
Rend. Sem. Mat. Univ. Pol. Torino
Vol. 61, 3 (2003)
Splines and Radial Functions

G. Pittaluga - L. Sacripante - E. Venturino

A COLLOCATION METHOD FOR LINEAR FOURTH ORDER

BOUNDARY VALUE PROBLEMS

Abstract. We propose and analyze a numerical method for solving fourth
order differential equations modelling two point boundary value problems.
The scheme is based on B-splines collocation. The error analysis is carried
out and convergence rates are derived.

1. Introduction

Fourth order boundary value problems are common in applied sciences, e.g. the me-
chanics of beams. For instance, the following problem is found in [3], p. 365: The
displacement u of a loaded beam of length 2L satisfies under certain assumptions the
differential equation
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, K = 40E I0

L4
,

where E and I0 denote constants.

We wish to consider a general linear problem similar to the one just presented,
namely

LU ≡ U (iv) + a(x)U ′′ (x)+ b(x)U(x) = f (x)(1)

for 0 < x < 1, together with some suitable boundary conditions, say

(2) U (0) = U00, U ′ (0) = U01, U ′ (1) = U11, U (1) = U10.

Here we assume that a, b ∈ C0[0, 1]. In principle, the method we present could be
applied also for initial value problems, with minor changes. In such case (2) could
be replaced by suitable conditions on the function and the first three derivatives of the
unknown function at the point s = 0.
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The technique we propose here is a B−spline collocation method, consisting in
finding a function uN (x)

uN (x) = α181(x)+ α282(x)+ ...+ αN8N (x)

solving the N×N system of linear equations

(3) LuN (xi) ≡
N∑

j=1

α j L8 j (xi) = f (xi) , 1 ≤ i ≤ N

where x1, x2, . . . , xN are N distinct points of [0,1] at which all the terms of (3) are
defined.

In the next Section the specific method is presented. Section 3 contains its error
analysis. Finally some numerical examples are given in Section 4.

2. The method

A variety of methods for the solution of the system of differential equations exist, for
instance that are based on local Taylor expansions, see e.g. [1], [2], [6], [7], [8], [16].
These in general would however generate the solution and its derivatives only at the
nodes. For these methods then, the need would then arise to reconstruct the solution
over the whole interval. The collocation method we are about to describe avoids this
problem, as it provides immediately a formula which gives an approximation for the
solution over the entire interval where the problem is formulated.

Let us fix n, define then h = 1/n and set N = 4n+4; we can then consider the grid
over [0, 1] given by xi = ih, i = 0, ..., n. We approximate the solution of the problem
(1) as the sum of B-splines of order 8 as follows

(4) uN (x) =
4n+4∑

i=1

αi Bi (x) .

Notice that the nodes needed for the construction of the B−spline are {0, 0, 0,
0, 0, 0, 0, 0, h, h, h, h, 2h, 2h, 2h, 2h, . . . , (n−1)h, (n−1)h, (n−1)h, (n−1)h, 1, 1,
1, 1, 1, 1, 1, 1}.

Let us now consider θ j , j = 1, ..., 4, the zeros of the Legendre polynomial of
degree 4. Under the linear map

τi j = h

2
θ j + xi + xi−1

2
, i = 1, ..., n, j = 1, ..., 4

we construct their images τi j ∈ [xi−1, xi ]. This is the set of collocation nodes required
by the numerical scheme. To obtain a square system for the 4n+4 unknowns αi , the 4n
collocation equations need to be supplemented by the discretized boundary conditions
(2).



A collocation method 361

Letting α ≡ (α1, . . . , α4n+4)
t , and setting for i = 1, ..., n, j = 1, ..., 4,

F = (U00,U01, f (τ11), f (τ12), ..., f (τi j ), ..., f (τn3), f (τn4),U11,U10)
t ,

we can write

(5) Lhα ≡ [M4 + h2M2 + h4M0]α = h4F

with Mk ∈ R(n+4)×(n+4), k = 0, 2, 4, where the index of each matrix is related to
the order of the derivative from which it stems. The system thus obtained is highly
structured, in block bidiagonal form. Indeed, for k = 0, 2, 4, T̃ (k)j ∈ R2×4, j = 0, 1,

A(k)j ∈ R4×4, j = 0, 1, B(k)j ∈ R4×4, j = 2, . . . , n, C (k)
j ∈ R4×4, j = 1, . . . , n − 1,

we have explicitly

Mk =




T̃ (k)0 O2,4 O2,4 O2,4 O2,4 O2,4 O2,4 O2,4

A(k)0 C(k)
1 O O O O O O

O B(k)2 C(k)
2 . . . O O . . . O O O

O O . . . . . . O O . . . O O O
O O O . . . O O . . . O O O

O O O . . . B(k)j C(k)
j . . . O O O

. . . . . .

