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obtained by blowing up certain, pairwise intersecting, codimension 2 submanifolds of a

hyperbolic manifold. The metric on this blow–up is constructed explicitly by means of

some Poincaré series, and appropriate methods for controlling its curvature and its rank are

developed.
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1. INTRODUCTION

In this paper we construct new examples of compact real analytic Riemannian

manifolds of nonpositive sectional curvature. The main result is

1.1. Theorem. — Let Hn/Γ′ be a compact manifold with constant curvature

K ≡ −1 and let �̄i ∈ Iso(Hn/Γ′), 1 ≤ i ≤ N , be a family of rotations with fixed

point sets

V̄i := Fix(�̄i) =
{
p ∈ H

n/Γ′
∣∣ �̄i(p) = p

}

of codimension 2. Suppose that each �̄i permutes1 the N fixed point sets V̄i′ . More-

over, for any pair of distinct fixed point sets V̄i1 and V̄i2 with V̄i1 ∩ V̄i2 �= ∅, it is
required that V̄i1 ∩ V̄i2 has codimension 4 and that the intersection is orthogonal. Let
π:M → H

n/Γ′ be the manifold obtained by blowing up
⋃
i V̄i.

Then, M carries a real analytic Riemannian metric g with sectional curvature K ≤ 0
everywhere and with K < 0 on the complement of π−1

(⋃N
i=1 V̄i

)
. The preimages

V̂i := π−1(V̄i) and all their intersections V̂I :=
⋂
i∈I V̂i, I ⊂ {1, . . . , N} are totally

geodesic submanifolds of (M, g). Each projection π(I) := π|V̂I
factors through a Rie-

mannian submersion π̂(I): V̂I → V̄ �I onto a space V̄
�
I of nonpositive curvature. This

submersion is a flat bundle over V̄ �I with totally geodesic fibres which are isometric

to # I–fold products of RP
1’s of equal lengths.

The metric g will be constructed explicitly by means of a Poincaré series. For any

subset I ⊂ {1, . . .N} the holonomy of the flat bundle π̂(I): V̂I → V̄ ∗
I is determined

by the holonomy of the normal bundle of V̄I :=
⋂
i∈I V̄i ⊂ Hn/Γ′. Moreover, the

existence of a single nonempty, totally geodesic submanifold V̂i ⊂M implies that the

1 W.l.o.g. we may assume that each �̄i generates the maximal cyclic subgroup in
Iso0(Hn/Γ′) fixing V̄i. With this normalisation it is equivalent to require that the
family (〈�̄i〉)Ni=1 is closed under conjugation : for any pair (i1, i2) there exists i3 such
that �̄i1〈�̄i2〉�̄−1

i1
= 〈�̄i3〉 .
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4 U. ABRESCH V. SCHROEDER

fundamental group π1(M) is not hyperbolic in the sense of [GhH] and [Gr2]. However

rank(π1(M)) = 1, where the rank of a finitely generated group Γ is defined in terms

of the word metric dΓ as follows (see [BE])

rank(Γ) ≥ k :⇔ ∃C > 0 ∀γ ∈ Γ ∃ a subgroup Aγ � Z
kwith dΓ(γ, Aγ) ≤ C.

Looking at the precise estimates for the curvature in Theorem 5.9 one can see that

the metric g has as little zero curvature as permitted by the fundamental group. We

shall explain this in more detail in Section 7.

To show that the hypotheses of Theorem 1.1 are not void, we quote from [AbSch] :

1.2. Theorem. — Let Γ′ be a torsion–free, normal subgroup of finite index in

some cocompact, discrete group Γ ⊂ Iso(Hn) = O+(n, 1). Suppose in addition that

Γ contains commuting isometries �1, . . . , �k, whose fixed point sets are hyperbolic

subspaces of codimension 2. If at most one of the �i’s has order 2, then the induced

rotations �̄i on Hn/Γ′ satisfy the hypotheses of Theorem 1.1.

In particular, there are concrete examples2 of such groups Γ′ < Γ < Iso(Hn) and

of rotations �1, . . . , �k of this type with n = 2k. In this case the flat V̂1∩ . . .∩ V̂k ⊂M

has the maximal possible dimension in view of the following general result proved at

the end of Section 2.

