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QUADRATIC SPLINE QUASI-INTERPOLANTS ON BOUNDED

DOMAINS OF Rd, d = 1, 2, 3

Abstract. We study some C1 quadratic spline quasi-interpolants on
bounded domains � ⊂ Rd, d = 1, 2, 3. These operators are of the form
Q f (x) =

∑
k∈K (�) µk( f )Bk(x), where K (�) is the set of indices of

B-splines Bk whose support is included in the domain � and µk( f ) is
a discrete linear functional based on values of f in a neighbourhood of
xk ∈ supp(Bk). The data points x j are vertices of a uniform or nonuni-
form partition of the domain�where the function f is to be approximated.
Beyond the simplicity of their evaluation, these operators are uniformly
bounded independently of the given partition and they provide the best ap-
proximation order to smooth functions. We also give some applications to
various fields in numerical approximation.

1. Introduction and notations

In this paper, we continue the study of some C1 quadratic (or d-quadratic) spline dis-
crete quasi-interpolant (dQIs) on bounded domains � ⊂ Rd , d = 1, 2, 3 initiated in
[36]. These operators are of the form Q f (x) =

∑
k∈K (�) µk( f )Bk(x), where K (�)

is the set of indices of B-splines Bk whose support is included in the domain � and
µk( f ) is a discrete linear functional

∑
i∈I (r) λk(i) f (xi+k), with I (r) = Zd ∩ [−r, r ]d

for r ∈ N fixed (and small). The data points x j are vertices of a uniform or nonuniform
partition of the domain � where the function f is to be approximated. Such operators
have been widely studied in recent years (see e.g. [4], [6]-[11],[14], [23], [24], [31],
[38], [40] ), but in general, except in the univariate or multivariate tensor-product cases,
they are defined on the whole space Rd : here we restrict our study to bounded domains
and to C1 quadratic spline dQIs. Their main interest lies in the fact that they provide
approximants having the best approximation order and small norms while being easy
to compute. They are particularly useful as initial approximants at the first step of a
multiresolution analysis. First, we study univariate dQIs on uniform and non-uniform
meshes of a bounded interval of the real line (Section 2) or on bounded rectangles of
the plane with a uniform or non-uniform criss-cross triangulation (Section 3). We use
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quadratic B-splines whose Bernstein-Bézier (abbr. BB)-coefficients are given in tech-
nical reports [37], [38] and which extend previous results given in [12]. In the same
way, in section 4, we complete the study of a bivariate blending sum of two univariate
dQIs of Section 1 on a rectangular domain. Finally, in Section 5, we do the same for
a trivariate blending sum of a univariate dQI (Section 1) and of the bivariate dQI de-
scribed in Section 2. For blending and tensor product operators, see e.g. [2], [3], [16],
[18], [19], [20], [21], [30]. For some of these operators, we improve the estimations of
infinite norms which are bounded independently of the given partition of the domain.
Using the fact that the dQI S is exact on the space P2 ∈ S2 of quadratic polynomials
and a classical result of approximation theory: ‖ f − S f ‖ ≤ (1+‖S‖)d( f,S2) (see e.g.
[15], chapter 5), we conclude that f − S f = O(h3) for f smooth enough, where h is
the maximum of diameters of the elements (segments, triangles, rectangles, prisms) of
the partition of the domain. But we specify upper bounds for some constants occuring
in inequalities giving error estimates for functions and their partial derivatives of total
order at most 2. Finally, in Section 6, we present some applications of the preced-
ing dQIs, for example to the computation of multivariate integrals, to the approximate
determination of zeros of functions, to spectral-type methods and to the solution of
integral equations. They are still in progress and will be published elsewhere.

2. Quadratic spline dQIs on a bounded interval

Let X = {x0, x1, . . . , xn} be a partition of a bounded interval I = [a, b] , with x0 = a
and xn = b. For 1 ≤ i ≤ n, let hi = xi − xi−1 be the length of the subinterval Ii =
[xi−1, xi ]. Let S2(X) be the n + 2-dimensional space of C1 quadratic splines on this
partition. A basis of this space is formed by quadratic B-splines {Bi, 0 ≤ i ≤ n + 1}.
Define the set of evaluation points

2n = {θ0 = x0, θi = 1

2
(xi−1 + xi), f or 1 ≤ i ≤ n, θn+1 = xn}.

