SI-sequences (see page
79 for the definition). Another open question is to determinethe possible Hilbert functions of
reduced, arithmetically Gorenstein subschemes ofPn of any fixed codimension. Again, it is not
clear if this problem can be solved or not, but in the same way as the Artinian case, we have a
partial result. That is, in [77] it was shown that every SI-sequence gives rise to a reduced union
of linear varieties which is arithmetically Gorenstein andwhose general Artinian reduction has
the Weak Lefschetz property.

REMARK 33. It would be very nice to show that every reduced arithmetically Gorenstein
subscheme has the property that its general Artinian reduction has the Weak Lefschetz property.
If this were the case, then the result of [77] would give a classification of the Hilbert functions
of reduced arithmetically Gorenstein subschemes ofPn, namely they would be those functions
whose appropriate difference is an SI-sequence.
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The construction given in [77] is somewhat technical, and wegive only the main ideas. One
of the interesting points of this construction is that it works in completely the opposite direction
from the usual application of liaison. That is, instead of starting with a schemeV and finding
a suitable arithmetically Gorenstein schemeX containing it, we start with a (very reducible)
arithmetically Gorenstein schemeX and find a suitable subschemeV to link usingX. Here are
the main steps of the proof.

(a) Suppose that we have ageometriclink V1
X
∼ V2, whereV1 (and hence alsoV2) are

arithmetically Cohen-Macaulay, andX is arithmetically Gorenstein (not necessarily a
complete intersection). Suppose you know the Hilbert function of V1 and of X. Then
using Corollary 9 we can write the Hilbert function ofV2 (see also Example 12 (iii)).
From the exact sequence

0 → IX → IV1 ⊕ IV2 → IV1 + IV2 → 0

we also can get the Hilbert function ofR/(IV1 + IV2).

(b) Using induction on the codimension, we construct our arithmetically Gorenstein schemes
X which are not complete intersections in general. They have the following properties.

(i) They aregeneralized stick figures. This means that they are the reduced union of
linear varieties of codimensionc (say), and no three components meet in a linear
variety of codimensionc + 1. In the case of curves, this is precisely the notion of a
stick figure.

There are several advantages to using generalized stick figures for X. First, there
are many possible subconfigurations that we can link usingX, if we can just devise
a way to find the “right” ones. Second, any such link is guaranteed to be geometric,
since X is reduced. Third, after making such a link and finding the sumof the
linked ideals, the result is guaranteed to be reduced, thanks to the fact that it is a
generalized stick figure! (This idea was used earlier in [44]for the case of CI-linked
stick figure curves inP3.)

(ii) Their Hilbert functions are “maximal” with a flat part inthe middle. They are con-
structed inductively as a sum of G-linked ideals, by finding asuitable subset with
“big” Hilbert function, which in turn is constructed by Basic Double G-Linkage.
For example, here are theh-vectors of the arithmetically Gorenstein schemes in
low codimension:

codim 2: 1 2 3. . . t − 1

codim 3: 1 3 6. . .
(t
2
)

codim 4: 1 4 10. . .
(t+1

3
)

flat︷ ︸︸ ︷
t t . . . t
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2

) (t+1
2

)
. . .
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3
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3

)
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(t
2
)
. . .6 3 1

(t+1
3

)
. . .10 4 1

(c) The schemesX obtained in (b) will be used to link. We will assume that codimX = c−1
and construct our schemes in codimensionc. Suppose that a desired SI-sequenceh is
given. We use the formula of part (a) to work backwards, to determine the Hilbert function
of an arithmetically Cohen-Macaulay subconfigurationV1 ⊂ X that would be needed to
produceh as a sum of linked ideals.
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(d) We use our knowledge of the schemesX to prove that an arithmetically Cohen-Macaulay
schemeV1 ⊂ X, as described in (c), in fact does exist. This is the most technical part of
the proof.

11.2. Smooth curves inP3

A. A long-standing problem, with many subtle variations, was to determine the possible pairs
(d, g) of degree and genus of smooth curves inP3 (or Pn). This was solved by Gruson and
Peskine [45] for curves inP3 and by Rathmann [97] for curves inP4 andP5. Substantial
progress has been made by Chiantini, Ciliberto and Di Gennaro [28] in higher projective
spaces.

One variation of this problem is to determine a bound for the (arithmetic) genus of a
non-degenerate, integral, degreed curveC ⊂ P3 lying on an irreducible surfaceS of
degreek, and to describe the extremal curves. This problem was solved by Harris [47],
who gave a specific bound. Furthermore, he showed that the curves which are extremal
with respect to this bound are precisely the curves residualto a plane curve via certain
complete intersections. Note that they are thus arithmetically Cohen-Macaulay. (A deeper
problem is to bound the genus of a smooth curve inP3 not lying on any surface of degree
< k. There is much progress on this problem, beginning with workof Hartshorne and
Hirschowitz [54].)

B. Harris’ work mentioned above used the Hilbert function ofthe general hyperplane section
of the curveC. He showed that the general hyperplane section must have theUniform
Position Property (see Definition 13). (Note that Harris’ proof of the uniform position
property for a general hyperplane section required characteristic zero. It has been proved
in characteristicp for Pn, n ≥ 4, by Rathmann [97].) This led to natural questions:

Q1. What are all the possible Hilbert functions for the general hyperplane section of an
integral curve inP3? (Same question forPn.)

Q2. What are all the possible Hilbert functions for the general hyperplane section of an
integral arithmetically Cohen-Macaulay curve inP3? (Same question forPn.)

Q3. What are all the possible Hilbert function of sets of points in P2 with the Uniform
Position Property? (Same question forPn−1.)

Q4. Do the questions above (for fixedn) have the same answer?

The answer to these questions is known forn = 3, but open otherwise (see also Section
11.4). The answer to Q4 is “yes” whenn = 3, and the Hilbert functions that arise are
those of so-calleddecreasing type. This means the following. LetZ be the set of points
(either the hyperplane section of an integral curve or a set of points with the Uniform
Position Property). Then the Hilbert function of the Artinian reduction,A, of R/IZ looks
as follows. Letd1 be the degree of the first minimal generator ofIZ , andd2 the degree
of the second. Note thatd1 ≤ d2. Let r be the Castelnuovo-Mumford regularity ofIZ .
Then

hA(t) =





t + 1 if t < d1
d1 if d1 ≤ t ≤ d2 − 1
(strictly decreasing) ifd2 − 1 ≤ t ≤ r
0 if t ≥ r

Work on this problem was carried out in [45], [67], [98]. The interesting part is to con-
struct an integral arithmetically Cohen-Macaulay curve with the desiredh-vector, and this
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was done in [67] by a nice application of liaison. A completely different approach, using
lifting techniques, was carried out in [29].

11.3. Smooth surfaces inP4, smooth threefolds inP5

In the classification of smooth codimension two subvarieties (and by Hartshorne’s conjecture, we
stop with threefolds inP5), it has typically been the case that adjunction theory or other methods
have been used to narrow down the possibilities (see for instance [8]), and then liaison has been
used to construct examples.

We give an illustration of this idea by sketching a result of Miró-Roig from [81]. A natural
question is to determine the degreesd for which there exists a smooth, non-arithmetically Cohen-
Macaulay threefold inP5. It had been shown by Bănică [5] that such threefolds existfor any odd
d ≥ 7 and for any evend = 2k > 8 with k = 5s + 1, 5s + 2, 5s + 3 or 5s + 4. It had been
shown by Beltrametti, Schneider and Sommese [7] that any smooth threefold inP5 of degree 10
is arithmetically Cohen-Macaulay.

It remained to consider the case whered = 10n, n ≥ 2. Miró-Roig proved the existence of
such threefolds using liaison. Her idea was to begin with well-known non-arithmetically Cohen-
Macaulay threefolds inP5 and use the fact that the property of being arithmetically Cohen-
Macaulay is preserved under liaison. In addition, she used the following result of Peskine and
Szpiro [91] to guarantee smoothness:

THEOREM 15. Let X ⊂ Pn, n ≤ 5, be a local complete intersection of codimension two.
Let m be a twist such thatIX(m) is globally generated. Then for every pair d1,d2 ≥ m there
exist forms Fi ∈ H0(IX(di )), i = 1, 2, such that the corresponding hypersurfaces V1 and
V2 intersect properly and link X to a variety X′. Furthermore, X′ is a local complete inter-
section with no component in common with X, and X′ is nonsingular outside a set of positive
codimension in Sing X.

(This special case of the theorem is quoted from [33], Theorem 2.1.) Miró-Roig considered an
arithmetically Buchsbaum threefoldY with locally free resolution

0 → O
P5 ⊕ O

P5(1)3 → �1(3) → IY(6) → 0

(see also Example 16). SinceIY(6) is globally generated, Theorem 15 applies. Linking by two
general hypersurfaces of degrees 6 and 7, respectively, sheobtains a smooth residual threefoldX
of degree 30, and using the mapping cone construction she obtains the locally free resolution of
IX . Playing the same kind of game, she is able to obtain fromX smooth threefolds of degrees
10n, n ≥ 5, by linking X using hypersurfaces of degree 10 andn + 3. The remaining cases,
degrees 20 and 40, are obtained by similar methods, startingwith differentY.

11.4. Hilbert function questions

We have seen above that liaison is useful for showing the existence of interesting objects. In this
section we will see that liaison can sometimes be used to prove non-existence results, as well as
results which reduce the possibilities. For instance, we consider the question of describing the
possible Hilbert functions of sets of points inP3 with the Uniform Position Property.

EXAMPLE 20. Does there exist a set of points inP3 with the Uniform Position Property
andh-vector

1 3 6 5 6,
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and if so, what can we say about it? Suppose that such a set,Z, does exist. Note that the growth
in theh-vector from degree 3 to degree 4 is maximal, according to Macaulay’s growth condition
[66]. This implies, thanks to [11] Proposition 2.7, that thecomponents [IZ ]3 and [IZ ]4 both
have a GCD of degree 1, defining a planeH . It also follows using the same argument as [11]
Example 2.11 thatZ consists of either 14 or 15 points onH , plus 6 or 7 points not onH (of
which 4 or 5 are on a line). Such aZ clearly does not have the Uniform Position Property!

EXAMPLE 21. Does there exist a set of points inP3 with the Uniform Position Property
andh-vector

1 3 6 5 5,

and if so, what can we say about it? LetZ be such a set. In this case we do not have maximal
growth from degree 3 to degree 4, but we again consider the component in degree 3. This time
we will not have a GCD, but we can consider the base locus of thelinear system|[ IZ ]3|. Suppose
that this base locus is zero-dimensional. Then three general elements of [IZ ]3 give a complete
intersection,IX = (F1, F2, F3). This means thatZ is linked byX to a zeroschemeW, and we
can make a Hilbert function (h-vector) calculation (cf. Corollary 9 and Example 12 (c)):

degree 0 1 2 3 4 5 6 7
R/IX 1 3 6 7 6 3 1 0

R/IZ 1 3 6 5 5 0 0 0

R/IW 0 0 0 2 1 3 1 0

This means that the residual,W, hash-vector 1 3 1 2, which is impossible (it violates
Macaulay’s growth condition).

Thus we are naturally led to look for an example consisting ofa set of 20 general points,Z,
on an irreducible curveC of degree 5. (We do not justify this, although similar considerations
can be found in the proof of Theorem 4.7 of [11], but we hope that it is clear that this is the
natural place to look, even if it is not clear that it is theonly place to look.) The Hilbert function
of Z has to agree with that ofZ up to degree 4. One can check that a general curveC of degree
5 and genus 1 will do the trick (and no other will). Hence the desired set of points does exist.

11.5. Arithmetically Buchsbaum curves specialize to stickfigures

We have seen how to use Liaison Addition to construct minimalarithmetically Buchsbaum
curves (Example 15) and how to use the Lazarsfeld-Rao property to give all the possible(d, g)
combinations possible for arithmetically Buchsbaum curves (Remark 32). Now we sketch how
these ideas were refined in [19] and applied to show that everyarithmetically Buchsbaum spe-
cializes to a stick figure. This is a special case of the Zeuthen problem, a long-standing problem
that was solved a few years ago by Hartshorne [51]. The general question is whether every
smooth curve inP3 specializes to a stick figure, and Hartshorne showed that theanswer is “no.”
This makes it more interesting that the answer is “yes” for arithmetically Buchsbaum curves.

Let C be an arithmetically Buchsbaum curve. The basic idea here isthat the Lazarsfeld-Rao
property provides the desired deformation, if we can produce a stick figure using basic double
links which is cohomologically the same asC. So there are two parts to the story. First we have
to produce a minimal element which is a stick figure, and second we have to study basic double
links and show that we can always keep producing stick figures.

For the first part, it is a refinement of the construction givenin Example 15. Skipping details,
we merely note here that ifC1 andC2 are both pairs of skew lines chosen generically, thenF1
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and F2 can be chosen to be unions of planes, and for a sufficiently general choice, the curve
C constructed by Liaison Addition will be a stick figure. To seethat this procedure can give a
minimal element forany Buchsbaum even liaison class is somewhat more technical, but is an
extension of this idea.

For the second part, recall that a basic double link is obtained by starting with a curveC
and a surfaceF containingC, and taking the unionY of C and a general hyperplane section of
F . If C is a union of lines andF is a union of planes then clearlyY will also be a union of lines.
The first problem is to show that we can always arrange that there exists a surfaceF which is a
union of planes. For instance, ifC is a union of≥ 3 skew lines on a quadric surface (this is not
arithmetically Buchsbaum, but gives the idea), and if we want degF = 2, thenF clearly cannot
be chosen to be a union of planes. So we have to show that a unionof planes can always be
obtained in our case. But there is a more subtle problem.

For example, suppose thatC is a set of two skew lines, and suppose that we make a sequence
of three basic double links usingF1, F2 andF3 of degrees 20, 15 and 4 respectively, obtaining
curvesY1, Y2 and Y3 of degrees 22, 37 and 41 respectively. A little thought showsthat one
cannot avoid thatY3 have a triple point! (The key is that degF1 > degF2 > degF3.) Thus this
sequence of basic double linkscannotyield a stick figure.

