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PERTURBATIVE METHODS IN SCALES OF BANACH

SPACES: APPLICATIONS FOR GEVREY REGULARITY OF

SOLUTIONS TO SEMILINEAR PARTIAL DIFFERENTIAL

EQUATIONS

Abstract. We outline perturbative methods in scales of Banach spaces of
Gevrey functions for dealing with problems of the uniform Gevrey regu-
larity of solutions to partial differential equations and nonlocal equations
related to stationary and evolution problems. The key of our approach is
to use suitably chosen Gevrey norms expressed as the limit for N → ∞
of partial sums of the type

∑

α∈Zn
+,|α|≤N

T |α|

(α!)σ
‖Dα

x u‖H s (Rn)

for solutions to semilinear elliptic equations in Rn. We also show
(sub)exponential decay in the framework of Gevrey functions from
Gelfand-Shilov spaces Sµν (Rn) using sequences of norms depending on
two parameters

∑

α,β∈Zn
+,|α|+|β|≤N

ε|β|T |α|

(α!)µ(β!)ν
‖xβDαu‖H s (Rn).

For solutions u(t, ·) of evolution equations we employ norms of the type

∑

α∈Zn
+,|α|≤N

sup
0<t<T

(
tθ (ρ(t))|α|

(α!)σ
‖Dα

x u(t, ·)‖L p(Rn))

for some θ ≥ 0, 1 < p <∞, ρ(t)↘ 0 as t ↘ 0.
The use of such norms allows us to implement a Picard type scheme for

seemingly different problems of uniform Gevrey regularity and to reduce
the question to the boundedness of an iteration sequence z N (T ) (which is
one of the N-th partial sums above) satisfying inequalities of the type

zN+1(T ) ≤ δ0 + C0T zN (T )+ g(T ; zN (T ))
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102 T. Gramchev

with T being a small parameter, and g being at least quadratic in u near
u = 0.

We propose examples showing that the hypotheses involved in our ab-
stract perturbative approach are optimal for the uniform Gevrey regularity.

1. Introduction

The main aim of the present work is to develop a unified approach for investigating
problems related to the uniform Gσ Gevrey regularity of solutions to PDE on the whole
space Rn and the uniform Gevrey regularity with respect to the space variables of
solutions to the Cauchy problem for semilinear parabolic systems with polynomial
nonlinearities and singular initial data. Our approach works also for demonstrating
exponential decay of solutions to elliptic equations provided we know a priori that the
decay for |x | → ∞ is of the type o(|x |−τ ) for some 0 < τ � 1.

The present article proposes generalizations of the body of iterative techniques for
showing Gevrey regularity of solutions to nonlinear PDEs in Mathematical Physics in
papers of H.A. Biagioni∗ and the author.

We start by recalling some basic facts about the Gevrey spaces. We refer to [50]
for more details. Let σ ≥ 1, � ⊂ Rn be an open domain. We denote by Gσ (Rn) (the
Gevrey class of index σ ) the set of all f ∈ C∞(�) such that for every compact subset
K ⊂⊂ � there exists C = C f,K > 0 such that

sup
α∈Zn

+

(
C |α|

(α!)σ
sup
x∈K
|∂αx f (x)|

)
< +∞,

where α! = α1! · · ·αn!, α = (α1, . . . , αn) ∈ Zn
+, |α| = α1 + . . .+ αn .

Throughout the present paper we will investigate the regularity of solutions of sta-
tionary PDEs in Rn in the frame of the L2 based uniformly Gevrey Gσ functions on
Rn for σ ≥ 1. Here f ∈ Gσ

un(R
n) means that for some T > 0 and s ≥ 0

(1) sup
α∈Zn

+

(
T |α|

(α!)σ
‖∂αx f ‖s

)
< +∞,

where ‖ f ‖s = ‖ f ‖H s (Rn) stands for a H s(Rn) = H s
2(R

n) norm for some s ≥ 0. In
particular, if σ = 1, we obtain that every f ∈ G1

un(R
n) is extended to a holomorphic

function in {z ∈ Cn; |Im z| < T }. Note that given f ∈ Gσ
un(R

n) we can define

(2) ρσ ( f ) = sup{T > 0 : such that (1) holds}.

One checks easily by the Sobolev embedding theorem and the Stirling formula that the
definition (2) is invariant with respect to the choice of s ≥ 0. One may call ρσ ( f ) the
uniform Gσ Gevrey radius of f ∈ Gσ

un(R
n).

∗She has passed away on June 18, 2003 after struggling with a grave illness. The present paper is a
continuation following the ideas and methods contained in [6], [7] and especially [8] and the author dedicates
it to her memory.
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We will use scales of Banach spaces of Gσ functions with norms of the following
type

∞∑

k=0

T |k|

(k!)σ

n∑

j=0

‖Dk
j u‖s, D j = Dx j .

For global L p based Gevrey norms of the type (1) we refer to [8], cf. [27] for local
L p based norms of such type, [26] for | f |∞ := sup� | f | based Gevrey norms for the
study of degenerate Kirchhoff type equations, see also [28] for similar scales of Ba-
nach spaces of periodic Gσ functions. We stress that the use

∑n
j=1 ‖Dk

j u‖s instead
of
∑
|α|=k ‖Dα

x u‖s allows us to generalize with simpler proofs hard analysis type esti-
mates for Gσ

un(R
n) functions in [8].

We point out that exponential Gσ norms of the type

‖u‖σ,T ;exp :=
√∫

Rn
e2T |ξ |1/σ |û(ξ)|2 dξ

have been widely (and still are) used in the study of initial value problems for weakly
hyperbolic systems, local solvability of semilinear PDEs with multiple characteristics,
semilinear parabolic equations, (cf. [23], [6], [30] for σ = 1 and [12], [20], [27], [28]
when σ > 1 for applications to some problems of PDEs and Dynamical Systems).

The abstract perturbative methods which will be exposed in the paper aim at dealing
with 3 seemingly different problems. We write down three model cases.

1. First, given an elliptic linear constant coefficients partial differential operator P in
Rn and an entire function f we ask whether one can find scr > 0 such that

Pu + f (u) = 0, u ∈ H s(Rn), s > scr

(P1) implies

u ∈ O{z ∈ Cn : |=z| < T } for some T > 0

while for (some) s < scr the implication is false.

Recall the celebrated KdV equation

(3) ut − ux x x − auux = 0 x ∈ R, t > 0, a > 0

or more generally the generalized KdV equation

(4) ut − ux x x + au pux = 0 x ∈ R, t > 0 a > 0

where p is an odd integer (e.g., see [34] and the references therein). We recall that a
solution u in the form u(x, t) = v(x + ct), v 6= 0, c ∈ R, is called solitary (traveling)
wave solution. It is well known that v satisfies the second order Newton equation (after
plugging v(x + ct) in (4) and integrating)

(5) v′′ − cv + a

p + 1
v p+1 = 0,
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and if c > 0 we have a family of explicit solutions

(6) vc(x) =
Cp,a

(cosh((p − 1)
√

cx))2/(p+1)
x ∈ R,

for explicit positive constant C p,a .

Incidentally, uc(t, x) = eictvc(x), c > 0 solves the nonlinear Schrödinger equation

(7) iut − ux x + a|u|pu = 0 x ∈ R, t > 0 a > 0

and is called also stationary wave solution cf. [11], [34] and the references therein.

Clearly the solitary wave vc above is uniformly analytic in the strip |=x | ≤ T for
all 0 < T < π/((p − 1)

√
c). One can show that the uniform G1 radius is given by

ρ1[vs] = π/(((p − 1)
√

c).

In the recent paper of H. A. Biagioni and the author [8] an abstract approach for
attacking the problem of uniform Gevrey regularity of solutions to semilinear PDEs
has been proposed. One of the key ingredients was the introduction of L p based norms
of Gσ

un(R
n) functions which contain infinite sums of fractional derivatives in the non-

analytic case σ > 1. Here we restrict our attention to simpler L2 based norms and
generalize the results in [8] with simpler proofs. The hard analysis part is focused
on fractional calculus (or generalized Leibnitz rule) for nonlinear maps in the frame-
work of L2(Rn) based Banach spaces of uniformly Gevrey functions Gσ

un(R
n), σ ≥ 1.

In particular, we develop functional analytic approaches in suitable scales of Banach
spaces of Gevrey functions in order to investigate the Gσ

un(R
n) regularity of solutions

to semilinear equations with Gevrey nonlinearity on the whole space Rn :

(8) Pu + f (u) = w(x), x ∈ Rn

where P is a Gevrey Gσ pseudodifferential operator or a Fourier multiplier of order
m, and f ∈ Gθ with 1 ≤ θ ≤ σ . The crucial hypothesis is some Gσ

un estimates of
commutators of P with Dα

j := Dα
x j

If n = 1 we capture large classes of dispersive equations for solitary waves (cf. [4],
[21], [34], [42], for more details, see also [1], [2], [10] and the references therein).

Our hypotheses are satisfied for: P = −1+V (x), where the real potential V (x) ∈
Gσ

un(R
n) is real valued, bounded from below and lim|x |→∞ V (x) = +∞; P being an

arbitrary linear elliptic differential operator with constant coefficients. We allow also
the order m of P to be less than one (cf. [9] for the so called fractal Burgers equations,
see also [42, Theorem 10, p.51], where Gσ , σ > 1, classes are used for the Whitham
equation with antidissipative terms) and in that case the Gevrey index σ will be given
by σ ≥ 1/m > 1. We show Gσ

un(R
n) regularity of every solution u ∈ H s(Rn) with

s > scr , depending on n, the order of P and the type of nonlinearity. For general
analytic nonlinearities, scr > n/p. However, if f (u) is polynomial, scr might be taken
less than n/2, and in that case scr turns out to be related to the critical index of the
singularity of the initial data for semilinear parabolic equations, cf. [15], [5] [49] (see
also [25] for H s(Rn) := H s

2 (R
n), 0 < s < n/2 solutions in Rn , n ≥ 3, to semilinear

elliptic equations).
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The proof relies on the nonlinear Gevrey calculus and iteration inequalities of the
type zN+1(T ) ≤ z0(T )+ g(T, zN (T )), N ∈ Z+, T > 0 where g(T, 0) = 0 and

(9) zN (T ) =
N∑

k=0

T k

(k!)σ

n∑

j=1

‖Dk
j u‖s .

