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M. Salvai∗

ON THE ENERGY OF SECTIONS OF TRIVIALIZABLE

SPHERE BUNDLES

Abstract. Let E → M be a vector bundle with a metric connection over a
Riemannian manifoldM and consider onE the Sasaki metric. We find a
condition for a section of the associated sphere bundle to bea critical point
of the energy among all smooth unit sections. We apply the criterion to
some particular cases whereM is parallelizable, for instanceM = S7 or a
compact simple Lie groupG with a bi-invariant metric, andE is the trivial
vector bundle with a connection induced by octonian multiplication or an
irreducible real orthogonal representation ofG, respectively. Generically,
these bundles have no parallel unit sections.

1. Introduction

Beginning with G. Wiegmink and C. M. Wood [5, 6], critical points of the energy of
unit tangent fields have been extensively studied (see for instance in [1] the abundant
bibliography on the subject). We are interested in a naturalgeneralization, namely,
critical points of the energy of sections of sphere bundles.

Let π : E → M be a vector bundle with a metric connection∇ over an oriented
Riemannian manifold, that is, each fiber has an inner productdepending smoothly on
the base point and

Z 〈V, W〉 = 〈∇ZV, W〉 + 〈V,∇ZW〉

for all vector fieldsZ on M and all smooth sectionsV, W of E.

On E one can define the canonical Sasaki metric associated with∇ in such a way
that the map

(dπ,K)ξ : Tξ E → TqM × Eq

is a linear isometry for eachξ ∈ E (hereq = π (ξ) andK is the connection operator
associated with∇).

Letπ : E → M be as before and denote byE1 = {ξ ∈ E | ‖ξ‖ = 1} the associated
sphere bundle. LetN be a relatively compact open subset ofM with smooth (possibly
empty) boundary. Given a smooth sectionV : M → E1, the total bending ofV on N
is defined by

BN (V) =

∫

N
‖∇V‖2 ,

∗Partially supported by foncyt, ciem (conicet) and secyt (unc).
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where(∇V)p : TpM → Ep, ‖∇V‖2 = tr (∇V)∗ (∇V) and integration is taken with
respect to the volume associated to the Riemannian metric ofM.

Consider onE the Sasaki metric. As in the case of vector fields, there existcon-
stantsc1 andc2, depending only on the dimension and the volume ofN, such that the
energyEN of the sectionV , thought of as mapV : N → E, is given by

EN (V) = c1 + c2 BN (V) .

In the following we refer to the energy of the section insteadof the bending, since that
is a subject more commonly studied. In every example we will be concerned with the
nonexistence of parallel unit sections, since they are trivial minima of the functional.

DEFINITION 1. A smooth section V: M → E1 is said to be a harmonic sec-
tion if for every relatively compact open subset N of M with smooth (possibly empty)
boundary, V is a critical point of the functionalBN (or equivalently, of the energyEN )
applied to smooth sections W of M satisfying W|∂N = V |∂N .

Notice that a harmonic section may be not a harmonic map fromM to E1 (see for
example [2, 3], whereE = T M).

The rough Laplacian1 acts on smooth sections ofE as follows:

(1V) (p) =

n
∑

i=1

(

∇Z i ∇Z i V
)

(p) ,

where
{

Z i | i = 1, . . . , n
}

is any section of orthonormal frames on a neighborhood of
p in M satisfying

(

∇Z i Z j
)

(p) = 0 for all i , j .

THEOREM 1. Let π : E → M be a vector bundle with a metric connection over
an oriented Riemannian manifold and consider on E the associated Sasaki metric. The
section V: M → E1 is a harmonic section if and only if there is a smooth real function
f on M such that

1V = f V.

REMARK 1. This condition was proved for the particular case whereE is the
tangent bundle, by Wiegmink [5] and Wood [6] for compact manifolds and by Gil-
Medrano [1] for general (not necessarily compact) manifolds (with a different presen-
tation). Their proofs can be adapted to the present more general case.