The solution to this dilemma is to show that there is acohomologically equivalentsequence
of basic double links using surfacesG1,G2,G3 with degG1 ≤ degG2 ≤ degG3. Then the
type of problem described in the last paragraph does not occur. Again, the details are technical,
and we refer the reader to [18] and [19].

11.6. The minimal free resolution of generic forms

An important problem, variations of which have been studiedby many people, is to describe the
Hilbert function or minimal free resolution of an idealI ⊂ R = K [x1, . . . , xn] generated by a
general set of forms of fixed degrees (not necessarily all thesame). The answer to the Hilbert
function problem has been conjectured by Fröberg and we will not describe it here. It is known
to hold whenn ≤ 3 and when the number of generators isn + 1.

For the minimal free resolution, the answer has been conjectured by Iarrobino. At the heart
of this is the idea that if the forms are general then there should be no “ghost terms” in the
minimal free resolution, i.e. there should be no summandR(−t) that appears in consecutive free
modules in the resolution. One can see immediately that thisis too optimistic, however. For
instance, ifI has two generators of degree 2 and one of degree 4 then there isa termR(−4)
corresponding to a first syzygy and a termR(−4) corresponding to a generator. So the natural
conjecture is that apart from such terms which are forced by Koszul relations, there should be no
ghost terms.

This was proved to be false in [74]. A simple counterexample is the case of four generators
in K [x1, x2, x3] of degrees 4,4,4 and 8. The minimal free resolution turns out to be

0 →




R(−10)
⊕

R(−11)2


 →




R(−8)3

⊕

R(−9)2

⊕

R(−10)




→




R(−4)3

⊕

R(−8)


 → R → R/I → 0

The termR(−8) that does not split arises from Koszul relations, as above, but the summand
R(−10) shared by the second and third modules also does not split andthis doesnot arise from
Koszul relations.
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The paper [74] made a general study of the minimal free resolution of n + 1 general forms
in R. The minimal free resolution was obtained in many cases (depending on the degrees of
the generators) and the main tools were liaison and a technical lemma from [77] giving a bound
on the graded Betti numbers for Gorenstein rings. The key to this work is Corollary 12 above,
which says that our idealI can always be directly linked to a Gorenstein ideal.

Here is the basic idea. Knowing the Hilbert function for then + 1 general forms leads to
the Hilbert function of the linked Gorenstein ideal. The technical lemma of [77] then gives good
bounds for the graded Betti numbers of the linked Gorensteinideal, and in fact these bounds can
often be shown to be sharp. Then the mapping cone obtained from the first sequence of Lemma
10 can be used to give a free resolution ofR/I . One can then determine to what extent this
resolution is minimal. In particular, ghost terms in the minimal free resolution of the Gorenstein
ideal translate to ghost terms in the minimal free resolution of I . Especially whenn = 3, we can
often arrange ghost terms for the Gorenstein ideal (thanks to the Buchsbaum-Eisenbud structure
theorem [22] and the work of Diesel [34]).

12. Open problems

In this section we collect the open questions that were mentioned in the preceding sections, and
add some more.

1. Describe the Hilbert functions for general hyperplane sections of integral curves inPn

(n ≥ 4) and for sets of points inPn−1 with the Uniform Position Property. (See the
discussion starting on page 115.)

2. Find a description of all the possible Hilbert functions of Artinian Gorenstein graded
K -algebras. Find a description of all the possible Hilbert functions of reduced arithmeti-
cally Gorenstein subschemes ofPn. (Is the answer to this last question precisely the
SI-sequences?)

3. Classify the possible graded Betti numbers for Gorenstein algebras in codimension≥ 4.
See Questions 1 and 2 and the discussion following them.

4. It is an old problem (see e.g. [49] Exer. 2.17 (d)) whether every irreducible curveC ⊂

P3 is a set-theoretic complete intersection. It is not true that a curve which is a set-
theoretic complete intersection must be arithmetically Cohen-Macaulay (see e.g. [96]).
However, the first author has conjectured that such a curve must be linearly normal. Some
progress in this direction was achieved by Jaffe [59]. In thefirst draft of these notes we
made the comment here that we were not aware even of a curve which is a set-theoretic
complete intersection but is not self-linked. However, R. Hartshorne has provided us with
an example, which we have recorded in Example 22 below.

5. Find conditions that are necessary and sufficient for two schemes in codimension≥ 3 to
be evenly CI-linked or evenly G-linked.

6. In particular, is it true that two arithmetically Cohen-Macaulay schemes of the same codi-
mension are G-linked in finitely many steps? As an important first case, is it true that two
arithmetically Gorenstein subschemes of the same codimension are G-linked in finitely
many steps?

7. Extend the known CI-liaison invariants for arithmetically Cohen-Macaulay subschemes
(cf., e.g., Theorem 12) to non-arithmetically Cohen-Macaulay subschemes which allow
one to distinguish CI-liaison classes within an even G-liaison class of a non-arithmetically
Cohen-Macaulay subscheme.
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8. Compare the equivalence relations generated by geometric G-liaison and (algebraic) G-
liaison on the set of subschemes ofPn having codimensionc and being generically Goren-
stein. (cf. Section 10 for results in the case of CI-liaison.)

9. Find a structure theorem similar to the LR-property that holds for G-liaison or for CI-
liaison in higher codimension.

10. Establish upper and lower bounds for the various minimalshifts attached to an equidi-
mensional scheme (cf. Remark 30).

11. Find a good concept for minimal elements in an even G-liaison class (cf. Section 9).

12. Find conditions like the theorem of Peskine and Szpiro [91] (cf. Theorem 15) which
guarantee that a G-linked residual scheme is smooth (in the right codimension). Find
applications of this to the classification of smooth codimension 3 subschemes. See [80]
for more on this idea.

EXAMPLE 22. In an earlier draft of these notes we asked if there is any smooth curve inP3

which is a set-theoretic complete intersection but not self-linked. We believed that there should
be such a curve, but were not aware of one. This example is due to Robin Hartshorne, who has
kindly allowed us to reproduce it here.

A curve is self-linked if it is a set-theoretic complete intersection of multiplicity 2. So here
we will construct, for every integerd > 0, a smooth curve inP3 that is set-theoretically the
complete intersection of multiplicityd, but of no lower multiplicity.

Start with a smooth plane curve of degreed, having ad-fold inflectional tangent at a point
P. Let X be the cone over that curve inP3. Let L be the cone overP. ThenL is a line onX, dL
is a complete intersection onX, and no lower multiple ofL is a complete intersection ofX with
another surface. Now letC be a smooth curve in the linear system|L + mH| on X, for m � 0.

Note thatdC is linearly equivalent todL + md H = (md + 1)H . ThereforedC is the
intersection ofX with another surface inP3, and soC is a set-theoretic complete intersection of
multiplicity d. Note that no smaller multilple ofC is the complete intersection ofX with anything
else, becauseeC for e< d is not a Cartier divisor onX. But couldeC be an intersection of two
other surfaces? SinceC has degreemd + 1, if F is any other surface containingC, then the
degree ofX · F is d · degF , so degF > m. So if C is the set-theoretic complete intersection of
F andG, then degF · G is> m2, and the multiplicity of the structure onC is> m2/(md+ 1) ,
which form � 0 is> d. (In fact, to obtainm2/(md+ 1) > d, i.e.m(m− d2) > d, it is enough
to takem> d2.)
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GLICCI VERSUS GLICOG

Abstract. We discuss the problem of whether arithmetically Gorenstein schemes
are in the Gorenstein liaison class of a complete intersection. We present some
axamples of arithmetically Gorenstein schenes that are indeed in the Gorenstein
liaison class of a complete intersection.

In the recent research on Gorenstein liaison theory, the question whether any arithmeti-
cally Cohen-Macaulay scheme is in the Gorenstein liaison class of a complete intersection, has
been of main importance. The intention of this question is tofully generalize Gaeta theorem
to arbitrary codimension. Gaeta theorem says that in codimension 2 any arithmetically Cohen-
Macaulay scheme is in the complete intersection liaison class of a complete intersection. As it
has been shown in the recent papers on liaison theory, it is likely that in arbitrary codimension
Gorenstein liaison behaves better than complete intersection liaison. Indeed, some of the the-
orems of complete intersection liaison in codimension 2, donot hold for complete intersection
liaison in arbitrary codimension but hold when we link by means of arithmetically Gorenstein
schemes instead of complete intersection schemes. So it is natural to ask if any arithmetically
Cohen-Macaulay scheme is in the Gorenstein liaison class ofa complete intersection or briefly
glicci.

Since complete intersection schemes have been changed to arithmetically Gorenstein sche-
mes in the study of liaison theory in arbitrary codimension,it is natural to ask why we formulate
the question“(1) Is any arithmetically Cohen-Macaulay scheme glicci?”instead of formulating
first the weaker question“(2) Is any arithmetically Cohen-Macaulay scheme in the Gorenstein
liaison class of an arithmetically Gorenstein scheme?”If we use the acronymglicog for the
schemes that are in theGorensteinLi aisonClassOf an arithmeticallyGorenstein scheme, then
Question (2) asks if any arithmetically Cohen-Macaulay scheme is glicog.

If Question (1) could be answered affirmatively, then Question (2) would also have an af-
firmative answer. Moreover, if it could be proved that any arithmetically Gorenstein scheme is
glicci, then both questions would be equivalent. So one of the first questions that Gorenstein
liaison has to address is“(3) Is any arithmetically Gorenstein scheme glicci?”This is still an
open question. The purpose of this note is to present some results that answer this question
affirmatively in some cases.

First of all, the main result that gives a partial affirmativeanswer to Question (3) is that any
arithmetically Gorenstein scheme of codimension 3 islicci, i.e. it is in the complete intersection
liaison class of a complete intersection (in particular it is glicci). This result is attributed to
Watanabe because it can be derived from the proof of his main theorem in [4]. It is known that
in higher codimension there exist arithmetically Gorenstein schemes that are not licci, but it is
not known if they are glicci or not.

To study Gorenstein liaison classes of schemes of arbitrarycodimension, we have used the
results of [3] where there are given useful methods to study Gorenstein liaison classes of divisors
on arithmetically Cohen-Macaulay schemes. In this setting, we have studied the Gorenstein
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liaison classes of divisors on rational normal scrolls and we can apply our results to arithmetically
Gorenstein schemes. First of all we have proved:

THEOREM 1 ([1], THEOREM 3.3.1). Let X and X′ be two effective divisors on a smooth
rational normal scroll S⊂ Pn. Then, X and X′ have isomorphic deficiency modules (up to shift
and dual) if and only if they belong to the same G-liaison class. In particular, any arithmetically
Cohen-Macaulay divisor on a rational normal scroll is glicci.

It has been also proved in [1] that any arithmetically Cohen-Macaulay divisor on a rational
normal scroll, not necessarily smooth, is glicci (this was first proved for divisors on rational
normal scroll surfaces in [2] and then generalized in [1], Theorem 3.2.3). In particular, any
arithmetically Gorenstein divisor on a rational normal scroll is glicci.

This result can be applied to arithmetically Cohen-Macaulay varieties that are known to
be divisors on rational normal scrolls: varieties of maximum genus, varieties of maximum
Castelnuovo-Mumford regularity, integral rational curves, elliptic linearly normal curves, hy-
perelliptic linearly normal curves . . . ( see [1]). In particular, this result can be applied to arith-
metically Gorenstein schemes satisfying one of these conditions. As another consequence of
this result we have that arithmetically Cohen-Macaulay K3 surfaces, which are arithmetically
Gorenstein schemes, are glicci:

COROLLARY 1 ([1], COROLLARY 3.5.11). Let X ⊂ Pn be a linearly normal smooth
arithmetically Cohen-Macaulay K3 surface such thatdegX ≥ 8 and the generic member of|HX |

is a smooth non hyperelliptic curve. Assume that X contains an irreducible elliptic cubic curve
E (or, equivalently, I(X) is not generated by quadrics). Then X is arithmetically Gorenstein
and it is glicci.

As one of the main problems of Gorenstein liaison is the difficulty of constructing arithmeti-
cally Gorenstein schemes containing a given scheme such that it produces a useful Gorenstein
link, it is thought that this is also the main problem to address Question (3) in full generality.
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ON CURVES ON RATIONAL NORMAL SCROLLS

Abstract. This note comes from a communication given by the author during the
School “Liaison and related topics”.
We study the Hartshorne - Rao module of curves lying on a rational normal scroll
Se of invariante ≥ 0 in Pe+3. We calculate the Rao function, we characterize
the arithmetically Cohen - Macauly curves onSe. By using a result of Gorenstein
liaison theory, we reduce all curves to two kinds: those consisting of distincts fibers
and those with a “few” of fibers. In such a way, we find a set of minimal ganerators
and the Buchsbaum index of each curve onSe.

In the last years there has been a great interest on the Hartshorne -Rao moduleH1
∗ (IC) =⊕

j ∈Z H1(IC( j )) of curves inP3, because it gives many geometric information. Instead, the
knowledge on this subject about general curves in projective space of dimension≥ 4 is very
small and only on the Rao function (cf. [1] and [8]). We begin our study of curves in projective
space of dimension≥ 4 lying on a surface by considering a smooth reduced normal scroll Se of
invariante ≥ 0 in Pe+3 (cf. [4]). On those particular surfaces we can get many information on
the Rao module of each curve.

This note is a summary of [2]. We proceed as follows: we calculate the Rao function of a
curve onSe, we get the optimal bounds for it and we characterize theaCM curves onSe. Then
we investigate the multiplicative structure of the Rao module using a theorem of Gorenstein
liaison theory (cf. [5]) which allows to “shift” the Rao module of a curve and to reduce our study
to two kinds of curves: those consisting of fibers only and those having “few” fibers. In such a
way we find a set of minimal generators for non-aCM curves and their Buchsbaum index. At
moment, we are going to study the syzygies module and the freeminimal resolution of the Rao
module.

We are very grateful to S. Greco for important help and to R. Notari for interesting conver-
sations about liaison theory.