Evidently the boundedness of {z N (T )}∞N=1 for some T > 0 implies that z+∞(T ) =
‖u‖σ,T ;s < +∞, i.e., u ∈ Gσ

un(R
n). We recover the results of uniform analytic reg-

ularity of dispersive solitary waves (cf. J. Bona and Y. Li, [11], [40]), and we obtain
Gσ

un(R
n) regularity for u ∈ H s(Rn), s > n/2 being a solution of equations of the type

−1u + V (x)u = f (u), where f (u) is polynomial, ∇V (x) satisfies (1) and for some
µ ∈ C the operator (−1 + V (x)− µ)−1 acts continuously from L2(Rn) to H 1(Rn).
An example of such V (x) is given by V (x) = Vσ (x) =< x >ρ exp(− 1

|x |1/(σ−1) ) for

σ > 1, and V (x) =< x >ρ if σ = 1, for 0 < ρ ≤ 1, where< x >=
√

1+ x2. In fact,
we can capture also cases where ρ > 1 (like the harmonic oscillator), for more details
we send to Section 3.

We point out that our results imply also uniform analytic regularity G1
un(R) of the

H 2(R) solitary wave solutions r(x−ct) to the fifth order evolution PDE studied by M.
Groves [29] (see Remark 2 for more details).

Next, modifying the iterative approach we obtain also new results for the analytic
regularity of stationary type solutions which are bounded but not in H s(Rn). As an
example we consider Burgers’ equation (cf. [32])

(10) ut − νux x + uux = 0, x ∈ R, t > 0

which admits the solitary wave solution ϕc(x + ct) given by

(11) ϕc(x) =
2c

ae−cx + 1
, x ∈ R.

for a ≥ 0, c ∈ R \ 0. Clearly ϕc extends to a holomorphic function in the strip
|=x | < π/|c| while limx→sign (c)∞ ϕc(x) = 2c and therefore ϕc 6∈ L2(R). On the other
hand

(12) ϕ′c(x) =
2cae−cx

(ae−cx + 1)2
, x ∈ R.

One can show that ϕ′c ∈ G1
un(R

n). It was shown in [8], Section 5, that if a bounded
traveling wave satisfies in addition v′ ∈ H 1(R) then v′ ∈ G1

un(R
n). We propose gen-

eralizations of this result. We emphasize that we capture as particular cases the bore-
like solutions to dissipative evolution PDEs (Burgers’ equation, the Fisher-Kolmogorov
equation and its generalizations cf. [32], [37], [31], see also the survey [55] and the
references therein).

We exhibit an explicit recipe for constructing strongly singular solutions to higher
order semilinear elliptic equations with polynomial nonlinear terms, provided they have
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suitable homogeneity properties involving the nonlinear terms (see Section 6). In such
a way we generalize the results in [8], Section 7, where strongly singular solutions of
−1u + cud = 0 have been constructed. We give other examples of weak nonsmooth
solutions to semilinear elliptic equations with polynomial nonlinearity which are in
H s(Rn), 0 < s < n/2 but with s ≤ scr cf. [25] for the particular case of −1u +
cu2k+1 = 0 in Rn, n ≥ 3. The existence of such classes of singular solutions are
examples which suggest that our requirements for initial regularity of the solution are
essential in order to deduce uniform Gevrey regularity. This leads to, roughly speaking,
a kind of dichotomy for classes of elliptic semilinear PDE’s in Rn with polynomial
nonlinear term, namely, that any solution is either extendible to a holomorphic function
in a strip {z ∈ Cn : |Imz| ≤ T }, for some T > 0, or for some specific nonlinear terms
the equation admits solutions with singularities (at least locally) in H s

p(R
n), s < scr .

2. The second aim is motivated by the problem of the type of decay - polynomial or
exponential - of solitary (traveling) waves (e.g., cf. [40] and the references therein),
which satisfy frequently nonlocal equations. We mention also the recent work by P.
Rabier and C. Stuart [48], where a detailed study of the pointwise decay of solutions to
second order quasilinear elliptic equations is carried out (cf also [47]).

The example of the solitary wave (6) shows that we have both uniform analyticity
and exponential decay. In fact, by the results in [8], Section 6, one readily obtains that
vc defined in (6) belongs to the Gelfand–Shilov class S1(Rn) = S1

1(R
n). We recall

that given µ > 0, ν > 0 the Gelfand-Shilov class Sνµ(R
n) is defined as the set of all

f ∈ Gµ(Rn) such that there exist positive constants C1 and C2 satisfying

(13) |∂αx f (x)| ≤ C |α|+1
1 (α!)νe−C2|x |1/µ , x ∈ Rn, α ∈ Zn

+.

We will use a characterization of Sνµ(R
n) by scales of Banach spaces with norms

||| f |||µ,ν;ε,T =
∑

j,k∈Zn
+

ε| j |T |k|

( j !)ν(k!)µ
‖x j Dk

x u‖s .

In particular, Sνµ(R
n) contains nonzero functions iffµ+ν ≥ 1 (for more details on these

spaces we refer to [24], [46], see also [17], [18] for study of linear PDE in Sθ (Rn) :=
Sθθ (R

n)).

We require three essential conditions guaranteeing that every solution u ∈ H s(Rn),
s > scr of (8) for which it is known that it decays polynomially for |x | → ∞ neces-
sarily belongs to Sµν (Rn) (i.e., it satisfies (13) or equivalently |||u|||µ,ν;ε,T < +∞ for
some ε > 0, T > 0). Namely: the operator P is supposed to be invertible; f has no
linear term, i.e., f is at least quadratic near the origin; and finally, we require that the
H s(Rn) based norms of commutators of P−1 with operators of the type xβDα

x satisfy
certain analytic–Gevrey estimates for all α, β ∈ Zn

+. The key is again an iterative ap-
proach, but this time one has to derive more subtle estimates involving partial sums for
the Gevrey norms ||| f |||µ,ν;ε,T of the type

zN (µ, ν; ε, T ) =
∑

| j+k|≤N

ε| j |T |k|

( j !)ν(k!)µ
‖x j Dk

x u‖s .
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The (at least) quadratic behaviour is crucial for the aforementioned gain of the rate of
decay for |x | → 0 and the technical arguments resemble some ideas involved in the
Newton iterative method. If µ = ν = 1 we get the decay estimates in [8], and as par-
ticular cases of our general results we recover the well known facts about polynomial
and exponential decay of solitary waves, and obtain estimates for new classes of sta-
tionary solutions of semilinear PDEs. We point out that different type of G1

un Gevrey
estimates have been used for getting better large time decay estimates of solutions to
Navier–Stokes equations in Rn under the assumption of initial algebraic decay (cf. M.
Oliver and E. Titi [44]).

As it concerns the sharpness of the three hypotheses, examples of traveling waves
for some nonlocal equations in Physics having polynomial (but not exponential) decay
for |x | → 0 produce counterexamples when (at least some of the conditions) fail.

3. The third aim is to outline iterative methods for the study of the Gevrey smoothing
effect of semilinear parabolic systems for positive time with singular initial data. More
precisely, we consider the Cauchy problem of the type

(14) ∂t u + (−1)mu + f (u) = 0, u|t=0 = u0, t > 0, x ∈ �,

where � = Rn or � = Tn . We investigate the influence of the elliptic dissipative
terms of evolution equations in Rn and Tn on the critical L p, 1 ≤ p ≤ ∞, index of
the singularity of the initial data u0, the analytic regularity with respect to x ∈ � for
positive time and the existence of self-similar solutions. The approach is based again
on the choice of suitable L p based Banach spaces with timedepending Gevrey norms
with respect to the space variables x and then fixed point type iteration scheme.

The paper is organized as follows. Section 2 contains several nonlinear calculus
estimates for Gevrey norms. Section 3 presents an abstract approach and it is dedicated
to the proof of uniform Gevrey regularity of a priori H s(Rn) solutions u to semilinear
PDEs, while Section 4 deals with solutions u which are bounded on Rn such that ∇u ∈
H s(Rn). We prove Gevrey type exponential decay results in the frame of the Gelfand-
Shilov spaces Sµν (Rn) in Section 5. Strongly singular solutions to semilinear elliptic
equations are constructed in Section 6. The last two sections deal with the analytic-
Gevrey regularizing effect in the space variables for solutions to Cauchy problems for
semilinear parabolic systems with polynomial nonlinearities and singular initial data.

2. Nonlinear Estimates in Gevrey Spaces

Given s > n, T > 0 we define

(15) Gσ (T ; H s) = {v : ‖v‖σ,T ;s :=
∞∑

k=0

n∑

j=1

T k

(k!)σ
‖Dk

x j
v‖s < +∞},
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and

(16) Gσ
∞(T ; H s) = {v : |||v|||σ,T ;s = ‖v‖L∞ +

+∞∑

k=0

n∑

j=0

T k

(k!)σ
‖Dk

j∇v‖s < +∞}.

We have

LEMMA 1. Let s > n/2. Then the spaces Gσ (T ; H s) and Gσ
∞(T ; H s) are Banach

algebras.

We omit the proof since the statement for Gσ (T ; H s) is a particular case of more
general nonlinear Gevrey estimates in [27]) while the proof for Gσ

∞(T ; H s) is essen-
tially the same.

We need also a technical assertion which will play a crucial role in deriving some
nonlinear Gevrey estimates in the next section.

LEMMA 2. Given ρ ∈ (0, 1), we have

(17) ‖ < D >−ρ Dk
j u‖s ≤ ε‖Dk

j u‖s + (1− ρ)
(ρ
ε

)1/(1−ρ)
‖Dk−1

j u‖s

for all k ∈ N, s ≥ 0, u ∈ H s+k(Rn), j = 1, . . . , n, ε > 0. Here < D > stands for the
constant p.d.o. with symbol < ξ >= (1+ |ξ |2)1/2.