O O O . . . O O . . . B(k)n−1 C(k)
n−1 O

O O O . . . O O . . . O B(k)n A(k)1
O2,4 O2,4 O2,4 . . . O2,4 O2,4 . . . O2,4 O2,4 T̃ (k)1




Unless otherwise stated, or when without a specific size index, each block is un-
derstood to be 4 by 4. Also, to emphasize the dimension of the zero matrix we write
Om ∈ Rm×m or Om,n ∈ Rm×n .

Specifically, for M4 we have for T j ∈ R2×2, j = 0, 1,

(6) T̃0 ≡ T̃ (4)0 =
[

T0 O2
]

T̃1 ≡ T̃ (4)1 =
[

O2 T1
]

with

(7) T0 =
[

h4 0
−7h3 7h3

]
, T1 =

[
−7h3 7h3

0 h4

]

Furthermore for the matrix M4 all blocks with same name are equal to each other
and we set

C ≡ C(4)
1 = C(4)

2 = ... = C (4)
n−1, B ≡ B(4)2 = B(4)3 = ... = B(4)n .

For the remaining blocks we explicitly find

A0 ≡ A(4)0 =




676.898959 −2556.080843 3466.638660 −1843.444245
252.6301981 −637.2153922 206.4343097 524.0024063
30.1896807 63.1159957 −181.0553956 −258.101801
0.281162 10.18023913 107.9824229 137.5436408


(8)
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C =




194.1150595 59.18676730 2.650495372 0.03514515003
−329.0767906 −47.64856975 27.10012948 3.773710141

499.494486 −120.6542168 −64.5675240 31.57877478
−664.532755 709.1160198 −385.1831009 84.61236994


(9)

B =




84.61236994 −385.1831008 709.1160181 −664.5327536
31.57877478 −64.56752375 −120.6542173 499.4944874
3.773710141 27.1001293 −47.648570 −329.076791

0.03514515003 2.6504944 59.186765 194.11506


(10)

A1 ≡ A(4)1 =




137.5436422 107.9824252 10.1802390 0.28116115
−258.1018004 −181.0553970 63.1159965 30.18968105
524.0024040 206.4343108 −637.2153932 252.6301982

−1843.444246 3466.638661 −2556.080843 676.8989596


(11)

Two main changes hold for the matrices M2 and M0, with respect to M4; the first
lies in the top and bottom corners, where T̃ (0)j = T̃ (2)j = O2,4, j = 0, 1. They
contain then a premultiplication by diagonal coefficient matrices. Namely letting
A0,2,C2, B2, A1,2, Di ∈ R4×4, Di = diag(ai1, ai2, ai3, ai4), with ai j ≡ a(τi j ), j =
1, 2, 3, 4, i = 1, 2, ..., n, we have

A(2)0 = D1 A0,2, A(2)1 = Dn A1,2

C(2)
i = Di C2, i = 1, 2, ..., n − 1

B(2)i = Di B2, i = 2, 3, ..., n

where

A0,2 =




29.30827273 −47.68275514 9.072282826 7.792345494
5.67012435 2.62408902 −8.50204661 −6.772789016
0.16439223 1.339974467 3.602756629 1.87349900
0.00006780 0.004406270526 0.1127212947 1.392658748




C2 =




1.450129518 0.05858914701 0.001126911401 0.8471353553 10−5

4.030419911 2.533012603 0.3966407043 0.02054903207
−9.65902448 −0.812682181 2.782318888 0.7087655468
4.07133215 −8.31463385 −0.93008649 3.663534093




B2 =




3.663534093 −0.9300864851 −8.314633880 4.071332233
0.7087655468 2.782318883 −0.812682182 −9.659024508
0.02054903207 0.396640665 2.53301254 4.0304199

0.8471353553 10−5 0.00112689 0.0585890 1.4501302




A1,2 =




1.392658814 0.112721477 0.00440599 0.000067777
1.873498986 3.602756584 1.33997443 0.164392258