The simplest dQI associated with 2n is the Schoenberg-Marsden operator (see e.g.
[25], [36]):

S1 f :=
n+1∑

i=0

f (θi)Bi

This operator is exact on P1. Moreover S1e2 = e2 +
∑n

i=1
1
4h2

i Bi . We have studied in
[1] and [36] the unique dQI of type

S2 f = f (x0)B0 +
n∑

i=1

µi ( f )Bi + f (xn)Bn+1

whose coefficient functionals are of the form

µi ( f ) = ai f (θi−1)+ bi f (θi)+ ci f (θi+1), 1 ≤ i ≤ n
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and which is exact on the space P2 of quadratic polynomials. Using the following
notations and the convention h0 = hn+1 = 0, we finally obtain, for 1 ≤ i ≤ n:

σi = hi

hi−1 + hi
, σ ′

i = hi−1

hi−1 + hi
= 1 − σi ,

ai = −
σ 2

i σ
′
i+1

σi + σ ′
i+1

, bi = 1 + σiσ
′
i+1, ci = −

σi (σ
′
i+1)

2

σi + σ ′
i+1

.

Defining the fundamental functions of S2 by

B̃0 = B0 + a1B1,

B̃i = ci−1 Bi−1 + bi Bi + ai+1 Bi+1, 1 ≤ i ≤ n,

B̃n+1 = cn Bn + Bn+1,

we can express S2 f in the following form

S2 f =
n+1∑

i=0

f (θi)B̃i .

In [26] (see also [22] and [32], chapter 3), Marsden proved the existence of a unique
Lagrange interpolant L f in S2(X) satisfying L f (θi) = f (θi) for 0 ≤ i ≤ n + 1. He
also proved the following

THEOREM 1. For f bounded on I and for any partition X of I , the Chebyshev
norm of the Lagrange operator L is uniformly bounded by 2.

Now, we will prove a similar result for the dQI S2 defined above. It is well known
that the infinite norm of S2 is equal to the Chebyshev norm of the Lebesgue function
32 =

∑n+1
i=0 |B̃i | of S2.

THEOREM 2. For f bounded on I and for any partition X of I , the infinite norm
of the dQI S2 is uniformly bounded by 2.5.

Proof. Each function |B̃i | being bounded above by the continuous quadratic spline
B̄i whose BB-coefficients are absolute values of those of B̃i , we obtain 32 ≤
3̄2 =

∑n+1
i=0 B̄i . So, we have to find an upper bound of 3̄2. First, we need the

BB-coefficients of the fundamental functions: they are computed as linear combi-
nations of the BB-coefficients of B-splines. In order to avoid complicated nota-
tions, we denote by [a, b, c] the triplet of BB-coefficients of the quadratic polynomial
a(1 − u)2 + 2bu(1 − u) + cu2 for u ∈ [0, 1]. Any function g ∈ S2(X) can be writ-
ten in this form on each interval [xi−1, xi ], 1 ≤ i ≤ n, with the change of variable
u = (x − xi−1)/hi . So, the BB-coefficients of g consist of a list of n triplets. Let us
denote by L(i) the list associated with the function B̃i (we do not write the triplets of
null BB-coefficients). Setting, for 1 ≤ i ≤ n − 1:

di = ciσi+1 + bi+1σ
′
i+1, ei = biσi+1 + ai+1σ

′
i+1,
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we obtain for the three first functions B̃0, B̃1, B̃2:

L(0) = [1, a1, a1σ2], [a1σ2, 0, 0]

L(1) = [0, b1, e1], [e1, a2, a2σ3], [a2σ3, 0, 0]

L(2) = [0, c1, d1], [d1, b2, e2], [e2, a3, a3σ4], [a3σ4, 0, 0]

For 3 ≤ i ≤ n − 2 (general case), we have supp( B̃i) = [xi−3, xi+2] and

L(i) = [0, 0, ci−1σ
′
i−1], [ci−1σ

′
i−1, ci−1, di−1], [di−1, bi , ei ],

[ei , ai+1, ai+1σi+2], [ai+1σi+2, 0, 0]

Finally, for the three last functions B̃n−1, B̃n, B̃n+1, we get:

L(n−1) = [0, 0, cn−2σ
′
n−2], [cn−2σ

′
n−2, cn−2, dn−2], [dn−2, bn−1, en−1], [en−1, an, 0]

L(n) = [0, 0, cn−1σ
′
n−1], [cn−1σ

′
n−1, cn−1, dn−1], [dn−1, bn, 0]

L(n + 1) = [0, 0, cnσ
′
n], [cnσ

′
n, cn, 1]