Proof. We observe that < ξ >−ρ |ξ j |k ≤ |ξ j |k−ρ for j = 1, . . . , n, ξ ∈ Rn. Set
gε(t) = εt − tρ , t ≥ 0. Straightforward calculations imply

min
g∈R

g(t) = g((
ρ

ε
)1/1−ρ) = −(1− ρ)

(ρ
ε

)1/(1−ρ)

which concludes the proof.

We show some combinatorial inequalities which turn out to be useful in for deriving
nonlinear Gevrey estimates (cf [8]).

LEMMA 3. Let σ ≥ 1. Then there exists C > 0 such that

(18)
`!(σ`µ + r)!

∏
ν 6=µ(σ`ν)!

`1! · · · ` j !(σ`+ r)!
≤ C j ,

for all j ∈ N, ` = `1 + · · · + ` j , `i ∈ N, µ ∈ {1, . . . , j} and 0 ≤ r < σ , with
k! := 0(k + 1), 0(z) being the Gamma function.

Proof. By the Stirling formula, we can find two constants C2 > C1 > 0 such that

C1
kk+ 1

2

ek
≤ k! ≤ C2

kk+ 1
2

ek
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for all k ∈ N. Then the left–hand side in (18) can be estimated by:

C j+1
2 ``+

1
2 (σ`µ + r)σ`µ+r+ 1

2
∏
ν 6=µ(σ`ν)

σ`ν+ 1
2

C j+1
1 `

`1+ 1
2

1 · · · `` j+ 1
2

j (σ`+ r)σ`+r+ 1
2

=
(

C2

C1

) j+1 ``(σ`µ + r)σ`µ+r ∏
ν 6=µ(σ`ν)

σ`ν

∏ j
ν=1 `

`ν
ν (σ`+ r)σ`+r

[
`(σ`µ + r)

`µ(σ`+ r)

] 1
2

σ
j−1

2

≤ C j
3

``(σ`µ + r)σ`µ+rσ σ(`−`µ)[
∏
ν 6=µ `

`ν
ν ]σ

∏ j
ν=1 `

`ν
ν (σ`+ r)σ`+r

≤ C j
3

``(σ`µ + r)σ`µσ σ(`−`µ)[
∏
ν 6=µ `

`ν
ν ]σ−1

`
`µ
µ (σ`+ r)σ`

= C j
3

``(`µ + r
σ
)σ`µ

[∏
ν 6=µ `

`ν
ν

]σ−1

`
`µ
µ (`+ r

σ
)σ`

= C j
3

``(`µ + r
σ
)(σ−1)`µ(`µ + r

σ
)`µ

[∏
ν 6=µ `

`ν
ν

]σ−1

(`+ r
σ
)`(`+ r

σ
)(σ−1)``

`µ
µ

≤ C j
3 e

r
σ

[
(`µ + r

σ
)`µ

∏
ν 6=µ `

`ν
ν

(`+ r
σ
)`1+···+` j

]σ−1

≤ C j
3 e

r
σ , N ∈ N

which implies (18) since 0 < r ≤ σ .

Given s > n/2 we associate two N-th partial sums for the norm in (15)

SσN [v; T, s] =
N∑

k=0

T k

(k!)σ

n∑

j=1

‖Dk
x j
v‖s ,(19)

S̃σN [v; T, s] =
N∑

k=1

T k

(k!)σ

n∑

j=1

‖Dk
x j
v‖s .(20)

Clearly (19) and (20) yield

SσN [v; T, s] = ‖v‖s + S̃σN [v; T, s].(21)

LEMMA 4. Let f ∈ Gθ (Q) for some θ ≥ 1, where Q ⊂ Rp is an open neigh-
bourhood of the origin in Rp, p ∈ N satisfying f (0) = 0, ∇ f (0) = 0. Then for
v ∈ H∞(Rn : Rp) there exists a positive constant A0 depending on ‖v‖s , ρθ ( f |B|v|∞ ),
where BR stands for the ball with radius R, such that
(22)

S̃σN [ f (v); T, s] ≤ |∇ f (v)|∞ S̃σN [v; T, s]+
∑

j∈Zp
+,2≤| j |≤N

A j
0

( j !)σ−θ
(S̃σN−1[v; T, s]) j ,
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for T > 0, N ∈ N, N ≥ 2.

Proof. Without loss of generality, in view of the choice of the H s norm, we will carry
out the proof for p = n = 1. First, we recall that

Dk( f (v(x)) =
k∑

j=1

(D j f )(v(x))

j !

∑

k1+···+k j=k

k1≥1,··· ,k j≥1

j∏

µ=1

Dkµv(x)

kµ!

= f ′(v(x))Dkv(x)

+
k∑

j=2

(D j f )(v(x))

j !

∑

k1+···+k j=k

k1≥1,··· ,k j≥1

j∏

µ=1

Dkµv(x)

kµ!
.(23)

Thus

S̃σN [ f (v); T, s] ≤ ωs‖ f ′(v)‖s S̃σN [v; T, s]+
N∑

k=1

k∑

j=1

‖(D j f )(v)‖s)
( j !)θ

ω
j
s

( j)!σ−θ

×
∑

k1+···+k j=k

k1≥1,··· ,k j≥1

Mσ, j
k1 ,...,k j

j∏

µ=1

T kµ‖Dkµv‖s
(kµ!)σ

(24)

where ωs is the best constant in the Schauder Lemma for H s(Rn), s > n/2, and

(25) Mσ, j
k1,...,k j

=
(

k1! · · · k j ! j !

(k1 + · · · + k j )!

)σ−1

, j, kµ ∈ N, kµ ≥ 1, µ = 1, . . . , j.

We get, thanks to the fact that kµ ≥ 1 for every µ = 1, . . . , j , that

Mσ, j
k1,...,k j

≤ 1, kµ ∈ N, kµ ≥ 1, µ = 1, . . . , j(26)

(see [27]). Combining (26) with nonlinear superposition Gevrey estimates in [27] we
obtain that there exists A0 = A0( f, ‖v‖s) > 0 such that

ω
j
s
‖(D j f )(v)‖s

( j !)θ
≤ A j

0, j ∈ N.(27)
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We estimate (24) by

S̃σN [ f (v); T, s] ≤ ωs‖ f ′(v)‖s S̃σN [v; T, s]

+
N∑

k=2

k∑

j=2

‖(D j f )(v)‖s)
( j !)θ

ω
j
s

( j)!σ−θ

×
∑

k1+···+k j=k

k1≥1,··· ,k j≥1

j∏

µ=1

T kµ‖Dkµv‖s
(kµ!)σ

≤ ωs‖ f ′(v)‖s S̃σN [v; T, s]

+
N∑

j=2

A j
0

( j)!σ−θ
(S̃σN−1[v; T, s]) j .(28)

The proof is complete.

We also propose an abstract lemma which will be useful for estimating Gevrey
norms by means of classical iterative Picard type arguments.

LEMMA 5. Let a(T ), b(T ), c(T ) be continuous nonnegative functions on [0,+∞[
satisfying a(0) = 0, b(0) < 1, and let g(z) be a nonzero real–valued nonnegative
C1[0,+∞) function, such that g′(z) is nonnegative increasing function on (0,+∞)
and

g(0) = g′(0) = 0.

Then there exists T0 > 0 such that

a) for every T ∈]0, T0] the set FT = {z > 0; z = a(T )+ b(T )z + c(T )g(z)} is not
empty.

b) Let {zk(T )}+∞1 be a sequence of continuous functions on [0,+∞[ satisfying

(29) zk+1(T ) ≤ a(T )+ b(T )zk(T )+ g(zk(T )), z0(T ) ≤ a(T ),

for all k ∈ Z+. Then necessarily zk(T ) is bounded sequence for all T ∈]0, T0].

The proof is standard and we omit it (see [8], Section 3 for a similar abstract
lemma).

3. Uniform Gevrey regularity of H s(Rn) solutions

We shall study semilinear equations of the following type

(30) Pv(x) = f [v](x)+w(x), x ∈ Rn
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where w ∈ Gσ (T ; H s) for some fixed σ ≥ 1, T0 > 0, s > 0 to be fixed later, P
is a linear operator on Rn of order m̃ > 0, i.e. acting continuously from H s+m̃(Rn)

to H s(Rn) for every s ∈ R, and f [v] = f (v, . . . , Dγ v, . . .)|γ |≤m0 , m0 ∈ Z+, with
0 ≤ m0 < m̃ and

(31) f ∈ Gθ (CL), f (0) = 0

where L =∑γ∈Zn
+

1.

We suppose that there exists m ∈]m0, m̃] such that P admits a left inverse P−1

acting continuously

(32) P−1 : H s(Rn)→ H s+m(Rn), s ∈ R.

We note that since f [v] may contain linear terms we have the freedom to replace P by
P + λ, λ ∈ C. By (32) the operator P becomes hypoelliptic (resp., elliptic if m̃ = m)
globally in Rn with m̃ − m being called the loss of regularity (derivatives) of P. We
define the critical Gevrey index, associated to (30) and (32) as follows

σcrit = max{1, (m − m0)
−1, θ}.

Our second condition requires Gevrey estimates on the commutators of P with Dk
j ,

namely, there exist s > n/2+ m0, C > 0 such that

(33) ‖P−1[P, Dk
p]v‖s ≤ (k!)σ

∑

0≤`≤k−1

Ck−`+1

(`!)σ

n∑

j=1

‖D`
jv‖s

for all k ∈ N, p = 1, . . . , n, v ∈ H k−1(Rn).

We note that all constant p.d.o. and multipliers satisfy (33). Moreover, if P is
analytic p.d.o. (e.g., cf. [13], [50]), then (33) holds as well for the L2 based Sobolev
spaces H s(Rn).

If v ∈ H s(Rn), s > m0 + n
2 , solves (30), standard regularity results imply that

v ∈ H∞(Rn) =⋂r>0 H r(Rn).

We can start by v ∈ H s0(Rn) with s0 ≤ m0 + n
2 provided f is polynomial. More

precisely, we have

LEMMA 6. Let f [u] satisfy the following condition: there exist 0 < s0 < m0 + n
2

and a continuous nonincreasing function

κ(s), s ∈ [s0,
n

2
+ m0[, κ(s0) < m − m0, lim

s→ n
p+m0

κ(s) = 0

such that

(34) f ∈ C(H s(Rn) : H s−m0−κ(s)(Rn)), s ∈ [s0,
n

2
+ m0[.