2. Applications

Let M be a parallelizable manifold with a fixed parallelization
{

X1, . . . , Xn
}

. Let V
be a finite dimensional vector space with an inner product ando (V) the set of all skew-
symmetric endomorphisms ofV . Let E = M × V → M be the trivial vector bundle.
Forv ∈ V, let Lv : M → E be the “constant” sectionLv (p) = (p, v) .
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PROPOSITION1. Given a mapθ :
{

X1, . . . , Xn
}

→ o (V) , there exists a unique
connection∇ on E → M such that

(1)
(

∇Xi Lv

)

(p) = Lθ(Xi )v (p)

for all p ∈ M and all i = 1, . . . , n. Moreover, the connection is metric.

Proof. Let {v1, . . . , vn} be an orthonormal basis ofV . Let X ∈ TpM andσ : M → E
be a smooth section. Then

X =

m
∑

i=1

ai X
i (p) and σ =

n
∑

j =1

f j Lv j

for some numbersai and smooth functionsf j : M → R. A standard computation
shows that

(∇Xσ) (p) =

m
∑

i=1

n
∑

j =1

ai

(

Xi
p

(

f j
)

Lv j (p) + f j (p)

(

Lθ(Xi )v j

)

(p)

)

defines a connection onE satisfying condition (1), which is metric sinceθ
(

Xi
)

is
skew-symmetric for alli .

EXAMPLE 1. The Levi-Civita connection of a Lie groupG with a left invariant
Riemannian metric may be obtained in this way: Letg be the Lie algebra ofG endowed
with an arbitrary inner product. Let∇ be the connection onE = G × g → G induced
by θ : g → o (g) given by

θ (X) Y =
1

2

(

adXY − (adX)∗ Y − (adY)∗ X
)

,

and any left invariant parallelization ofG, where∗ means transpose with respect to the
inner product at the identity. In this case the map

(2) F : E → T G, F (g, v) = d`g (v)

(`g denotes left multiplication byg) is an affine vector bundle isomorphism, and more-
over an isometry ifE andT G carry the corresponding Sasaki metrics.

EXAMPLE 2. A particular case of Example 1 is the following: If the metric on G
is bi-invariant, or equivalently the inner product is Ad(G)-invariant, we have

θ (X) Y =
1

2
[X, Y] .

EXAMPLE 3. LetG be a compact connected Lie group and(V, ρ) a real orthogonal
representation ofG. Proposition 1 provides a connection∇ on E = G × V → G
induced by any left invariant parallelization andθ = λ dρ, for someλ ∈ R.
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Let E = G × V → G as in Example 3. Forv ∈ V , let Rv the section ofE defined
by

(3) Rv (g) =

(

g, ρ
(

g−1
)

v
)

.

The sectionsLv and Rv are called left and right invariant, respectively, since inthe
particular case whereV = g, ρ = Ad they correspond to left and right invariant vector
fields, respectively, via the isomorphism (2).

REMARK 2. Although the vector bundlesE → G of Example 3 are topologically
trivial (as for instance the tangent spaces of parallelizable manifolds are) in most cases
they are not geometrically trivial, as shown in (b) of the following Theorem.

THEOREM 2. Let G be a compact connected simple Lie group endowed with a
bi-invariant Riemannian metric. Let(V, ρ) be an irreducible real orthogonal repre-
sentation of G and let E= G × V with the Sasaki metric induced by the connection
associated to any left invariant parallelization of G andθ = λdρ, for someλ ∈ R. The
following assertions are true:

(a) The left and right invariant unit sections are harmonic sections of E1 → G.

(b) If λ = 0 or λ = 1, then Lv or Rv, respectively, are parallel sections for all
v ∈ V . If 0 6= λ 6= 1, then the bundle E→ G has no parallel unit sections.

REMARK 3. (a) The result is still valid ifG is semisimple and the metric ofG is a
negative multiple of the Killing form.
(b) If (V, ρ) = (g, Ad) andλ = 1/2, we have the well-known fact that the unit left
invariant vector fields onG are harmonic sections ofT1G → G, since they are Killing
vector fields andG is Einstein [5] (see in [3, Section 4] the case where the bi-invariant
metric is not Einstein).