1.3. Theorem. — Let Xn be a simply–connected, real analytic Riemannian mani-

fold with K ≤ 0, and let F k ⊂ Xn be a k–flat of maximal dimension. Moreover, let

Σ1, . . . ,Σm ⊂ F k be different singular hyperplanes through a common point p, where

singular means that the set PΣi
of parallels to Σi is not contained in the flat F k.

Then,

(1.1) k +
m∑
i=1

(
dimPΣi

− k
)
≤ n .

Since dimPΣi
> k, the number m of singular hyperplanes is estimated by the

codimension n − k of the flat F k. In our example the strata V̂i1 ∩ . . . ∩ V̂ik−1 are

2 In [Buy] S. Buyalo has used a slightly different approach to construct an interest-
ing configuration of compact, codimension-2 subspaces V̄ 2

i in the hyperbolic 120–cell
space H4/Γ′ with the intersection pattern required for Theorem 1.1.
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ANALYTIC MANIFOLDS OF NONPOSITIVE CURVATURE 5

parallel sets of k different singular hyperplanes Σik ⊂ V̂1 ∩ . . . ∩ V̂k. Thus Inequality
(1.1) is sharp in this example.

The Weyl chamber structure of the flat V̂1 ∩ . . .∩ V̂k is the same as the structure
of a flat in the k–fold product H

2×· · ·×H
2. An interesting open question is whether

there are also real analytic manifolds of rank 1 with a maximal flat which has the

Weyl chamber structure of the flat in an irreducible symmetric space.

We emphasize that the crucial point in Theorem 1.1 is the existence of a real

analytic metric of nonpositive curvature on M . Indeed, it is much easier to obtain

a C∞–metric with K ≤ 0 on M even without assuming that the codimension–2

submanifolds are fixed point sets of isometries. For completeness we state

1.4. Theorem. — Let
(
V̄i

)N
i=1

be a finite family of compact, totally geodesically

immersed submanifolds of codimension 2 in some compact hyperbolic space Hn/Γ′.

Suppose that the various sheets of
⋃
i V̄i intersect pairwise orthogonally in sets of

codimension 4, if they intersect at all. Then, the blow–up π:Mn → Hn/Γ′ of
⋃
i V̄i

carries a smooth metric with sectional curvature K ≤ 0.

The proof of Theorem 1.1 occupies Sections 3–6. The metric g in question is

constructed explicitly in Theorem 3.7 and the relevant curvature estimates are the

subject of Theorem 5.9.

The proof of Theorem 1.4 is much simpler, since all constructions can be done

just locally. One could even give an independent proof based on a multiple warped

product structure in the sense of [ONl, p. 210, Theorem 42].
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2. REAL ANALYTIC MANIFOLDS OF NONPOSITIVE CURVATURE

The fundamental differences between C∞– and Cω–functions actually leads to

substantially different phenomena in the theory of manifolds of nonpositive sectional

curvature in these two categories. For instance, the graph manifolds constitute a large

class of manifolds M with a non–hyperbolic, rank 1 fundamental group which carry

a C∞–smooth but no analytic metric with K ≤ 0.

In fact, the existence of an analytic metric with K ≤ 0 on a non–hyperbolic
rank 1 manifold M has much stronger consequences for the topology of M than the

existence of a C∞-smooth metric of K ≤ 0. We illustrate this by the following three
points :

(1) if M is compact, real analytic with K ≤ 0, and A < π1(M) is an abelian

subgroup (i.e. A � Zk for some k ∈ N), then the centralizer Z(A) is the

fundamental group of a closed manifold with K ≤ 0 ; in particular the
homology of Z(A) satisfies the Poincaré duality [BGS, p. 121]. This is a

strong restriction on π1(M) and rules out the existence of analytic metrics

with K ≤ 0 on many manifolds obtained by cut and paste methods like
graph manifolds ;

(2) if −b2 ≤ K ≤ 0, vol(M) < ∞, and M is real analytic, then M is diffeo-

morphic to the interior of a compact manifold with boundary. This result

is contained in Gromov’s finiteness theorem [BGS]. For C∞–manifolds the

topology may be unbounded. In [Gr1] Gromov constructs graph manifolds

with −1 ≤ K ≤ 0, vol(M) <∞ and infinitely generated homology ;

(3) if M is a compact analytic manifold with K ≤ 0 whose fundamental group
is not hyperbolic, then π1(M) contains a subgroup isomorphic to Z2. This
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follows from the closing theorem of flat subspaces [BaSch]. The analogous

question in the C∞–category is very much open.