Then every v ∈ H s0(Rn) solution of (30) belongs to H∞(Rn).
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Proof. Applying P−1 to (30) we get v = P−1( f [v] + w). Therefore, (34) and (32)
lead to v ∈ H s1 with s1 = s0 − m0 − κ(s0) + m > s0. Since the gain of regularity
m − m0 − κ(s) > 0 increases with s, after a finite number of steps we surpass n

2 and
then we get v ∈ H∞(Rn).

REMARK 1. Let f [u] = (Dm0
x u)d, d ∈ N, d ≥ 2. In this case κ(s) = (d −

1)( n
2 − (s − m0)), for s ∈ [s0,

n
2 + m0[, with κ(s0) < m − m0 being equivalent to

s0 > m0 + n
2 −

m−m0
d−1 . This is a consequence of the multiplication rule in H s(Rn),

0 < s < n
p , namely: if u j ∈ H s j (Rn), s j ≥ 0, n

p > s1 ≥ · · · ≥ sd , then

d∏

j=1

u j ∈ H s1+···+sd−(d−1) n
2 (Rn),

provided

s1 + · · · + sd − (d − 1)
n

2
> 0.

Suppose now that f [u] = ud−1 Dm0
x u (linear in Dm0

x u), m0 ∈ N. In this case, by
the rules of multiplication, we choose κ(s) as follows: s0 > n/2 (resp., s0 > m0/2),
κ(s) ≡ 0 for s ∈]s0, n/2 + m0[ provided n ≥ m0 (resp., n < m0); s0 ∈]n/2 −
(m − m0)/(d − 1), n/2[, κ(s) = (d − 1)(n/2 − s) for s ∈ [s0, n/2[, κ(s) = 0 if
s ∈ [n/2, n/2+ m0[ provided n

p −
m−m0
d−1 > 0 and ds0 − (d − 2)n/2− m0 > 0.

We state the main result on the uniform Gσ regularity of solutions to (30).

THEOREM 1. Let w ∈ Gσ (T0; H s), s > n/2 + m0, T0 > 0, σ ≥ σcrit . Suppose
that v ∈ H∞(Rn) is a solution of (30). Then there exists T ′0 ∈]0, T0] such that

(35) v ∈ Gσ (T ′0; H s), T ∈]0, T ′0].

In particular, if m − m0 ≥ 1, which is equivalent to σcrit = 1, and σ = 1, v can be
extended to a holomorphic function in the strip {z ∈ Cn : |Im z| < T ′0}. If m < 1 or
θ > 1, then σcrit > 1 and v belongs to Gσ

un(R
n).

Proof. First, by standard arguments we reduce to (m0 + 1) × (m0 + 1) system by
introducing v j =< D > j v, j = 0, . . . ,m0 (e.g., see [33], [50]) with the order of the
inverse of the transformed matrix valued–operator P−1 becoming m0 −m, while σcrit

remains invariant. So we deal with a semilinear system of m0 + 1 equations

Pv(x) = f (κ0(D)v0, . . . , κm0(D)vm0 )+ w(x), x ∈ Rn

where κ j ’s are zero order constant p.d.o., f (z) being a Gθ function in Cm0+1 7→
Cm0+1, f (0) = 0. Since κ j (D), j = 0, . . . ,m0, are continuous in H s(Rn), s ∈
R, and the nonlinear estimates for f (κ0(D)v0, . . . , κm0(D)vm0) are the same as for
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f (v0, . . . , vm0 ) (only the constants change), we consider κ j (D) ≡ 1. Hence, without
loss of generality we may assume that we are reduced to

(36) Pv(x) = f (v)+w(x), x ∈ Rn

Let v ∈ H∞(Rn) be a solution to (36). Equation (36) is equivalent to

(37) P(Dk
j v) = −[P, Dk

j ]v + Dk
j ( f (v))+ Dk

jw.

which yields

(38) Dk
j v = −P−1[P, Dk

j ]v + P−1 Dk
j ( f (v)) + P−1 Dk

jw.

In view of (33), we readily obtain the following estimates with some constant C0 > 0

T k

(k!)σ
‖P−1[P, Dk

j ]v‖s ≤ C0T
k−1∑

`=0

(C0T )k−`−1 T `

(`!)σ

n∑

q=1

‖D`
qv‖s(39)

for all k ∈ N, j = 1, . . . , n. Therefore

Scomm
N [v; T ] :=

N∑

k=1

n∑

j=1

T k

(k!)σ
‖P−1[P, Dk

j ]v‖s

≤
N∑

k=1

k−1∑

`=0

(C0T )k−`−1 T `

(`!)σ

n∑

q=1

‖D`
qv‖s

= nC0T
N−1∑

`=1

T `

(`!)σ

n∑

q=1

‖D`
qv‖s

N∑

k=`+1

(C0T )k−`−1

≤ nC0T

1− C0T
SσN−1[v; T, H s]

≤ nC0T

1− C0T
‖v‖s +

nC0T

1− C0T
S̃σN−1[v; T, H s](40)

for all N ∈ N provided 0 < T < C−1
0 .

Now, since the case θ = 1 is easier to deal with, we shall treat the case θ > 1,
hence σcr > 1.

Next, by Lemma 2, one gets that for Ns := ‖P−1‖H s−1/σcrit→H s

‖P−1 Dk
j ( f (v))‖s ≤ Ns‖|D j |k−1/σcr ( f (v))‖s

≤ ε‖Dk
j ( f (v))‖s + C(ε)‖Dk−1

j ( f (v))‖s , ε > 0(41)

where

C(ε) = (1− ρ)( Nsρ

ε
)1/1−ρ .
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Set
L0 = | f ′(v)|∞.

Therefore, if N ≥ 3, in view of (22) we can write

S̃σN [v; T, s] ≤ S̃σN [w; T, s]+ nC0T

1− C0T
‖v‖s +

nC0T

1− C0T
S̃σN−1[v; T, H s]

+εL0 S̃σN [v; T, s]+ ε
N∑

j=2

A j
0

( j !)σ−θ
(S̃σN−1[v; T, s]) j(42)

+C(ε)T


‖ f (v)‖s + εL0 S̃σN−1[v; T, s]+ ε

N−1∑

j=2

A j
0

( j !)σ−θ
(S̃σN−2[v; T, s]) j




for 0 < T < min{C−1
0 , T0}. Now we fix ε > 0 to satisfy

(43) εL0 < 1

Then by (42) we obtain that

(44) S̃σN [v; T, s] ≤ a(T )+ b(T )S̃σN−1[v; T, s]+ g(S̃σN−1[v; T, s], T )

where

a(T ) = ‖w‖σ,T ,s − ‖w‖s + nC0T (1− C0T )−1‖v‖s + CεT‖ f (v)‖s
1− εL0

(45)

b(T ) = T
nC0 + (1− C0T )εCεL0

(1− C0T )(1− εT )
(46)

c(T )g(z) = ε(1+ εC(ε)L0T )

1− εL0

∞∑

j=2

A j
0

( j !)σ−θ
z j(47)

for 0 < T < min{C−1
0 , T0}. Now we are able to apply Lemma 3 for 0 < T < T ′0,

by choosing T ′0 small enough , T ′0 < min{T0,C−1
0 } so that the sequence S̃σN [v; T ′0, s]

is bounded . This implies the convergence since S̃σN [v; T ′0, s] is nondecreasing for
N →∞.

REMARK 2. The operator P appearing in the ODEs giving rise to traveling wave
solutions for dispersive equations is usually a constant p.d.o. or a Fourier multiplier
(cf. [11], [40], [29]), and in that case the commutators in the LHS of (33) are zero. Let
now V (x) ∈ Gσ (Rn : R), inf

x∈Rn
V (x) > 0. Then it is well known (e.g., cf. [52]) that the

operator P = −1+ V (x) admits an inverse satisfying P−1 : H s(Rn)→ H s+1(Rn).
One checks via straightforward calculations that the Gevrey commutator hypothesis is
satisfied if there exists C > 0 such that

(48) ‖P−1(Dβ
x V Dγ

x u)‖s ≤ C |β|+1(β!)σ‖Dγ
x u‖s,
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for all β, γ ∈ Zn
+, β 6= 0.

We point out that, as a corollary of our theorem, we obtain for σ = 1 and f [v] ≡ 0 a
seemingly new result, namely that every eigenfunctionφ j (x) of−1+V (x) is extended
to a holomorphic function in {z ∈ Cn : |=z| < T0} for some T0 > 0. Next, we have
a corollary from our abstract result on uniform G1 regularity for the H 2(R) solitary
wave solutions r(x + ct), c > 0 in [29] satisfying

(49) Pu = r ′′′′ + µr ′′ + cr = f (r, r ′, r ′′) = f0(r, r
′)+ f1(r, r

′)r ′′, µ ∈ R

with f j being homogeneous polynomial of degree d − j , j = 0, 1, d ≥ 3 and |µ| <
2
√−c. Actually, by Lemma 6, we find that every solution r to (49) belonging to

H s(R), s > 3/2, is extended to a holomorphic function in {z ∈ C : |Im z| < T } for
some T > 0.

4. Uniform Gevrey regularity of L∞ stationary solutions

It is well known that the traveling waves to dissipative equations like Burgers, Fisher–
Kolmogorov, Kuramoto–Sivashinsky equations have typically two different nonzero
limits for x →±∞ (see the example (6)). Now we investigate the Gσ

un(R
n) regularity

of such type of solutions for semilinear elliptic equations.

We shall generalize Theorem 4.1 in [8] for Gθ nonlinear terms f . We restrict our
attention to (30) for n = 1, m0 = 0, P = P(D) being a constant coefficients elliptic
p.d.o. or Fourier multiplier of order m.

THEOREM 2. Let θ ≥ 1, σ ≥ θ , m − m0 ≥ 1, f ∈ Gθ (CL), f (0) = 0, w ∈
Gσ
∞(T0; H s) for some T0 > 0. Suppose that v ∈ L∞(R) is a weak solution of (30)

satisfying ∇v ∈ H s(R). Then there exists T ′0, depending on T0, P(D), f , ‖v‖∞ and
‖∇v‖s such that v ∈ Gσ

∞(H
s(R); T ′0). In particular, if σ = θ = 1 then v can be

extended to a holomorphic function in {z ∈ C : |Im z| < T ′0}.