We work over an algebraically closed fieldk (of arbitrary characteristic) and we use the
standard notation and results contained in Hartshorne’s book [4], Ch. V. S := Se ⊂ Pe+3 is a
rational normal scroll of invariante ≥ 0, namely the embedding of a rational geometrically ruled
surfaceFe (called Hirzebruch surface (cf. [6])) of invariante via the very ample linear system
|C0 + (e+ 1)f|, which is then the linear system of the hyperplane sections,whereC0 is a line of
self-intersectionC2

0 = −e andf is a fiber, sof 2 = 0 andC0 · f = 1. Embedded in such a way,
Se is anaCM surface.
Each divisorC on Se is linearly equivalent toaC0 + bf, with a, b ∈ Z and it is effective and
non-zero if and only ifa, b ≥ 0 anda + b 6= 0.

†Supported by GNSAGA - INDAM.
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The first example of rational normal scroll is the quadric inP3 (e=0) and the results of [2]
generalize to any invariante ≥ 0 those appearing in [3], Appendix C.

PROPOSITION1. Let C ∼ aC0 + bf and pC the arithmetic genus of C. We have:

1. If j ≤ min
{
b − ae+ e− 2, a − 2,

⌊
b−(e+2)

e+1

⌋}
, then h1(IC( j )) = 0.

2. If b − ae+ e− 2< j ≤ min
{
a − 2,

⌊
b−(e+2)

e+1

⌋}
andα :=

⌊
b− j −2

e

⌋
, then

h1(IC( j )) = (a − α − 1)
[ e

2
(a + α)− b + j + 1

]
.

3. If min
{
a − 2,

⌊
b−(e+2)

e+1

⌋}
< j < max

{
a,

⌈
b

e+1

⌉}
, then

h1(IC( j )) = j (a + b)− pC + 1 −
1

2
( j + 1)[ j (e+ 2)+ 2].

4. If max
{
a,

⌈
b

e+1

⌉}
≤ j < b − ae andα :=

⌊
j −b
e

⌋
, then

h1(IC( j )) = (a + α)
[

j − b + 1 +
e

2
(a − α − 1)

]
.

5. If j ≥ max
{
a,

⌈
b

e+1

⌉
,b − ae

}
, then h1(IC( j )) = 0.

With simple calculations, we give a characterization ofaCM curves onSe.

PROPOSITION2. A curve C∼ aC0 + bf on Se is aCM if and only if

(a − 1)(e+ 1) ≤ b ≤ a(e+ 1)+ 1

Finally, we get the following optimal bounds.

COROLLARY 1. Let C ∼ aC0+bf be a non-aCM curve on Se, then there are the following
optimal bounds.

1. If b< ae+ a − e− 1

h1(IC( j )) = 0 for all j ≤ b − ae+ e− 1 and j ≥ a − 1.

2. If b> ae+ a + 1,

h1(IC( j )) = 0 for all j ≤ a − 1 and j ≥ b − ae− 1.

Now, to find a set of minimal generators for the Rao module of a non-aCM curve the idea
is to apply Theorem below originated from the Gorenstein liaison theory (cf. [5]), to reduce the
study of any curve to a certain number of fibers onSe in general position or to a curve with a
“little”number of fibers.

THEOREM 1 (CF. [7], COROLLARY 5.3.4). Let S be a smooth, aCM subscheme ofPn.
Let V be a divisor on S, i.e. a pure codimension one subscheme with no embedded components.
Let V′ be any element of the linear system|V + k H|, where H is the hyperplane section class
and k∈ Z. Then, for1 ≤ i ≤ dim V ,

H i
∗(V

′) ∼= H i
∗(V)(−k).
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PROPOSITION3. Let C ∼ aC0 + bf be a non-aCM curve on Se.

1. If b> a(e+ 1)+ 1 then
H1

∗ (IC) ∼= H1
∗ (IC′(−a))

where C′ is the union of b′ := b − a(e+ 1) > 1 fibers on Se.

2. If b< (a − 1)(e+ 1), then

H1
∗ (IC) ∼= H1

∗

(
IC∗

(
−

⌊
b

e+ 1

⌋))

where C∗ ∼ a′C0 + r f with a′ = a −
⌊

b
e+1

⌋
≥ 2 and0 ≤ r ≤ e and r is the reminder

of the division between b and e+ 1.

The following picture is an example on how the Rao module of a “large” curve “shifted” to
the left corresponds to the Rao module of distinct fibers.

-

6

r r
r r r

r r rb b
b b b

b b b
Figure 1: = C ∼ 2C0 + 10fr

= C ∼ 6fb

e = 1

At this point, we find the degrees of the minimal generators ofthe Rao module of any curve
C on Se.

THEOREM 2. Let C ∼ aC0 + bf be a non-aCM curve on Se. By Proposition 2, we have
two possibilities:

1. If b > a(e + 1) + 1 then the Rao module has a set of minimal generators consisting of
b − 1 elements of degree a.

2. If b< (a−1)(e+1) and e> 0, then, denoting by r the reminder of the Euclidean division
between b and e+ 1, the Rao module of C has a set of minimal generators consisting of

a −
⌊

b
e+1

⌋
− 1 elements, each one of degree r− je, for each1 ≤ j ≤ a −

⌊
b

e+1

⌋
− 1.

In Figure 2, we show the Rao function both of an union of fibers and of a curve of the
“second” type, which has a “little” number of fiber and of an union of fibers.

We can note that the slope of the Rao functionof an union of fibers decreases by 1 everye steps

while j decreases byb − 1 to
⌈

b
e+1

⌉
, while the slope of the Rao function of a curve with a

“little” number of fibers increases by 1 everye steps whilej increases byb − ae+ e− 1 to−1.
In these degrees we find a new minimal generator. The two type of curves are dual.
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We denote byρ andσ respectively the smallest and the largest integer such thath1(IC( j ))

6= 0 and diam(C) := σ − ρ + 1; moreover the Buchsbaum index ofC is the smallest integer
k(C) such that(x0, . . . , xn)

i · M(C) = 0. If the Buchsbaum index is 1 the curve is called
arithmetically Buchsbaum (aB). In this notation we can prove the following

COROLLARY 2. For a non-aCM curve C∼ aC0 + bf, the Buchsbaum index is the maxi-
mum, that isdiam(C). In particular C is aB if and only if

b = (a − 1)(e+ 1)− 1 or b = a(e+ 1)+ 2.
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MODULI OF CURVES VIA ALGEBRAIC GEOMETRY

Abstract. Here we discuss some open problems about moduli spaces of curves
from an algebro-geometric point of view. In particular, we focus on Arbarello
stratification and we show that its top dimentional stratum is affine.

The moduli spaceMg,n of stablen-pointed genusg curves is by now a widely explored
subject (see for instance the book [10] and the references therein), but many interesting prob-
lems in the field are still unsolved, both from a topological and a geometrical point of view.
Even though various methods have been fruitfully applied (e. g. Teichmüller spaces, Hodge
theory, G.I.T., . . . ), a purely algebro-geometric approachseems to be quite powerful and rather
promising as well. We wish to mention at least the recent paper [3] by Enrico Arbarello and
Maurizio Cornalba: as the authors point out in the introduction, what is really new there is the
method of proof, which is based on standard algebro-geometric techniques.

Indeed, the only essential result borrowed from geometric topology is a vanishing theorem
due to John Harer. Namely, the fact thatHk(Mg,n) vanishes fork > 4g − 4 + n if n > 0 and
for k > 4g − 5 if n = 0 was deduced in [9] from the construction of a(4g − 4+ n)-dimensional
spine forMg,n by means of Strebel differentials. On the other hand, it is conceivable that
Harer’s vanishing is only the tip of an iceberg of deeper geometrical properties. For instance,
a conjecture of Eduard Looijenga says thatMg is a union ofg − 1 open subsets (see [7],
Conjecture 11.3), but (as far as we know) there are no advances in this direction. Another
strategy (see [8], Problem 6.5) in order to avoid the use of Strebel’s differentials in the proof of
Harer’s theorem is to look for an orbifold stratification ofMg with g − 1 affine subvarieties as
strata.

A natural candidate for such a stratification is provided by aflag of subvarieties introduced
by Enrico Arbarello in his Ph.D. thesis. Namely, for each integern, 2 ≤ n ≤ g, he defined
the subvarietyWn,g ⊂ Mg as the sublocus ofMg described by those points ofMg which
correspond to curves of genusg which can be realized asn-sheeted coverings ofP1 with a point
of total ramification (see [2] p. 1). The natural expectation(see [1] p. 326 but also [12] p. 310)
was thatWn,g \ Wn−1,g does not contain any complete curve. About ten years later, Steven
Diaz was able to prove that a slightly different flag of subvarieties enjoys such a property and he
deduced from this fact his celebrated bound on the dimensionof complete subvarieties inMg
(see [5]). It remains instead an open question whether or notthe open strata of the Arbarello flag
admit complete curves (see [10] p. 291).

Perhaps an even stronger conjecture could be true: sinceW2,g is the hyperelliptic locus,
which is well-known to be affine (see for instance [11] p. 320), one may wonder whether all the
open strataWn,g \ Wn−1,g are affine. We were not able to prove this statement in full generality;
however, we found an elementary proof that the top dimensional stratum is indeed affine.

THEOREM1. If g ≥ 3 thenMg \ Wg−1,g is affine.
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Proof. SinceMg \ Wg−1,g = Mg \
(
supp(Wg−1,g) ∪ ∂Mg

)
, it is sufficient to prove that

supp(Wg−1,g)∪∂Mg is the support of an effective ample divisor onMg. The class ofWg−1,g

in the Picard group ofMg was computed by Steven Diaz in his Ph.D. thesis (see [6]), so we
know that [

Wg−1,g
]

= aλ−
∑

i

bi δi

where

a :=
g2(g − 1)(3g − 1)

2

b0 :=
(g − 1)2g(g + 1)

6

bi :=
i (g − i )g(g2 + g − 4)

2
(i > 0).

In particular, notice that ifg ≥ 3 thena > 11 andbi > 1 for everyi . Consider now the following
divisor onMg:

D := Wg−1,g +
∑

i

(bi − 1)1i .

Sincebi > 1 we see thatD is effective; moreover, we have supp(D) = supp(Wg−1,g) ∪ ∂Mg.
We claim thatD is ample. Indeed,

[D] =
[
Wg−1,g

]
+

∑

i

(bi − 1)δi

= aλ−
∑

i

bi δi +
∑

i

bi δi −
∑

i

δi

= aλ− δ.

Sincea > 11 we may deduce thatD is ample from the Cornalba-Harris criterion (see [4],
Theorem 1.3), so the proof is over.
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A NOTE ON THE HILBERT SCHEME OF CURVES OF

DEGREE d AND GENUS
(d−3

2

)
− 1

Abstract. This note is inspired by a lecture given during the school “Liason theory
and related topics” and contains a summary of the results in [15] about the con-
nectedness of the Hilbert scheme of curves of degreed and genus

(d−3
2

)
− 1. The

only novelty is the list of degrees for which smooth and irreducible curves appear.

This short note was inspired by a talk I gave at the Politecnico of Torino during the School
“Liaison theory and related topics”. The question of the connectedness of the Hilbert schemes
Hd,g of locally Cohen–Macaulay curvesC ⊂ P3 of degreed and arithmetic genusg arose
naturally after Hartshorne proved in his PhD thesis that theHilbert scheme of all one dimensional
schemes with fixed Hilbert polynomial is connected. The result is somewhat too general since,
even to connect one smooth curve to another, it involves curves with embedded or isolated points.
On the other hand, if the question is addressed under the morerestrictive hypothesis of smooth
curves, then the Hilbert scheme need not be connected: a counterexample can be found for
(d, g) = (9,10). In the recent years, after the developing of liaison theory, it has become clear
that, even though one can be interested in the classificationof smooth curves, the natural class to
look at is the class of locally Cohen–Macaulay curves, i.e. the class of schemes of equidimension
1 with all their local rings Cohen–Macaulay. In other words,they are 1 dimensional schemes
with no embedded or isolated points. The answer to the question in case of locally Cohen–
Macaulay curves is known, so far, only for low degrees or highgenera. The schemeHd,g is non

empty whend ≥ 1 andg =
(d−1

2
)

(that corresponds to the case of plane curves), ord > 1 and

g ≤
(d−2

2
)
. After the paper [9], it is well known thatHd,g contains an irreducible component

consisting of extremal curves (i.e. curves having the largest possible Rao function). This is the
only component ford ≥ 5 and(d − 3)(d − 4)/2+ 1< g ≤ (d − 2)(d − 3)/2 while in the cases
d ≥ 5, g = (d − 3)(d − 4)/2 + 1 andd ≥ 4, g = (d − 3)(d − 4)/2 the Hilbert scheme is not
irreducible, but it is connected (see [1], [12]). The connectedness is trivial ford ≤ 2 since the
scheme is irreducible, see [5], while it has been proved ford = 3, d = 4 and any genus in [11],
[13] respectively. Note that ford = 3,4 there is a large number of irreducible components: they
are approximatively13 |g| for d = 3 and 1

24g2 for d = 4. The paper [4] has given a new light to
the problem, in fact Hartshorne provides some methods to connect particular classes of curves to
the irreducible component of extremal curves, while in the paper [14] Perrin has proved that all
the curves whose Rao module is Koszul can be connected to the components of extremal curves.
This note deals with the first unknown case for high genus, i.e. g̃ = (d − 3)(d − 4)/2 − 1 and
its purpose is to give an overview of the results in the forthcoming [15]. Since it contains only a
brief state of the art, for a more complete treatment of the topic the reader is referred to [4], [5].

In [15] we have studied the connectedness of the Hilbert scheme Hd,g̃ of locally Cohen–

Macaulay curves inP3 = P3
k, wherek is an algebraically closed field of characteristic zero. A

way one can follow to prove the connectedness ofHd,g̃, is to first identify its irreducible com-
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ponents for everyd and then to connect them to extremal curves using [4] and its continuation
[18]. Following this idea, we used the so calledspectrumof a curve (see [16], [17]) to find all
the possible Rao functions and then all the possible Rao modules occurring for curves inHd,g̃.
For d ≥ 9 it is possible to show that there are only four possible modules (see [15], Theorem
3.3) and that each of them characterizes an irreducible family of curves. Those families turn out
to be the components ofHd,g̃ and their general member is described in the following:

THEOREM 1. The Hilbert scheme Hd,g̃ of curves of degree d≥ 9 and genusg̃ has four
irreducible components:

1. The family H1 of extremal curves, whose dimension isd(d+5)
2 − 1.

2. The closure H2 of the family of subextremal curves whose general member is the disjoint
union of two plane curves of degrees d− 2 and2. The dimension of H2 is d(d−1)

2 + 10.

