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POINCAR E-BIRKHOFF FIXED POINT THEOREM AND
PERIODIC SOLUTIONS OF ASYMPTOTICALLY LINEAR
PLANAR HAMILTONIAN SYSTEMS

Abstract. This work, which has a self contained expository charadier,
devoted to the Poincaré-Birkhoff (PB) theorem and to itsligptions to
the search of periodic solutions of nonautonomous perioldicar Hamil-
tonian systems. After some historical remarks, we recal dlassical
proof of the PB theorem as exposed by Brown and Neumann. Ten,
variant of the PB theorem is considered, which enablesthegavith the
classical version, to obtain multiplicity results for agytatically linear
planar hamiltonian systems in terms of the gap between thedvian-
dices of the linearizations at zero and at infinity.

1. The Poincaie-Birkhoff theorem in the literature

In his paper [28], Poincaré conjectured, and proved in sgpeeial cases, that an area-
preserving homeomorphism from an annulus onto itself axlfait least) two fixed
points when some “twist” condition is satisfied. Roughlyakiag, the twist condition
consists in rotating the two boundary circles in oppositgudar directions. This con-
cept will be made precise in what follows.
Subsequently, in 1913, Birkhoff [4] published a completegirof the existence of at
least one fixed point but he made a mistake in deducing thé&eexis of a second one
from a remark of Poincaré in [28]. Such a remark guarantesstie sum of the indices
of fixed points is zero. In particular, it implies the existerof a second fixed point in
the case that the first one has a nonzero index.
In 1925 Birkhoff not only corrected his error, but he also Wer@ed the hypothesis
about the invariance of the annulus under the homeomorphidmfact Birkhoff him-
self already searched a version of the theorem more conwdoighe applications. He
also generalized the area-preserving condition.

Before going on with the history of the theorem we give a mestatement of the
classical version of Poincaré-Birkhoff fixed point themrand make some remarks.
In the following we denote byl the annulusd := {(x,y) € R? : r2 < x2+y? <

r22, 0 < r1 < rz} and byC; andC; its inner and outer boundaries, respectively.

*The second author wishes to thank Professor Anna CapietttharlUniversity of Turin for the invita-
tion and the kind hospitality during thEhird Turin Fortnight on Nonlinear Analysis.
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234 F. Dalbono - C. Rebelo

Moreover we consider the covering spade:= R x Rg of R? \ {(0,0)} and the
projection associated to the polar coordinate sysiemH — R?\ {(0, 0)} defined
by IT(9,r) = (r cosy, r send). Given a continuous map : D c R2\ {(0, 0)} —>
R?\ {(0,0)},amapy : T-1(D) — H is called a lifting ofy to H if

Moy = @oll.
Furthermore for each s& c R2\ {(0, 0)} we setD := [1"1(D).

THEOREM 1 (POINCARE-BIRKHOFF THEOREM). Lety : A — A be an area-
preserving homeomorphism such that both boundary cirdie$ are invariant under
¥ (i.e. ¥ (Cq1) = C1 andy(Cp) = Cp). Suppose that admits a Iifting{} to the polar
coordinate covering space given by

(1) Y@, = @ +9@,1), F@,1),
where g and f ar@r —periodic in the first variable. If the twist condition
(2) g, r1) g, r2) <0 V¥ € R [twist condition]

holds, then/ admits at least two fixed points in the interior.df

The proof of Theorem 1 guarantees the existence of two fixéatpcalled Fy
and F,) of J such thatF, — F» # k(2r, 0), for anyk € Z. This fact will be very
useful in the applications of the theorem to prove the miitity of periodic solutions
of differential equations. Of course the imagesFaf F2> under the projectiorl are
two different fixed points ofyr.

We make now some remarks on the assumptions of the theorem.

REMARK 1. We point out that it is essential to assume that the homegimsm
is area-preserving. Indeed, let us consider an homeonsmphi: A — A which
admits the Iifting@(z?, r =@ +a(), B(r)), wherea andp are continuous functions
verifying 27 > a(r1) > 0 > a(r2) > =2, B(rj) = rj fori € {1, 2}, B is strictly
increasing angg(r) > r for everyr € (r,r2). This homeomorphism, which does
not preserve the area, satisfies the twist condition, budstrio fixed points. Also its
projection has no fixed points.

REMARK 2. The homeomorphism preserves the standard area measuoydn
RR? and hence its lifi) preserves the measurer d. We remark that it is possible to
consider a lift in the Poincaré-Birkhoff theorem which geeves ddi¢ instead of dr dv¢
and still satisfies the twist condition. In fact, let us calesithe homeomorphisih of

R x [r1,r2] onto itself defined byT (¢,r) = (¥, ar? + b), wherea = and
. riro
S ri+r - -

rdrdy in a multiple of d d. Thus, if we defina/* := T o ¥ o T~1, we note that it

preserves the measuredd. Furthermore, there is a bijection between fixed poknts

rp+rz
. The homeomorphisr preserves the twist and transforms the measure
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of ¢* and fixed pointd ~1(F) of v Finally, it is easy to verify tha/* is the lifting of
an homeomorphisnt* which satisfies all the assumptions of Theorem 1. This remark
implies that Theorem 1 is equivalent to Theorem 7 in Section 2

Itis interesting to observe that if slightly stronger asgtions are required in The-
orem 1, then its proof is quite simple (cf. [25]). Indeed, vexér the following propo-
sition.

PrROPOSITIONL. Suppose that all the assumptions of Theotesne satisfied and
that

3) g(¥, -) is strictly decreasingor strictly increasing for eachy.

Then,y» admits at least two fixed points in the interior.4f

Proof. According to (2) and (3), it follows that for every € R there exists a unique
r () € (ry, r) such thag(s,r()) = 0. By the periodicity ofg in the first variable,
we have thag(® + 2km,r(#)) = g, r(®)) = O for everyk € Z andv € R.
Hence agy(¢ + 2k, r (¥ + 2kwr)) = 0, we deduce from the uniqueness 6#) that
r: 9 — r(¥) is a 2r—periodic function. Moreover, we claim that it is continuous
too. Indeed, by contradiction, let us assume that there éxisR and a sequencé,
converging ta¥ which admits a subsequenég, satisWinngTww r(Wn) =b#r().

Passing to the limit, from the equaliy(¥n,, r (¥n,)) = 0, we immediately obtain
g, b) = 0= g, r (¥)), which contradict® # r ().

By construction,@(ﬁ,r(ﬂ)) = @ +9g@,r@), f@r@)) = @, f@r@))).
Hence, each point of the continuous closed cutve A defined by

F={x,y)eR?: x=r@) cosy , y=r(@)seny, o € R}

is “radially” mapped into another one under the opergtoBeingys area-preserving
and recalling the invariance of the boundary ciralgs C, of .4 undery,, we can
deduce that the region bounded by the cu@ga&ndI" encloses the same area as the
region bounded by the curv€ andy (I"). Therefore, there exist at least two points
of intersection betweeh and (I"). In fact as the two regions mentioned above have
the same measure, we can write

21 pr(d®) 2 p @, @))
/ / rdrdﬂ:/ / rdrdg,
0 r 0 r

2
which implies/ (rz(ﬁ) — 2, r(ﬁ))) d9 = 0. Being the integrand continuous
0

and 2r —periodic, it vanishes at least at two points which give risanto distinct fixed
points ofy (-, r (-)) in [0, 27). Hence, we have found two fixed points vfand the
proposition follows.

O
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Morris [26] applied this version of the theorem to prove tlestence of infinitely
many 2r —periodic solutions for

X" + 2x3 = e(t),

wheree is continuous, 2 —periodic and it satisfies

2
/ e(t) dt = 0.
0

If we assume monotonicity of + g(,r) in @, for eachr, then also in this case the
existence of at least one fixed point easily follows (cf. J25]

PrRoPOSITION2. Assume that all the hypotheses of Theofehold. Moreover,
suppose that

(4) 9 + g(,r) is strictly increasingor strictly decreasingin o for each

Then, the existence of at least one fixed point follows, whiandifferentiable.