The facts above indicate that it is difficult to construct real analytic non–hyper-

bolic manifolds of rank 1 with K ≤ 0. To our knowledge there are only three types
of examples described in the literature :

(i) (doubling at a cusp3) take a complete manifoldWn with constant curvature

−1 and finite volume with one cusp diffeomorphic to Tn−1 × [0,∞). Glue
two copies of W along the cusp to obtain a compact manifold with a joining

cylinder Tn−1 × (−a, a). For a suitable smooth warped product metric, all
curvatures are negative except that Tn−1 × {0} is a totally geodesic, flat
torus ;

(ii) (cusp closing [Sch1]) start as in Example (i) byWn with cusp Tn−1×[0,∞)
and close the cusp with Tn−2×disc. For a suitable metric all curvatures are
negative except that Tn−2×{0} is a totally geodesic, flat torus. The closing
of complex hyperbolic cusps has been studied recently in [HuSch].

(iii) (codimension–2 surgery [Sch2]) consider a compact manifold V n of con-

stant curvature −1 with a totally geodesic submanifold V n−2 ⊂ V n. Take

two copies of V n\V n−2 and glue them together to obtain a compact manifold

with joining cylinder V n−2 × S1 × (−ε, ε). For a suitable warped product
metric all curvatures are negative except that V n−2 × S

1 × {0} is totally
geodesic and isometric to a product.

In these examples one constructs first a C∞-smooth metric which is analytic in

the neighborhood of the submanifold where all the zero curvatures are concentrated.

Using an argument from sheaf theory [BuGe], one then gets an approximating analytic

metric with K ≤ 0 in each case.

Our main result generalizes the examples obtained by codimension–2 surgery.

However, the examples in Theorem 1.1 are constructed in an entirely explicit fashion.

We obtain analytic data using a Poincaré series rather than the full machinery of

sheaf theory. The price for the explicit approach are the symmetry requirements as

explained in Remark 6.4 (iii).

3 Due to E. Heintze, unpublished.
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8 U. ABRESCH V. SCHROEDER

We conclude this section with a proof of Theorem 1.3. We actually prove a more

general statement including the case that the flat F is not necessarily maximal.

Let Xn be an n–dimensional, complete, simply–connected, real analytic Rie-

mannian manifold with K ≤ 0. A k–flat in X is a totally geodesic, isometric immer-

sion F :Rk → X. We denote by Grk(X) → X the Grassmann bundle of k–planes in

TX and by Fk(X) ⊂ Grk(X) the subset of all τ ∈ Grk(X) such that exp: τ → X

is a k–flat. We call τ, τ ′ ∈ Fk(X) parallel and write τ ‖ τ ′, if the subsets exp(τ)

and exp(τ ′) have finite Hausdorff distance �ττ ′ . By the Sandwich Lemma exp(τ) and

exp(τ ′) bound a convex subset isometric to exp(τ) × [0, �ττ ′]. More generally, we
define

PGrτ :=
{
τ ′ ∈ Fk(X)

∣∣ τ ′ ‖ τ} .

It is well known [BGS, Lemma 2.4], that the image Pτ of P
Gr
τ under the standard

projection Grk(X) → X is a convex subset which splits isometrically as a product

Pτ = Rk × Q, where Q is a convex subset. Since the metric is assumed to be real

analytic, Q is complete and Pτ is a complete, totally geodesic submanifold of X . We

define

rankP (τ) := dimPτ = dimPGrτ .

Let us now fix a not necessarily maximal flat Σ = exp(σ) with σ ∈ Fk(X). For a

linear subspace τ ⊂ σ we obviously have Pσ ⊂ Pτ . Such a τ is called a singular

subspace of σ, if Pσ is a proper subset of Pτ , or equivalently, if

rankP (τ) > rankP (σ) .

2.1. Theorem. — Let σ ∈ Fk(X) and let τ1, . . . , τq be different maximal singular

subspaces of σ. Then,

(2.1) rankP (σ) +
q∑
i=1

(
rankP (τi)− rankP (σ)

)
≤ n .