3. The closure H3 of the family of curves whose general member is obtained by a biliaison
of height1 on a surface of degree d− 2 from a double line of genus−2 and corresponds
to the union of a plane curveCd−2 of degree d− 2 with a double line of genus−2
intersectingCd−2 in a zero–dimensional subscheme of length2. The dimension of H3 is
d(d−1)

2 + 9.

4. The closure H4 of the family of curves whose general member is the union of a plane
curveCd−2 of degree d− 2 with two skew lines, one of them intersecting transversally

Cd−2 in one point. The dimension of H4 is d(d−1)
2 + 9.

For curves of degreed ≤ 8 we have that the Hilbert schemeHd,g with d = 2, g ≤ 0 is
irreducible hence connected, while the cased = 3 and the cased = 4 were studied for all the
possible values of the genus in [10] and [13] respectively. Finally, H5,0 was dealt by Liebling in
his PhD thesis [7]. Then we only have to consider(d, g) ∈ {(6,2), (7,5), (8, 9)}. In these cases,
we have proved that the Rao modules of the type occurring ford ≥ 9 are still possible but the
spectrum allows more possibilities that were determined using the notion oftriangle introduced
by Liebling in [7]. Each Rao module is associated to a family of curves that is not necessarily
a component of the Hilbert schemeHd,g̃ as it appears clear by looking at their dimension (see
[15], Theorem 4.3 and 4.5). The components of the Hilbert scheme are listed in the following

THEOREM 2. The Hilbert schemes H6,2, H7,5, H8,9 have five components: the four com-
ponents listed in Theorem 1, moreover

1. H6,2 contains the closure H5 of the family of curves in the biliaison class of the disjoint
union of a line and a conic.

2. H7,5 contains the closure of the family H6 of ACM curves.

3. H8,9 contains the closure of the family H7 of ACM curves.

Now we can state our main result (see [15], Theorem 4.8) whoseproof rests on the fact that
all the curves in the families listed in the previous Theorems 0.1 and 0.2 can be connected by flat
families to extremal curves:

THEOREM3. The Hilbert scheme Hd,g̃ is connected for d≥ 3.

To complete the description ofHd,g̃ given in [15] we specify where smooth and irreducible
curves can be found. In what follows,R is the ringk[X,Y, Z, T ] andM denotes the Rao module.
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PROPOSITION1. The Hilbert scheme Hd,g̃ contains smooth and irreducible curves if and
only if

1. d = 5 and M is dual to a module of the type M= R/(X,Y, Z2, ZT, T2)

2. d = 6 and M = R/(X,Y, Z, T2)(−1)

3. d = 7 and M = 0

4. d = 8 and M = 0.

Proof. By the results of Gruson and Peskine [2] there exist smooth irreducible (non degenerate)
curves if and only if either 0≤ g̃ ≤ d(d − 3)/6 + 1 or d = a + b, g̃ = (a − 1)(b − 1) with
a, b > 0. This implies that eitherd = 5,6, 7 or d = 8, a = b = 4. Looking at the possible Rao
modules (see [7] for the complete list occurring in the cased = 5) the only Rao modules with
cohomology compatible with smooth curves are the ones listed.
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(1996), 757–785.

[10] NOLLET S.,Subextremal curves, Man. Math.94 (1997), 303–317.

[11] NOLLET S., The Hilbert schemes of degree three curves, Ann. Sci. Ec. Norm. Sup.30
(1997), 367–384.

[12] NOLLET S.,A remark on connectedness in Hilbert schemes, Comm. Alg.28(2000), 5745–
5747.

[13] NOLLET S. AND SCHLESINGERE., The Hilbert schemes of degree four curves, preprint
(2001), math.AG/0112167.



144 I. Sabadini
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CONSTRUCTION OF CALABI-YAU 3-FOLDS IN P6

Abstract. We announce here the construction of examples of smooth Calabi-Yau
3-folds inP6 of low degree, up to degree 17. In the last degree their construction
is rather complicated, and parametrized by smooth septics in P2 having a ag1

d
with d = 13,12, or 10. This turns out to show the existence of three unirational
components of their Hilbert scheme, all having the same dimension 23+ 48 = 71.

The constructions are based on the Pfaffian complex, choosing an appropriate
vector bundle starting from their cohomology table. This translates into studying
the possible structures of their Hartshorne-Rao modules.

We also give a criterium to check the smoothness of 3-folds inP6.

Constructions of smooth subvarieties of codimension 2 via acomputer-algebra program
have been extensively studied in recent years, mainly following the ideas presented in [4]. There
the authors explicitely provide many constructions of surfaces inP4, showing that the problem
to fill out all possible surfaces inP4 not of general type was indeed affordable, and this brought
to a wide series of papers with similar examples. The starting point of these construction is
based on the fact that a globalized form of the Hilbert-Burchtheorem allows one to realize any
codimension 2 locally Cohen-Macaulay subscheme as the degeneracy locus of a map of vector
bundles. Precisely, for every codimension 2 subvarietyX in Pn there is a short exact sequence

0 → F
ϕ
→ G

ψ
→ OPn → OX → 0,

whereF andG are vector bundles withrkG = rkF + 1 andψ is locally given by the maximal
minors ofϕ taken with alternating signs.

In codimension 3 the situation is more complicated. Indeed in the local setting the minimal
free resolution of every Gorenstein codimension 3 quotientring of a regular local ring is given
by a Pfaffian complex [1], but by globalizing this construction one obtains only the so called
Pfaffian subschemes, i.e. subschemes defined locally by the 2r × 2r Pfaffians of an alternating
mapϕ from a vector bundle of odd rank 2r + 1 to a twist of its dual. In particular, a Pfaffian
subscheme inPn has the following resolution:

0 → OPn(−t − 2s)
ψ t

→ E∗(−t − s)
ϕ
→ E(−s)

ψ
→ OPn → OX → 0,

where the mapψ is locally given by the 2r × 2r Pfaffians ofϕ andψ t is the transposed of
ψ . Being Pfaffian, this subscheme is automaticallysubcanonical, in the sense that its canonical
bundle is the restriction of a multiple ofOPn(1). A recent result of Walter [11] shows that under
a mild additional hypothesis every subcanonical Gorenstein codimension 3 subschemeX in Pn

is Pfaffian (see [5] for a description of the non-Pfaffian case), and therefore one can attempt to
get its equations starting from constructing its Pfaffian resolution.

†Short abstract version of the paper [10]
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In [10] we apply this method to build examples of smooth Calabi-Yau 3-folds inP6. In order
to build a Pfaffian resolution of a subcanonical Gorenstein codimension 3 subschemeX, Walter
shows an explicit way to choose an appropriate vector bundle, starting from its Hartshorne-Rao
modulesH i

∗(IX): this is a precise hint for constructing a resolution. But tofind out what are
the possible structures for such modules is the hard part in the construction: indeed from the
invariants ofX one can deduce only the “minimal” possible Hilbert functions of its Hartshorne-
Rao modules, and their module structures remain obscure. Inthis sense the problems met in the
constructions are the same as in the codimension 2 cases, except that here the range of examples
where the construction is straightforward (and their Hilbert scheme component unirational) is
rather short.

We construct examples of smooth Calabi-Yau 3-folds inP6 having degreed in the range
12 ≤ d ≤ 17. Such a bound can be better understood by looking at hyperplane sections of
the desired 3-folds. Since an hyperplane section of a Calabi-Yau 3-fold is a canonical surface,
a lower bound on the degreed of the desired 3-fold can be obtained easily by theCastelnuovo
inequality: if the canonical map of a surfaceS is birational, thenK 2

S ≥ 3pg − 7, c.f. [3], p.
24. This givesd ≥ 11. Furthermore, the cased = 11 is interesting, but no smooth examples
were found and we believe that they don’t exist: every Calabi-Yau threefold contructed has an
ordinary double point (A1 type), also over finite fields of high order; thus this seems to be the
“general” case. Thus degree 12 seems to be the good starting point. Over degree 17 we don’t
know a general way to proceed: even constructing the module becomes too hard. In particular,
for degree 18 we were not able to find even the module structureof the canonical surface given by
a general hyperplane section of our hypothetical 3-fold (surface which is a smooth codimension
3 subcanonical scheme inP5 and can therefore be constructed in the same way).

In all the cases examined the Hartshorne-Rao modulesH i
∗(IX) vanish for all 2≤ i ≤ 3,

and only the module structure ofH1
∗ (IX) has to be determined. This structure is unique in

the initial cases (up to isomorphisms), but not in the degree17 case (and in the further cases),
where the module has to be chosen in a subtle way, not at all clear at the beginning. In [8]
investigations with small finite fields revealed strange properties of these special modules, there
searched at random with a computer-algebra program. In [10]we give a more detailed analysis of
the problem, which provides a completely unexpected geometric method to produce unirational
families of these modules: at the end we obtain three unirational families, in which the desired
modules are reconstructed starting from a smooth septic curve in P2 endowed with a complete
linear seriesg1

d having degreed = 13, 12, 10 respectively. This strong result, together with the
analysis which brought us to it, gives easily the following theorem, which is the main result of
[10].

THEOREM 1. The Hilbert Scheme of smooth Calabi-Yau 3-folds of degree 17in P6 has at
least three irreducible connected components. These threecomponents are reduced, unirational,
and have dimension23 + 48. The corresponding Calabi-Yau 3-folds differ in the numberof
quintic generators of their homogemeous ideals, which are 8, 9 and 11 respectively.

Note that it is enough to prove the irreducibility of the three families, since it is well known
by the work of Bogomolov [2] and Tian [9] (c.f. also the recentresults of Ran [7] and [6]), that
the universal local family of the deformations of a Calabi-Yau manifold is smooth.

We develope also a criterium for checking the smoothness of 3-folds inP6, which is compu-
tationally affordable, and by far faster than the Jacobian criterium. Indeed the check is subdivided
in different steps, each one involving the computation of fewer minors of the Jacobian matrix and
a Gröbner basis of ideals with lower codimensions.
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Notation. Let S = K [x0, . . . , x6] be the homogeneous coordinate ring ofP6 and f1, . . . , fN
a set of homogeneous polynomial such thatI := 〈 f1, . . . , fN 〉 is the ideal of a codimension 3
variety X ⊂ P6. We denote with

J :=
〈 ∂ fi
∂x j

∣∣∣1 ≤ i ≤ N, 0 ≤ j ≤ 6
〉

the jacobian ideal ofI and with Ik(J) the ideal of thek × k minors of J. Moreover, we denote
with J≤e the part of the jacobian matrix formed by the rows ofJ having degree≤ e and by
Ik(J)≤e for thek × k minors ofJ≤e.

If f1, . . . , fn are different generators ofI , we write Ik(J( f1, . . . , fn)) for thek × k minors
of the jacobian ideal of( f1, . . . , fn), and with Ik( f1, . . . , fn) (resp. Ik( f1, . . . , fn)≤e) for the
ideal of thek × k minors ofJ (resp.J≤e) which involve the rows corresponding tof1, . . . , fn.

Notation. If e ∈ N is a positive integer, we denote withNe and Pe(t) the integer and the
polynomial defined by:

Ne :=c3(N
∗
X(e));

Pe(t) := degc2(N
∗
X(e)) t + χ(OX)+ χ(2OX(−c1(N

∗
X)− 3e))+

− χ(N ∗
X(−c1(N

∗
X)− 2e)).

Moreover, given a varietyZ ⊂ P6 denote withH P(Z) its Hilbert polynomial.

THEOREM 2. Let X ⊂ P6 be a locally Gorenstein 3-fold and f, g two generators of I
having degree e. Suppose that X has at most a finite set of singular points and that

( i ) V((I1(J)≤e + I ) = ∅,

( ii ) V(I2(g)≤e + I ) is finite and

degV(I2(g)≤e + I ) = degV(J(g)+ I ) = Ne;

( iii ) V(I3( f, g)+ I ) is a curve and

H P(V(I3( f, g)+ I )) = H P(V(I2(J( f, g))+ I )) = Pe(t).

Then X is smooth.
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NON-SIMPLE VECTOR BUNDLES ON CURVES

Abstract. Let A be a finite dimensional unitary algebra over an algebraically
closed fieldK . Here we study the vector bundles on a smooth projective curve
which are equipped with a faithful action ofA.

1. Introduction

Let K be an algebraically closed field,A a finite dimensional unitaryK -algebra,X a smooth
connected complete curve of genusg defined over Spec(K), E a vector bundle onX andh :
A → H0(X,End(E)) an injective homomorphism of unitaryK -algebras. HenceId ∈ h(A).
We will say that the pair(E,h) is an A-sheaf or anA-vector bundle. A subsheafF of A will
be called anA-subsheaf of(E,h) (or just anA-subsheaf ofE) if it is invariant for the action
of h(E) on E. Notice that if A 6= K , then E is not simple and in particular rank(E) > 1
and E is not stable. For any vector bundleG on X let µ := deg(G)/rank(G) denote its slope.
We will say that(A,h) is A-stable (resp.A-semistable) if for everyA-subsheafF of E with
0 < rank(F) < rank(G) we haveµ(F) < µ(E) (resp.µ(F) ≤ µ(E)). In section 2 we will
prove the following results which give the connection between semistability andA-stability.

THEOREM 1. Let (E,h) be an A-vector bundle. E is semistable if and only if(E,h) is
A-semistable.

THEOREM2. Let(E,h) be an A-vector bundle. Assume that E is polystable as an abstract
bundle, i.e. assume that E is a direct sum of stable vector bundles with the same slope.(E,h) is
A-stable if and only if there is an integer r≥ 1 and a stable vector bundle F such that E∼= F⊕r

and A is a unitaryK -subalgebra of the unitaryK -algebra Mr×r (K) of r × r matrices whose
action onK⊕r is irreducible.