Proof. Let us suppose that — ¥ + g(,r) is strictly increasing for every

(0 +g(,r))

[r1,r2]. Thus, since > 0 for everyr, it follows that the equation

0¥ =9 4+ g(9, r) defines implicitly? as a function ob* andr. Moreover, taking into
account the 2 —periodicity of g in the first variable, it turns out that = ¢ (¥*,r)
satisfies? (0* + 2m,r) = 3 (¥*,r) + 27 for everyd* andr. We setr* = f(,r).
Combining the area-preserving condition and the invagasfcthe boundary circles
underyr, then the existence of a generating functid@ *, r) such that

¥ = 8W(z?* r)
T ’
(5) W
r = @*,r)
v+

is guaranteed by the Poincaré Lemma.
Now we consider the functiom(8*,r) = W(9*,r) — ¢*r. Since, according to (5),
the following equalities hold

0

wo_ r* —r
ov*
0
Wy o,
ar

the critical points ofw give rise to fixed points of.

It is easy to verify thatv has period 2 in 9*. Indeed, according to the hypothesis
of boundary invariance and to (5), we get

V¥ 4+2m V¥ 4+2r
W@* +2m,r1) — W®*,1r1) = / rs(s,ry)ds = / rids = 2wry.

* *
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Furthermore, combining (5) with the equali®(d®* + 2r,r) = 9 (9%, r) + 27, we
deduce

r
W@ +2m,r) — W@* + 27,11) = / P + 27, s) ds
r

1

r
=/ F(W*,8)ds + 2w(r —rq)
r

=W®@*,r) — W®*,r1) + 27 —r).
Finally, we infer that

w@* + 27, 1) —w@*, 1) =W@* +2m,r) —W@*,r)—2nr
=W@* +2m,1r1) = W@*,r1) —27r, =0,

and the periodicity ofv in the first variable follows.
Consider now the external normal derivativesof

d

(6) L ot o RYCI DA
Bng1
Jw

@) S —r e — 99 (0.1 = & - %,
Bnc~2

The twist condition (2) implies that* — ¢ has opposite signs on the two boundary
circles. Hence, by (6) and (7), the two external normal déies inC; andC; have
the same sign. Being a 27 —periodic function ind*, critical point theory guarantees
the existence of a maximum or a minimumwofin the interior of the covering space

A. Such a point is the required critical pointwf
([l

It is interesting to notice that as a consequence of the gieitg of g and f in ¥,
the existence of a second fixed point (a saddle) follows frdtital point theory.

As we previously said, in order to apply the twist fixed poim¢drem to prove
the existence of periodic solutions to planar Hamiltonigstems, Birkhoff tried to
replace the invariance of the annulus by a weaker assumpliwteed, he was able
to require that only the inner boundary is invariant unéierHe also generalized the
area-preserving condition. More precisely, in his art[8ethe homeomorphisnt is
defined on a regioR bounded by a circl€ and a closed curvE surroundingC. Such
an homeomorphism takes values on a redftarbounded byC and by a closed curve
I'1 surroundingC. Under these hypotheses, Birkhoff proved the followingtieen

THEOREM 2. Let T : R — Ry be an homeomorphism such thatd) = C
and T(I') = I'1, withT" andT"; star-shaped around the origin. If T satisfies the twist
condition, then either
o there are two distinct invariant points P of R and éhder T
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or
e there is a ring in R(or Ry) around C which is carried into part of itself by Tor
T-1).

Since Birkhoff’s proof was not accepted by many mathemetiej Brown and Neu-
mann [6] decided to publish a detailed and convincing prbagéd on the Birkhoff's
one) of Theorem 1. In the same year, Neumann in [27] studiedrgéizations of such
a theorem. For completeness, we will recall the proof givej] and also the details
of a remark stated in [27] in the next section.

After Birkhoff's contribution, many authors tried to geaéirze the hypothesis of
invariance of the annulus, in view of studying the existeatperiodic solutions for
problems of the form

X" + f(t,x) =0,

with f : R2 — R continuous and -periodic int.

In this sense we must emphasize the importance of the worBadnbowitz and W-Y
Ding. In his article [22] Jacobowitz (see also [23]), gaveeasion of the twist fixed
point theorem in which the area-preserving twist homeotisrp is defined on an
annulus whose internal boundary (roughly speaking) deg#e®into a point, while
the external one is a simple curve around it. More precisefirst considered two
simple curved; = (% (-), ri(-)), i = 1, 2, defined in [01], with values in thg, )
half-planer > 0, such that};(0) = —x, (1) = =, ¥i(S) € (—m, ) for each
s € (0,1) andrij(0) = ri(1). Then, he considered the correspondimgriodic
extensions, which he called agdih. Denoting byA; the regions bounded by the
curveT (included) and the axis = 0 (excluded), Jacobowitz proved the following
theorem

THEOREM3. Lety : A1 —> Ay be an area-preserving homeomorphism, defined
by
v(@r) =@ + 9@, 1), f@r),

where

e g and f are2r —periodic in the first variable;
e g(®,r) <0 onTly;

. Ii{ﬂ igfg(ﬁ,r) > 0.

Then,y» admits at least two fixed points, which do not differ from atipld of (27, 0).

Unfortunately the proof given by Jacobowitz is not very etsyollow. Subse-
quently, using the result by Jacobowitz, W-Y Ding in [15] qdé] treated the case
in which also the inner boundary can vary under the areaepregy homeomorphism.
He considered an annular regighwhose inner boundai@; and the outer on€; are
two closed simple curves. BY; he denoted the open region boundedlyi =1, 2.
Using the result by Jacobowitz, he proved the following tieeo

THEOREM4. LetT : A — T(A) c R?\ {(0, 0)} be an area-preserving home-
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omorphism. Suppose that
(a) Cj is star-shaped about the origin;
(b) T admits a Iifting:I: onto the polar coordinate covering space, defined by
Tw,r = ® + gw.r), f@,n),

where f and g ar@r —periodic in the first variable, %, r) > 0 on the lifting
of C; and g, r) < 0on the lifting of G;

(c) there exists an area-preserving homeomorphigm D, — R?, which satis-
fies o, = T and(0, 0) € To(Dy).

Then,T has at least two fixed points such that their images undeus@l covering
projectionIT are two different fixed points of T .

We point out that conditiondj cannot be removed.
Indeed, we can defingl := {(x,y) : 272 < x2+y? < 22} and consider an
homeomorphisnT : A — R?\ {(0, 0)} whose lifting is given byf(z?,r) =
(19 +1-r,r2+ 1). It easily follows thafl’ preserves the measurdr d¢ and, con-
sequently,T preserves the measuragadl. Moreover, the twist condition is satisfied,

. . 1 .
beingg(¥,r) = 1 —r positive onr = — and negative on = 2. We also note that

it is not possible to extend the homeomorphism into the iotesf the circle of ra-
dius 1/2 as an area-preserving homeomorphism, and hende (ot satisfied. Since

1 ~
f(,r) =/r24+1 > r for everyr e (5, 2), we can conclude thak has no fixed

points.

In [29], Rebelo obtained a proof for Jacobowitz and Ding s of the Poincaré-
Birkhoff theorem directly from Theorem 7.
The W-Y Ding version of the theorem seems the most usefulrmgeof the applica-
tions. In 1998, Franks [18] proved a quite similar resulihgsanother approach. In
fact he considered an homeomorphi$rfrom the open annulug = St x (0, 1) into
itself. He replaced the area-preserving condition withwieaker condition that every
point of A is non-wandering undef. We recall that a point is non-wandering under
f if for every neighbourhoot of x there is am > 0 such thatf"(U) NU # @.
Being f, from the covering spacel = R x (0, 1) onto itself, a lift of f, it is said
that there is a positively returning disk fdrif there is an open disk C A such that
f(UyNU =@andf"(U) N (U + k) # @ for somen, k > 0. A negatively return-
ing disk is defined similarly, but witlk < 0. We recall that byJ + k it is denoted
the set{(x + k,t) : (x,t) € U}. Franks generalized the twist condition on a closed
annulus assuming the existence of both a positive and aimegaturning disk on the
open annulus, since this hypothesis holds if the twist dmndis verified. Under these
generalized assumptions, Franks obtained the existeradixd¢d point (for the open
annulus). However, he observed that reducing to the cadeeaflbsed annulus, one
can conclude the existence of two fixed points.
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On the lines of Birkhoff [5], some mathematicians genemizhe Poincaré-
Birkhoff theorem, replacing the area-preserving requaetiby a more general topo-
logical condition. Among others, we quote Carter [8], wheBirkhoff, considered an
homeomorphisng defined on an annulug bounded by the unit circl& and a simple,
closed, star-shaped around the origin cupvthat lies in the exterior off. She also
supposed thag(T) = T, g(y) is star-shaped around the origin and lies in the exterior
of T. Before stating her version of the Poincaré-Birkhoff tteen, we only remark that
a simple, closed curve A is called essential if it separat@&sfrom y .