−6.772789012 −8.502046610 2.62408899 5.670124369
7.792345496 9.072282833 −47.68275513 29.30827274
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Similarly, for A0,0,C0, B0, A1,0, Ei ∈ R4×4, Ei = diag(bi1, bi2, bi3, bi4), with
bi j ≡ b(τi j ), j = 1, 2, 3, 4, i = 1, 2, ..., n, we have

A(0)0 = E1 A0,0, A(0)1 = En A1,0

C(0)
i = EiC0, i = 1, 2, ..., n − 1

B(0)i = Ei B0, i = 2, 3, ..., n

with

A0,0 =




0.604278729 0.3156064435 0.07064438205 0.008784901454
0.060601115 0.2089471273 0.3087560066 0.2534672883
0.000426270 0.006057945090 0.03689680420 0.1248474545

0.10 10−7 0.7425933886 10−6 0.00002933256459 0.0006554638258




C0=




0.0006703169101 0.00001503946986 0.1853647586 10−6 0.9723461945 10−9

0.1448636180 0.02163722179 0.001674337031 0.00005328376522
0.4676572160 0.2815769859 0.07496220012 0.007575139336
0.1985435495 0.4197299375 0.3055061349 0.07553484124




B0 =




0.07553484124 0.3055061345 0.4197299367 0.1985435448
0.007575139336 0.07496219992 0.2815769862 0.4676572138

0.00005328376522 0.00167433770 0.0216372202 0.144863633
0.9723461945 10−9 0.1836 10−6 0.000015047 0.00067030




A1,0 =




0.00065546187 0.00002934342 0.72976 10−6 0.78 10−8

0.1248474495 0.03689679808 0.00605794290 0.0004262700
0.2534672892 0.3087560073 0.2089471283 0.0606011146
0.00878490146 0.07064438202 0.3156064438 0.6042787300




In the next Section also some more information on some of the above matrices will
be needed, specifically we have

‖A1‖2 ≡ a∗
1 = 0.0321095,

‖B−1‖2 ≡ b∗
1 = 0.1022680,(12)

ρ(B−1) ≡ b∗
2 = 0.0069201.

3. Error analysis

We begin by stating two Lemmas which will be needed in what follows.

LEMMA 1. The spectral radius of any permutation matrix P is ρ(P) = 1 and
‖P‖2 = 1.
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Proof. Indeed notice that it is a unitary matrix, as it is easily verified that P−1 = P∗ =
P, or that P∗ P = I , giving the second claim. Moreover, since ρ(P∗) ≡ ρ(P−1) =
ρ(P) = ρ(P)−1, we find ρ2(P) = 1, i.e. the first claim.

LEMMA 2. Let us introduce the auxiliary diagonal matrix of suitable dimension
1m = diag

(
1, δ−1, δ−2, ..., δ1−m

)
choosing δ < 1 arbitrarily small. We can consider

also the vector norm defined by ‖x‖∗ ≡ ‖1x‖2 together with the induced matrix norm
‖A‖∗. Then, denoting by ρ(A) ≡ max1≤i≤n |λ(A)i | the spectral radius of the matrix A,

where λ(A)i , i = 1(1)n represent its eigenvalues, we have

‖A‖∗ ≤ ρ(A)+ O(δ), ‖1−1‖2 = 1.

Proof. The first claim is a restatement of Theorem 3, [9] p. 13. The second one is
immediate from the definition of 1.

Let yN be the unique B-spline of order 8 interpolating to the solution U of problem
(1). If f ∈ C4([0, 1]) then U ∈ C8([0, 1]) and from standard results, [4], [15] we have

(13) ‖D j (U − yN )‖∞ ≤ c j h
8− j , j = 0, . . . , 7.

We set

(14) yN (x) =
4n+4∑

j=1

β j B j(x).

The function uN has coefficients that are obtained by solving (5); we define the
function G as the function obtained by applying the very same operator of (5) to the
spline yN , namely

(15) G ≡ h−4Lhβ ≡ h−4[M4 + h2M2 + h4M0]β.

Thus G differs from F in that it is obtained by a different combination of the very same
B-splines.