THEOREM 3. Let (E,h) be an A-sheaf. Assume that E is semistable but not polystable.
Then E is not A-stable.

DEFINITION 1. Let(E,h) be an A-sheaf. For any A-subsheaf F of E let h(A, F) be the im-
age of h(A) into H0(X,End(F)). Set c(h, F) := dimK h(A, F), λA(F) := µ(F)/c(h, F) and
εA(F) = µ(F)c(h, F). We will say that(E,h) (or just E) isλA-stable (resp.λA-semistable) if
for every proper A-subsheaf F of E we haveλA(F) < λA(E) (resp.λA(F) ≤ λA(E)). We will
say that(E,h) (or just E) isεA-stable (resp.εA-semistable) if for every proper A-subsheaf F
of E we haveεA(F) < εA(E) (resp.εA(F) ≤ εA(E)).

For any subsheafF of the vector bundleE on X the saturationG of F in E is the only
subsheafG of E such thatF ⊆ G, rank(G) = rank(F) and E/G has no torsion, i.e.E/G is

†The author was partially supported by MURST and GNSAGA of INdAM (Italy).
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locally free if rank(F) < rank(E), while G = E if rank(F) = rank(E).

REMARK 1. Let (E,h) be anA-sheaf,F an A-subsheaf ofE andG the saturation ofF
in E. G is h(A)-invariant and hence it is anA-sheaf. Sinceh(A, F) = h(A,G), we have
λA(F) ≤ λA(G), εA(F) ≤ εA(G), λA(F) = λA(G) if and only if G = F andεA(F) = εA(G)
if and only if G = F

For any vector bundleF and any line bundleL we haveEnd(F) ∼= End(F ⊗ L) and
µ(F ⊗ L) = µ(F) + deg(L). This shows that in general the notions ofλA-stability, λA-
semistability,εA-stability andεA-semistability are NOT invariant for the twist by a line bundle
(see Example 1). We believe thatεA-stability is the correct notion for the Brill - Noether theory
of non-simple vector bundles. In section 3 we will describe all the K -algebras arising for rank
two vector bundles.

2. Proofs of Theorems 1, 2 and 3

Let (E,h) be anA-sheaf onX. Since the saturation of anA-subsheaf ofE is an A-subsheaf of
E, the usual proof of the existence of an Harder - Narasimhan filtration of any vector bundle on
X (see for instance [2], pp. 15–16) gives the following result.

PROPOSITION1. Let (E,h) be an A-sheaf. There is an increasing filtration{Ei }0≤i≤r
of E by saturated A-subsheaves such that E0 = {0}, Er = E, Ei is saturated in Ei+1 for
0 ≤ i < r and Ei+1/Ei is Ai -semistable, where Ai ⊆ H0(X,End(Ei+1/Ei )) is the image of
h(E) in H0(X,End(Ei+1/Ei )) andµ(Ei+1/Ei ) > µ(B) for every other Ai -subsheaf of E/Ei .

Proof of Theorem 1.If E is semistable, then obviously it isA-semistable. Assume thatE is
not semistable and letF be the first step of the Harder - Narasimhan filtration ofE. Thus
{0} 6= F andµ(F) > µ(E). By the uniqueness of the Harder - Narasimhan filtration ofE
the subsheafF of E is invariant for the action of Aut(E). Since Aut(E) is a non-empty open
subset ofH0(X,End(E)), F is invariant for the action of theK -algebraH0(X,End(E)). Since
h(A) ⊆ H0(X,End(E)), F is anA-subsheaf ofE. ThusE is not A-semistable.

Proof of Theorem 2.The if part is easy (see Example 2). Here we will check the other impli-
cation. SinceE is polystable, there is an integers ≥ 1, stable bundlesF1, . . . , Fs (uniquely
determined up to a permutation of their indices) withFi � F j if i 6= j and positive integers

r1, . . . , rs such thatE ∼= ⊕1≤i≤sF
⊕

r i
i . SinceE is polystable,µ(Fi ) = µ(F j ) for all i, j .

SinceFi andF j are stable, with the same slope and not isomorphic,h0(X,Hom(Fi , F j )) = 0

if i 6= j . HenceH0(X,End(E)) ∼=
⊕

1≤i≤s Mr i ×r i (K). Since each factorF⊕r i
i is invariant for

the action of the group Aut(E), it is H0(X,End(E))-invariant and henceh(A)-invariant, i.e. it
is an A-sheaf. Sinceµ(Fi ) = µ(F j ) for any i, j , E is A-stable only ifs = 1. Obviously,A is
a unitaryK -subalgebra of the unitaryK -algebraMr1×r1(K) of r1 × r1 matrices and the induced

action ofA is irreducible because no proper direct factor ofF⊕r1
1 is A-invariant.

Proof of Theorem 3.SinceE is semistable but not polystable, the existence of a Jordan -Hölder
filtration of E shows the existence of a maximal proper subsheafF of E with 0 6= F 6= E and
µ(F) = µ(E). Indeed,F contains all proper subsheaves ofE with slopeµ(E). Thus F is
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invariant for the action of the group Aut(E). HenceF is H0(X,End(E))-invariant and hence an
A-sheaf. ThusE is not A-stable.

EXAMPLE 1. Take(E,h) with A 6= K , rank(E) = 2 and E non-split extension of a
line bundle M by a line bundleL . Set a = dimK (A). Assume thatL is A-invariant and
that E has noA-invariant line subbundle of degree> deg(L); the last condition is always
satisfied if deg(L) ≥ deg(M); both conditions are satisfied if deg(L) ≥ deg(M) and E �
L ⊕ M. Hence, with the notation of Example 3,A ∼= A(V) for some vector subspaceV of
H0(X,Hom(M, L)). Hence deg(M) ≥ deg(L). We haveλA(L) = deg(L) and λA(E) =

deg(E)/2a = (deg(L) + deg(M))/2a. Sinceh0(X,Hom(M, L)) > 0, E is not λA-stable if
deg(M) ≥ 0. If deg(M) ≥ 0, thenE is λA-semistable if and only ifL ∼= M (i.e. equiva-
lently by the conditionh0(X,Hom(M, L)) > 0 if and only if deg(M) ≥ deg(L)) anda = 2. If
2(deg(L)) < a(deg(L)+deg(M)) (resp. 2(deg(L)) ≤ a(deg(L)+deg(M)), thenE is εA-stable
(resp. εA-semistable). Hence if deg(M) ≥ 0, E is alwaysεA-semistable and it isεA-stable if
and only if either deg(M) > 0 ora ≥ 3.

REMARK 2. If (E,h) is λA-semistable (resp.λA-stable) then it isA-semistable (resp.A-
stable) becausec(h, F) ≤ c(h, E) for everyA-subsheafF of E.

PROPOSITION2. Fix integers a, r , d with a≥ 1 and r ≥ 2. Let X be a smooth and
connected projective curve. Let R(r,d,a) (resp. S(r,d,a), resp. T(r,d,a)) be the set of all
vector bundles E on X such that there exists a unitaryK -algebra A with dim(A) = a and an
injective homomorphism ofK -algebras h: A → H0(X,End(E)) such that the pair(E,h) is A-
semistable (resp.λA-semistable, resp.εA-semistable). Then R(r,d,a), S(r,d,a) and T(r,d,a)
are bounded.

Proof. The boundedness ofR(r,d,a) follows from Theorem 1 and the boundedness of the set
of all isomorphism classes of semistable bundles with rankr and degreed. The boundedness
of S(r,d,a) follows from the boundedness ofR(r, d,a) and Remark 2. Now we will check the
boundedness ofT(r,d,a) proving that it is a finite union of bounded sets. The intersection of
T(r,d,a) with the set of all semistable bundles is obviously bounded.Hence we may consider
only unstable bundles. LetT(r,d,a; c1, . . . , cx) be the set of all bundlesE ∈ T(r,d,a) formed
by the vector bundles whose Harder - Narasimhan filtration isof the form{Ei }0≤i≤x+1 with
E0 = {0}, rank(Ei ) = ci for 1 ≤ i ≤ x and Ex+1 = E. SinceE ∈ T(r,d,a) and eachEi
is an A-sheaf, we have deg(Ei )c(h, Ei )/ci ≤ deg(E)a/r and hence deg(E/Ei ) = deg(E) −

deg(Ei ) ≥ deg(E)(1 − aci /rc(h, Ei )). The set of all vector bundles onX with rankr , degree
d and anx + 1 steps Harder - Narasimhan filtration satisfying thesex inequalities is bounded
([1]); in this particular case this may be checked in the following way; for 0 ≤ i ≤ x the
set of all semistable bundlesEi+1/Ei is bounded; in particular the set of all possibleE1 is
bounded; the set of all possibleEi+1 is contained in the set of all extensions of members of
two bounded families, the one containingEi+1/Ei and the one containingEi , and hence it is
bounded; inductively, after at mostr steps we obtain the result.

From now on in this section we consider the case in whichX is an integral projective
curve. Setg := pa(X). An A-sheaf is a pair(E,h) whereE is a torsion free sheaf onX and
h : A → H0(X,End(E)) is an injective homomorphism of unitaryK -algebras. A subsheafF
of E is saturated inE if and only if eitherF = E or E/F is torsion free. Every subsheafF of
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E admits a unique saturation, i.e. it is contained in a unique saturated subsheaf ofE with rank
rank(F).

REMARK 3. Proposition 1 is true for a torsion free pair(E,h) on X; obviously in its state-
ment the sheavesEi , 1 ≤ i < r , are not necessarly locally free but each sheafEi+1/Ei is torsion
free. The proofs of Theorems 1, 2, 3 and of Proposition 2 work verbatim.

3. Nilpotent algebras

DEFINITION 2. We will say that A is pointwise nilpotent if for every f∈ A there isλ ∈ K
and an integer t> 0 such that( f − λ)t = 0. In this caseλ is called the eigenvalue of f and
the minimal such integer t is called the nil-exponent of f . The nil-exponent is a semicontinuos
function on the finite-dimensionalK -vector space A with respect to the Zariski topology. Hence
in the definition of pointwise-nilpotency we may take the same integer t for all f ∈ A.

REMARK 4. Fix f ∈ h(A) such that there isλ ∈ K andt ≥ 2 such that( f − λId)t = 0
and ( f − λId)t−1 6= 0. For any integeru ≥ 0 set E( f,u) := Ker(( f − λId)u). Since
Im(( f − λId)u) ⊆ E, Im(( f − λ)u) is torsion free and henceE( f, u) is saturated inE and in
E( f,u + 1). Looking at the Jordan normal form of the endomorphism of thefiber E|{P}, P
general inX, induced by f − λId, we see that rank(E( f,u)) < rank(E( f,u + 1)) for every
integeru with 0 ≤ u < t . In particulart ≤ rank(E) and we havet = rank(E) if and only if
E( f,1) is a line subbundle ofE.

EXAMPLE 2. Fix an integerr ≥ 2 and letA be a unitaryK -subalgebra of the unitaryK -
algebraMr×r (K) of r × r matrices whose action onK⊕r is irreducible. For anyL ∈ Pic(X) the
vector bundleE := L⊕r is an A-sheaf.E is semistable as an abstract vector bundle and every
ranks subbundleF of E with µ(F) = µ(E) is isomorphic toL⊕s and obtained fromE fixing
ans-dimensional linear subspace ofK⊕r . Thus we easily check thatE is A-stable. Similarly,
for any stable vector bundleG the vector bundleG⊕r is A-stable.

EXAMPLE 3. AssumeA 6= K Id and take anA-paier(E,h) with rank(E) = 2. Hence
E is not simple but no proper saturated subsheafL of E may have a faithful representation
A → H0(X,End(L)); more precisely, a saturated proper subsheafL of E is anA-subsheaf of
E if and only if each element ofh(A) acts as a multiple of the identity onL . First assumeE
indecomposable. SinceE is not simple but indecomposable, it is easy to check the existence of
uniquely determined line bundlesL , M on X such thatE is a non-split extension ofM by L and
deg(L) ≥ deg(M). we haveh0(X,End(E)) = 1 + h0(X,Hom(M, L)) and there is a linear sur-
jective mapH0(X,End(E)) → H0(X,Hom(M, L)) with Ker(u) = K Id. For every linear sub-
spaceV of H0(X,Hom(M, L)) there is a unique unitaryK -subalgebraA(V) of H0(X,End(E))
with u(A(V)) = V . We have dim(A(V)) = 1 + dim(V) and A(V) is pointwise-nilpotent with
nil-esponent two (except the caseV = {0} becauseA({0}) = K Id). Each algebraA(V) is com-
mutative. For every unitaryK -subalgebraB of H0(X,End(E)) there is a unique linear subspace
V of H0(X,Hom(M, L)) such thatB = A(V). Now assumeE decomposable, sayE = L ⊕ M.
H0(X,End(E)) is not pointwise-nilpotent. We haveh0(X,End(E)) = 2+h0(X,Hom(M, L)).
If L ∼= M, thenH0(X,End(E)) ∼= M2×2(K). Any commutative subalgebra ofH0(X,End(E))
has dimension at most two and it is isomorphic toK ⊕ K with componentwise multiplication.
Any pointwise-nilpotent subalgebra ofH0(X,End(E)) has dimension at most two and if it is
not trivial it has nil-exponent two. Now assumeL � M. Hence eitherh0(X,Hom(M, L)) = 0
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or h0(X,Hom(L ,M)). Just to fix the notation we assumeh0(X,Hom(L ,M)) = 0. Every non-
trivial pointwise nilpotent subalgebraB of H0(X,End(E)) has nil-exponent two and dimension
at most 1+ h0(X,Hom(M, L)). For any integerv with 0 ≤ v ≤ h0(X,Hom(M, L)) and for
every linesr subspaceV of H0(X,Hom(M, L)) with dim(V) = v there is a pointwise nilpotent
subalgebraB of H0(X,End(E)) and the isomorphism class ofB as abstractK -algebra depends
only from v, not the choice ofV and are isomorphic to the algebraA(V) just described in the
indecomposable case. A byproduct of the discussion just given is thatE is A-stable if and only
if A ∼= M2×2(K) andE ∼= L ⊕ L .