THEOREMS. If g is a twist homeomorphism of the annuldsnd if g has at most
one fixed point in the interior ofl, then there is an essential, simple, closed curve C in
the interior of A which meets its image in at most one poiitthe curve C intersects
its image, the point of intersection must be the fixed poigtiofthe interior ofA).

We point out that Theorem 2 can be seen as a consequence oEfthB@bove.

Recently, in [24], Margheri, Rebelo and Zanolin proved a ified version of the
Poincaré-Birkhoff theorem generalizing the twist comdit They assumed that the
points of the external boundary circle rotate in one angdilection, while only some
points of the inner boundary circle move in the oppositedlion. The existence of
one fixed point is guaranteed. More precisely, they proveddtowing

THEOREMG6. Lety : A —> A be an area-preserving homeomorphism4n=
R x [0, R], R > Osuch that

v(@,1) = (J1,11),

) 9 + g,r)
rr = f@,r),

where f and g ar@r —periodic in the first variable and satisfy the conditions

with

o (1,00 =0, f(¥, R) = R foreveryy € R (boundary invariance,

e g(¥, R) > Oforevery? e R and there is¥ such that g#,0) < 0 (modified
twist condition).

Then,y» admits at least a fixed point in the interior g

2. Proof of the classical version of the Poinca-Birkhoff theorem

In this section we recall the proof of the classical versidérihe@ Poincaré-Birkhoff
theorem given by Brown and Neumann [6] and give the detailhefproof of an
important remark (see Remark 3 below) made by Neumann in [27]
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_ THEOREM 7. Letus defined = R x [r1,r2], 0 < r1 < rp. Moreover, let h:
A — A be an area-preserving homeomorphism satisfying

h(x,r2) = (x —s1(x),r2),

h(x,r1)) = (X4 %2(x),r1),
h(x +2r,y) = h(x,y) + (27, 0),

for some2r —periodic positive continuous functiong, &. Then, h has two distinct
fixed points fr and F, which are not in the same periodic family, that is - F» is not
an integer multiple of2x, 0).

Note that Theorem 7 and Theorem 1 are the same. In fact, takiogaccount
Remark 2, Theorem 7 corresponds to Theorem 1 chodsiag) .

Before giving the proof of the theorem we give some usefdimieary definitions
and results.
Q-P

We define the direction fronP to Q, setting OP, Q) = m wheneverP

and Q are distinct points oR?. If we considerX ¢ R?, C a curve inX andh :

X — R? an homeomorphism with no fixed points, then we will denotéftg) the
index ofC with respect tch. This index represents the total rotation that the directio
D(P, h(P)) performs ad? moves alond. In order to give a precise definition, we set
C : [a,b] — R2?and definethe map : [a,b] — St :={(x,y) e R? : x?+y? =

1} by C(t) := D(C(t), h(C(t))). If we denote byr : R — St the covering map
n(r) = (cosr, serr), then we can lift the functiod into C : [a, b] — R assuming
C = 7 o C. Finally, we set

C(b) — C(a)

277: 9
which is well defined, since it is independent of the lifting.
This index satisfies the following properties:

in(C) =

1. For a one parameter continuous family of cur¥es homeomorphismis, i (C)
varies continuously with the parametdtgmotopy lifting property.

2. If C runs from a pointA to a pointB, thenin(C) is congruent modulo 1 tef;
times the angle between the directions®h(A)) and OB, h(B)).

3. If C = C1C; consists ofC; andC: laid end to end (i.eC1 = C|[a,q andCz
Clie,b) With a < ¢ < b), thenih(C) = ih(C1) +in(C2). In particular,in(—C) =
—in(C).

4. ip(C) = i-1((C)).
As a consequence of properties 1 and 2 we have that in ordatcglate the index

we can make first an homotopy 6nso long as we hold the endpoints fixed, this will
be very important in what follows.
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In the following it will be useful to consider an extensiontbé homeomorphism
h: A— AtoallR?
To this aim, we introduce the following notations:
Hi = ((x,y) e R? 1 y =17},

Ho = {(x,y) e R? : y <ryq)

and consider the extensionlo{which we still denote byn)

X =s1(%),y) y=rz
hx,y) '= 1 X+%(X),Yy) ysn
h(x,y) r<y<ro.

The following lemma will be essential in order to prove thedrem.

LEMMA 1. Suppose that all the assumptions of Theo¥eare satisfied and that h
has at most one family of fixed points of the fa&ks, r *) with r* € (r1,r2). Then,
for any curveC running from H_ to H; and not passing through any fixed point of h,

. 1
(@) in(€) = 5 (mod D,
(b) ir(C) is independent af.

Proof of the lemmaFrom Property 2 of the index, it is easy to deduce that paiis(a)
verified.

Let us now consider two curved (i = 1, 2) running fromA; € H_ to B € Hy
and not passing through any fixed pointrofOur aim consists in proving th& and

C2 have the same index. Let us take a cufydrom B; to B, in H;. and a curve’,
from Az to A; in H_. Being D(P, h(P)) constant inH andH_, we immediately
deduce that,(C3) = in(C4) = 0. Now, we can calculate the index of the closed curve
C’ := C1C3(—C2) Cq4. In particular, from Property 3 we get

ih(C") = in(C1) +in(C3) +in(—C2) +in(Ca) = in(C1) —in(C2).

Hence, in order to prove (b), it remains to show that such deris zero. To this
purpose, we give some further definitions. We denote byhpixhe fixed point set

of h and by (R? \ Fix(h), A1) the fundamental group d&2 \ Fix(h) in the base-
point A;. We recall that such a fundamental group is the set of alldbgd (closed
curves defined on closed intervals and taking valué&?in Fix(h)) based omAy, i.e.
whose initial and final points coincide with;. The fundamental group is generated
by paths which start fromi\;, run along a curv€g to near a fixed point (if there are
any), loop around this fixed point and return b¢p to A;. Hence, sinc€’ belongs

to 1 (R2 \ Fix(h), A1), it is deformable into a composition of such paths. Thus, it
is sufficient to show thait, is zero for any path belonging to the set of generators of
the fundamental group. Sindehas at most one family of fixed points of the form
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2k, r*) with r* € (rq, r2), then a loop surrounding a single fixed point can be de-
formed into the loo®’ := D1 Dy D3 Dg4, Where
D, covers Fr, 7] x {ro} with rg < r1, moving horizontally fromA; = (=7, rg) to
Az = (m, Io);
D, covers{rr} x [ro, r3] with r3 > rp, moving vertlcally fromAz to A3 = (m,r3);
D3 covers [, ] x {r3}, moving horizontally fromA3 = (m,r3) to A4 = (—m,r3);
D4 covers{—m} x [ro, r3], moving vertically fromA4 to A1
Roughly speaking,D’ is the boundary curve of a rectangle with vertices
(£7, ro), (£7, r3).
As D; andDs lie in H_ and H. respectively, their index is zero. Moreover, being
h(x,y) — (X, 0) a 2r—periodic function in its first variable, it follows thag(D4) =
—in(D2). Thus, Property 3 of the index ensures thdD’) = 0. This completes the
proof.

O

Proof of Theorem 7To prove the theorem, we will argue by contradiction. Assume
thath has at most one family of fixed poins = (¢9*,r*) + k (27, 0), withk € Z. It

is not restrictive to suppos#&* = 0. Indeed, we can always reduce to this case with a
simple change of coordinates. In order to get the contriadictve will construct two
curves, with different indices, satisfying the hypotheselsemma 1.

Now we define the set
3
— ((X,y) eR?: 2kn+% S xS Artor, kel

Since the fixed points df (if there are any) are of the fori2ksr, r*), we can conclude
thath has no fixed points in this region. Moreover, there exists 0 such that

(8) e < |P=h(P) VPeW.