Let us introduce the discrepancy vector σi j ≡ G(τi j ) − F(τi j ), i = 1(1)n, j =
1(1)4 and the error vector e ≡ β−α, with components ei = βi −αi , i = 1, . . . , 4n+4.
Subtraction of (5), from (15) leads to

(16) [M4 + h2M2 + h4M0]e = h4σ.

We consider at first the dominant systems arising from (5), (15), i.e.

(17) M4α̃ = h4F, M4β̃ = h4G.

Subtraction of these equations gives the dominant equation corresponding to (16),
namely

(18) M4ẽ = h4σ, ẽ ≡ α̃ − β̃.
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Notice first of all, that in view of the definition of G and of the fact that yN inter-
polates on the exact data of the function, the boundary conditions are the same both for
(5) and (15). Hence σ1 = σ2 = σ4n+3 = σ4n+4 = 0. In view of the triangular structure
of T0 and T1, it follows then that ẽ1 = ẽ2 = ẽ4n+3 = ẽ4n+4 = 0, a remark which will
be confirmed more formally later.

We define the following block matrix, corresponding to block elimination per-
formed in a peculiar fashion, so as to annihilate all but the first and last element of
the second block row of M4

R̃ =




I2 O2,4 O2,4 O2,4 ... O2,4 ... O2,4 O2,4 O2

O4,2 I4 Q Q2 ... Q j−2 ... Qn−2 Qn−1 O4,2
O4,2 O I4 O ... O ... O O O4,2

...

O4,2 O O O ... O ... I4 O O4,2
O4,2 O O O ... O ... O I4 O4,2
O2 O2,4 O2,4 O2,4 ... O2,4 ... O2,4 O2,4 I2




where Q = −C B−1. Recall once more our convention for which the indices of the
identity and of the zero matrix denote their respective dimensions and when omitted
each block is understood to be 4 by 4. Introduce the block diagonal matrix Ã−1 =
diag(I4n, A−1

1 ). Observe then that R̃M4 Ã−1 = M̃4, with

M̃4 =




T̃0 O2,4 O2,4 O2,4 ... O2,4 O2,4 O2,4

A0 O O O ... O O Qn−1

O B C O ... O O O
O O B C ... O O O

...

O O O O ... B C O
O O O O ... O B I4

O2,4 O2,4 O2,4 O2,4 ... O2,4 O2,4 T̃1 A−1
1




Let us consider now the singular value decomposition of the matrix Q, Q =
V3U∗, [12]. Here 3 = diag(λ1, λ2, λ3, λ4) is the diagonal matrix of the singular
values of Q, ordered from the largest to the smallest. Now, premultiplication of M̃4 by
S = diag(I2, V ∗, I4n−2) and then by the block permutation matrix

P̃ =




I2 O2,4 O2,4n−4 O2,2
O4,2 I4 O4,4n−4 O4,2
O2,2 O2,4 O2,4n−4 I2

O4n−4,2 O4n−4,4 I4n−4 O4n−4,2




followed by postmultiplication by S̃ = diag(I4n,U) and then by

P̂ =




I4 O O4,4n−4
O4n−4,4 O4n−4,4 I4n−4

O I4 O4,4n−4
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gives the block matrix

(19) Ē =
[

Ẽ O8,4n−4

L̃ B̃

]
.

Here

(20) Ẽ =




T̃0 O2,4

V ∗ A0 3n−1

O2,4 T̃1 A−1
1 U




and

(21) L̃ =
[

O4n−8,4 O4n−8,4
O4 U

]

as well as

B̃ =




B C O O ... O O
O B C O ... O O
O O B C ... O O

...

O O O O ... B C
O O O O ... O B



.(22)

It is then easily seen that

(23) Ē−1 =
[

Ẽ−1 O8,4n−4

−B̃−1 L̃ Ẽ−1 B̃−1

]
.

In summary, we have obtained Ē = P̃S R̃M4 Ã−1 S̃ P̂ . It then follows M4 =
R̃−1S−1 P̃ Ē P̂ S̃−1 Ã, and in view of Lemma 1, system (18) becomes

(24) Ē P̂ S̃−1 Ãẽ = h4 P̃ S R̃σ.