Without loss of generality we suppose that n = 1, m0 = 0. It is enough to show
that v′ = Dxv ∈ Gσ (H s, T ) for some T > 0.

We need an important auxiliary assertion, whose proof is essentially contained in
[27].

LEMMA 7. Let g ∈ Gθ (Rp : R), 1 ≤ θ ≤ σ , g(0) = 0. Then there exists a
positive continuous nondecreasing function G(t), t ≥ 0 such that

(50) ‖(Dαg)(v)w‖s ≤ |(Dαg)(v)|∞‖w‖s + G(|v|∞)α(α!)θ (‖w‖s−1 + ‖∇v‖ss−1)

for all v ∈ (L∞(Rn : R))p, v′ ∈ (H s(Rn : R))p, w ∈ (H s(R))p, α ∈ Z
p
+, provided

s > n/2+ 1.

Proof of Theorem 2. Write u = v′. We observe that ( f (v))′ = f ′(v)u and the hy-
potheses imply that g(v) := f ′(v) ∈ L∞(R) and u ∈ H s(R). Thus differentiating k
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times we obtain that u satisfies

P Dku = Dk(g(v)u)+ Dkw′

which leads to

Dku = P−1 Dk(g(v)u)+ P−1 Dkw′.

Hence, since m ≥ 1 and P−1 D is bounded in H s(R) we get the following estimates

‖Dku‖s ≤ C‖Dk−1(g(v)u)‖s + ‖Dk−1w′‖s

≤
k−1∑

j=0

(
k − 1

j

)
‖D j (g(v))Dk−1− j u‖s + ‖Dk−1w′‖s

≤
k−1∑

j=0

(
k − 1

j

) j∑

`=0

C`−1

`!

×
∑

p1+···+p`= j
p1≥1,··· ,p`≥1

∏̀

µ=1

‖D pµ−1u‖s
pµ!

‖(D`g)(v))Dk−1− j u‖s + ‖Dk−1w′‖s .(51)

Now, by Lemma 7 and (51) we get, with another positive constant C ,

T k

(k!)σ
‖Dku‖s ≤ CT k−σ ‖v‖s

k−1∑

j=0

(
k − 1

j

)−σ+1 j∑

`=0

C`−1

(`!)σ−θ

×
∑

p1+···+p`= j
p1≥1,··· ,p`≥1

∏̀

µ=1

T pµ |D pµ−1u|s
(pµ!)σ

(G(|v|∞))`
T k−1− j |Dk−1− j u|s
((k − 1− j)!)σ

+ ‖w′‖σ,T ;s .(52)

Next, we conclude as in [8].

REMARK 3. As a corollary from our abstract theorem we obtain apparently
new results on the analytic G1

un(R) regularity of traveling waves of the Kuramoto–
Sivashinsky equation cf. [41], and the Fisher–Kolmogorov equation and its generaliza-
tions (cf. [37], [31]).

5. Decay estimates in Gelfand–Shilov spaces

In the paper [8] new functional spaces of Gevrey functions were introduced which
turned out to be suitable for characterizing both the uniform analyticity and the expo-
nential decay for |x | → ∞. Here we will show regularity results in the framework of
the Gelfand–Shilov spaces Sνµ(R

n) with

(53) µ ≥ 1, ν ≥ 1.
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Let us fix s > n/2, µ, ν ≥ 1. Then for every ε > 0, T > 0 we set

Dν
µ(ε, T ) = {v ∈ S(Rn) : v ε,T < +∞}

where

v ε,T =
∞∑

j,k∈Zn
+

ε| j |T |k|

( j !)ν(k!)µ
‖x j Dkv‖s .

We stress that (53) implies that Sνµ(R
n) becomes a ring with respect to the pointwise

multiplication and the spaces Dν
µ(ε, T ) become Banach algebras.

Using the embedding of H s(Rn) in L∞(Rn) and standard combinatorial argu-
ments, we get that one can find c > 0 such that

(54) |Dkv(x)| ≤ cT−|k|(k!)µe−ε|x |
1/ν
v ε,T , x ∈ Rn, k ∈ Zn

+, v ∈ D(ε, T ).

Clearly Sνµ(R
n) is inductive limit of Dν

µ(ε, T ) for T ↘ 0, ε ↘ 0.

We set

Eνµ;N [v; ε, T ] =
∑

j,k∈Zn+
| j |+|k|≤N

ε| j |T |k|

( j !)ν(k!)µ
‖x j Dkv‖s .

We will study the semilinear equation (30), with w ∈ Dν
µ(ε0, T0). The linear operator

P is supposed to be of order m̃ = m, to be elliptic and invertible, i.e. (32) holds. The
crucial hypothesis on the nonlinearity f (u) in order to get decay estimates is the lack
of linear part in the nonlinear term. For the sake of simplicity we assume that f is
entire function and quadratic near 0, i.e.,

(55) f (z) =
∑

j∈ZL
+,| j |≥2

f j z j

and for every δ > 0 there exists Cδ > 0 such that

| f j | ≤ Cδδ
| j |, j ∈ ZL

+.

Next, we introduce the hypotheses on commutators of P−1.

We suppose that there exist A0 > 0, and B0 > 0 such that

(56) ‖P−1, [P, xβDα
x ]v‖s ≤ (α!)µ(β!)ν

∑

ρ≤α,θ≤β
ρ+θ 6=α+β

A
|α−ρ|
0 B

|β−θ |
0

(ρ!)µ(θ!)ν
‖xθDρv‖s

for all α, β ∈ Zn
+.

The next lemma, combined with well known L p estimates for Fourier multipliers
and L2 estimates for pseudodifferential operators, indicates that our hypotheses on the
commutators are true for a large class of pseudodifferential operators.
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LEMMA 8. Let P be defined by an oscillatory integral

Pv(x) =
∫

eixξ P(x, ξ)v̂(ξ)d̄ξ

=
∫∫

ei(x−y)ξ P(x, ξ)v(y)dyd̄ξ,(57)

where P(x, ξ) is global analytic symbol of order m, i.e. for some C > 0

(58) sup
α,β∈Zn

+

(
sup

(x,ξ)∈R2n

(
< ξ >−m+|β| C |α|+|β|

α!β!
|Dα

x Dβ

ξ P(x, ξ)|
))

< +∞.

Then the following relations hold

(59) [P, xβDα
x ]v(x) = α!β!

∑

ρ≤α,θ≤β
|ρ+θ |<|α+β|

(−1)|β−θ |(−i)|α−ρ|

(α − ρ)!(β − θ)! P(β−θ)
(α−ρ) (x, D)(xθDρ

x v)

for all α, β ∈ Zn
+, where P(β)

(α)
(x, ξ) := Dβ

ξ ∂
α
x P(x, ξ).

Proof. We need to estimate the commutator [P, xβDα
x ]v = P(xβDα

x v)− xβDα
x P(v).

We have

P(xβDα
x v) =

∫∫
ei(x−y)ξ P(x, ξ)yβDα

y v(y)dyd̄ξ ;

xβDα
x P(v) =

∫∫
xβDα

x (e
i(x−y)ξ P(x, ξ))v(y)dyd̄ξ

=
∫∫ ∑

ρ≤α

(
α

ρ

)
xβei(x−y)ξξρDα−ρ

x P(x, ξ)v(y)dyd̄ξ

=
∫∫ ∑

ρ≤α

(
α

ρ

)
xβ(−Dy)

ρ(ei(x−y)ξ )Dα−ρ
x P(x, ξ)v(y)dyd̄ξ

=
∫∫ ∑

ρ≤α

(
α

ρ

)
xβei(x−y)ξDα−ρ

x P(x, ξ)Dρ
y v(y)dyd̄ξ

=
∫∫ ∑

ρ≤α

(
α

ρ

)
Dβ
ξ (e

ixξ )(e−iyξ Dα−ρ
x P(x, ξ))Dρ

y v(y)dyd̄ξ

=
∫∫ ∑

ρ≤α

(
α

ρ

)
eixξ (−Dξ )

β(e−iyξ )Dα−β
x P(x, ξ))Dρ

y v(y)dyd̄ξ

=
∫∫ ∑

ρ≤α
θ≤β

(
α

ρ

)(
β

θ

)
ei(x−y)ξ yθ(−1)|β−θ |Dβ−θ

ξ Dα−ρ
x P(x, ξ)Dρ

y v(y)dyd̄ξ

=
∑

ρ≤α
θ≤β

(
α

ρ

)(
β

θ

)∫∫
ei(x−y)ξ (−1)|β−θ |Dβ−θ

ξ Dα−ρ
x P(x, ξ)yθ Dρ

y v(y)dyd̄ξ
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which concludes the proof of the lemma.

REMARK 4. We point out that if P(D) has nonzero symbol, under the additional
assumption of analyticity, namely P(ξ) 6= 0, ξ ∈ Rn and there exists C > 0 such that

(60)
|Dα

ξ (P(ξ))|
|P(ξ)| ≤ C |α|α!(1+ |ξ |)−|α|, α ∈ Zn

+, ξ ∈ Rn,

the condition (56) holds. More generally, (56) holds if P(x, ξ) satisfies the following
global Gevrey Sµν (Rn) type estimates: there exists C > 0 such that

sup
(x,ξ)∈R2n

(< ξ >−m+|α| (α!)µ(β!)−ν|∂αx ∂βξ P(x, ξ)|) ≤ C |α|+|β|+1, α, β ∈ Zn
+.

The latter assertion is a consequence from the results on L2(Rn) estimates for p.d.o.-s
(e.g., cf. [19]).

Let now P(D) be a Fourier multiplier with the symbol P(ξ) = 1 + i sign(ξ)ξ 2

(such symbol appears in the Benjamin-Ono equation). Then (56) fails.

Since our aim is to show (sub)exponential type decay in the framework of the
Gelfand-Shilov spaces, in view of the preliminary results polynomial decay in [8], we
will assume that

(61) < x >N v ∈ H∞(Rn), N ∈ Z+.