Indeed, by the periodicity afx, 0) — h(x, y) in its first variable, it is sufficient to find
& > 0 which satisfies the above inequality only for evérye Wy := {(X,y) : & <

X < 7'[}. If we chooses < mins, fori € {1, 2} the inequality is satisfied on the sets
W1 N Hx. On the regiorVV = {(X,Yy) : % <X < %n, ri <y <ry}, the function
Ild — h| is continuous and positive, hence it has a minimunVgmwhich is positive
too.

Define the area-preserving homeomorphism R? — R? by
TX,y) =Xy + %(| COSX| — COSX)) .

We point out that it moves only points & and||T(P) — P|| < ¢ for everyP e RZ.
Combining this fact with (8), we deduce thato h (just like h) has no fixed points
in W. Furthermore, fixed points df o h coincide with the ones di in R? \ W and,
consequently, ifiR?.

Let us introduce the following sets

Do = H_ \ (Toh)™1H_,
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D1 := (Toh)Dg = (TohyH_ \ H_,
Di := (Toh) Do VieZ.

\ D1 D2 D1 D2 y=rg
Do Do

Figure 1: Some of the sef3;

We immediately observe th&tyg ¢ H_, while D1 C R2\ H_ = {(x, y) 1 y>ri}.
Since(T o h)(R?\ H_) c R?\ H_, we can easily conclude th&;, c R?\ H_ for
everyi > 1. HenceDj N Do = ¢ for everyi > 1. This implies thaDx N Dj = @
wheneverj # k. Since(T o h)™*H_ ¢ H_, we also geD; c H_ for everyi < 0.
Furthermore, a¥, h and, consequentlyT o h) are area-preserving homeomorphisms,
everyD; has the same area in the rolled-up pl&fe ((x, y) = (x + 27, y)) and its
value is 2. Thus, as the se®; are disjoint and contained ®%\ H_ foreveryj > 1,
they must exhaust and hence interseét,. In particular, there exists > 0 such that
Dn N Hy # ¥. SinceDy, C (T o h)"H_, we also obtain thafT c h)"H_ N Hy # @.

For such am > 0, we can consider a poif, € (T o h)"H_ N H, with maximal
y—coordinate. The poinP, is not unique, but it exists since, by periodicity, it is
sufficient to look at the compact regioh o h)"H_N{(x,y) : 0<Xx <27, y >r1}.
Let us define A

P =(.,Yi) = (Toh)' "P,, i €Z.

Clearly, P, € HL andPy = (T oh)™" P, € H_. Moreover,P,;1 = (T o h) P, for
everyi e Z. Hence, recalling thatT o h) Hy ¢ H; and(T o h)"*H_ c H_, we
obtainPn;1 € Hy andP-1 € H_.

Let us denote b¥ the straight line segment frofd_; to Py and let
G =(Toh)Co, i €Z.

In particular, the curv€; runs fromP;_1 to PB. Furthermore, let us define the curve
C:=CpC1...Cn—1Cn. Thus,(T o h)(C) =C1C2...CnCny1.

We have constructed a curgeunning fromH_ to H... Now, we will show that it does
not pass through any fixed point bfand we will calculate its index. First, we need to
list and prove some properties that this curve satisfies.

1. The curve& Chy1 = Co.. . .Cny1 has no double points;
2. No point ofC has largey—coordinate tharP,1;

3. No point of(T o h)(C) has smallely—coordinate tharP_;.
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In order to prove Property 1, we first observe thaf@has no double points arido h
is @ homeomorphism, each cur@e has no double points. Hence, we only need to
show thaCj NCj = @ for everyi # j, exception made for the common endpoint when
li—j| = 1. We initially prove that this is true wherand | are both negative. We recall
that the functionsf := (Id + ) : R — R and f ~! are strictly monotone, being
both continuous and bijective. From the positivenessyofit immediately follows
that both functions are strictly increasing. Moreoverl(xg) < X < Xo, Whenever
(X, y) € Co. Thus, sinc&y ¢ H_ and sincef ~1 is an increasing function, it turns out
that f —2(xo) < x < f~1(xg), wheneverx, y) € C_1 = h=1(T~1(Cp)). In general,
we have . .
G c{oey : 7o) < x < flg)}  Vi<O

andc; intersects the boundaries of this strip only in its endmo{because this is true
for Co and f ~1 is strictly increasing). Thus] andCs intersect at most in a endpoint,
if we choosd ands negative. In general, if we tak& andCj withi # j, then there
existsk < 0 such thatT o h)¥ transforms such curves in two cur@sandCs with |
ands both negative. Finally, the previous step guarantee<rat’; and hence; NCj
are empty, if we exclude the intersection in the common eimipo

Property 2 is easily proved. In fact, it is immediate to shbat€ c (T o h)" H_.
Thus, from the maximal choice involving the-coordinate ofP,, we can conclude
that for every(x, y) € C, we obtainy < y,. Moreover, since®, € H. and P11 =
(T o h)Py, we can conclude that, < yn+1. This completes the proof of Property 2.
With respect to Property 3, we remark that if we take= y_; and if we define
x',y) = (T o h)(x,y), theny > y_3. This is a consequence of the fact that
P_1 € H_. Moreover,yp > y_1 and henc&y C {(X,y) : y > y_1}. Thus, for
every(x, y) € C1 = (T o h)Co, we gety > y_1. By induction, Property 3 follows.

Property 1 guarantees th@tdoes not pass through any fixed pointTob h and,
consequently, offi.
We are interested in calculating the indexGofMore precisely, we will show that its
value is exactly%. First, we will calculaté (ton)(C).
The curveC runs fromP_1 to P,. Thus, recalling thatT o h) (P_1) = Pp and(T o
h) (Pn) = Pnhi1, let us consider the angl# between DP_1, Py) and D(Py, Pht1).
Since, by construction,

Po = (X0, Yo) = (X—1+ S2(X-1), Y-1+82) , 0<dx<ce,

Pnt1 = (Xn+1, Yn+1) = (Xn — S1(Xn), Yn + 31) , 0<é1=<e,
then we can write the explicit expressiondf

9 = arctg [ 22 arct %2
=7 ( g(sl(xn)> * g(a(xﬂ))'

By Property 2 of the index, we can conclude that

. 4
i(Toh)(C) = —n(mOdD

2
1 1 51 82
T 2 2 <amtg<81(xn)) * amg(Sz(X—l))) (mod 3
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From the choice of, we get 0< § < ¢ < ming fori e {1, 2}. This implies that

8 8 :
both arctg(sl(}(n)) and arctg(w'il)) belong to the interval [07 [. Consequently,

1 v 1

- <— <=
4 27 2

Our aim now consists in proving that we can cut mod 1 in theipres/formula for
i (Tohy (C). For this purpose, we will construct a suitable homotopy.
Let P : [-1, 0] — RR? be a parametrization @b. SettingP(t + 1) := (T oh)(P(t))
for t € [—1,n], we extend the given parametrization €f into a parametrization
P : [-1,n+ 1] — R2 of CCpy1. Clearly, if we restrictP to the interval -1, n],
we obtain a parametrization 6f Moreover, it is immediate to see th@ti) = P, for
every integef € {—1,0,...,n+ 1}. In order to calculate.n) (C), by definition, we
will consider the magP : [—1, n] — St given by

P(t) := D(P(t), (Toh)(P(t))) = D(P(t), P(t +1)).
Let us define nowPq : [—1,2n 4 1] — S, setting

_ P(t) —-1<t<n
9 Po =

P() n<t<2n+1.

Of course, in order to evaluate the index we canBgénstead ofP.

Now, we are in position to write the required homotopy. Wd iniroduce a family
of mapsP;, : [-1,2n+ 1] — St with 0 < A < n+ 2. We will define this family
treating separately the casesO. <n+landn+1<i <n+2.

We develop the first case. The homotopy that we will exhibit egrry the initial map
Po, which deals with the rotation of [P, (T o h)(P)) as P moves along’, into the
map Pn1 defined by

D(P(-1), P(t +1)) -l<t<n

(10) Ppjat) =
D(Pt—n—-1),P(n+1)) n<t<2n+1

This map corresponds to a rotation obtained if we initiallpwa (T o h)(P) along
(T o h)(C) from (T o h)(P_1) = Py to Pyy1, holding P_; fixed, and then we move
alongC from P_; to Py, holding P41 fixed.