To estimate the norm of Ē−1 exploiting its triangular structure (19), we concen-
trate at first on (20). Recalling the earlier remark on the boundary data, we
can partition the error from (16) and the discrepancy vectors as follows: ẽ =
(ẽ1, ẽ2, ẽt, ẽc, ẽb, ẽ4n+3, ẽ4n+4)

T , ẽt, ẽb,∈ R2, ẽc,∈ R4n−4. Define also ˜eout =
(ẽt, ẽb)

T , êout = (0, 0, ˜eout, 0, 0)T , êt = (e1, e2, ẽt)
T , êb = (ẽb, e4n+3, e4n+4)

T .

Now introduce the projections 51,52 corresponding to the top and bottom por-
tions of the matrix (19). Explicitly, they are given by the following matrices

(25) 51 =
[
I8 O8,4n−4

]
52 =

[
O4n−4,8 I4n−4

]
.

Consider now the left hand side of the system (24). It can be rewritten in the
following fashion

51 Ē P̂ S̃−1 Ãẽ = Ẽ P̂ S̃−1 Ãẽ = Ẽ

[
êt

U∗ A1êb

]
(26)
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The matrix in its right hand side Z ≡ 51 P̃ S R̃ instead becomes

(27)

Z =




I2 O2,4 O2,4 ... O2,4 ... O2,4 O2,4 O2

O4,2 V ∗ V ∗Q ... V ∗Q j−2 ... V ∗Qn−2 V ∗Qn−1 O4,2
O2 O2,4 O2,4 ... O2,4 ... O2,4 O2,4 I2


 .

From (26) using (20), we find

Ẽ

[
êt

U∗ A1êb

]
=




T̃0êt

V ∗ A0êt +3n−1U∗ A1êb

T̃1êb


(28)

=




T0

(
e1
e2

)

V ∗ A0êt +3n−1U∗ A1êb

T1

(
e4n+3
e4n+4

)



.

Introduce now the following matrix

H =




−96.42249156 409.2312351 λn−1
1 0

−162.6192900 738.3915192 0 λn−1
2

264.5383512 −1216.139747 0 0
645.9124120 −2179.906392 0 0


 ,

where the first two columns are the last two columns of V ∗ A0. The matrix of the
system can then be written as

Ẽ ≡ R−1
1 R1




T0 O2,4 O2
Y0 H Y1
O2 O2,4 T1



[

I4 O4
O4 U∗ A1

]

= R−1
1




T0 O2,4 O2

Y0 3̃(I + N1) Y1
O2 O2,4 T1


 P†




I2 O2,4
O2,4 [U∗ A1]1,2

I2 O2,4
O2,4 [U∗ A1]3,4


 ≡ R−1

1 3̄P† P̄ S,

where we introduced the permutation P† exchanging the first two with the last two
columns of the matrix H , its inverse producing a similar operation on the rows of the
matrix to its right; we have denoted the first two rows of such matrix by [U ∗ A1]1,2
and a similar notation has been used on the last two. R1 denotes the 8 by 8 matrix
corresponding to the elementary row operation zeroing out the element (4, 2) of H , i.e.
the element (6, 4) of Ẽ . Thus R1 H P1 is upper triangular, with main diagonal given by
3̃ ≡ diag(λn−1

1 , λn−1
2 , r, s), λ1 = 5179.993642> 1, λ2 = 11.40188637> 1. It can

then be written then as R1 H P1 = 3̃(I + N1), with N1 upper triangular and nilpotent.
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The inverse of the above matrix 3̄ is then explicitly given by

3̄−1 ≡




T −1
0 O2,4 O2

−T −1
0 (I + N1)

−13̃−1Y0 (I + N1)
−13̃−1 −T −1

1 (I + N1)
−13̃−1Y1

O2 O2,4 T −1
1




where Ñ1 denotes a nilpotent upper triangular matrix.

From (20) and the discussion on the boundary conditions the top portion of this
system gives for the right hand side h4 Zσ = h4 [0, 0, σc, 0, 0]T . Thus from 3̄−1 Zσ
gives immediately e1 = e2 = e4n+3 = e4n+4 = 0 as claimed less formally earlier. The
top part of the dominant system then simplifies by removing the two top and bottom
equations, as well as the corresponding null components of the error and right hand
side vectors. Introduce also the projection matrix 53 = diag(02, I4, 02), where 0m

denotes the null vector of dimension m. We then obtain

êout = 53êout = h4533̄
−1 Zσc = h453SP̄ P†(I + N1)