We need the following Lemma to prove the Theorem.

LEMMA 1. Let∇ be the connection on the bundle E→ G as in the hypothesis of
Theorem 2. If Z is a left invariant vector field on G, then

(4) (∇Z∇Z Rv) (g) =

(

g, (λ − 1)2 dρ (Z)2 ρ
(

g−1
)

v
)

for all g ∈ G, v ∈ V .

Proof. Let V be a smooth section ofE → G and suppose thatV (h) = (h, u (h)).
Denotew (h) = (d/dt)0 u (h exp(t Z)) andγ (t) = g exp(t Z) for t ∼ 0. We may
assume thatZ 6= 0, otherwise the assertion is trivial. A smooth sectionW such that

W (γ (t)) = (cost) Lu(g) (γ (t)) + (sint) Lw(g) (γ (t))
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satisfiesW (g) = V (g) and (W ◦ γ )′ (0) = (V ◦ γ )′ (0) . Hence, (∇ZV) (g) =

(∇ZW) (g) , which by (1) equals

Lλ dρ(Z)u(g) (g) + Lw(g) (g) = (g, λ dρ (Z) u (g) + w (g)) .

Applying this procedure toV = Rv, that is, u (h) = ρ
(

h−1
)

v and w (h) =

−dρ (Z) ρ
(

h−1
)

v, one obtains

(5) (∇Z Rv) (g) =
(

g, (λ − 1) dρ (Z) ρ
(

g−1
)

v
)

.

Finally, applying again the procedure to the sectionV = ∇Z Rv, one obtains (4).

Proof of Theorem 2.(a) Let {Z1, . . . , Zn} be an orthonormal basis ofg and consider
on G the associated left invariant parallelization. Givenv ∈ V , by (1) we compute

(1Lv) (g) =

n
∑

i=1

(

∇Z i ∇Z i Lv

)

(g) =

n
∑

i=1

L
λ2dρ(Z i )

2
v
(g)

=

(

g, λ2
n
∑

i=1

dρ
(

Z i
)2

v

)

=
(

g, λ2
Cρ (v)

)

,

whereCρ is a multiple of the Casimir of the representationρ (notice that the metric is
a negative multiple of the Killing form). Now, the Casimir isa multiple of the identity,
sinceρ is irreducible (a direct application of Schur’s Lemma). Hence,1Lv = µLv for
someµ and soLv is a harmonic section ofE1 → G by Theorem 1. On the other hand,
a straightforward computation shows that

dρ (Z) ρ
(

g−1
)

= ρ
(

g−1
)

dρ (Ad (g) Z)

for all g ∈ G andZ ∈ g. Hence, if we callU i = Ad (g) Z i , we have by Lemma 1 that

(1Rv) (g) =

n
∑

i=1

(

g, (λ − 1)2 ρ
(

g−1
)

dρ
(

U i
)2

v

)

=

(

g, (λ − 1)2 ρ
(

g−1
)

Cρ (v)

)

,

since
{

U i | i = 1, . . . , n
}

is an orthonormal basis ofg (the metric onG is bi-invariant).
As before,Cρ is a multipleµ̄ of the identity, hence1Rv = µ̄ (λ − 1)2 Rv, which
implies by Theorem 1 thatRv is a harmonic section ofE1 → G.

(b) If λ = 0, clearly Lv is parallel by definition of the connection. Ifλ = 1, then Rv

is parallel by (5). Suppose that a smooth unit sectionV with V (e) = (e, v) is parallel.
Then, forX, Y ∈ g the curvature

R(X, Y) (e, v) =
(

∇X∇Y Lv − ∇Y∇X Lv − ∇[ X,Y] Lv

)

(e)

= (e, [θ (X) , θ (Y)] v − θ [X, Y] v)

=

(

e, λ2 [dρ (X) , dρ (Y)] v − λdρ [X, Y] v
)

= (e, λ (λ − 1) dρ [X, Y] v)
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vanishes. IfG is semisimple, [g, g] = g. Hence, 06= λ 6= 1 implies thatdρ (Z) v = 0
for all Z ∈ g. This contradicts the fact thatρ is irreducible.