More precisely, when & A < n+ 1, we set

D(P(-D,P(t+1) —1<t<ar-1
- D(P(t—2), P(t+1) Ar—1<t<n
P,(t) =

D(P(t—2x),P(n+1) n<t<n+a

D (P(n), P(n+ 1)) n+i<t<2n+1

Clearly, the above definition d?;, in the case. = 0 andi = n + 1 is compatible
with (9) and (10), respectively. Furthermore, we note gtt) is always of the form
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D (P(tp), P(t1)) with —1 < tp < t1 < n+ 1. By Property 1 of’, we deduce that
P(tp) # P(t1), henceP; is well defined for every &< » < n + 1.

We consider now the second caset+ 1 < A < n + 2. The homotopy we will
exhibit will carry the mapPy, 1 into the mapP,,,» defined by

_ D(P(-1), P'(t+1)) —-1<t<n
(11) Pn+2(t) =
D(P"t —n—-121),P(n+1) n<t<2n+1,

where byP’ : [0,n+ 1] — R2andP” : [-1,n] — R? we denote the straight
line segments fronf(0) to P(n + 1) and fromP(—1) to P(n), respectively.
The mapP,,,» corresponds to a rotation obtained if we initially maWeo h)(P) along
the straight line segme’ from Py to P,1, holding P_1 fixed, and then if we move
P along the straight line segmeRt’ from P_; to Py, holding P, 1 fixed.

More precisely, for every & p < 1, we define

D(P(-1), A—p) P(t+1) + u P/t +1))
B ) = —-1<t<n
nt+1+u D(1—w)Pt—n—1)+uP”(t —n—1), P(n+ 1))
n<t<2n+1.

Clearly, the above definition 041+, in the casqu = 0 andu = 1 is compatible
with (10) and (11), respectively.
Moreover, the homotopy is well defined. To prove this, we wlilbw first thatP (—1)
is never equal t@) = (1 — w)P(t + 1) + uP’(t + 1) for anyt € [—1, n]. Indeed,
by Property 3 ofC, we deduce tha@Q has largery—coordinate tharP(—1), except
possibly whert = —1 or u = 0. However, in both these cas®s= P(t + 1) for some
t € [—1,n]. Since in this intervat + 1 > 0 > —1, then Property 1 of guarantees
thatP(t + 1) # P(—1). Hence,P(-1) # Q.
Analogously, by applying Property 2 and Property 1(@fwe can conclude that
A-wPt—-n—-1)+uP’(t —n—-1) # P(n+1). Thus, the homotopy is well
defined.

In particular,Pp > defined in the intervalf1, 2n + 1] describes an increase in the
angle which corresponds exactly#o calculated above. Thus as a consequence of the
homotopy property, we conclude that

i (C)—i—}—i<arct<81>+arct<82 ))
T = o =27 27 TN\ 5000 Nexn))

From the previous calculations, we get

NI =

1
7= i(Toh)(C) <

Our aim consists now in proving tha{(C) = %
To this end, we define for evesye [0, 1] the mapTs : RZ2 —> R2, setting

Ts(X,y) = (x, y + (%8) (] cosx| —cosx)).
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In particular,Top = Id andT; = T. Arguing as before, we can easily see that

. _ 1 1 Sé1 Sé2
(12)  i(Teoh)(C) = > o <arctg<sl(Xn)> + arctg(sz(xl))) (mod).

Since this congruence becomes an equality in the sasel, by the continuity of
the index we infer that also the congruence in (12) is an égfal everys € [0, 1].
Hence, whers = 0 we can conclude that

1
13 in@C) = =.
(13) h(©) = 3
In order to get the contradiction with Lemma 1, we need to tansanother curve
C’ running fromH_ to H,, having index different fron%. To this aim, we can repeat
the whole argument replacirigwith h—. Now everything works as before except the

fact that the directions along which the two boundariesiofiove undeh and under

P ~ 1
h—! are opposite. In such away, we find a cufMieom H_ to H withi,-1(C) = —5

Let us define?’ :== h-0C : H_. —> H,. By Property 4 of the index, we finally
infer 1
in(C') = ih-1 (W (C)) = 1h-2(C) = 3.
If we compare the above equality with the equality in (13),ge¢the desired contra-
diction with Lemma 1.
O

As a consequence of the above proof, Neumann in [27] provigedollowing
useful remark

REMARK 3. If h satisfies all the assumptions of Theorem 7 and it has a finite
number of families of fixed pointdinite number of fixed points in [@rx] x [r1,r2]),
then there exist fixed points with positive and negativedadi

We recall that the definition of index of a fixed point coin@gdsith iy,(«) for a
small circlea surrounding the fixed point when it has a positive (counteciavise)
direction. Given a fixed poirf, we will denote byind(F) its index.

Proof. Let us denote byr (i = 1,2,...,k) the distinct fixed points in [r] x
(r1, r2), belonging to different periodic families. Theorem 7 gusegs thak > 2.

It is not restrictive to assume th&t € (0, 27) x (ry,r2) since we suppose that the
number of families of fixed points is finite. As in the proof dfiforem 7, we extend
the homeomorphisth to an homeomorphism in the whdR?, and we still denote it
by h.

If we fix rg < rq, arguing as in the proof of Lemma 1, we can construct a [Dop=
D1 D2 D3 Dy € m1(R2\ Fix(h), (0, rg)), where

D1 covers [Q 2] x {ro}, moving horizontally from(0, rp) to (27, ro);

D5 covers{2r} x [ro, r3] with r3 > rp, moving vertically from(2r, ro) to (27, r3);
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D3 covers [Q 2] x {r3}, moving horizontally from2r, r3) to (O, r3);

D4 covers{0} x [ro, ra], moving vertically from(0, r3) to (0, ro).

In particular,D’ moves with a positive orientation and, by construction,dhly fixed

points ofh it surrounds are exactly the fixed poirfis, i € {1,...,k}. We note that
in(D1) = in(D3) = 0, since the curve®; and D3 respectively lie inH_ and H.

and O P, h(P)) is constant in these regions. Furthermore, béitg y) — (x,0) a

2 —periodic function in its first variable, it follows tha(Ds) = —in(D2). Thus,
Property 3 of the index guarantees tfi¥thas index zero.

We recall that the fundamental groap(R2 \ Fix(h), (0, ro)) is generated by paths
which start from(0, rp), run along a curvé€y to near a fixed point, loop around this
fixed point and return by-Cp to (0, rp). It is possible to show that the generating
paths, whose composition is deformable into the closedeciXy surround only the
inner fixed pointd . Consequently, the following equality holds

k
(14) 0=in(@) = ) ind(F)).

=1

This means that the sum of the fixed point indices is zero. \Wark that such a result
could have been directly obtained from the Lefschetz fixddtgheorem.

Next step consists in constructing two curves with oppasitéces, running from
H_ to H; and not passing through any fixed pointof

Since the number of fixed points in,[Br] x [r1,r2] is finite, it is possible to
consider a non-empty vertical str\'ﬁl = [a, B] x R, for someq, 8 € (0, 27), which
does not contain anl;. Let us extend ﬁ—periodicaIIyW into the set

U (W+(2mn,0)) ={(X,y) eR?®: 2mr +a <X <2mmw + B, meZ},

meZ

that we still denote bW.

Arguing as in the proof of Theorem 7, we can find a positive tams < min 5
foreveryi e {1, 2}, satisfyinge < ||P—h(P)|| for everyP € W. Letus now introduce
the area-preserving homeomorpthm R?2 — R? by setting

~ (X, Y + & oS 550y (2X — B — ) for x € [a, B]
Ti0.27]xR (X, Y) 1= (2(/3 ) )
*x.y) otherwise

Fixed points ofT o h coincide with the ones df in R2. If we proceed exactly as in
the proof of Theorem 7, considering the homeomorph‘fsim\stead ofl and the seW
instead oW, we are able to construct a curyef index%, which runs fromP_1 € H_
to Py € Hy and does not pass through any fixed pointofAnalogously, we can find
another curve’ of index—% running fromP’; € H_to P, € H,.