Now we extend the main result on exponential decay in [8].

THEOREM 3. Let f satisfy (55) and w ∈ Sνµ(R
n) with µ, ν satisfying (53), i.e.,

w ∈ Dν
µ(ε0, T0) for some ε0 > 0, T0 > 0. Suppose that the hypothesis (56) is true.

Let now v ∈ H∞(Rn) satisfy (61) and solve (30) with the RHS w as above. Fix ε ∈
]0,min{ε0,B

−1
0 }[. Then we can find T ′0(ε) ∈]0,min{T̃0,A

−1
0 }[ such that v ∈ Dν

µ(ε, T )
for T ∈]0, T ′0(ε)[. In particular, v ∈ Sνµ(R

n).

Proof. For the sake of simplicity we will carry out the argument in the one dimensional
case. We write for β ≥ 1

P(xβDαv) = xβDα
xw − [P, xβDα

x ]v + xβDα
x ( f (v))

= xβDα
xw − [P, xβDα

x ]v

+ Dx (x
βDα−1

x ( f (v)))− βxβ−1Dα−1
x ( f (v)).(62)

Thus

xβDαv = P−1xβDα
xw − P−1[P, xβDα

x ]v

+ P−1 Dx (x
βDα−1

x ( f (v)))− βP−1(xβ−1Dα−1
x ( f (v)))(63)
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which implies, for some constant depending only on the norms of P−1 and P−1 D in
H s, the following estimates

εβT α

(α!)µ(β!)ν
‖xβDαv‖s ≤ C

εβT α

(α!)µ(β!)ν
‖xβDαw‖s

+
∑

ρ≤α,θ≤β
ρ+θ 6=α+β

A
α−ρ
0 B

β−θ
0

(ρ!)µ(θ!)ν
‖xθDρv‖s

+ C
T

αµ

εβT α−1

((α − 1)!)µ(β!)ν
‖xβDα−1( f (v))‖s

+ εT

βν−1

εβ−1T α−1

((α − 1)!)µ((β − 1)!)ν
‖xβ−1 Dα−1( f (v))‖s(64)

for all α, β ∈ Z+, β ≥ 1, α ≥ 1.

On the other hand, if α = 0 we have

εβ

(β!)ν
‖xβv‖s ≤ C

εβ

(β!)ν
‖xβw‖s

+
∑

0≤θ<β

B
β−θ
0

(θ!)ν
‖xθv‖s + C

εβ

(β!)ν
‖xβ( f (v))‖s(65)

for all β ∈ Z+, β ≥ 1.

Now use the (at least) quadratic order of f (u) at u = 0, namely, there exist C1 > 0
depending on s and f , and a positive nondecreasing function G(t), t ≥ 0, such that

εβ

(β!)ν
‖xβ f (v)‖s ≤ C1ε‖xv‖s G(‖v‖s)

(
εβ−1

((β − 1)!)ν
‖xβ−1v)‖s

)
(66)

This, combined with (64), allows us to gain an extra vε > 0 and after summation with
respect to α, β, α + β ≤ N + 1, to obtain the following iteration inequalities for some
C0 > 0

Eµ
ν;N+1[v; ε, T ] ≤ ‖v‖s + C0ε‖xv‖s Eµ

ν;N [v; ε, T ]+ T G(Eµ
ν;N [v; ε, T ])(67)

for all N ∈ Z+. We can apply the iteration lemma taking 0 < T ≤ T ′0(ε) with
0 < T ′0(ε)� 1.

REMARK 5. We recall that the traveling waves for the Benjamin-Ono equation
decay as O(x−2) for |x | → +∞, where P(ξ) = c + i sign(ξ)ξ 2 for some c > 0.
Clearly (H3) holds with µ = 2 but it fails for µ ≥ 3. Next, if a traveling wave solution
ϕ(x) ∈ H 2(R) in [29] decays like |x |−ε as x → ∞ for some 0 < ε � 1, then by
Theorem 2 it should decay exponentially and will belong to the Gelfand–Shilov class
S1

1 (R). Finally, we recall that uν(x) = −4νx(x2 + ν2)−1, x ∈ R, solves the stationary
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Sivashinsky equation |Dx |u + ν∂2
x u = u∂xu, ν > 0 (cf. [51]). Clearly uν(x) extends

to a holomorphic function in the strip |Im z| < ν and decays (exactly) like O(|x |−1)

for x → ∞. Although the full symbol −|ξ | + νξ 2 is not invertible in L2(R), we can
invert P in suitable subspaces of odd functions and check that (56) holds iff µ = 1.

6. Strongly singular solutions

First we consider a class of semilinear ODE with polynomial nonlinear terms on the
real line

P[y](x) := Dm y(x)+
d∑

`=2

∑

j∈{0,1,...,m−1}`
p`j D j1 y(x)D j2 y(x) · · · D jm y(x) = 0,

p`j ∈ C(68)

where m, d ∈ N, m ≥ 2, d ≥ 2, Dy(x) = (1/ i)y ′(x). We require the following
homogeneity type condition: there exists τ > 0 such that

(69) −τ − m = −`τ − j1 − · · · − j` if pd
j 6= 0.

Thus, by the homogeneity we obtain after substitution in (68) and straightforward cal-
culations that y±(x) = c±(±x)−τ solves (68) for ±x > 0 provided c 6= 0 is zero of
the polynomial P±m (λ), where

(70) P±m,τ (λ) = λτ(τ − 1) · · · (τ − m + 1)(−1)m +
d∑

`=2

∑

j∈{0,1,...,m−1}`
λ` p̃`j(τ )

where

(71) p̃`j(τ ) = p`j(−1)| j |τ(τ − j1) · · · (τ − j`).

If τ < 1 the singularity of the type |x |−τ near x = 0 is in L p
loc(R), p ≥ 1,

provided pτ < 1. In this case we deduce that one can glue together y+ and y− into
one y ∈ L p

loc(R) function. However, the products in (68) are in general not in L1
loc(R)

near the origin, so we have no real counterexample of singular solutions to (68) on
R. We shall construct such solutions following the approach in [8], namely, using
homogeneous distributions on the line (for more details on homogeneous distributions
see L. Hörmander [33], vol. I). We recall that if u ∈ S ′(R) is homogeneous distribution
of order r , then u(x) = u±|x |r for ±x > 0, u± ∈ C, and û(ξ) is a homogeneous
distribution of order−1− r .

Given µ > −1 we set

(72) h±−1+µ(x) := F
−1
ξ→x(H

µ
±(ξ)),

where

(73) Hµ
±(ξ) = H (±ξ)|ξ |µ,
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with H (t) standing for the Heaviside function. Since τ > 0 if µ = −1 + τ > −1
we get that |ξ |−1+µ is L1

loc near ξ = 0, therefore H (±ξ)|ξ |−1+µ belongs to S ′(R)

and h±−τ are homogeneous of degree −τ . Moreover, since supp(ĥ+−τ ) = [0,+∞[

(resp. supp(ĥ−−τ )(ξ) =] −∞, 0[), h+−τ (resp. h−−τ ) satisfies a well known condition,
guaranteeing that the product (h+−τ )

m (resp. (h−−τ )
m), or equivalently the convolutions

D̂ j1h+−τ ∗ · · · ∗ D̂ j`h+−τ

(resp.

D̂ j1h−−τ ∗ · · · ∗ D̂ j1h−−τ )

are well defined in S ′(R) for any m ∈ N (cf. [43], see also [33]). In view of the
equivalence between (68) and (74), the order of homogeneity −τ of y±, and (72), we
will look for solutions to

(74) P̂[y](ξ) = ξm ŷ(ξ)+
d∑

`=2

∑

j∈{0,1,...,m−1}`
p`jξ

j1 ŷ ∗ · · · ∗ ξ j2 ŷ · · · ξ jm ŷ = 0

proportional to H (±ξ)|ξ |−1+τ homogeneous of order−1+ τ with support in±ξ ≥ 0.
Following [8], we set

(75) h±,a−τ (ξ) = a±H (±ξ)|ξ |−1+τ ,

with a± ∈ C to be determined later on.

Using the homogeneity of h±,a−τ , the definition of τ in (69) and the convolutions
identities derived in [8], Section 7, we readily obtain that

(76) a±F−1
ξ→x(h

±
−τ ) = c±(−± x)τ

where c± is a complex constant and by substituting ŷ(ξ) = h±,a−τ (ξ) in (74)

(77) P̂[y](ξ) = a±H (±ξ)|ξ |m+τ P̃±m,τ (a±) = 0

where P̃±m,τ (λ) is a polynomial such that a± is zero of P̃±m,τ (λ) iff c± in (76) is zero of
P±m,τ (λ) (defined in (70)).

Therefore we have constructed explicit homogeneous solutions to (68)

(78) ua±(x) = a±Fξ→x (H
−1+τ
± (ξ))

Consider now a semilinear PDE with polynomial nonlinearities

(79) Pu = Pm(D)u + F(u, . . . , Dα
x u, . . .)||α|≤m−1

where Pm(D) is constant linear partial differential operator homogeneous of order m
and where F is polynomial of degree d ≥ 2.
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Given θ ∈ Sn−1 we shall define the ODE Pθ (D) in the following way: let Q be an
orthogonal matrix such that Q∗θ = (1, 0, . . . , 0). Then for x = y1 we have

(80) Pθ (D)u(y1) = (Pm(Dy)Uθ + F(Uθ , . . . , Dα
y Uθ , . . .)||α|≤m−1)

with Uθ (y) = u(< Q, (y1, 0, . . . , 0) >).

Let now θ ∈ Sn−1, n ≥ 2 and let L = Lθ be the hyperplane orthogonal to θ . We
define, as in [8], U θ

± = a±δP ⊗ h±−τ,θ ∈ S ′(R), j = 1, . . . , d − 1, by the action on
φ(x) ∈ S(Rn)

(81) (U θ
±; j , φ) :=

∫

R
n−1
y′

∫

Ryn

φ(t Qy)dy ′)u−τ,±(yn)dyndy ′

where Q is an orthogonal matrix transforming θ into (0, . . . , 0, 1). We have proved

PROPOSITION 1. Suppose that Pθ satisfies the homogeneity property (69) for some
θ ∈ Sn−1 and denote by L the hyperplane orthogonal to θ . Then every homogeneous
distribution defined by (81) solves (79).