If Σ = exp(σ) is a maximal flat in a symmetric space, then the maximal singular

subspaces of σ are precisely those hyperplanes which constitute the walls of the Weyl
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chambers of σ. Using the root space decomposition of the Lie algebra, it is not hard

to see that Inequality (2.1) is optimal for symmetric spaces.

We first prove the following

2.2. Lemma. — Let σ ∈ Fk(X) and let τ1, τ2 be linear subspaces of σ. Then,

(2.2) Pτ1 ∩ Pτ2 = Pτ1+τ2

where τ1 + τ2 denotes the span of τ1 and τ2.

Proof. The inclusion Pτ1+τ2 ⊂ Pτ1 ∩ Pτ2 is evident. To show the opposite inclusion,
we pick a point x ∈ Pτ1 ∩ Pτ2 and consider the linear subspaces τi(x) ⊂ TxX parallel

to τi, i = 1, 2. Let
(
Sτ1+τ2 ,�

)
be the unit sphere in the space τ1 + τ2 ⊂ σ together

with the canonical angular distance function �. For any v ∈ TX let cv:R → X be

the geodesic with ċv(0) = v .We define a map

ϕx:Sτ1+τ2 → T 1
xX

into the unit sphere T 1
xX ⊂ TxX such that ϕx(v) is the unique vector v̄ ∈ T 1

xX with

cv̄(∞) = cv(∞). We claim that this map ϕx is contracting

(2.3) �x
(
ϕx(v) , ϕx(w)

)
≤ �

(
v , w

)
.

Here, �x is the angle measured in T 1
xX . Since exp

(
τ1(x) + τ2(x)

)
is a flat, we have

Td
(
cv(∞), cw(∞)

)
= �(v, w) for all v, w ∈

(
τ1(x) + τ2(x)

)
∩ Sτ1+τ2 , where Td is

the Tits–distance on X(∞) defined in [BGS]. By the well–known properties of the
Tits–distance we have �x(v̄, w̄) ≤ Td

(
cv̄(∞), cw̄(∞)

)
, hence inequality (2.3).

Consider any vector v ∈ τ1∩Sτ1+τ2 . Since τ1(x) ‖ τ1, there exists some v̄ ∈ τ1(x)

such that the geodesic t �→ exp(tv) is parallel to t �→ exp(tv̄). This implies that

ϕx(−v) = −ϕx(v). The same observation holds for any v ∈ τ2 ∩ Sτ1+τ2 , and hence
ϕx(−v) = −ϕx(v) for any v ∈ (τ1 ∪ τ2) ∩ Sτ1+τ2 .

Now, an elementary argument4 based on this symmetry property and on the

contracting property established before reveals that ϕx is an isometric embedding of

4 cf. the proof of the Sublemma in [BGS, p. 230].
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10 U. ABRESCH V. SCHROEDER

Sτ1+τ2 onto a great sphere in T
1
xX . Thus ϕx(Sτ1+τ2) =

(
τ1(x) + τ2(x)

)
∩ T 1

xX , and

the proof of Lemma E in [BGS, p. 229] implies that exp
(
τ1(x)+ τ2(x)

)
is a flat which

is parallel to exp(τ1 + τ2).

2.3. Lemma (cf. [BaSch, Lemma 2.1]). — The spaces Pτ1 and Pτ2 are orthogonal

in the sense that

(2.4) πPτ1
(Pτ2) = Pτ1 ∩ Pτ2 = πPτ2

(Pτ1)

where πPτi
denotes the orthogonal projection onto the convex subset Pτi

.

Proof of Theorem 2.1. Let τi, τj be different maximal singular subspaces of σ. Then,

Pτi
∩ Pτj

= Pτi+τj
by Lemma 2.2. Since τi and τj are maximal singular subspaces

of σ, we have Pτi+τj
= Pσ. We pick a point x ∈ Pσ and consider the normal space

νxPσ ⊂ TxX of Pσ in x . Since Pτi+τj
= Pσ, the subspaces Tx(Pτi

)∩νxPσ, 1 ≤ i ≤ k,

have pairwise trivial intersection, and by Lemma 2.3 they are pairwise orthogonal.

These facts imply Inequality (2.1), once we observe that

dim
(
Tx(Pτi

)
)
= rankP (τi)− rankP (σ) .