EXAMPLE 4. Fix an integera ≥ 2 and two vector bundlesB, D on X such thath0(X,
Hom(B, D)) ≥ a−1. Fix a linear subspaceV of H0(X,Hom(B, D))with dim(V) = a−1 and
let D(V) := K Id ⊕ V be the unitaryK -algebra obtained taking the trivial multiplication onV ,
i.e. such thatuw = 0 for all u, w ∈ V . Notice thatD(V) is commutative. Consider an extension

(1) 0 → B → E → D → 0

of D by B. There is a unique injectionh : D(V) → H0(X,End(E)) of unitary K -algebras
obtained sending the elementv ∈ V ⊂ D(V) into the endomorphismfv : E → E obtained
as composition of the surjectionE → D given by (1), the mapv : D → B and the inclusion
B → E given by (1).

PROPOSITION3. Assume char(K) 6= 2. Let A be a commutative pointwise-nilpotent al-
gebra with nil-exponent two and(E,h) an A-sheaf. Set a:= dim(A). Then there exist vector
bundles B, D and a linear subspace V of H0(X,Hom(B, D)) with dim(V) = a − 1 such that,
with the notation of Example 4, E fits in an exact sequence (1),A ∼= D(V) and h is obtained as
in Example 4, up to the identification of A with D(V).

Proof. Take a generalh ∈ h(A) and letλ be its eigenvalue. Setu = f − λId, B′ = Ker(u) and
D′ = E/B′. Sincea ≥ 2, f /∈ K Id and henceu 6= 0. ThusD′ 6= {0}. Since Im(u) ⊆ E, B′

is saturated inE. HenceD′ is a vector bundle. Sinceu2 = 0, B′ 6= {0}. There is a non-empty
Zariski open subsetW of A such that for everym ∈ W, calling λm the eigenvalue associated
to m, we have rank(Ker(m − λmId)) = rank(B′) and deg(Ker(m − λmId)) = deg(B′). Set
w = m − λmId. Since(u − w)2 = 0 andu2 = w2 = 0, we haveuw + wu = 0. Since
A is commutative and char(K) 6= 2 we obtainuw = wu = 0. Sinceu2 = w2 = 0 we
obtain Im(u) ⊆ Ker(u) ∩ Ker(w) and Im(w) ⊆ Ker(u) ∩ Ker(w). Vary m in W and call B
the saturation of the unionT of all subsheaves Im(w1) + · · · + Im(wx), x ≥ 1, andwi ∈ W
and nilpotent for everyi . T is a coherent subsheaf of Ker(u) because the set of all such sums
Im(w1)+ · · · + Im(wx) is directed and we may use [3], 0.12. SetD := E/B. Thus we have an
exact sequence (1). We just proved thatB is contained in Ker(w) for all nilpotentw coming from
some f ∈ W. SinceW is dense inh(A), we haveB ⊆ Ker(w) for every nilpotentw ∈ h(A), i.e.
every f ∈ h(A) is obtained composing the surjectionE → D given by (1) with a mapD ∈ B
and then with the inclusion ofB in E given by (1). Henceh(A) ∼= D(V) for some V.
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GORENSTEIN POINTS IN P3

Abstract. After the structure theorem of Buchsbaum and Eisenbud [1] onGoren-
stein ideals of codimension 3, much progress was made in thisarea from the al-
gebraic point of view; in particular some characterizations of these ideals using
h−vectors (Stanley [9]) and minimal resolutions (Diesel [3])were given. On the
other hand, the Liaison theory gives some tools to exploit, but, at the same time, it
requires one to find, from the geometric point of view, new Gorenstein schemes.
The works of Geramita-Migliore [5] and Migliore-Nagel [6] present some con-
structions for Gorenstein schemes of codimension 3; in particular they deal with
points inP3.
Starting from the work of Migliore and Nagel, we study their constructions and we
give a new construction for points inP3: given a specific subset of a plane com-
plete intersection, we add a “suitable” set of points on a line not in the plane and
we obtain an aG zeroscheme that is not complete intersection. We emphasize the
interesting fact that, by this method, we are able to “visualize” where these points
live.

1. Introduction

It is well known, by the structure theorem of Buchsbaum and Eisenbud [1] and by the results of
Diesel [3], what are all the possible sets of graded Betti numbers for Gorenstein artinian ideals
of height 3. Geramita and Migliore, in their paper [5], show that every minimal free resolution
which occurs for a Gorenstein artinian ideal of codimension3, also occurs for some reduced set
of points inP3, a stick figure curve inP4 and more generally a “generalized” stick figure inPn.
On the other hand, Stanley [9] characterized theh-vectors of all the Artinian Gorenstein quotients
of k[x0, x1, x2], showing that theirh-vectors are SI-sequences and, viceversa, every SI-sequence
(1, h1, . . . ,hs−1,1), whereh1 ≤ 3, is theh-vector of some Artinian Gorenstein scheme of
codimension less than or equal to 3. In Section 2 we will see how Nagel and Migliore [6] found
reduced sets of points inP3 which haveh-vector(1,3, h2, . . . ,hs−2,3, 1).

In this case, the points inP3 solving the problems can be found as the intersection of two
nice curves (stick figures) which have good properties. It is, however, very hard to see where
these points live! We try to make the set of points found by these construction more visible.

In the last section we give some examples: we take a set of points, which come from Nagel-
Migliore’s construction (i.e. a reduced arithmetically Gorenstein zeroscheme not a Complete
Intersection) and we study where this set lives. In particular, we have a nice description of
Gorenstein point sets whoseh-vector are of the form(1, 3,4, 5, . . . , n − 1,n,n, . . . ,n,n −

1, . . . ,5, 4,3, 1).

This allowed us to determine, in a way which is independent ofthe previous constructions,
particular configurations of points which are reduced arithmetically Gorenstein zeroschemes not
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complete intersection.

2. Gorenstein points inP3 from the h-vector

In this section we will see how Nagel and Migliore find a reduced arithmetically Gorenstein
zeroscheme inP3 (i.e. a reduced Gorenstein quotient ofk[x0, x1, x2, x3] of Krull dimension 1)
with givenh-vector.

We start with some basic definitions that we find in [6] and in [9].

DEFINITION 1. Let H = (h0,h1, . . . , hi , . . . ) be a finite sequence of non-negative inte-
gers. Then H is called an O-sequence if h0 = 1 and hi+1 ≤ h<i>

i for all i .

By the Macaulay theorem we know that the O-sequences are the Hilbert functions of stan-
dard gradedk-algebras.

DEFINITION 2. Let h = (1,h1, . . . ,hs−1,1) be a sequence of non-negative integers. Then
h is an SI-sequence if:

• hi = hs−i for all i = 0, . . . , s,

• (h0,h1 − h0, . . . ,ht − ht−1, 0, . . . ) is an O-sequence, where t is the greatest integer
≤ s

2.

Stanley [9] characterized theh-vectors of all graded Artinian Gorenstein quotients of
k[x0, x1, x2], showing that these are SI-sequence and any SI-sequence, with h1 = 3, is theh-
vector of some Artinian Gorenstein quotient ofk[x0, x1, x2].

Now we can see how Nagel and Migliore [6] find a reduced arithmetically Gorenstein ze-
roscheme inP3 with givenh−vector. This set of points will result from the intersectionof two
arithmetically Cohen-Macaulay curves inP3, linked by a Complete Intersection curve which is
a stick figure.

DEFINITION 3. A generalized stick figureis a union of linear subvarieties ofPn, of the
same dimension d, such that the intersection of any three components has dimension at most
d − 2 (the empty set has dimension -1).

In particular, sets of reduced points are stick figure, and a stick figure of dimensiond = 1
is nothing more than a reduced union of lines having only nodes as singularities.

So, let

h = (h0,h1, . . . ,hs) = (1, 3,h2, . . . ,ht−1,ht ,ht , . . . ,ht , ht−1, . . . , h2,3, 1)

be a SI-sequence, and consider the first difference

1h = (1, 2,h2 − h1, . . . ,ht − ht−1,0, 0, . . . , 0,ht−1 − ht , . . . ,−2,−1)

Define two sequencesa = (a0, . . . ,at ) andg = (g0, . . . , gs+1) in the following way:

ai = hi − hi−1 f or 0 ≤ i ≤ t
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and

gi =





i + 1 for 0 ≤ i ≤ t

t + 1 for t ≤ i ≤ s − t + 1

s − i + 2 for s − t + 1 ≤ i ≤ s + 1

We observe thata1 = g1 = 2, a is a O-sequence sinceh is a SI-sequence andg is theh-
vector of a codimension two Complete Intersection. So, we would like to find two curvesC and
X in P3 with h-vector respectivelya andg. In particular it is easy to see thatg is theh-vector of
a Complete Intersection,X, of two surfaces inP3 of degreet + 1 ands − t + 2.

We can getX as a stick figure by taking as the equation of those surfaces two forms which
are the product, respectively, ofA0, . . . , At andB0, . . . , Bs−t+1, all generic linear forms. Nagel
and Migliore [6] proved that the stick figure (embedded inX), determined by the union ofai
consecutive lines inAi = 0 (always the first inB0 = 0), is an aCM schemeC with h-vector
a. In this way, if we considerC′, the residual ofC in X, the intersection ofC andC′ is an aG
schemeY of codimension 3. This is also a reduced set of points becauseX, C andC′ are stick
figures and it has the desiredh-vector by the following theorem:

THEOREM1. Let C, C′, X, Y be as above. Let g= (1, c, g2, . . . , gs, gs+1) be the h-vector
of X, let a= (1, a1, . . . ,at ) and b= (1,b1, . . . ,bl ) be the h-vectors of C and C′, then

bi = gs+1−i − as+1−i

for i ≥ 0. Moreover the sequence di = ai + bi − gi is the first difference of the h-vector of Y .

So we have to show thatdi = hi − hi−1:

• For 0≤ i ≤ t we havedi = ai = hi − hi−1

• For t + 1 ≤ i ≤ s − t we havedi = bi − gi = 0

• For s − t + 1 ≤ i ≤ s + 1 we havedi = bi − gi = −as+1−i = −(hs+1−i − hs−i ) =

hi − hi−1

REMARK 1. Theorem 1 says, for example, that there exists no cubic through the 8 points of
a Complete Intersection of two cubics, but not through the nine. In fact, if we consider a reduced
Complete Intersection zeroschemeX in P2 given by two forms of degreea andb, theh−vector
of X \ {P} is (1,2, 3, . . . ,a − 1, a, a, . . . ,a, a, a − 1, . . . ,3,2), whatever pointP we cut off.

EXAMPLE 1. Let h = (1, 3,4, 3,1) be a SI-sequence. Consider the first difference ofh,
i.e.1h = (1, 2,1,−1,−2,−1).

So,g = (1, 2,3, 3,2, 1) is theh-vector ofX, stick figure which is the Complete Intersection
of F1 =

∏2
i=0 Ai andF2 =

∏3
i=0 Bi , whereAi andBi are general linear forms.

Now, we callPi, j the intersection betweenAi = 0 andB j = 0. ThenC = P0,0 ∪ P1,0 ∪

P1,1 ∪ P2,0 is the scheme which hash-vectora = (1,2, 1).
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So, it is clear that the residualC′ of C in X is the union of the lines ofX which aren’t
components inC. Then the reduced set of pointsY with h-vector(1,3, 4,3, 1) consists of 12
points which exactly are:

• 3 points onP0,0, intersection betweenP0,0 andP0,1, P0,2 andP0,3

• 2 points onP1,0, intersection betweenP1,0 andP1,2, P1,3

• 4 points onP1,1, intersection betweenP1,1 andP1,2, P1,3, P0,1 andP2,1

• 3 points onP2,0, intersection betweenP2,0 andP2,1, P2,2 andP2,3

EXAMPLE 2. Let h = (1,3, 5,3, 1). With the previous notations, we have that the first
difference ofh is 1h = (1,2, 2,−2,−2,−1), so g = (1, 2,3, 3,2, 1). Hence, we can take a
stick figureX which is a Complete Intersection between a cubic and a quartic.

Therefore, as above, we get a subscheme ofX with h-vector(1,2, 2).

v v f f
v v f f
v f f f v

fC=

C′=
A2

A1

A0

B3B2B1B0

Figure 2
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In this way, the intersection betweenC and the residualC′ gives the reduced set of 13 points
with the expectedh-vector.
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3. Gorenstein Sets of points not complete intersection

In this paragraph, we start visualizing some sets of points which result from the Migliore-Nagel
construction. This construction has given an idea of how to build particular sets of points in
P3 which are arithmetically Gorenstein zeroschemes and not Complete Intersections. For this
purpose, we start from a careful analysis of Examples 1 and 2.

EXAMPLE 3. In example 1 we can see that the setY of 12 points which realizes theh-
vectorh = (1, 3,4, 3, 1), has the following configuration: 3 points onP0,0 (the intersection
betweenP0,0 and P0,1, P0,2, P0,3), 2 points onP1,0 (the intersection betweenP1,0 and P1,2,
P1,3), 3 points onP2,0 (the intersection betweenP2,0 andP2,1, P2,2 andP2,3), 4 points onP1,1
(intersection betweenP1,1 andP0,1, P2,1, P1,2, andP1,3). So, we denote these points by

Pk,l
i, j = Pi, j ∩ Pk,l .

We focus our attention on the planeB0, where we consider 9 points: the intersections of the
lines Pi,0 with the planesB1,B2,B3.