Let us consider now the closed curfe:= C B (—C’) B’, whereB is the straight
line segment fronP, to P,;; while B’ is the straight line segment froR’, to P_;. In
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particular,5 lies in H;. and connects the curéeto the curve-C’; while B’ lies in H_
and connects the curveC’ to the curveC.

Since, by constructiort3 and3’ have index equal to zero, we infer from Property
2 of the index that
(2)
—-{—-=) =1
2

Moreover, the loopF belongs to the fundamental group(R? \ Fix(h), P_1) and
surrounds a finite number of fixed points. Each of them is ofdh@ F +m(2x, 0) for
somei € {1,2...,k} and some integen € Z. Sinceind(F + m(2x, 0)) = ind(F)
for everym e Z, we can deduce that

ih(F) = in(C) —in(C) =

NI =

k
(15) 1=in(F) = Y v(F, Fy) ind(F),
j=1

where the integer(F, Fj) coincides with the sum of all the signs corresponding to
the directions of every loop in whic/ can be deformed in a neighbourhood of every
point of the formF; 4 m(2r, 0) surrounded by-. From (15), we infer that there exists
j*e€{1,2...,k} suchthab (F, Fj«)ind(Fj+) > 0 and, consequentlynd(Fj«) # 0.

Hence, recalling that the sum of the fixed point indices i®Zef. (14)), we can
conclude the existence of at least a fixed point with positiekex and a fixed point
with negative one. This completes the proof.

O

3. Applications of the Poinca-Birkhoff theorem

In this section we are interested in the applications of thiaedaré-Birkhoff fixed point
theorem to the study of the existence and multiplicityf gberiodic solutions of Hamil-
tonian systems, that is systems of the form

X = %(t, X, Y)
(16)

y =-Zaxy
whereH : R x RZ — R is a continuous scalar function that we assueperiodic
intandC2in z = (x, y).
Under these conditions uniqueness of Cauchy problemsiagstd¢o system (16) is
guaranteed. Hence for eaeh = (X, Yo) € R? andtg € R thereis a unique solution
(X(1), y(t)) of system (16) such that
17) (X(to), y(to)) = (Xo, Yo) := Zo.

In the following we will denote such a solution by

z(t; to, zo) 1= (X(t; o, 20), Y(1; to, Z0)) := (X(1; to, (X0, Y0)), Y(t; to, (X0, Y0))).
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For simplicity we setz(t; zo) := (X(t; Z0), Y(t; Z0)) = (X(t; 0, 29), y(t; 0, 29)). If
we suppose that satisfies further conditions which imply global existendette
solutions of Cauchy problems, then the Poincaré operator

T 1 Zp = (X0, Yo) = (X(T; (X0, Y0)), Y(T; (X0, Y0)))

is well defined inR? and it is continuous. Also fixed points of the Poincaré ofera
are initial conditions of periodic solutions of system (B8)d as a consequence of the
Liouville theorem, the Poincaré operator is an area-pvasg map. Hence it is natural
to try to apply the Poincaré-Birkhoff fixed point theorenoirer to prove the existence
of periodic solutions of the Hamiltonian systems.

Before giving a version of the Poincaré-Birkhoff fixed pidimeorem useful for the
applications, we previously introduce some notation.
Let z : [0, T] — R? be a continuous function satisfyirgt) # (0, 0) for every
t € [0, T] and (¥ (-), r(-)) a lifting of z(-) to the polar coordinate system. We define
the rotation number of, and denote it by R¢t) as

?(T) — 20

Rot(z) = 5
T

Note that Rotz) counts the counter-clockwise turns described by the vérz—ar))
ass moves in the interval [OT]. In what follows, we will use the notation R@y) to
indicate Rotz(-; zp)).

From the Poincaré-Birkhoff Theorem 4, we can obtain théofdhg multiplicity
result.

THEOREMS ([29]). Let.A c R?\{(0, 0)} be an annular region surroundin@, 0)
and let G and G be its inner and outer boundaries, respectively. AssumeGhés
strictly star-shaped with respect 1@, 0) and that z-; to, zp) is defined intp, T] for
every 3 € Coand p € [0, T]. Suppose that

i) z(t; to, zo) # (0, 0) Vipe [0, T[, VZzpe C1, VYt e[to, T];
i) there exist m, mp € Z with m; > mj such that

Rot(zg) > m1 Vz9 € Cq,

Rot(zg) < my Yz € Co.

Then, for each integer | with & [my, m4], there are two fixed points of the Poinéar
map which correspond to two periodic solutions of the Hamnitin system having | as
T —rotation number.

Sketch of the proofThe idea of the proof consists in applying Theorem 4 to tha-are
preserving Poincaré map: zo — z(T; zg), considering different liftings of it. For
each integer with mp <1 < mqy, itis possible to consider the liftings

T, r) = (O + 27 (RotII(¥,r) — ), [t (TI@, ) |).
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Sincez(t; zg) # (0, 0) for everyt € [0, T] and for everyzg € A, the liftings are well
defined. We note that as a consequence @0j))) belongs to the image of the interior
of C1 and also that

Rot(zg) — | > Rot(zg) — m; > O Yzp € Cq,
Rot(zg) — | < Rot(zg) — m» < O Vzg € Co.

Hence we can easily conclude that assumptiahaiid @) in Theorem 4 are satisfied.
Moreover it is easy to show that also assumptigrig verified. Hence, from Theorem
4 we infer the existence of at least two fixed poi(w$, rl'), i = 1,2, of 7 whose
imagesz| under the projectioiil are two different fixed points of. Since(9/, r/) are
fixed points oft, we get that Rc(1z|i) = | for everyi € {1, 2}. We can finally conclude
thatz(-; zll) andz(-; z|2) are the searchef—periodic solutions.

O

There are many examples in the literature of the applicatibthe Poincaré-
Birkhoff theorem in order to study the existence and muttipt of T —periodic so-
lutions of the equation

(18) X" + f(,x) =0,
with f : R?> — R continuous andr -periodic int. Note that if we consider the
system

‘) = y(t
(19) iX() y(®)

y't = —f(t, x),

this system is a particular case of system (16) and its solsfjjive rise to solutions of
equation (18). Hence we can consider equation (18) as aplarticase of an Hamil-
tonian system and everything we mentioned above holds éocdke of this equation.

Among the mathematicians who studied existence and miualtipbf periodic so-
lutions for equation (18) via the Poincaré-Birkhoff theor, we quote Jacobowitz [22],
Hartman [20], Butler [7]. We remark that in order to reach tesults, in all of these
papers the authors assumed the validity of the conditi@nO) = 0.

With respect to the particular case of the nonlinear Duffirggjuation

X" 4+ g(x) = p(t),

we mention the papers [15], [11], [13], [12], [17], [32], irweh the Poincaré-Birkhoff
theorem was applied in order to prove the existence of perieolutions with pre-

scribed nodal properties. Among the applications of the&aé-Birkhoff theorem to
the analysis of periodic solutions to nonautonomous secoddr scalar differential

equations depending on a real paramstewe refer to the paper [10] by Del Pino,
Manasevich and Murua, which studies the following equmatio

X" + g(x) = s(1 + h())
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and also the paper [30] by Rebelo and Zanolin, which deals tivi¢ equation
X"+ gx) = s + w(t,Xx).

Finally, we quote Hausrath, Manasevich [21] and Ding, 2iar|d 4] for the treatment
of periodically perturbed Lotka-Volterra systems of type

x' = x(@@() — bt)y)
y' = y(=d() + ct)X).

We describe now recent results obtained in [24] in which a iffextiversion of
the Poincaré-Birkhoff fixed point theorem is obtained apglid, together with the
classical one, in order to obtain existence and multipliot periodic solutions for
Hamiltonian systems. In their paper the authors study By$16) assuming that =
0 is an equilibrium point, i.e.H,(t,0) = 0, and that it is an asymptotically linear
Hamiltonian system. This implies that it admits lineariaas at zero and infinity. More
precisely, ad,(t, 0) = 0, if we consider the continuous afid-periodic function with
range in the space of symmetric matrices givern by Bo(t) := H,/(t,0), t € R, we
have

J Hy(t,z) = J Bo(t) z + o(||z]), when z — 0.