We see that di ≥ 0 (resp. ei ≥ 0), for it is a convex combination of ci and bi+1 (resp.
of bi and ai+1), with bi ≥ 1 and |ci | and |ai | ≤ 1 for all i . Therefore, the absolute
values of the above BB-coefficients (i.e. the BB-coefficients of the B̄ ′

is) are easy to
evaluate. Now, it is easy to compute the BB-coefficients of the continuous quadratic
spline 3̄2 =

∑n+1
i=0 B̄i . On each interval [xi−1, xi ], for 2 ≤ i ≤ n − 1, we obtain

[λi−1, µi , λi ] = [−ai−1σi+di−1+ei−1−ciσ
′
i , bi−ai−ci,−aiσi+1+di+ei−ci+1σ

′
i+1]

For the first (resp. the last) interval, we have λ0 = 1 (resp. λn = 1) For the central
BB-coefficient, we get, since σi and σ ′

i are in [0, 1] for all indices:

µi = bi − (ai + ci ) = 2bi − 1 = 1 + 2σiσ
′
i+1 ≤ 3

For the extreme BB-coefficients, we have, since ai + bi + ci = 1:

λi = (1 − 2ai)σi+1 + (1 − 2ci+1)σ
′
i+1 = 1 +

2(σi)
2σi+1σ

′
i+1

σi + σ ′
i+1

+
2σi+1σ

′
i+1(σ

′
i+2)

2

σi+1 + σ ′
i+2

.

Let us consider the rational function f defined by λi = 1 + f (σi , σi+1, σi+2):

f (x, y, z) = 2x2y(1 − y)

1 + x − y
+ 2y(1 − y)(1 − z)2

1 + y − z
,

the three variables x, y, z lying in the unit cube. Its maximum is attained at the vertices
{(0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)} and it is equal to 1. This proves that λi ≤ 2
for all i . Therefore, in each subinterval (after the canonical change of variable), 3̄2 is
bounded above by the parabola:

π2(u) = 2(1 − u)2 + 6u(1 − u)+ 2u2

whose maximum value is π2(
1
2) = 5

2 = 2.5.
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Now, we consider the case of a uniform partition, say with integer nodes for sim-
plification (e.g. I = [0, n], X = {0, 1, . . . , n}). In that case, we have

σ1 = 1, σ ′
1 = 0; σi = σ ′

i = 1

2
f or 2 ≤ i ≤ n; σn+1 = 0, σ ′

n+1 = 1,

from which we deduce:

a1 = cn = −1

3
, b1 = bn = 3

2
, c1 = an = −1

6
,

and, for 2 ≤ i ≤ n − 1:

ai = ci = −1

8
, bi = 5

4
.

It is easy to see that, in order to compute ‖S2‖∞, it suffices to evaluate the maximum
of the Lebesgue function on the subinterval J = [0, 4]. Here are the lists L(i) of the
BB-coefficients of the fundamental functions { B̃i, 0 ≤ i ≤ 6} whose supports have
at least a common subinterval with J . As in the nonuniform case, we only give the
triplets associated with subintervals of supp( B̃i) ∩ J :

supp(B̃0) ∩ J = [0, 2], L(0) =
[

1,−1

3
,−1

6

]
,

[
−1

6
, 0, 0

]

supp(B̃1) ∩ J = [0, 3], L(1) =
[

0,
3

2
,

11

16

]
,

[
11

16
,−1

8
,− 1

16

]
,

[
− 1

16
, 0, 0

]
,

supp(B̃2) ∩ J = [0, 4], L(2) =
[

0,−1

6
,

13

24

]
,

[
13

24
,

5

4
,

9

16

]
,

[
9

16
,−1

8
,− 1

16

]
,

[
− 1

16
, 0, 0

]
,

supp(B̃3) ∩ J = [0, 2], L(3) =
[

0, 0,− 1

16

]
,

[
− 1

16
,−1

8
,

9

16

]
,

[
9

16
,

5

4
,

9

16

]
,

[
9

16
,−1

8
,− 1

16

]
,

supp(B̃4) ∩ J = [1, 4], L(4) =
[

0, 0,− 1

16

]
,

[
− 1

16
,−1

8
,

9

16

]
,

[
9

16
,

5

4
,

9

16

]
,

supp(B̃5) ∩ J = [2, 4], L(5) =
[

0, 0,− 1

16

]
,

[
− 1

16
,−1

8
,

9

16

]
,

supp(B̃6) ∩ J = [3, 4], L(6) =
[

0, 0,− 1

16

]
,

Drawing 32 reveals that the abscissa x̄ of its maximum lies in the interval [0.6, 1]. In
this interval, we obtain successively:

32(x) = −B̃0(x)+ B̃1(x)+ B̃2(x)− B̃3(x) = −(1 − x)2 + 10

3
x(1 − x)+ 35

24
x2
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whence 3′
2(x) = 1

12(64 − 69x) and x̄ = 64
69 . This leads to

‖S2‖∞ = ‖32‖∞ = 32(x̄) = 305

207
≈ 1.4734.