So we have three triplets of points which are collinear, but also the triplets of the form{Pi,l
i, j }

i = 1,2, 3 are collinear, because they live in the intersection between B0 and Bi , i = 1, 2, 3.
These points, exceptP = P1,1

1,0 , are inY. Now, we considerP1,1: this line is throughP and
is not in B0. The remaining 4 points are the intersection betweenP1,1 and A0, A2, B2, B3 and
they are different fromP. The union of all these points, exceptP, is our Gorenstein setY.

v v v× v vv v vv

v

v

v
P2,1

2,0 P2,2
2,0 P2,3

2,0

P1,2
1,0 P1,3

1,0

P0,1
0,0 P0,2

0,0 P0,3
0,0

P

B0∩A0

B0∩A2

B0∩A1

B0∩B1 B0∩B2 B0∩B3

P1,1

P0,1
1,1

P2,1
1,1

P1,3
1,1

P1,2
1,1

B0

Figure 3
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So, from that analysis we get a guess to construct a more visible Gorenstein set of 12 points.
We start from a planeB0 with 9 points which satisfies some relation of collinearity (as in Figure
3), we cut off a point, and we choose a liner = P1,1 through this point and not in the plane.
Notice that this is equivalent to say that we choose the planes A1 and B1. It is easy to see that
we can choose the points on this liner randomly. This is due to the fact that, at this point of the
Migliore-Nagel construction, each of the planesA0, A2, B2, B3, are defined by three collinear
points (for example,A0 is the plane throughP0,1

0,0 , P0,2
0,0 , andP0,3

0,0 ). In other words, if we start
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from Figure 3, the 9 points don’t fix uniquely the planesA0, A2, B2, andB3, but they define 4
pencils of planes in which we can choose the previous planes.

EXAMPLE 4. Now, let’s analyze Example 2 (a set of 13 points) and try to visualize this set
as before. Here we have:

• 3 points onP0,0, intersection betweenP0,0 andP0,1, P0,2 andP0,3

• 2 points onP1,0, intersection betweenP1,0 andP1,2, P1,3

• 3 points onP1,1, intersection betweenP1,1 andP0,1, P1,2, P1,3

• 2 points onP2,0, intersection betweenP2,0 andP2,2, P2,3

• 3 points onP2,1, intersection betweenP2,1 andP0,1 P2,2 , P2,3

As in the previous example,we consider the 9 points in the plane B0, but this time we have
to cut off two points:P := P1,1

1,0 andQ := P2,1
2,0 . After we take the linesr := P1,1 ands := P2,1

respectively throughP and Q, we have to fix three points on each line:P0,1
1,1 , P1,2

1,1 , P1,3
1,1 and

P0,1
2,1 , P2,2

2,1 , P2,3
2,1 .

This time, we cannot randomly choose all the six points: in fact these points are given by
the intersections ofr ands with the planesA0, B2 and B3. So if we randomly choose three
points (for example inr ), then the planesA0, B2 andB3 are fixed, and the points ons too. The
result appears as in the figure below:

× v v× v vv v v
v
vv

v

vv

B0

B1

P2,2
2,0 P2,3

2,0

P1,2
1,0 P1,3

1,0

P0,1
0,0 P0,2

0,0 P0,3
0,0

B0∩A0

B0∩A2

B0∩A1

B0∩B1 B0∩B2 B0∩B3

P1,1
P2,1

P0,1

Figure 4

B1∩B2

B1∩B3
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If we look carefully at the planeB0 of the two examples, the 9 points are a Complete Inter-
section inP3 defined by three generatorsf, g,h where deg( f ) = 1, deg(g) = deg(h) = 3 and
bothg andh are products of three linear forms.
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Obviously we can generalize this idea to bigger sets. We had to observe that, following
Nagel-Migliore, we can always “picture” a Gorenstein set ofpoints inP3, but we can do it with
more or less freedom. This freedom depends onY, or better, on itsh-vectorhY. In fact, we
can say that if our SI-sequence is of the formhY = (1,3, 4, ..., t, t, t, t, .....4,3, 1), with the
hypothesis that all the entries of1h, excepth1−h0 = 2, are equal to 0 or 1, then it is possible to
find a particular plane Complete IntersectionX of points and, after taking a line through a point
P ∈ X (and cut off this point) and a correct number of points different from P on the line, we
obtain a Gorenstein set of pointsY ⊂ P3 with h-vectorh.

Now, suppose that the hypothesis onHY are verified. The next question is the following: is
it possible to substitute the generatorsg,h by g′,h′ not products of linear forms ?

So we tried to take a generic complete intersectionX of the form(1, 3,3); as before, we cut
off a point P and we choose a setW of 4 points over a general line throughP, not in the plane.
Working with theh-vectors ofX, P andW, we are able to prove thatY = (X ∪ W) \ {P} is
again a Gorenstein set of Points, not a Complete Intersection, with h-vector(1, 3,4, 3,1).

t t t
× t t

t t tt

t

t

t
Figure 5
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This fact gave us the idea for another generalization: what happens if we take a Complete
Intersection of the form(1,a, b)minus a point, and a set of points over a line through this point?
Do we obtain a Gorenstein set of points?

We notice that this time, however, we don’t start from anh-vector, but we search a new
method to construct Gorenstein set of points not Complete Intersections.

The answer to the question is positive. To proof, we need of following result by Davis,
Geramita and Orecchia [2]:

THEOREM 2. Let I be the ideal of a set X of s distinct points inPn and suppose that the
Hilbert function of X has the first difference which is symmetric and that every subset of X
having cardinality s− 1 has the same Hilbert function. Then the homogeneous coordinate ring
of X is a Gorenstein ring.
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THEOREM 3. Let X ⊂ P3 be a reduced Complete Intersections of the form(1,a, b) and
let P ∈ X a point. Take a line L through P, not in the plane that contains X and fix a set Y of
a + b − 1 distinct points on L, containing P. Define

W := (X ∪ Y) \ {P}.

Then W is an arithmetically Gorenstein zeroscheme.

Proof. Supposea ≤ b. Let IX = (F1, F2, F3), where deg(F1) = 1, deg(F2) = a and
deg(F3) = b. Theh-vector of the Complete IntersectionX is

hX = (1,2, 3, . . . ,a − 1,a, a, . . . ,a, a, a − 1, . . . ,3, 2,1),

where the two “a − 1” entries correspond to the forms of degreesa − 2 andb. So the length
of hX is a + b − 1. LetY be the set ofa + b − 1 points onL ; IY will be (L1, L2, L3), where
IL = (L1, L2) and deg(L3) = a + b − 1. SinceP = X ∩ Y, we haveIX + IY ⊂ I P . But
IX + IY is (F1, F2, F3, L1, L2, L3) and theI P = (L1, L2, F1), so we have thatIX + IY is
the satured idealI P . Obviously, theh-vector of IY is hY = (1, 1, . . . , 1,1), because we have
a + b− 1 points on a line. From the next exact sequence we can calculate theh-vector ofX ∪ Y:

0 → IX ∩ IY → IX ⊕ IY → IX + IY → 0
1 1 1
2 1 0
.
.
.

.

.

.
.
.
.

a − 1 1 0
a 1 0
a 1 0
.
.
.

.

.

.
.
.
.

a 1 0
a 1 0

a − 1 1 0
.
.
.

.

.

.
.
.
.

2 1 0
1 1 0

So, we obtainhX∪Y = (1, 3,4, 5, . . . ,a, a + 1,a + 1, . . . ,a + 1, a + 1, a, . . . ,5, 4,3, 2).
If we considerX ∪ Y \ {P} = W, it hash-vector

(1, 3,4, 5, . . . , a,a + 1,a + 1, . . . ,a + 1, a + 1, a, . . . ,5,4, 3,1)

which is symmetric. In fact, suppose that theh-vector does not decrease at the last position.
Then there is a formF of degree less thana + b − 2 which is zero onW but not onP. So, if
we consider the curve given byF = 0 in the planeF1 = 0, we have a form of degree less than
a + b− 2 which is zero on all but one the points of a Complete Intersection (a,b), but this is not
possible by Remark 1.

Now, we use Theorem 2 to prove that this set of points is Gorenstein. Cut a point off this set
to obtain a setW′: it is sufficient to prove thathW′ is the same for any point we cut off. There
are two possible cases:
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1) the point is on the lineL1 = 0, L2 = 0,

2) the point is on the planeF1 = 0.

Case 1.Let W′ = W \ {Q}, whereQ ∈ L ∩ W. The only possibleh-vector forW′ is

(1, 3,4, 5, . . . , a,a + 1,a + 1, . . . ,a + 1, a + 1, a, . . . ,5,4, 3).

In fact, it cannot decrease in any other point, because in this case there would be a formF
of degree less than or equal toa + b − 3 that is zero on all the points ofW′ and not onQ. So,
F = 0 onab− 1 points of the Complete IntersectionX, then, for Remark 1, we know thatF is
also zero on the other point ofX, that isP. Soa + b − 2 points ofL are zeros ofF , thenF is
zero onL and soF(Q) = 0. This is a contradiction.

Case 2. Let Q ∈ X \ {P}, for the same reasons of the case 1, we cannot have a form of
degree less than or equal toa + b − 3 that is zero onW′ and not onQ. If F exists, it is zero on
a+b−2 points ofL , soL is contained inF = 0 and soF(P) = 0. ThenF is zero ona+b−1
points ofX and, for Remark 1,F(Q) = 0.

Then, the only possibleh-vector forW′ is

(1, 3,4, 5, . . . , a,a + 1,a + 1, . . . ,a + 1, a + 1, a, . . . ,5,4, 3).

REMARK 2. If a 6= 1 andb 6= 1, the Gorenstein set of points which we found,W, is not
a Complete Intersection. In fact, in this caseW is not contained in any hyperplane, but we have
two independent forms of degree two which are zero onW. With the above notation, those forms
are F1L1 and F1L2. Moreover, every form of degree two inIW must containF as factor by
Bezout’s Theorem. So, in every set of minimal generators ofIW we have two forms of degree 2
which are not a regular sequence.

4. Conclusion

In the previous section we showed a new method to construct aGzerodimensional schemes not
complete intersection. By this way, we can easily visualizethe position of these points and obtain
more informations about the “geometry” of the scheme, as thenext example shows.

EXAMPLE 5. We know that the coordinate ring of a set of five general points in P3 is
Gorenstein, where general means that not four are on a plane.We want give a proof using
Theorem 3.

In fact let P1, P2, P3, P4, P5 be five general points inP3. Let L1 = 0 be the plane contain-
ing P1, P2, P3 and L2 = 0, L3 = 0 the line throughP4 and P5. So we have a new pointP6,
i.e. the intersection between this plane and this line. The four points in the plane are complete
intersection ofL1 and two forms of degree two, because no three of them are collinear. In fact,
if P6 and two points on the plane are collinear, thenP4, P5 and those points are on a plane, and
this is a contradiction. So, by Theorem 3,P1, P2, P3 and 2+ 2 − 2 points on a line through
P6 but not in the plane form an arithmetically Gorenstein zeroscheme. If we chooseL the line
throughP6 andP4 andP5 the points onL , we have the conclusion.
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REMARK 3. Unfortunately in this way we can obtain very particular schemes: all these
schemes haveh-vector

(1,3, 4,5, . . . ,a, a + 1, a + 1, . . . ,a + 1, a + 1,a, . . . ,5, 4, 3,1);

so, we cannot build the scheme of the Example 2. But, this scheme too, can be obtained from
the union of a residual scheme and a “suitable” complete intersection.

Recently, in a joint work with R. Notari and M.L. Spreafico, wegeneralized this construction
obtaining a bigger family of Gorenstein schemes of codimension three.
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ON LINKED SURFACES IN P4

Abstract. We give an elementary proof of a result of Katz relating invariants of
linked surfaces inP4. A similar result is proved for volumes inP5. Then we try
to connect the geometry of the curveD = S∩ S′ to the properties of the linked
surfaces, for example we show that ifD is a complete intersection, then one of the
surfaces is a complete intersection too.

1. Introduction

Let us suppose thatSandS′ are smooth surfaces inP4, linked by a complete intersection of type
( f, g). The problem is to compute the numerical invariants ofS′, supposing that those ofS are
known. We restrict the study to a particular type of liaison,which is callednice linkage, but it
would be possible to work under wider hypotheses.
In general ifSandS′ are linked by a complete intersection, it is clear thatD = S∩ S′ is a curve,
since a complete intersection is connected. It is natural then to wonder whether this curve can
tell us something about the surfaces involved in the linkage.
The problem of determining invariants of linked surfaces inP4 also leads to think about the well
known conjecture concerning the irregularity of these surfaces.

Conjecture. There exists an integerM such that ifS ⊂ P4 is a smooth surface, thenq(S) ≤ M.

Indeed if it were possible to compute exactly the irregularity of a surface linked to another
whose invariants are all known, this would give a tool to verify the validity of the conjecture
above.
The following section concerns numerical invariants, in particular we give an elementary proof
of a result by S. Katz (see Lemma 2), which states a relation between invariants of linked sur-
faces. The main result in the third section is Prop. 2, which links the cohomology ofS and
S′ with that of D. Then we try to see how particular properties ofD translate in terms of the
surfaces. We wonder what it would mean in terms of the surfaces if D is, respectively, a. C
.M., complete intersection of three hypersurfaces or degenerate (see 1, 3, 4). We conclude with
some considerations about the case of linked subvarieties in P3 andP5. In particular we stress
the result in Proposition 5 (and Remark 4), in which it becomes clear how the Rao module of a
curveC ⊂ P3 could limit the degrees of the surfaces producing a linkage involving C.
I really would like to thank Ph. Ellia for his useful help and support during the preparation of
this work.

2. Invariants of nicely linked surfaces

DEFINITION 1. Let S and S′ be smooth surfaces inP4 of degrees respectively d, d′. We say
that S and S′ are nicely linkedif:
1. S∪ S′ is a complete intersection G∩ F, where F, G are hypersurfaces of degrees f , g
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respectively;
2. S∩ S′ is a smooth curve D;
3. G may be chosen to be smooth away from D, with finitely many nodes on D.

The following result is useful in order to grant the existence of hypersurfaces of certain
degrees nicely linkingS to S′.

PROPOSITION1. Let S be a smooth surface inP4, if IS(k) is globally generated, then for
every f, g ≥ k we can find hypersurfaces F,G nicely linking S to a smooth surface S′.

For a proof, see [1], Prop. 4.1. From now on, we assume thatS andS′ are nicely linked.
The next lemma provides a formula for the degree and the genusof the curveD, in terms of the
degrees of the hypersurfacesF andG and of the sectional genera of the surfacesSandS′.