We propose examples of semilinear elliptic PDEs with singular solutions as above:

1) Pu = 1u + ud = 0, d ∈ N, d ≥ 2, τ = −2/(d − 1), ϑ ∈ Sn−1;

2) P = (−1)mu + D p
x1uDq

x1u + ud = 0, with m, d, p, q ∈ N, d ≥ 2 satisfying
2m = (2m − p − q)(d − 1). In that case

τ = − 2m

d − 1
= −2m + p + q, θ = (1, 0, . . . , 0).

7. Analytic Regularization for Semilinear Parabolic Systems

We consider the initial value problem for systems of parabolic equations

∂t u j + Pj (D)u j +
L∑

`=1

κ j,`(D)(Fj,`(Eu)) = 0,(82)

Eu|t=0 = Eu0, t > 0, x ∈ �, j = 1, . . . , N,

where Eu = (u1, . . . , uN );� = Rn or� = Tn = Rn/(2πZ)n. Pj (D) is differential op-
erator of order m ∈ 2N, Re(Pj (D)) is positive elliptic of order m for all j = 1, . . . ,m.

The nonlinear terms F j,` ∈ C1(CN : C), j = 1, . . . , N , are homogeneous of order
s` > 1. We write ordz F(z) = s for F (positively) homogeneous of order s.

In the case we study the analytic regularity of the solutions for positive time we
will assume that F j,`, j = 1, . . . , N , are homogeneous polynomials of degree s` ≥ 2,
namely

(83) Fj,`(z) =
∑

β∈ZN
+ ,|β|=s`

Fβj,`z
β, Fβj,` ∈ C, z ∈ CN ,



Perturbative methods 125

for j = 1, . . . , N , ` = 1, . . . , L.

The operators κ j,` satisfy

(84) κ j,`(D) ∈ 9d`
h (�), 0 ≤ d` < m

for j = 1, . . . , N , ` = 1, . . . , L. Here 9ν
h (R

n)) (resp. 9ν
h (T

n)) stands for the space
of all smooth homogeneous p.d.o. on Rn (resp. restricted on Tn) of order ν ≥ 0. We
suppose that

(85) either d` > 0 or κ j,`(ξ) ≡ const , ` = 1, . . . L, j = 1, . . . , N if � = Tn .

The initial data Eu0 ∈ S ′(�) will be prescribed later on. Such systems contain as
particular cases semilinear parabolic equations, the Navier-Stokes equations for an in-
compressible fluid, Burgers type equations, the Cahn-Hilliard equation, the Kuramoto-
Sivashinsky type equations and so on.

For given q ∈ [1,+∞], γ ≥ 0, θ ∈ R, µ ≥ 1 and T ∈]0,+∞] we define
the analytic-Gevrey type Banach space Aγθ,q(T ;µ) as the set of all Eu ∈ C(]0, T [:

(Lq(�))N ) such that the norm

‖Eu‖Aγθ,q (T ;µ) =
∑

α∈Zn
+

γ |α|

α!
sup

0<t≤T
(t
|α|
µ +θ‖∂α Eu(t)‖Lq )(86)

is finite. The Sobolev embedding theorems and the Cauchy formula for the radius of
convergence of power series imply, for γ > 0, that, if Eu ∈ Aγθ,q(T ;µ) then Eu(t, ·) ∈
O(0

γ t
1
µ
), t ∈]0, T ] where 0ρ := {x ∈ Cn : |Im(x)| < ρ}, ρ > 0 and O(0) stands

for the space of all holomorphic functions in 0, 0 being an open set in Cn , while for
γ = 0, with the convention 00 = 1, we obtain that A0

θ,q(T ;µ) coincides with the usual
Kato-Fujita weighted type space Cθ (Lq; T ) and µ is irrelevant. Given u ∈ C(]0, T [:
L1

loc(�)) and t ∈]0, T [, we define

ρ[u](t) = sup{ρ > 0 : u(t, ·) ∈ O(0ρ)}

with ρ[u](t) := 0 if it cannot be extended to a function in O(0ρ) for any ρ > 0.

Clearly for each u ∈ Aγθ,q(T ;µ) we have ρ[u](t) ≥ γ t
1
µ , t ∈]0, T ]. We define

Aγ,S
′

θ,q (T ;µ) := C([0, T [: (S ′(�))N )
⋂

Aγθ,q(T ;µ), CS ′
θ (L

q; T ) := A0,S ′
θ,q (T ;µ).

One motivation for the introduction of Aγ,S
′

θ,q (T ;µ) is that (L p(�))N 3 f →
(−1) k

2 E�P [ f ] ∈ Aγ,S
′

1
m (k+ 1

p− 1
q ),q

(T ;m), for all 1 ≤ p ≤ q ≤ +∞, γ ≥ 0, k ≥ 0

where
E�P [ f ](t) := e−t P(D) f = F

−1
ξ→x(e

−t P(ξ) f̂ (ξ)),

f ∈ (S ′(�))N .

We denote by Bρ,∞q (Rn) (resp. Ḃρ,∞q (Rn)) the Besov (resp. homogeneous Besov)
spaces, cf. [54]. Typically for perturbative methods dealing with (82), given γ ≥ 0,
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θ ≥ 0, q ≥ 1, we want to find the space of all f ∈ (S ′(�))N such that

(87) E P[ f ] ∈ Aγθ
m ,q
(T ;m)

for some (all) T ∈]0,+∞[ (respectively

(88) E P[ f ] ∈ Aγθ
m ,q
(+∞;m)

if P is homogeneous). These spaces depend on �, θ, q and m but not on γ ≥ 0
and P and we denote them by B

−θ,∞
q (�) = B

−θ,∞
q (�;m) (resp. Ḃ

−θ,∞
q (�) =

Ḃ
−θ,∞
q (�;m)). It is well known, for instance, that Ḃ

−θ,∞
q (Rn) = Ḃ−θ,∞q (Rn) if

P = −1, N = 1, θ > 0, cf. [54]. However Ḃ0,∞
q (Rn) 6= Ḃ0,∞

q (Rn). One shows that

B
−θ1,∞
q1 (�) ↪→ B

−θ2,∞
q2 (�), (resp. Ḃ−θ1,∞

q1
(�) ↪→ Ḃ−θ2,∞

q2
(�)) if θ2 ≥ (resp. θ2 =)

θ1+ n
q1
− n

q2
, 1 ≤ q1 ≤ q2; Ḃ−θ,∞q (Tn) ⊂ S ′0(T

n) := { f ∈ S ′(Tn) s.t.
∫
Tn f = 0} for

all θ ≥ 0, 1 ≤ q ≤ ∞ and if b(D) ∈ 9r
h(T

n), r ≥ 0, then

b(D) : L p(Tn) −→ Ḃ
− n

p+ n
q−r,∞

q (Tn), q ≥ p > 1

and

b(D) : M(Tn) −→ Ḃ
−n+ n

q−r,∞
q (Tn), q ≥ 1, q > 1 if r = 0.

Set H ρ

S ′(R
n), ρ ∈ R, to be the space of all Schwartz distributions homogeneous of

order ρ.

We put

s = max{s1, . . . , s`}, pcr = n max
`=1,...,L

s` − 1

m − d`

and define Cm,s
pcr (n) as the set of all (q, θ) s.t. q ≥ max{1, pcr}, θ ≥ 0, sθ < m, θ+ n

q ≤
n

pcr
with q > pcr if θ = 0; ∂Cm,s

pcr (n) := {(q, θ(q)) ∈ C
m,s
pcr (n)}, θ(q) := n

pcr
− n

q };
Ċ

m,s
pcr (n) = C

m,s
pcr (n)\∂Cm,s

pcr (n); qmax = sup{τ > q : s(θ(q)+ n
q− n

τ
) < m}. Throughout

the section we will tacitly assume that F j,`’s are polynomials as in (83) when we state
analytic regularity results for (82) in the framework of the Gevrey spaces Aγθ

m ,q
(T ;m),

γ > 0.

THEOREM 4. There exists an absolute constant a > 0 such that:

i) if (q, θ) ∈ Ċ
m,s
pcr (n) and Eu0 ∈ B

−θ,∞
q (�) then ∃T ∗ > 0 s.t. (82) admits a solution

(89) Eu ∈
⋂

γ≥0

Aγ,S
′

θ
m ,q

(T ∗ exp(−aγ
m−1

m );m).

The solution is unique in CS ′
θ
m
(Lq ; T ∗) provided q ≥ s;
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ii) if (q, θ(q)) ∈ ∂Cm,s
pcr (n) then ∃C ′ > 0 s.t. if Eu0 ∈ B

−θ(q),∞
q (�) satisfies

(90) lim
T↘0
‖E�P [ Eu0]‖C θ(q)

m
(Lq;T ) = c′0 ≤ C ′

then ∃T ′ > 0 s.t. (82) admits a solution Eu ∈ CS ′
θ(q)

m

(Lq; T ′) satisfying Eu ∈
Aγθ(q)

m ,q
(T ′γ ;m) for some T ′γ ∈]0, T ′], γ ∈ [0, ( 1

a ln C ′
c0
)

m
m−1 ]. The solution is

unique in CS ′
θ(q)

m

(Lq; T ′) provided q ≥ s.

For the next two theorems we require that the operator P(D) is homogeneous and

m − d1

s1 − 1
= . . . = m − d`

s` − 1
= n

pcr
.

THEOREM 5. Let (q, θ(q)) ∈ ∂Cm,s
pcr (n). We claim that there exists C ′′ > 0 s.t. if

Eu0 ∈ Ḃ
−θ(q),∞
q (�) satisfies

(91) ‖E�P [ Eu0]‖C θ(q)
m
(Lq;+∞) = c′′0 ≤ C ′′q

then (82) admits a global solution

Eu ∈
⋂

0≤γ≤γ
Aγθ(q)

m ,q
(+∞;m), γ := (1

a
ln

C ′′

c′′0
)

m
m−1 .

Furthermore, the solution is unique if q ≥ s.