�

So, we have proved the following result:

THEOREM 3. For uniform partitions of the interval I , the infinite norm of S2 is
equal to 305

207 ≈ 1.4734.

REMARK 1. Further results on various types of dQIs will be given in [21].

Now, we will give some bounds for the error f − S2 f . Using the fact that the dQI
S2 is exact on the subspace P2 ⊂ S2 of quadratic polynomials and a classical result
of approximation theory (see e.g. [17], chapter 5), we have for all partitions X of I in
virtue of Theorem 4:

‖ f − S2 f ‖∞ ≤ (1 + ‖S2‖∞) dist ( f,S2)∞ ≤ 3.5 dist ( f,S2)∞

So, the approximation order is that of the best quadratic spline approximation. For
example, from [17], we know that for any continuous function f

di st ( f,S2)∞ ≤ 3 ω( f, h)∞

where h = max{hi, 1 ≤ i ≤ n}, so we obtain

‖ f − S2 f ‖∞ ≤ 10.5 ω( f, h)∞

But a direct study allows to decrease the constant in the right-hand side.

THEOREM 4. For a continuous function f , there holds:

‖ f − S2 f ‖∞ ≤ 6 ω( f, h)∞

Proof. For any x ∈ I , we have

f (x)− S2 f (x) =
n+1∑

i=0

[ f (x)− f (θi)]B̃i(x)

Assuming n ≥ 5 and x ∈ Ip = [x p−1, x p], for some 3 ≤ p ≤ n − 2, this error can be
written, since supp(B̃i) = [xi−3, xi+2]:

f (x)− S2 f (x) =
p+2∑

i=p−2

[ f (x)− f (θi)]B̃i(x).
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As θi = 1
2(xi−1 + xi), we have |x − θi | ≤ ri h, with ri = |p − i | + 0.5. Using a well

known property of the modulus of continuity of f , ω( f, ri h) ≤ (1 + ri )ω( f, h), we
deduce

| f (x)− S2 f (x)| ≤




p+2∑

i=p−2

(1 + ri)B̄i(x)


ω( f, h).

Without going into details, we use the local BB-coefficients of B̄i , p − 2 ≤ i ≤ p + 2
in the subinterval [x p−1, x p], and we can prove that for all partitions of I , we have

p+2∑

i=p−2

(1.5 + |p − i |)B̄i(x) ≤ 6

so, we obtain finally a lower constant (but not the best one) in the right-hand side of
the previous inequality:

‖ f − S2 f ‖∞ ≤ 6 ω( f, h)∞

Now, let us assume that f ∈ C3(I ), then we have the following

THEOREM 5. For all function f ∈ C3(I ) and for all partitions X of I , the follow-
ing error estimate holds, with C0 ≤ 1:

‖ f − S2 f ‖∞ ≤ C0h3‖ f (3)‖∞

Proof. Given x ∈ Ip fixed and t ∈ [x p−3, x p+2], we use the Taylor formula with
integral remainder

f (t) = f (x)+ (t − x) f ′(x)+ 1

2
(t − x)2 f ′′(x)+ 1

2

∫ t

x
(t − s)2 f (3)(s)ds

As p1(t) = t − x and p2(t) = (t − x)2 are in P2, we have S2 p1 = p1 and S2 p2 = p2,
which can be written explicitly as

S2 p1(t) = t − x =
n+1∑

i=0

(θi − x)B̃i(t), S2 p2(t) = (t − x)2 =
n+1∑

i=0

(θi − x)2 B̃i(t)

and this proves that S2 p1(x) = S2 p2(x) = 0. Therefore it remains:

S2 f (x)− f (x) = 1

2

p+2∑

i=p−2

[∫ θi

x
(θi − s)2 f (3)(s)ds

]
B̃i(x)
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As |
∫ θi

x (θi − s)2ds| ≤ 1
3 |x − θi |3, we get the following upper bound:

|S2 f (x)− f (x)| ≤ 1

6
‖ f (3)‖∞

p+2∑

i=p−2

|x − θi |3 B̄i(x)

≤ h3

6
‖ f (3)‖∞

p+2∑

i=p−2

(|p − i | + 1

2
)3 B̄i(x)