Moreover, by definiton of asymptotically linear system, rehexists a continuous,
T —periodic functionBy(-) such thatB(t) is a symmetric matrix for each € R,
satisfying

J Hy(t,2) = J Bo(t) z + o(|2]), when ||z|| — oo.

We remark that system (16) can be equivalently written irfeflewing way
(20) Z = JH)t,2), zZ=(X,Y), J:(_O1 é)

Before going on with the description of the results obtaiimd@4], we recall some
results present in the literature dealing with the studysyhaptotically linear Hamil-
tonian systems.

In [2] and [3], Amann and Zehnder considered asymptotidaligar systems iiR2N
of the form of system (20) with

sup IH/(t, 2)|| < 400
te[0,T], zeR2N

and which admit autonomous linearizations at zero and atifyfi
Z=JBz, Z=JByz,

respectively. In these papers an indedepending orBp and By, was introduced and
the existence of at least one nontrivial-periodic solution combining nonresonance
conditions at infinity with the sign assumption>- 0 was achieved. The authors also
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remarked that in the planar cabk= 1 the condition > O corresponds to the twist
condition in the Poincaré-Birkhoff theorem.

Some years later, Conley and Zehnder studied in [9] Ham#dtosystems with
bounded Hessian, considering the general case in whiciniserized systems at zero
and at infinity

Z = JByt)z and Z = JBy(t)z

can be nonautonomous. The authors assumed nonresonamtigoosnfor the lin-
earized systems at zero and at infinity. Hence, after defthiéylaslov indices associ-
ated to the above linearizations at zero and infinity, deshm#epectively by$ andi$°,
they proved the following result.

THEOREM 9. If iQ # i%°, then there exists a nontrivial Fperiodic solution of
Z = J Hy(t, 2). If this solution is nondegenerate, then there exists agrolk-periodic
solution.

Note that in this last theorem the existence of more than ttions is not guar-
anteed, even i|ﬁ$ —i7°| is large. This is in contrast with the fact that in the papér [9
and for the cas®&l = 1 the authors mention that the Maslov index is a measure of the
twist of the flow. In fact, if this is the case, a Iargé — i7°| should imply large gaps
between the twists of the flow at the origin and at infinity. Elerthe Poincaré-Birkhoff
theorem would provide the existence of a large number obgérisolutions.

The main goal in [24] consists in clarifying the relation \beeni$, i7° and the
twist condition in the Poincaré-Birkhoff theorem, whiin= 1, obtaining multiplicity
results in the case wheif —i%°| is large.

Now we give a glint of the notion of Maslov index in the planee Will follow [1]
(see also [19]).
Let us consider the following planar Cauchy problem

i Z = JB()z

21
@) z(0) = w,

whereB(t) is a T-periodic continuous path of symmetric matrices. The malr{t)
is called the fundamental matrix of the system (21) if itSfas W () w = z(t; w).
Clearly, W (0) = Id. Moreover, it is well known that aB(t) is symmetric, the funda-
mental matrix¥ (t) is asymplectic matrifor eacht € [0, T]. We recall that a matrix
A of order two is symplectic if it verifies

(22) ATJA =1,

where J is as in (20). Since we are working in a planar setting, comi{22) is
equivalent to
detA =1,

from which it follows immediately that the symplecticx22 matrices form a group,
usually denoted b p(1).
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We will show that, under a nonresonance condition on (213, piossible to associate
to the patht — W(t) of symplectic matrices witl (0) = Id an integer, thd —Maslov
indexiT (V).

The systent’ = J B(t)z is said to beT —nonresonanif the only T-periodic solution
it admits is the trivial one or, equivalently, if

det(ld — W(T)) # O,

whereV is the fundamental matrix of (21).

Before introducing the Maslov indices, we need to recallspnmoperties o5p(1).
If we take A € Sp(1), thenA can be uniquely decomposed as

A=P-0O,

whereP € {P € Spl) : Pis symmetric and positive definitexx R? and O is
symplectic and orthogonal. In particula® belongs to the group of the rotations
SO2) ~ S. Thus we can conclude that

Spl) ~ R?x St ~ {zeR?: |z <1} x S' = the interior of a torus

Hence, as [01) x R x R is a covering space of the interior of the torus, we can
parametrize&Sp(1) with (r, o, ¥) € [0, 1) x R x R. In [1] a parametrization
d: [0,L)xRxR — Spl)
(r,o, ) =  ®(r,0,9) =P(r,0) R(®¥)
is given, where? is the angular coordinate o® and (r, o) are polar coordinates
in {z € R? : |z| < 1}. In such a parametrization, for eakhe Z ando € R,
®(0, 0, 2kr) = Idand®(0, o, 2(k+ 1)) = —Id (for the details see [1]). The follow-
ing sets are essential in order to defineTheMaslov index:
': = {AeSpl : detld—A) > 0}
. /4 4
= ®{r,0,9) .1 < sifd® and |9] < 5 or W=}

I~ = (Ae Spl) : detld—A) < 0} = ®{(r,0,9) : r > si?9 and [9] < %},
% :— {AeSpl) : defld—A) = 0} = ®{(r,0,9) : r = si?9 and |9] < %}.

The set™? is called the resonant surface and it looks like a two-hoswethce with a
singularity at the identity.

Now we are in position to associate to each gath W (t) defined from [0 T] to
Sp(l), satisfying¥ (0) = IdandW¥ (T) ¢ r%an integer which will be called the Maslov
index of W. To this aim we extend such a path> W (t) € Sp1) in [T, T +1], without
intersecting™® and in such a way that

e W(T+1) = —Id, if¥(T)elt,
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e V(T + 1) is a standard matrix witlt =0, if ¥(T)eI'".

We define theT -Maslov index+ (W) as the (integer) number of half turns f(t) in
Sp(l), ast movesin [Q T + 1], counting each half turst1 according to its orientation.

In order to compare Theorem 8 with Theorem 9 it is necessdigndaa character-
ization of the Maslov indices in terms of the rotation nun#hero this aim, in [24] a
lemma which provides a relation between TheMaslov index of system

(23) Z = JB()z
and the rotation numbers associated to the solutions ofas)given.

LEMMA 2. Let ¥ be the fundamental matrix of systé&B) and let i and v be,
respectively, its T -Maslov index and the Poireamap defined by

viw—> Y(Mw.
Consider the Frotation numbeRot, (T) associated to the solution @23) satisfying
2(0) = w € St. Then,
a)it = 20+ 1with¢ € Zif and only if

degld — ¥, B(1),0) = 1and¢ < minRot,(T) < maxRot,(T) < ¢ + 1,
weSt weSt
b)it = 2¢with ¢ € Z if and only if

1 1
degld — ¢, B(1),0) = —1and¢ — = < min Rot,(T) < maxRot,(T) < £+ —;
2 yest weSt 2

moreover, in this case there awe, wo € S such that
Rot,, (T) < £ < Rot,,(T).

In the statement of Lemma 2 thie—rotation number Rgf(T) associated to the
solution of (23) with z(0) = w e S! was considered. We observe that from the
linearity of system(23) it follows that Rot, (T) = Rot, ,,(T) for everyi > 0.

Now, we are in position to make a first comparison between flém@®& and Theorem
9.
Let us consider the second order scalar equation

(24) X" + q(t,x)x = 0,

where the continuous functian: R x R — R is T —periodic in its first variable
and it satisfies

(25) qt,00) =g € R and lim q(t,X) = g € R,
(0.¢]

IX|—+
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uniformly with respect ta € [0, T]. Hence, the linearizations of (24) at zero and
infinity are respectivelx” + gox = 0 andx” + g.oX = 0. We observe that equation
(24) can be equivalently written in the following form

X"\ y _ 3 q(t, x)x
y )\ —atox | y )

Analogously, the corresponding linearizations at zero iafidity are given respec-

tively by
, g O 0 1
zZ = J Z = Z
0 1 —q O
and
0 0o 1
Z =1 Goc zZ= z
0o 1 —Owo O
If we chooseqp = —% andg. = 5, we can easily deduce that there exigts> 0
such that Rai(T) € (-3, 3) for every|lw| = ro and there existRy > ro such

that Rot,(T) € (-3, —2) for every|w| = Rp. Hence applying Theorem 8 we can
guarantee the existence of four nontriviaperiodic solutions to equation (24). On the
other hand, sincé? = 0 andi$® = —5, Theorem 9 ensures the existence of at least
one periodic solution.