Next we deal with an analogue of the particular case of Theorem 2 whenV = H is
the algebra of quaternions,G = S3 = {q ∈ H | |q| = 1} andρ (q) X = q.X (quater-
nion multiplication) forX ∈ Im H = T1S3. (It is not a particular case of Theorem 2,
sinceS7 is not a Lie group.)

Let O ∼= R8 denote the octonians with the canonical inner product and let
S7 = {q ∈ O | |q| = 1} with the induced metric. The tangent space ofS7 at the iden-
tity may be identified with ImO, the purely imaginary octonians. Fix an orthonormal
basis{x1, . . . , x7} of Im O and consider the parallelization ofS7 consisting of the cor-
responding left invariant vector fieldsXi ’s, that is,Xi (q) = q.xi ∈ q⊥ = TqS7. By
analogy with (3), givenv ∈ O, we define the sectionRv of the trivial vector bundle
S7 × O → S7 by Rv (q) = (q, q̄v) .

THEOREM 3. Let E = S7 × O → S7 be the trivial vector bundle with the connec-
tion ∇ induced by

θ :
{

X1, . . . , X7
}

→ o (O) , θ
(

Xi
)

v = λ xi v,

with λ ∈ R, and consider on E the Sasaki metric induced by∇. The connection is
independent of the choice of the orthonormal basis ofIm O. If v ∈ O with |v| = 1, the
following assertions are true for the sections Lv, Rv of the associated spherical bundle
E1 → S7.

(a) If λ = 0, then Lv and Rv are harmonic sections. Ifλ 6= 0, then Lv is a harmonic
section and Rv is a harmonic section if and only ifv = ±1.

(b) If 0 6= λ 6= 1, then the bundle E1 → S7 has no parallel sections. The section
Lv is parallel if and only ifλ = 0, and Rv is parallel if and only ifλ = 1 and
v = ±1.

Before proving the theorem we recall from Chapter 6 of [4] some facts about the
octoniansO (also called Cayley numbers), which are a non-associative normed algebra
with identity, isomorphic toR8 as an inner product vector space. The algebraO is
H × H, with the multiplication given by

(6) (a, b) (c, d) =
(

ac− d̄b, da+ bc̄
)

.

Setting 1= (1, 0) ande = (0, 1) , one writes(a, b) = a + be. If u = a + x with
a ∈ R.1 and〈x, 1〉 = 0, the conjugate ofu is ū = a − x and〈u, v〉 = Re (uv̄) holds
for all u, v ∈ O. If x ∈ Im O = 1⊥ with |x| = 1, then

(7) x2 = −xx̄ = − |x|2 = −1.
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Moreover, if〈u, v〉 = 0, then

(8) u (v̄w) = −v (ūw)

for all w. From Lemma 6.11 of [4] and its proof we have that the associator

[u, v,w] = (uv) w − u (vw)

is an alternating 3-linear form which vanishes either if oneof the arguments is real or
if two consecutive arguments are conjugate. In particular,if x ∈ Im O with |x| = 1,

we have by (7) that for allv,

(9) x (xv) =
(

x2
)

v − [x, x, v] = −v + [x, x̄, v] = −v.

LEMMA 2. Let z = x` be an element of the basis ofIm O considered above and
denote Z= X`. Then for unit octoniansv and q one has

(10) (∇Z Rv) (q) = (q, λz (q̄v) − (zq̄) v)

and

(11) (∇Z∇Z Rv) (q) = −
(

1 + λ2
)

Rv (q) − 2λ (q, z ((zq̄) v)) .

Proof. The assertions follow proceeding as in the proof of Lemma 1, settingρ (q) X =

q X anddρ (z) X = zX, taking into account thatO is not associative and using (9).