−13̃−1 R151 P̃ S R̃σc

from which letting λ† ≡ max(λ1−n
1 , λ1−n

2 , r−1, s−1) = max(r−1, s−1), the estimate
follows using Lemmas 1 and 2

‖êout‖∗ ≤ h4‖53‖∗‖S‖∗‖P̄‖∗‖P†‖∗‖(I + N)−1‖∗‖3̃−1‖∗
‖R1‖∗‖51 P̃ S11−1 R̃11−1σc‖∗

≤ h4λ†(1 + O(δ))4[ρ(S)+ O(δ)][ρ(R1)+ O(δ)]‖
51 P̃ S1‖∗‖1−1 R̃1‖∗‖1−1σc‖∗(29)

≤ h4λ†(1 + O(δ))6‖51 P̃ S1‖∗‖(I + R̃2)‖∗‖11−1σc‖2

≤ h4λ†(1 + O(δ))7‖51 P̃ S1‖∗
√

4n − 4‖σc‖∞

as R̃2 is upper triangular and nilpotent. Now observe that the product P̃ S1 =
diag(D1, V ∗D2, D3, D4), where each block is as follows

D1 = diag(1, δ−1), D2 = diag(δ−2, δ−3, δ−4, δ−5),

D3 = diag(δ−8, δ−9), D4 = diag(δ−10, . . . , δ−4n−3, δ−6, δ−7).

It follows that 51 P̃S1 = diag(D1, V ∗D2, D3, 04n−4). Hence

‖51 P̃ S14n+4‖∗ = ‖‖diag(I2, V ∗, I2) diag(D1, D2, D3)‖∗
≤ ‖diag(I2, V ∗, I2)‖∗‖diag(D1, D2, D3)‖∗
≤ [ρ(diag(I2, V ∗, I2))+ O(δ)](1 + O(δ)) ≤ (1 + O(δ))2(30)

since for the diagonal matrix ρ[diag(D1, D2, D3)] = 1 and from Lemma 1 ρ(V ∗) =
1, the matrix V being unitary. But also,

‖êout‖2
∗ = ‖14êout‖2

2 = ê∗
out1

2
4êout =

4∑

i=1

e2
i δ

2i−8 ≥ ‖êout‖2
∞
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i.e. ‖êout‖∗ ≥ ‖êout‖∞. In summary combining (29) with (30) we have

‖êout‖∞ ≤ h
7
2 2λ†(1 + O(δ))9‖σc‖∞ ≤ h

7
2 2λ†(1 + O(δ))‖σc‖∞

≡ h
7
2 η‖σ‖∞(31)

which can be restated also as h−4‖Ẽeout‖∞ ≥ [ηh
7
2 ]−1‖eout‖∞ i.e. from Thm. 4.7 of

[10], p. 88, the estimate on the inverse follows

‖Ẽ−1‖∞ ≤ ηn
1
2 .

Looking now at the remaining part of (18) with the bottom portion matrix of Ē ,
see (19), we can rewrite it as B̃ ẽc = σc − L̃ êout. We have B̃ = E B̂, with B̂ =
diag(B, . . . , B) and

E =




I −Q O O ... O O
O I −Q O ... O O
O O I −Q ... O O

...

O O O O ... I −Q
O O O O ... O I




(32)

and thus B̃−1 = B̂−1E−1. Notice that E−1 is a block upper triangular matrix, with
the block main diagonal containing only identity matrices, it can then be written as
E−1 = I4n−4 + U0, U0 being nilpotent (i.e. block upper triangular with zeros on the
main diagonal). Thus Lemma 2 can be applied once more. The system can then be
solved to give

ẽc = B̂−1E−1[h4σ − L̃ êout].

Premultiplying this system by 1−1 and taking norms, we obtain using (29),

‖1−1ẽc‖∗ ≤ h4‖1−1 B̂−1 E−1σ‖∗ + ‖1−1 B̂−1E−1 L̃ êout‖∗
≤ h4‖11−1 B̂−1E−1σ‖2 + ‖1−1‖∗‖B̂−1‖∗‖E−1‖∗‖U êout‖∗

≤ h4‖B̂−1‖2‖E−1σ‖2 + [ρ(B̂−1)+ O(δ)][1 + O(δ)]‖U‖∗‖êout‖∗

≤ h4‖B−1‖2
√

4n − 4‖E−1σ‖∞ + ρ(B−1)[1 + O(δ)]3ηh
7
2

≤ h4b∗
12

√
n‖E−1‖∞‖σ‖∞ + ρ(B−1)[1 + O(δ)]ηh

7
2 ‖σ‖∞

≤ h
7
2 2b∗

1e∗
∞‖σ‖∞ + b∗

2[1 + O(δ)]ηh
7
2 ‖σ‖∞

≤ h
7
2
[
2b∗

1e∗
∞ + b∗

2[1 + O(δ)]η
]
‖σ‖∞ ≡ h

7
2µ‖σ‖∞ .(33)

On the other hand

‖1−1ẽc‖∗ = ‖11−1ẽc‖2 = ‖ẽc‖2 ≥ ‖ẽc‖∞.