LEMMA 1. Let S, S′ ⊂ P4 be smooth surfaces nicely linked by a complete intersection
F ∩ G of type( f, g), D = S∩ S′, with sectional generaπ , π ′ respectively, then:

(1) deg(D) = 2 +
f g

2
( f + g − 4)− π − π ′

g(D) = 1 +
deg(D)( f + g − 5)

2
and D is a subcanonical curve withωD = OD( f + g − 5).

Proof. Let H be a general hyperplane, we setC = S∩ H , C′ = S′ ∩ H . ThusC andC′ are
two curves inP3, linked by the complete intersectionC ∪ C′ = (H ∩ F) ∩ (H ∩ G). We have
Mayer-Vietoris sequence:

0 → OC∪C′ → OC ⊕ OC′ → O0 → 0
where0 = C ∩ C′, from which we infer: pa(C ∪ C′) = π + π ′ − 1 + card(0). Obviously
card(0) = deg(D) and sinceC ∪ C′ is a complete intersection, its arithmetical genus can
be computed easily aspa(C ∪ C′) = 1 +

f g
2 ( f + g − 4), so we get the desired formula:

deg(D) = 2 +
f g
2 ( f + g − 4)− π − π ′.

In order to compute the genus, we consider the exact sequenceof liaison:
0 → IU → IS → ωS′(5 − f − g) → 0

whereU = S∪ S′. ClearlyωS′(5− f −g) = IS,U , the sheaf of functions onU which vanish on
S. Observing thatIS,U has supportS′, we getIS,U = ID,S′ = OS′(−D), sinceD is a divisor
on S′. ThusωS′ = OS′(−D + f + g−5) and by adjunctionωD = OD( f + g−5), in particular
D is a subcanonical curve. Looking at the degrees we obtain: 2g(D)− 2 = deg(D)( f + g− 5).

LEMMA 2. Let S, S′ ⊂ P4 be smooth surfaces nicely linked by the complete intersection
U = S∪ S′ = F ∩ G, D = S∩ S′, then:

(2) pg(U) = pg(S)+ pg(S
′)− q(S)− q(S′)+ g(D)

Proof. We consider Mayer-Vietoris sequence:
0 → OU → OS ⊕ OS′ → OD → 0

and taking cohomology we have:h2(OU ) = h2(OS)+h2(OS′)+h1(OD)+h1(OU )+h0(OS)+

h0(OS′)− h1(OS)− h1(OS′)− h0(OD)− h0(OU ).
As U is a complete intersection( f, g), its minimal free resolution is:
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0 → O(− f − g) → O(− f )⊕ O(−g) → IU → 0
soh1(IU ) = h2(IU ) = 0, which yieldsh0(OU ) = 1 andh1(OU ) = 0. Furthermoreh0(OS) =

h0(OS′) = h0(OD) = 1, then we conclude.

REMARK 1. (i) This lemma was proven by S. Katz in [2], Cor. 2.4
(ii) The preceeding formula holds even if we are not in a situation of nice linkage, it is enough
to haveS, S′ smooth andD equidimensional.
(iii) This lemma provides a relation between invariants of linked surfaces, however it does not
allow us to determine such invariants completely. In fact inthe general situation we are able to
compute only the difference betweenq(S′) and pg(S′). This impediment was to be expected
if we think about the conjecture mentioned formerly. In someparticular cases it is possible to
determineq(S′) or pg(S′) using different techniques and, thanks to formula (2), to compute the
remaining one. For example if one of the surfaces is arithmetically Cohen-Macaulay, sayS, then
also the other one is a. C. M.. This implies thatq(S) = q(S′) = 0 and in such a situation all
invariants ofS′ are determined by knowing those ofS. There are also examples of non a. C. M.
surfaces whose properties allow anyway to computeq and pg for a surface linked to them.

3. The curve D

PROPOSITION2. With the previous notations:

(3) h1(ID(m)) = h1(IS(m))+ h1(IS′(m))

for every m∈ Z.

Proof. Let us consider the exact sequence:
0 → IU (m) → IS(m)⊕ IS′(m) → ID(m) → 0

taking cohomology we get:. . . → H1(IU (m)) → H1(IS(m))⊕ H1(IS′(m)) → H1(ID(m))
→ H2(IU (m)) → . . .

SinceU is a complete intersection:h1(IU (m)) = h2(IU (m)) = 0 and we get the desired
formula.

COROLLARY 1. 1. If S and S′ are a. C. M., then D is a. C. M. too;
2. if D is a. C. M., then S and S′ are projectively normal and q(S) = q(S′) = 0;
3. h1(ID( f + g − 5)) = q(S)+ q(S′).

Proof. 1. If SandS′ are a. C. M., thenh1(IS(m)) = h1(IS′(m)) = 0 for everym ∈ Z and by
Prop. 3.1 this implies thath1(ID(m)) = 0.
2. If D is a. C. M. we haveh1(ID(m)) = 0 for everym, thenh1(IS(m)) = h1(IS′(m)) = 0
too.
3. We recall that ifS, S′ ⊂ P4 are surfaces linked by a complete intersection( f, g) we have
h2(IS′(m)) = h1(IS( f + g − 5 − m)). Considering formula (3) in Proposition 2 we obtain:
h1(ID( f + g − 5)) = h2(IS)+ h2(IS′) = q(S)+ q(S′) using Serre duality.

REMARK 2. This result (part 3.) is of some interest if we consider theconjecture about
bounding the irregularity. Again it is not possible to compute q(S) but it becomes clear that the
curve D carries informations about the cohomology of the surfaces.We have already observed
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that D is a subcanonical curve. We could hope to start from a subcanonical curveD on a surface
S, such thath1(ID( f + g − 5)) − q(S) is greater than one, and try to obtainD linking S to a
smooth surfaceS′, which would haveq > 1. However this is probably an hopeless program.
Furthermore we have to deal with the following problem: given a smooth surfaceS, is it possible
to find surfacesS′, linked to S, such that every subcanonical curveD ⊂ S can be obtained as
S∩ S′? The answer to this question is negative, let us consider thefollowing counterexample.

EXAMPLE 1. Let Sbe Del Pezzo surface inP4, thenS is a rational surface of degree d=4,
with sectional genusπ = 1, complete intersection of two hyperquadrics. One can demonstrate
(see for instance [3], Theorem 10) that a divisorC on S is a smooth subcanonical curve if and
only if C is one of the following:

(a) C is a line andωC = OC(−2);

(b) C is a smooth plane conic andωC = OC(−1);

(c) C ∼ (α + 1)H andωC = OC(α), α ≥ 0, whereH is an hyperplane divisor onS;

(d) C ∼ (α + 1)H +
∑k

j =1(α + 1)L j andωC = OC(α), α ≥ 0, whereL1, . . . , Lk are
k ≥ 1 mutually skew lines.

We recall that ifC = S∩ S′, whereSandS′ are nicely linked by a complete intersection( f, g),
we haveωC = OC( f + g − 5).
It is easy to see that the first two types of subcanonical curves onS mentioned above cannot be
realized in such a way. In fact we would havef + g ≤ 4, sod′ = deg(S′) < 1, which is absurd.
For what concerns the third class of curves, as to say multiples of hyperplane divisors, we have
better hopes to find a couple of hypersurfaces producing these curves as explained before. Indeed
if C ∈ |mH|, C is a. C. M. for everym ≥ 1. Now if we consider a complete intersection
(2,m+2), we obtain that the intersection ofSwith the residual surfaceS′ is a curveD of degree
4m (using the formula (1) in Lemma 1), which is the degree ofC ∈ |mH|.
Now we come to the last type of subcanonical divisors onS. Let us considerC ∼ H + L , where
L is a line,ωC = OC andC is a non degenerate elliptic quintic, thenC is a. C. M.. If we
suppose thatC could be realized asS∩ S′, whereSandS′ are linked by a complete intersection
( f, g), we obtain thatdeg(C) = 4( f + g − 4). It is clear that the quantity 4( f + g − 4) could
never be equal to five, for anyf, g ≥ 1, soC ∼ H + L is not one of the curves we are looking
for.
We have shown with several counterexamples that not every subcanonical curve on a certain
surfaceS is given byS∩ S′, with S and S′ linked by a complete intersection, not even if we
restrict to a. C. M. curves.

Now we examinate the case in whichD is a complete intersection of three hypersurfaces
Fa, Fb, Fc of degrees respectivelya, b, c. Supposea ≤ b ≤ c. For each hypersurfaceFk we
have to deal with the following question: doesFk contain one of the surfacesS, S′?

Let us consider: 0→ H0(IS(k)) → H0(ID(k))
π
→ H0(ID,S(k)) → . . .

SupposeFk does not containS, thenFk provides a non zero element

F ′
k = π(Fk) ∈ H0(ID,S(k)).

We also have the exact sequence:

0 → H0(IU (k))
i

→ H0(IS′(k))
p

→ H0(ID,S(k)) → 0
Sincep is surjective, there exists̃Fk ∈ H0(IS′(k)) such thatp(F̃k) = F ′

k. Observe thatFk and

F̃k coincide overS, thenGk = F̃k − Fk belongs toH0(IS(k)).
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SinceFk and F̃k coincide overS, we could replaceFk with F̃k and considerD as the complete
intersectionF̃a ∩ F̃b ∩ F̃c. We could always manage to haveD = Ea ∩ Eb ∩ Ec, where the
hypersurfacesEk are such that eitherEk containsSor it containsS′. In other words we can say
that fork = a, b, c, Ek ∈ H0(IS(k)) or Ek ∈ H0(IS′(k)).

PROPOSITION3. With the notations above, let D be a complete intersection ofthree hyper-
surfaces of non decreasing degrees a≤ b ≤ c, i.e. D= Fa ∩ Fb ∩ Fc, then one of the surfaces
S, S′ is a complete intersection too.

Proof. It is clear from what said before that one of the surfacesS, S′ is contained in two of the
three hypersurfacesFk, sayS⊂ Fa ∩ Fb. In general we will have a residual surfaceS̃, such that
S∪ S̃ = Fa ∩ Fb. However, this would imply thatD = Fc ∩ (S∪ S̃) = (Fc ∩ S) ∪ (Fc ∩ S̃),
but we recall thatD is irreducible, then necessarilỹS= ∅ andS = Fa ∩ Fb.

REMARK 3. The preceeding result has this consequence: ifD is a complete intersection
then just one of the surfaces is a complete intersection too,anyway both are a. C. M. and this
implies thatq(S) = q(S′) = 0.

If we supposeD is a degenerate curve, we have the following result, which brings back to
the case in whichD is a complete intersection and allows us to apply Proposition 3.

PROPOSITION4. If D is degenerate, then D is a complete intersection.

Proof. If D is degenerate, there exists an hyperplaneH containingD, and from the previous
discussion, it follows thatH contains one of the surfacesS, S′. A degenerate surfaceS in P4

is a. C. M., to see it just consider the coneK over S in P4, S turns out to be the complete
intersection ofK andH . ThenSandS′ are a. C. M. and consequently alsoD is so. Moreover it
is clear that if a degenerate curve is a. C. M. inP4, it is a. C. M. inH ' P3 too. We recall that,
by Gherardelli’s theorem, ifD ⊂ P3 is a subcanonical, a. C. M. curve, thenD is a complete
intersection.

4. Liaison in P3 and P5

In this section we consider liaison between subvarieties inP3 and inP5.

PROPOSITION5. Let C, C′ ⊂ P3 be curves geometrically linked by a complete intersection
of type(a, b), and let D be the zerodimensional scheme C∩ C′, then:

h1(IC(m))+ h1(IC′(m)) ≤ h1(ID(m))

for every m∈ Z.

Proof. The proof is the same as in Proposition 2, but this timeh2(IC∪C′(m)) is not necessarily
zero, so only the inequality holds.

REMARK 4. The preceeding result is interesting even if it looks weaker than the one for
surfaces.
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We recall that for linked curves inP3 we have:h1(IC′(m)) = h1(IC(a+b−4−m)). Moreover
h1(ID(m)) ≤ deg(D), if D has dimension zero, thus we obtain the bound:h1(IC(m)) +

h1(IC(a + b − 4 − m)) ≤ deg(D). It is possible to expressdeg(D) as a function of the
invariantsa,b, d, g, whered, g are the degree and the genus ofC, and we get:deg(D) =

2 − 2g + d(a + b − 4).
In the end we can write the formula:h1(IC(m))+h1(IC(a+b−4−m)) ≤ 2−2g+d(a+b−4).
Note that just the fact of being able to make a linkage produces this bound on the cohomology
of C; conversely the knowledge of the Rao function ofC gives necessary conditions in order to
link C.

For what concerns the liaison of threefolds inP5, we have the following result.

PROPOSITION6. Let S, S′ ⊂ P5 be two threefolds, nicely linked by a complete intersection
(a, b), and let D be the smooth surface S∩ S′, then:

h1(IS(m))+ h1(IS′(m)) = h1(ID(m))

h2(IS(m))+ h2(IS′(m)) = h2(ID(m))

for every m∈ Z and D is a subcanonical surface withωD = OD(a + b − 6).

Proof. As in the proof of Proposition 2, we obtain the two equalitiesconsidering cohomology
of the exact sequence: 0→ IU (m) → IS(m)⊕ IS′(m) → ID(m) → 0. IndeedU a complete
intersection and soh1(IU (m)) = h2(IU (m)) = h3(IU (m)) = 0.
Then we look at liaison exact sequence: 0→ IU → IS → ωS′(6− a − b) → 0, by adjunction
we have again thatωD = OD(a + b − 6), soD is a subcanonical surface inP5.

LEMMA 3. With the notations above:

(4) h2(OS′)− h3(OS′) = pg(D)− q(D)− h3(OU )− h2(OS)+ h3(OS)

Proof. The proof is exactly the same as in Lemma 2.3, recalling that,by Barth’s theorem,
h1(OS) = 0 for a threefold inP5.

REMARK 5. Clearly the formula (4) above still holds ifSandS′ are not nicely linked, it is
enough for example to haveS andS′ smooth andD equidimensional. To haveD subcanonical
we only needD to be a Cartier divisor on one of the threefoldsSor S′. Indeed, if so, at least one
of the threefolds is smooth and we can proceed as in the proof of Proposition 6.
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