Proof of Theorem 3.(a) First we show thatθ
(

Xi
)

is skew symmetric for alli =

1, . . . , 7. Indeed, givenv ∈ O, sincexi ∈ Im O, then

〈λxi v, v〉 = λ Re ((xi v) v̄) = λ Re
(

[xi , v, v̄] − xi |v|2
)

= 0,

by one of the properties of the associator mentioned above. On the other hand, by
definition of the connection and (9), we compute

(1Lv) (q) =

7
∑

i=1

(

∇Xi ∇Xi Lv

)

(q) =

7
∑

i=1

Lλ2xi (xi v) (q) =

=

(

q,−

7
∑

i=1

λ2v

)

=

(

q,−7λ2v
)

= −7λ2Lv (q) .

By Theorem 1,Lv is a harmonic section ofE1 → S7 for anyλ and using (11) and (9),
Rv is a harmonic section ifλ = 0 orv = ±1. Now we consider the caseλ 6= 0. If Rv

is a harmonic section, by Theorem 1 and (11) there exists a smooth function f on S7

such that

(12)
7
∑

`=1

x` ((x`q̄) v) = f (q) q̄v



154 M. Salvai

for all q ∈ S7. By Proposition 6.40 in [4], based on a theorem of Artin, we may
suppose without loss of generality thatv = a + bi, with a2 + b2 = 1. We must show
thatb = 0. Takeq̄ = c + d j with c2 + d2 = 1 and suppose that{x` | ` = 1, . . . , 7}

is the canonical basis{i , j , k, e, ie, je, ke} . Now a straightforward computation using
(6) and (9) yields that

∑7
`=1 x` ((x` j ) i ) = −k. Settingξ = ac+ cbi + ad j, equality

(12) becomes
−7ξ − dbk = f (c − d j) (ξ − dbk) .

Suppose thatb 6= 0. If b = ±1 (so a = 0), taking c = d 6= 0, one has
1 = f (c − d j) = −7. If b 6= ±1 (soa 6= 0), takingc = 0, d = 1, one gets also
a contradiction. Thus,b = 0 as desired.

(b) By definition of the connection,Lv is parallel if and only ifλ = 0. Suppose that
0 6= λ 6= 1. As in the proof of Theorem 2 (b), we show that for anyv ∈ O, v 6= 0, there
exist an orthonormal set{x, y} ⊂ T1S7 = Im O such that the curvatureR(x, y) v 6= 0.

Let X, Y be the left invariant vector fields onS7 corresponding tox andy, respectively.
By Proposition 6.40 of [4], based on a theorem of Artin, the spanH of {1, x, y, xy} is a
normed subalgebra isomorphic to the quaternions. Hence, one can think ofX, Y as left
invariant vector fields on the Lie groupS3 = H ∩ S7. Therefore [X, Y] (1) = xy− yx.
Using (8) we compute

R(x, y) v =
(

∇X∇Y Lv − ∇Y∇X Lv − ∇[X,Y] Lv

)

(1)

= λ2x (yv) − λ2y (xv) − λ (xy − yx) v

= 2λ (λx (yv) − (xy) v)

= 2λ ((λ − 1) (xy) v − λ [x, y, v]) .

If v = ±1, for any orthonormal set{x, y} ⊂ ImO one has clearly

R(x, y) v = ±2λ (λ − 1) xy 6= 0.

If v 6= ±1, thenu := Im v 6= 0 and taking an orthonormal set{x, y} in ImO, with
y = ū/ |u| , by the properties of the associator given after (8), one hasR(x, y) v =

2λ (λ − 1) (xy) v 6= 0. Finally, by (10),Rv is not parallel ifλ = 0, and if λ = 1, then
(∇Z Rv) (q) = (q,− [z, q̄, v]) for all q ∈ S7, Rez = 0. Similar arguments yield that
in this caseRv is parallel if and only ifv = ±1. This concludes the proof of (b).
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