In summary, by recalling (12) and since ‖E−1‖∞ ≡ e∗
∞ = 72.4679

‖ẽc‖∞ ≤ µn− 7
2 ‖σ‖∞.
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Together with the former estimate (31) on ‖êout‖∞, we then have

‖ẽ‖∞ ≤ νn− 7
2 ‖σ‖∞,

which implies, once again from Thm. 4.7 of ([10]), h−4‖M4 ẽ‖∞ ≥ ν−1n− 1
2 ‖ẽ‖∞, i.e.

in summary we can state the result formally as follows.

THEOREM 1. The matrix M4 is nonsingular. The norm of its inverse matrix is
given by

(34) ‖M−1
4 ‖∞ ≤ νn

1
2 .

Now, upon premultiplication of (16) by the inverse of M4, letting N ≡ M−1
4 (M2 +

h2M0), we have

(35) e = h4(I + h2 N)−1 M−1
4 σ.

As the matrices M2 and M0 have entries which are bounded above, since they are built
using the coefficients a and b, which are continuous functions on [0, 1], i.e. themselves
bounded above, Banach’s lemma, [12] p. 431, taking h sufficiently small, allows an
estimate of the solution as follows.

(36) ‖e‖∞ ≤ h4‖(I + h2N)−1‖∞‖M−1
4 ‖∞‖σ‖∞ ≤ h4ν‖σ‖∞n

1
2

1 − h2‖N‖∞
≤ γ n− 7

2 ‖σ‖∞,

having applied the previous estimate (34). Observe that

‖uN − yN ‖∞ ≤ ‖e‖∞ max
0≤x≤1

4n+4∑

i=0

Bi(x) ≤ θ‖e‖∞.

Applying again (13) to σ , using the definition (5) of Lh , we find for 1 ≤ k ≤ n, j =
1(1)4, by the continuity of the functions F,G

(37) |σ4k+ j | = h4|G(τk, j )− F(τk, j )| ≤ ζk, j h
4.

It follows then ‖σ‖∞ ≤ ζh4 and from (36), ‖e‖∞ ≤ γ h
15
2 . Taking into account this

result, use now the triangular inequality as follows

‖U − uN ‖∞ ≤ ‖U − yN ‖∞ + ‖yN − uN ‖∞ ≤ c0h8 + ηγ h
15
2 ≤ c∗h

15
2

in view of (13) and (36). Hence, recalling that N = 4n + 4, we complete the error
analysis, stating in summary the convergence result as follows

THEOREM 2. If f ∈ C4([0, 1]), so that U ∈ C8([0, 1]) then the proposed B-spline
collocation method (5) converges to the solution of (1) in the Chebyshev norm; the
convergence rate is given by

(38) ‖U − uN ‖∞ ≤ c∗N− 15
2 .

REMARK 1. The estimates we have obtained are not sharp and in principle could
be improved.
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4. Examples

We have tested the proposed method on several problems. In the Figures we provide
the results of the following examples. They contain the semilogarithmic plots of the
error, in all cases for n = 4, i.e. h = .25. In other words, they provide the number of
correct significant digits in the solution.

EXAMPLE 1. We consider the equation

y(4) − 3y(2) − 4y = 4 cosh(1),

with solution y = cosh(2x − 1)− cosh(1).

EXAMPLE 2. Next we consider the equation with the same operator L but with
different, variable right hand side

y(4) − 3y(2) − 4y = −6 exp(−x),

with solution y = exp(−x).

EXAMPLE 3. Finally we consider the variable coefficient equation

y(4) − xy(2) + y sin(x) = 24

(x + 3)5
− 2x

(x + 3)3
+ sin(x)

x + 3
,

with solution y = 1
x+3 .
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