As in the proof of theorem above, and without going into details, one can prove that the
last sum in the r.h.s. is uniformly bounded by 6 for any partition of I . So, we obtain
finally:

|S2 f (x)− f (x)| ≤ h3‖ f (3)‖∞

By using the same techniques, the results of theorem 5 can be improved when X is
a uniform partition of I :

THEOREM 6. (i) For f ∈ C(I ), there holds:

|S2 f (x)− f (x)| ≤ 2.75 ω( f,
h

2
)∞

(ii) for f ∈ C3(I ) and for all x ∈ I there holds:

|S2 f (x)− f (x)| ≤ h3

3
‖ f (3)‖∞

|(S2 f )′(x)− f ′(x)| ≤ 1.2 h2‖ f (3)‖∞

and locally, in each subinterval of I :

|(S2 f )′′(x)− f ′′(x)| ≤ 2.4 h‖ f (3)‖∞

3. Quadratic spline dQIs on a bounded rectangle

In this section, we study some C1 quadratic spline dQIs on a nonuniform criss-cross
triangulation of a rectangular domain. More specifically, let � = [a1, b1] × [a2, b2] be
a rectangle decomposed into mn subrectangles by the two partitions

Xm = {xi, 0 ≤ i ≤ m}, Yn = {y j , 0 ≤ j ≤ n}

respectively of the segments I = [a1, b1] = [x0, xm] and J = [a2, b2] = [y0, yn].
For 1 ≤ i ≤ m and 1 ≤ j ≤ n, we set hi = xi − xi−1, k j = y j − y j−1, Ii =
[xi−1, xi ], J j = [y j−1, y j ], si = 1

2 (xi−1 + xi) and t j = 1
2 (y j−1 + y j). Moreover
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s0 = x0, sm+1 = xm, t0 = y0, tn+1 = yn . In this section and the next one, we use the
following notations:

σi = hi

hi−1 + hi
, σ ′

i = hi−1

hi−1 + hi
= 1 − σi ,

τ j = k j

k j−1 + k j
, τ ′

j = k j−1

k j−1 + k j
= 1 − τ j ,

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, with the convention h0 = hm+1 = k0 = kn+1 = 0.

ai = −
σ 2

i σ
′
i+1

σi + σ ′
i+1

, bi = 1 + σiσ
′
i+1, ci = −

σi (σ
′
i+1)

2

σi + σ ′
i+1

,

ā j =
τ 2

j τ
′
j+1

τ j + τ ′
j+1

, b̄ j = 1 + τ jτ
′
j+1, c̄ j = −

τ j (τ
′
j+1)

2

τ j + τ ′
j+1

.

for 0 ≤ i ≤ m + 1 and 0 ≤ j ≤ n + 1. Let Kmn = {(i, j) : 0 ≤ i ≤ m + 1, 0 ≤ j ≤
n + 1}, then the data sites are the mn intersection points of diagonals in subrectangles
�i j = Ii × J j , the 2(m + n) midpoints of the subintervals on the four edges, and the
four vertices of �, i.e. the (m + 2)(n + 2) points of the following set

Dmn := {Mi j = (si , t j ), (i, j) ∈ Kmn}.

As in Section 2, the simplest dQI is the bivariate Schoenberg-Marsden operator:

S1 f =
∑

(i, j)∈Kmn

f (Mi j )Bi j

where
Bmn := {Bi j , 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n + 1}

is the collection of (m +2)(n+2)B-splines (or generalized box-splines) generating the
space S2(Tmn) of all C1 piecewise quadratic functions on the criss-cross triangulation
Tmn associated with the partition Xm × Yn of the domain� (see e.g. [14], [13]). There
are mn inner B-splines associated with the set of indices

K̂mn = {(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n}

whose restrictions to the boundary 0 of � are equal to zero. To the latter, we add
2m + 2n + 4 boundary B-splines whose restrictions to 0 are univariate quadratic B-
splines. Their set of indices is

K̃mn := {(i, 0), (i, n + 1), 0 ≤ i ≤ m + 1; (0, j), (m + 1, j), 0 ≤ j ≤ n + 1}

The BB-coefficients of inner B-splines whose indices are in {(i, j), 2 ≤ i ≤ m−1, 2 ≤
j ≤ n − 1} are given in [32]. The other ones can be found in the technical reports
[37] (uniform partition) and [38](non-uniform partitions). The B-splines are positive
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and form a partition of unity (blending system). The boundary B-splines are linearly
independent as the univariate ones. But the inner B-splines are linearly dependent, the
dependence relationship being:

∑

(i, j)∈K̂mn

(−1)i+ j hi k j Bi j = 0

It is well known that S1 is exact on bilinear polynomials, i.e.