THEOREM 6. Let Eu0 ∈ (H
− n

pcr
S ′ (Rn))N ⋂ Ḃ

−θ(q),∞
q (Rn) for some q ∈

] max{pcr , s}, qmax [, and let ‖ERn

P [ Eu0]‖C θ(q)
m
(Lq;+∞) = c′′0 ≤ C ′′. Then the unique

solution in the previous theorem satisfies

Eu(t, x) = t−
n

mpcr Eg( x
m
√

t
), t > 0 Eg(z) ∈ Lq(Rn)

⋂
(L∞(Rn)

⋂
O(0γ ))

N ,(92)

Ew := ERn

P [ Eu0](1)− Eg ∈ (Lq(Rn)
⋂

O(0γ ))
N , q = max{pcr ,

q∗

s
}(93)

for all γ ∈ [0, ( 1
a ln C ′′

c′′0
)

m
m−1 ]. Assume now that F j,`’s are polynomials and

(94) s` ≤ pcr ≤ 2s`, s < pcr , 2d` ≥ m, ` = 1, . . . , L .

Then there exists ε > 0 s.t. for all

Eu0 ∈ (H−
n

pcr
S ′ (Rn)

⋂
Ḃ0,∞

pcr
(Rn))N

with
‖ Eu0‖Ḃ0,∞

pcr
= ε0 < ε
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the IVP (82) has a unique solution

Eu ∈ BCw([0,+∞[: (Ḃ0,∞
pcr

(Rn))N )

satisfying (92) and Ew ∈ L pcr (Rn)
⋂

L∞(Rn). Furthermore, Eg ∈ (O(0γ ))
N for

γ ∈ [0, γ ]. Here the subscript w in BCw means that we have continuity in the weak
topology σ(Ḃ0,∞

pcr (R
n), (Ḃ0,∞

p′cr
(Rn))) and p′cr = pcr

pcr−1 .

8. Sketch of the proofs of the Gevrey regularity for parabolic systems

The main idea is to reduce (82) to the system of integral equations

(95) u j (t) = E�Pj
[u0

j ](t)+
L∑

`=1

K�
j,`[Eu](t), j = 1, . . . , N

where

K�
j,`[Eu](t) =

∫ t

0
E�j,`(t − τ) ∗ Fj,`(Eu(τ ))dτ,

E�j,`(t) = κ j,`(D)E�Pj
. We assume that Pj is homogeneous.

We write a Picard type iterative scheme

(96) uk+1
j (t) = E�Pj

[u0
j ](t)+

L∑

`=1

K�
j,`[
Euk](t), j = 1, . . . , N

for k = 0, 1, . . . with Eu0 := 0.

We need two crucial estimates, namely for some absolute constant a > 0

max
j,`
‖E�j,`‖Aγd`

m + n
m (1− 1

r ),r
(+∞;m) ≤ C1 exp(aγ

m−1
m ), ∀γ ≥ 0(97)

‖K�
j,`[Eu]‖Aγθ,q (T ;m) ≤ C2‖E�j,`‖Aγd`

m +
n(s`−1)

mq ,
q

q−s`+1

(T ;m)(‖Eu‖Aγθ,q (T ;m))
s`T ρ`(98)

where r ∈ [1,+∞] (resp. r ∈]1,+∞]) if d` > 0 or d` = 0 and κ j,`(ξ) ≡ const (resp.
d` = 0, κ j,`(ξ) 6≡ const , � = Rn),

(q, θ) ∈ ∂Cm,s
pcr
(n), ρ` =

m − d` − (θ + n
q )(s` − 1)

m
,

C1 = C1(r) > 0, C2 = C2({Fj,`}, r) > 0. We note that in the case � = Rn we have
(99)

∂αx ERn

j,`(t, x) =
∫

eixξ−t Pj (ξ)κ j,`(ξ)ξ
α dξ = t−

d`+|α|+n
m ϕ j,`(

x

t
1
m

), dξ = (2π)−ndξ,

with Fϕ j,`(ξ) = e−Pj (ξ)κ j,`(ξ)ξ
α . If r ≥ 2 we estimate ‖ϕ j,`‖Lr by means of the

Fourier transformation, the Young theorem and the Stirling formula. For the case 1 ≤
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r < 2 we deduce the same result using integration by parts, the properties of the Fourier
transform of homogeneous functions and the Stirling formula again. The case � = Tn

and r ∈ [2,+∞] is evident while (85), (97) for � = Rn , r = 1 and the representation

(100) ∂αx ETn

j,`(t, x) =
∑

ξ∈Zn

∂αx ERn

j,`(t, x + 2πξ), x ∈ Tn ∼ [−π, π]n

yield the L1(Tn) estimate (97) (see [39] for similar arguments). The Riesz-Thorin
theorem concludes the proof of (97) for� = Tn . The key argument in showing (98) is
a series of nonlinear superposition estimates in the framework of Aγθ,q(T ;m). We note
that m ≥ 1 is essential for the validity of such estimates. Next, for given R > 0 we
define

Bγq (R : T ) = {Eu ∈ Aγθ
m ,q
(T ;m) : ‖Eu‖Aγθ

m ,q
(T ;m) ≤ R}.

At the end we are reduced to find R > 0 and T > 0 such that

‖E�P [ Eu0]‖Aγθ
m ,q

(T ;m) + C1 exp(aγ
m−1

m )

L∑

`=1

T ρ` Rs` ≤ R,(101)

C2 exp(aγ
m−1

m )

L∑

`=1

T ρ` Rs`−1 < 1.(102)

The estimates (102) allows us to show the convergence of the scheme above which
leads to the existence–uniqueness statements for local and global solutions.

The self-similar solutions in the first part of Theorem 6 are obtained by the unique-
ness and the homogeneity, while (92) and (93) are deduced by a suitable generalization
of arguments used in [49] and [5].

Concerning the last part of Theorem 6, we follow the idea in [16], namely setting
g = v + w, v = E P[u0](1) (we consider the scalar case g = Eg, L = 1) we obtain for
w, an equation modeled by
(103)

w = Hκ
P [(v +w)s], Hκ

P[ f ] =
∫ 1

0

∫

Rn
κ(D)ERn

P (1− τ, y)τ−
ns

mpcr f (
y

m
√

t
)dydτ

where κ(D) ∈ 9d
h (R

n). The condition (94) allows us to generalize Lemma 6, p. 187

in [16], namely we show that H acts continuously from L
pcr
s (Rn) to L pcr (Rn) using

the Littlewood-Paley analysis and the characterization of the L p spaces.

We point out, that if Eu0 ∈ (H r
p(�))

N and p > 1 we show that

limT→0 ‖EP [ Eu0]‖Aγθ
m ,q

(T ;m) = 0 for all θ = r− + n
p − n

q , q ≥ max{p, pn
n−rp },

γ ≥ 0. Thus we recover and/or generalize the known local and global results for
the semilinear heat equations when r ≥ rcr (p) (see [38], [3], [5], [21] and [49] and
the references therein). In particular, we extend the result of THEOREM 2.1 in [39]
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on the complex Ginzburg-Landau equation in Tn , since THEOREM 2 i i) allows ini-

tial data u0 ∈ H rcr (2)
2 (Tn) = H

n
2− 1

σ

2 (�), provided σ > max{ 1
n ,

4

n+
√

n2+16n
}. Fur-

thermore, our local results on the analytic regularity yield ρ[u](t) = O(t
1
2 ), t ↘ 0

which improves the corresponding results for the Navier-Stokes equation for an in-
compressible fluid in � = Tn , n = 2, 3 while for the Ginzburg-Landau equation we

get ρ[u](t) = O(t
1
2 ), t ↘ 0, the same rate as in [53], where the initial data are L∞(Rn).

If m = 4 Theorem 4 and Theorem 5 yield new results for the Cahn-Hilliard equation
∂t u + 12u + 1(us) = 0. Here pcr = n(s−1)

2 , and rcr (pcr) ∈ Ip iff s > 4+n
n+2 which

is always fulfilled since s ≥ 2. Hence if u0 = β|D|rcr (p)ω, ω ∈ L p(Rn) if p > 1,
ω ∈ M(Rn), p ∈ [max{1, pcr}, pmax[, β ∈ R, (82) admits unique global solution

u(t, x) which belongs to O(0
γ t

1
4
) for all t > 0 provided ‖ω‖L p < c exp(−aγ

1
4 ). We

could consider fractional derivatives of measures as initial data iff pcr ≤ 1 which is
equivalent to s ∈] 4+n

2+n ,
n+2

n ].

Our estimates on the analytic regularity globally in t > 0 seem to be completely
new. We have examples for � = Rn showing that our estimates on ρ[u](t) are sharp at
least within certain classes of solutions. If � = Tn we could give in some cases better
estimates of ρ[u](t) as t →+∞.

Comparing Theorem 6 with the results in [16] for self-similar solutions, we point
out that we allow initial data

Eu0 ∈ (H−1
S ′ (R

n))N

such that Eu0|Sn−1 6∈ (L∞(Sn−1))N . We construct also self-similar solutions for the

Cahn-Hilliard equation of the form u(t, x) = t−
1

2(s−1) g( x
4√t
). As it concerns the last

part of Theorem 6, it is an extension of Theorem 2, p. 181 in [16].
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[9] BILER P. AND WOYCZYŃSKI W., Nonlocal quadratic evolution problems. Evo-
lution equations: existence, regularity and singularities, Banach Center Publ. 52
(2000), 11–24.

[10] BONA J. AND CHEN H., Existence and asymptotic properties of solitary-wave
solutions of Benjamin-type equations, Adv. Diff. Eq. 3 (1998), 51–84.

[11] BONA J. AND LI Y., Decay and analyticity of solitary waves, J. Math. Pures
Appl. 76 (1997), 377–430.

[12] BOURDAUD G., REISSIG M. AND SICKEL W., Hyperbolic equations, function
spaces with exponential weights and Nemytskij operators, preprint (2001).
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[55] XIN J., Front propagation in heterogeneous media, SIAM Review 42 2 (2000),
161–230.

MSC Subject Classification: 35B10, 35H10, 35A07.

Todor GRAMCHEV
Dipartimento di Matematica
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