We recall that, even if the gap betwegnandq is large, Theorem 9 guarantees
only the existence of at least one solution (or at least twatiems if the first one is
nondegenerate) while it is quite clear that the number otmaal periodic solutions
we can find by applying Theorem 8 depends on the gap betgeanddqo.

On the other hand, there are particular situations in whigceofem 9 can be ap-

plied, while Theorem 8 cannot, because the twist condisarot satisfied.

For instance, let us sep = —% andgs, = % The corresponding indices are

different, sincé? = 0, as before, ant?® = —1. Hence, from Theorem 9, we know
that there exists a periodic solution of (24). As far as thation humbers are con-
cerned, one can prove the existencé&pf> ro such that Rqt(T) € (—1, 0) for every
lw|l = Ro; while, from Lemma 2, there exist1, wo € R? with |wi|| =ro (i =1, 2)
such that-3 < Rot,,(T) < 0 < Rot,,(T) < 3. Consequently, the twist condition
is not verified and Theorem 8 is not applicable. In [24] thehatd tried to sharpen
the results obtained via the Poincaré-Birkhoff theorerorigher to obtain periodic so-
lutions in cases like this one. For this purpose, they d@earl@ suitable version of the
Poincaré-Birkhoff theorem. Before describing this résed can obtain a first result of
multiplicity of T-periodic solutions for system (16) which is a consequeritemma

2 and of Theorem 8.

We will use the notation: for each € R, we denote by s| the integer part o8,
while we denote bys] the smallest integer larger than or equatto

CoROLLARY 1. Assume that'z= J H,(t, z) is asymptotic at infinity and at zero to
the T—periodic and T-nonresonantlinear systems=z J By, (t)z and Z= J By(t)z,
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respectively. Let® and i2 be the corresponding FMaslov indices. If§ # i2° then
the Hamiltonian system admits at least

o i — i$| nontrivial T—periodic solutions if? and ir° are odd,

e [i%° —i¥| — 2 nontrivial T—periodic solutions iff and i are even;
[ - . _ _
o2 — nontrivial T—periodic solutions otherwise.

REMARK 4. If i$ andi{® are either consecutive integers or consecutive even inte-
gers, the previous corollary does not guarantee the existefT —periodic solutions.
Indeed in these cases the twist condition in Theorem 8 isatisfied.

However, ifi$ andi$® are consecutive integers the excision property of the degre
implies the existence of &—periodic solution.

THEOREM 10 (MODIFIED POINCARE-BIRKHOFF THEOREM). Lety : A — A
be an area-preserving homeomorphismdn= R x [0, R], R > 0 such that

v(@,1) = (J1,11),

with
¥ + g(d,r)

th
ri. = f@wrn),

where f and g ar@r —periodic in the first variable and satisfy the conditions

o (1,00 =0, f(¥, R = R foreveryy € R (boundary invariance,

e g(¥, R) > Oforevery? e R and there is¥ such that g#,0) < 0 (modified
twist condition).

Then,yr admits at least a fixed point in the interior gf. If 1 admits only one fixed
point in the interior ofA4, then its fixed point index is nonzero.

Idea of the proof.By contradiction, it is assumed that there are no fixed pamtee
interior of A. As in the proof of Theorem 7, the homeomorphignis extended to an
homeomorphisny : R2 — R2. If the fixed point set of} is not empty, it is union of
vertical closed halflines in the halfplane< 0 with origin on the line = 0.

Without loss of generality, one can assufes (0, 27). Hence, denoting by the
maximal strip contained il x] — oo, 0] such thai®¥, 0) € A andg(?, 0) < 0in A/,
the following important property of/ holds:

if (9,1) € Ugez NV + (2km, 0)), then for eacln > 0 we have tha’(ﬁ‘”(ﬁ, r) belongs
to the connected componentf.z (N + (2kr, 0)) which containg#, r).

Then the proof follows steps analogous to those in Theoraakifg into account this
property. The contradiction follows from the existence afuaveI with iz (I") =
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—%, which runs from the point, 0) to a point into{(,r) : r > R} and such that
ig1(¥ (D) = 3.

The fact that ifyy admits only one fixed point in the interior of, then its fixed
point index is nonzero can be proved following similar stepghose in the proof of
Remark 3. Now it will be important to take into account thegeay of A" mentioned
above.

O

At this point, the authors in [24] obtain a variant of Theorgtnin which the in-
variance of the outer boundary is not assumed. The prooi®brollary follows the
same steps as the proof of Theorem 1 in [29].

Let I'1 be a circle with center in the origin and radiRs> 0 andI"; be a simple
closed curve surrounding the origin. For eachk {1, 2} we denote by53; the finite
closed domain bounded ky. Let T be the lifting of I'; and A be the lifting of A;,
whereA; := 5 \ {0}. Then, the following result holds.

COROLLARY 2. Lety : A1 — Az be an area-preserving homeomorphism. As-
sume thaty admits a lifting which can be extended to an homeomorphjismA; U
{®,r) :r=0} > Ay U {(@,r) : r =0} given by1/7(z9, r =@ +g@,r), f(,r)),
where g and f ar@r —periodic in the first variable. Moreover, suppose thatg ) >
Ofor every(z? r) e I'1 and there is¥ such that ¢, 0) < 0 ( modified twist condition.

Then, admits at least a fixed pointin the interior g whose i image under the usual
covering projectiorIT is a fixed point of) in A1. If 1 admits only one fixed point in
the interior of A1, then its fixed point index is nonzero.

We point out that the proof of Corollary 2 cannot be repeatetiei modify the
twist condition by supposing that there(8,7) € I'1 such thatg(®,7) > 0, while
g(®, 0) < O for everyd € R.

Now, we will show how the application of Theorem 10 to the acaquation (24)
can improve the multiplicity results achieved by applyifggdrem 8 and Theorem 9.

First let us set once agaip = —1 andde = 3 in (25). By the modified
Poincaré-Birkhoff theorem, there is a fixed pol of ¢ (that corresponds to a non-
trivial T —periodic solution) and, if it is the unique fixed point, then

ind(Pg) # 0.

We recall that Simon in [31] has shown that an isolated fixedtmd an area-preserving
homeomorphism ifR? has index less than or equal to 1. In particular, the fixedtpoin
index of Py satisfies

ind(Pp) < 1.

As the fixed point index ofy changes from-1 (near the origin) te+1 (near infinity),
there is at least another fixed poiBt of ¢. Hence, in this case we can guarantee
the existence of at least two nontrivil-periodic solutions. We recall that applying
Theorem 9 only the existence of one nontrivial periodic 8otucould be guaranteed.
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Now we choose)p = —% andg. = 3in (25). The Poincaré-Birkhoff theorem,
according to Theorem 8, guarantees that there are at leagbdd pointsP; and P>
of ¢ (which correspond to twd —periodic solutions with rotation numberl). If they
are unique, then from Remark 3 we obtain that

ind(Py) = +1, ind(P) = —1.

Moreover, by the modified Poincaré-Birkhoff theorem thisra fixed pointPs; of ¢
(which corresponds to & —periodic solution with rotation number 0) and, if it is
unique,

0 # ind(P3) < 1.

As the fixed point index of changes from-1 (near the origin) te-1 (near infinity),
there exists at least a fourth fixed poitt of ¢. Summarizing, Theorem 8 combined
with the modified Poincaré-Birkhoff theorem guaranteesehkistence of at least four
nontrivial T —periodic solutions to (24). We recall that also in this cabedrem 9 is
applicable and it ensures that there exists at least oneiviahperiodic solution.

Finally, we state the main multiplicity theorem. We point tluat the multiplicity
results achieved in the above examples can be also obtayregaplying the following
theorem.

THEOREM11. Assume that the conditions of Corollatyhold.

joo — iO
Thenif @ # i2° the Hamiltonian systerti6) admits at Ieasmax{ 1,2 LLZHJ }

nontrivial T—periodic solutions.
0o _i0

.0 - . . . I I L.
If |$ is even then the Hamiltonian system admits at Ié%; T > Tl—‘ nontrivial

T —periodic solutions.
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