S1ers = ers f or 0 ≤ r, s ≤ 1

In [36], we obtained the following dQI, which is exact on P2:

S2 f =
∑

(i, j)∈Kmn

µi j ( f )Bi j

where the coefficient functionals are given by

µi j ( f ) = (bi + b̄ j − 1) f (Mi j )+ ai f (Mi−1, j )+ ci f (Mi+1, j )

+ ā j f (Mi, j−1)+ c̄ j f (Mi, j+1).

As in Section 2, we introduce the fundamental functions:

B̃i j = (bi + b̄ j − 1)Bi j + ai+1 Bi+1, j + ci−1 Bi−1, j + ā j+1Bi, j+1 + c̄ j−1Bi, j−1.

We also proved the following theorems, by bounding above the Lebesgue function of
S2:

32 =
∑

(i, j)∈Kmn

|B̃i j |

THEOREM 7. The infinite norm of S2 is uniformly bounded independently of the
partition Tmn of the domain:

‖S2‖∞ ≤ 5

THEOREM 8. For uniform partitions, we have the following bound:

‖S2‖∞ ≤ 2.4

These bounds are probably not optimal and can still be slightly reduced.

4. A biquadratic blending sum of univariate dQIs

In this section, we study a biquadratic dQI on a rectangular domain � = [a1, b1] ×
[a2, b2] which is a blending sum of bivariate extensions of quadratic spline dQIs of
Section 2. We use the same notations as in Section 2 for the domain �, the partitions
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of I = [a1, b1], J = [a2, b2] and data sites. The partition considered on� is the tensor
product of partitions of I and J . We use the two sets of univariate B-splines

{Bi(x), 0 ≤ i ≤ m + 1}, {B j (y), 0 ≤ j ≤ n + 1}

and the two sets of univariate fundamental functions introduced in Section 2:

{B̃i(x), 0 ≤ i ≤ m + 1}, {B̃ j (y), 0 ≤ j ≤ n + 1}

The associated extended bivariate dQIs are respectively (see e.g. [14] for bivariate
extensions of univariate operators)

P1 f (x, y) :=
m+1∑

i=0

f (si , y)Bi(x), P2 f (x, y) :=
m+1∑

i=0

f (si , y)B̃i(x)

Q1 f (x, y) :=
n+1∑

j=0

f (x, t j )B j(y), Q2 f (x, y) :=
n+1∑

j=0

f (x, t j )B̃ j (y)

The bivariate dQI considered in this section is now defined as the blending sum

R := P1 Q2 + P2 Q1 − P1 Q1

and it can be written in the following form

R f (x, y) =
∑

(i, j)∈Kmn

f (Mi j )B̄i j (x, y)

where the biquadratic fundamental functions are defined by

B[i j (x, y) := Bi(x)B̃ j (y)+ B̃i(x)B j (y)− Bi(x)B j(y)

In terms of tensor-product B-splines Bi j (x, y) = Bi(x)B j(y), we have:

R f (x, y) =
∑

(i, j)∈Kmn

µi j ( f )Bi j (x, y),

where the coefficient functionals are given by

µi j ( f ) := ai f (Mi−1, j )+ ci f (Mi+1, j )+ ā j f (Mi, j−1)

+ c̄ j f (Mi, j+1)+ (bi + b̄ j − 1) f (Mi j )

We have proved in [36] the following

THEOREM 9. The operator R is exact on the 8-dimensional subspace (P12[x, y])⊕
(P21[x, y]) of biquadratic polynomials. Moreover, its infinite norm is bounded above
independently of the nonuniform partition Xm ⊗ Yn of the domain�

‖R‖∞ ≤ 5
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5. A trivariate blending sum of univariate and bivariate quadratic dQIs

In this section, we study a trivariate dQI on a parallelepiped� = [a1, b1] × [a2, b2] ×
[a3, b3] which is a blending sum of trivariate extensions of univariate and bivariate
dQIs seen in Sections 2 and 3. We consider the three partitions

Xm := {xi , 0 ≤ i ≤ m}, Yn = {y j , 0 ≤ j ≤ n}, Z p := {zk, 0 ≤ k ≤ p}

respectively of the segments I = [a1, b1] = [x0, xm], J = [a2, b2] = [y0, yn] and
K = [a3, b3] = [z0, z p]. For the projection �′ = [a1, b1] × [a2, b2] of � on the
xy − plane, the notations are those of Section 3. For the projection �′′ = [a3, b3] of
� on the z − axis, we use the following notations, for 1 ≤ k ≤ p:

lk = zk − zk−1, Kk = [zk−1, zk ], uk = 1

2
(zk−1 + zk),

with u0 = z0 and u p+1 = z p. For mesh ratios of subintervals, we set respectively

ωk = lk

lk−1 + lk
, ω′

k = lk−1

lk−1 + lk
= 1 − ωk

for 1 ≤ k ≤ p, with l0 = lp+1 = 0 (all these ratios lie between 0 and 1), and

âk = −
ω2

kω
′
k+1

ωk + ω′
k+1

, b̂k = 1 + ωkω
′
k+1, ĉk = −

ωk(ω
′
k+1)

2

ωk + ω′
k+1.

Let K = Kmnp = {(i, j, k), 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n + 1, 0 ≤ k ≤ p + 1}, then
the set of data sites is

D = Dmnp = {Ni j k = (xi , y j , zk), (i, j, k) ∈ Kmnp},

The partition of � considered here is the tensor product of partitions on �′ and �′′,
i.e. a partition into vertical prisms with triangular horizontal sections. Setting K′

mn =
{(i, j), 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n + 1}, we consider the bivariate B-splines and
fundamental splines on �′ = [a1, b1] × [a2, b2] defined in Section 3 above:

{Bi j (x, y), (i, j) ∈ K′
mn}, and {B̃i j (x, y), (i, j) ∈ K′

mn}

and the univariate B-splines and fundamental splines on [a3, b3] defined in Section 2:

{Bk(z), 0 ≤ k ≤ p + 1} and {B̃k(z), 0 ≤ k ≤ p + 1}.

The extended trivariate dQIs that we need for the construction are the following

P1 f (x, y, z) :=
∑

(i, j)∈K′mn

f (si , t j , z)Bi j (x, y),

P2 f (x, y, z) :=
∑

(i, j)∈K′
mn

f (si , t j , z)B̃i j (x, y),
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Q1 f (x, y, z) :=
p+1∑

k=0

f (x, y, uk)Bk(z), Q2 f (x, y, z) :=
p+1∑

k=0

f (x, y, uk)B̃k(z).

For the sake of clarity, we give the expressions of P2 and Q2 in terms of B-splines:

P2 f (x, y, z) =
∑

(i, j)∈K′mn

µi j ( f )Bi j (x, y)

µi j ( f ) = ai f (si−1, t j , z)+ ci f (si+1, t j , z))+ ā j f (si , t j−1, z)+ c̄ j f (si , t j+1, z)

+(bi + b̄ j − 1) f (si , t j , z)

Q2 f (x, y, z) :=
p+1∑

k=0

{âk f (x, y, uk−1)+ b̂k f (x, y, uk)+ ĉk f (x, y, uk+1)}Bk(z)

We now define the trivariate blending sum

R = P1 Q2 + P2 Q1 − P1 Q1

Setting

B[i j k(x, y, z) = Bi j (x, y)B̃k(z)+ B̃i j (x, y)Bk(z)− Bi j (x, y)Bk(z)

we obtain

R f =
∑

(i, j,k)∈Kmnp

f (Ni j k )B
[
i j k

In terms of tensor product B-splines Bi j k = Bi j Bk , one has

R f =
∑

(i, j,k)∈Kmnp

νi j k( f )Bi j k

where νi j k( f ) is based on the 7 neighbours of Ni j k in R3:

νi j k( f ) = âk f (Ni, j,k−1)+ ĉk f (Ni, j,k+1)+ ai f (Ni−1, j,k)+ ci f (Ni+1, j,k)

+ā j f (Ni, j−1,k )+ c̄ j f (Ni, j+1,k )+ (bi + b̄ j + ĉk − 1) f (Ni j k ).

In [36], we proved the following

THEOREM 10. The operator R is exact on the 15-dimensional subspace
(P1[x, y] ⊗ P2[z])⊕ (P2[x, y] ⊗ P1[z]) of the 18-dimensional space P2[x, y]⊗P2[z].
Moreover, its infinite norm is bounded above independently of the nonuniform partition
of the domain�

‖R‖∞ ≤ 8.
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6. Some applications

We present some applications of the preceding sections. For sake of simplicity, we give
results for uniform partitions only. Let Q be any of the previous dQIs.
1) Approximate integration. Approximating

∫
�

f by
∫
�

Q f gives rise to several inter-
esting quadrature formulas (abbr. QF) in Rd , mainly for d = 2, 3. For d = 1 and for a
uniform partition of I with meshlength h, we obtain the QF:

QFn( f ) =
∫ b

a
S2 f = h(

1

9
f0 + 7

8
f1 + 73

72
f2 +

n−2∑

i=3

fi + 73

72
fn−1 + 7

8
fn + 1

9
fn+1),

where fi = f (θi) for 0 ≤ i ≤ n+1. This formula is exact for P3, like composite Simp-
son’s formula, i.e. QFn( f ) =

∫ b
a f for all f ∈ P3. Therefore

∫ b
a f −QFn( f ) = O(h4)

for functions f ∈ C4(I ). Numerical experiments show that it is better than Simpson’s
formula based on n + 1 points (n even). Moreover, the errors associated with the two
QFs have often opposite signs, thus giving upper and lower values of the exact integral.
2) Approximate differentiation: pseudo-spectral methods. One can approximate the
first (partial) derivatives of f by those of Q f at the data sites. We thus obtain differen-
tiation matrices which can be also used for second derivatives and for pseudo-spectral
methods. Let us give an example for d = 1 and for a uniform partition of meshlength
h of the interval I . Denoting g = S2 f , then we get:

g′(θ0) = 1

h

(
−8

3
f0 + 3 f1 − 1

3
f2

)
,

g′(θ1) = 1

h

(
−7

6
f0 + 11

16
f1 + 13

24
f2 − 1

16
f3

)
,

g′(θ2) = 1

h

(
1

6
f0 − 3

4
f1 + 1

48
f2 + 5

8
f − 3 − 1

16
f4

)
,

g′(θn−1) = 1

h

(
1

16
fn−3 − 5

8
fn−2 − 1

48
fn−1 + 3

4
fn − 1

6
fn+1

)
,

g′(θn) = 1

h

(
1

16
fn−2 − 13

24
fn−1 − 11

16
fn + 7

6
fn+1

)
,

g′(θn+1) = 1

h

(
1

3
fn−1 − 3 fn + 8

3
fn+1

)
,

and for 3 ≤ i ≤ n − 2:

g′(θi) = 1

h

(
1

16
fi−2 − 5

8
fi−1 + 5

8
fi+1 − 1

16
fi+2

)
.

3) Approximation of zeros of polynomials. We have tested the approximation of the
Legendre polynomial f (x) = P8(x) and of its zeros in the interval I = [−1, 1]
by the dQI S2 f of Section 1 based on Chebyshev points with n = 32. We obtain
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‖ f − S2 f ‖∞ ≈ 0.0034. There is practically no difference between the approximation
S2 f and the Marsden interpolant of f which needs the solution of a linear system of
n+2 equations. We obtain also quite good approximations of the eight roots of f in the
interval. For bivariate or trivariate functions, the advantage of using dQIs over inter-
polants is still bigger since one avoids the solution of large linear systems. Moreover,
at least in the bivariate case, one can use the nice properties of piecewise quadratic
surfaces (see e.g. the results given by M.J.D. Powell in [29]).
4) Integral equations The dQIs can be used for various types of approximation of the
solution of Fredholm type integral equation with a regular or a weakly singular kernel.
This work is still in progress (see e.g. [15]).
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Birkhäuser Verlag, Basel 1985.

[3] BEUTEL L. AND GONSKA H., Simultaneous approximation by tensor product
operators, Technical report SM-DU-504, Universität Duisburg, 2001.

[4] BOJANOV B.D., HAKOPIAN H.A. AND SAHAKIAN A.A., Spline functions and
multivariate interpolation, Kluwer, Dordrecht 1993.

[5] DE BOOR C., A practical guide to splines, Springer-Verlag, New-York 2001 (re-
vised edition).

[6] DE BOOR C., Splines as linear combinations of B-splines, in: “Approximation
Theory II”, (Eds. Lorentz G.G. et al.), 1–47, Academic Press, New-York 1976.

[7] DE BOOR C., Quasiinterpolants and approximation power of multivariate
splines, in: “Computation of curves and surfaces”, (Eds. Dahmen W., Gasca M.
and Micchelli C.A.), 313–345, Kluwer, Dordrecht 1990.
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Mache D.H.), ISNM 142, Birkhäuser-Verlag, Basel 2003, 187–201.

[36] SABLONNIÈRE P., On some multivariate quadratic spline quasi-interpolants
on bounded domains, in: “Modern developments in multivariate approxima-
tion”, (Eds. Hausmann W., Jetter K., Reimer M. and Stöckler J.), ISNM 145,
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