2.4. Remarks.

(i) The analyticity of the metric is neither required for the proof of Lemma 2.2

nor for the proof of Lemma 2.3. It is only needed in order to guarantee the

completeness of the sets Pτi
and Pσ.

(ii) It is not difficult to construct for every k ∈ N a 4–dimensional manifold X4
k

with a C∞–metric of non-positive sectional curvature which is not identically

flat. Nevertheless, X4
k contains a 2–flat Σ = exp(σ) which comes with 1–

dimensional subspaces τ1, . . . , τk ⊂ σ such that the geodesics exp(τi) are

contained in some 2–flat Fi with Fi ∩ Σ = exp(τi). In this case an open
neighborhood of Σ is flat.

SÉMINAIRES & CONGRÈS 1



3. THE BLOW–UP π:M → Hn/Γ′

In this section we describe the blow–up π:M → Hn/Γ′ and the new metric onM .

Our assumption is that we have given a family
(
V̄i

)N
i=1
of compact, totally geodesically

embedded submanifolds of codimension 2 in a compact hyperbolic space Hn/Γ′. The

various sheets of
⋃
i V̄i intersect pairwise orthogonally in sets of codimension ≥ 4.

We shall work in the universal covering pr:Hn → Hn/Γ′. The preimage of
⋃
i V̄i is a

divisor in Hn whose trace is a countable union of hyperbolic subspaces H
n−2
j , j ∈ J ,

of codimension 2.

The collection
(
H
n−2
j

)
j∈J satisfies

3.1. Axiom. — There exists a constant d0 > 0 with the following properties :

(i) the index set J decomposes into N̂ subsets J1 ∪ . . . ∪ JN̂ such that for all

pairs (j1, j2) ∈ Jµ × Jµ, 1 ≤ µ ≤ N̂ , with j1 �= j2 one has

dist
(
H
n−2
j1

,Hn−2
j2

)
≥ 2 d0 ;

(ii) for any point p ∈ H
n there exists some point q ∈ H

n such that the subspaces

H
n−2
j with dist(p,Hn−2

j ) < d0 contain q and intersect pairwise orthogonally

in subspaces of codimension 4.

This axiom describes all the properties that we assume for the collection H
n−2
j

throughout this section and the next one, where we construct the analytic metric on

the blow–up π:M → Hn/Γ′, as well as throughout the bulk of Section 5, where the

basic curvature computations are done.

As a consequence of Axiom 3.1 a standard packing argument implies the follow-

ing.

3.2. Lemma. — There exists a constant C > 0 such that for every p ∈ Hn

#
{
j ∈ J

∣∣ dist(p,Hn−2
j

)
≤ r

}
≤ C e(n−1)r .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



12 U. ABRESCH V. SCHROEDER

The blow–up π: M̂n → H
n along the divisor

⋃
j∈J H

n−2
j is invariant under the

group Γ :=
{
γ ∈ Iso(Hn)

∣∣ γ(⋃j∈J H
n−2
j ) =

⋃
j∈J H

n−2
j

}
. This means that for all

γ ∈ Γ the diagram

(3.1)

M̂n γ−−→ M̂n

π

 
 π

Hn
γ−−→ Hn

commutes, and the manifold M̂n is a covering of Mn with deck-transformations in

the subgroup Γ′ < Γ.

For a more detailed description of M̂n let us introduce the distance function

rj := dist
(
. ,Hn−2

j

)

and the one parameter group

ϑj :R/2πZ→ Iso(Hn)

of rotations around H
n−2
j . The corresponding Killing field will be denoted by Kj. For

every j ∈ J we choose a hyperplane Wj ⊂ Hn containing H
n−2
j .

For any (possibly empty) subset I ⊂ J we consider the sets

UI :=
{
p ∈ H

n

∣∣∣∣ ri(p) < d0 ∀i ∈ I and
rj(p) > 1

2 d0 ∀j ∈ J \ I

}

WU
I := UI ∩

⋂
i∈I

Wi .

3.3. Lemma.

(i) # I > n
2
⇒ UI = ∅ .

(ii) The sets UI , I ⊂ J , define a locally finite, open covering of Hn.

Proof. The first claim follows directly from Axiom 3.1 (ii). To see that the UI are

open subsets note that by the first part of Axiom 3.1 #
{
j ∈ J

∣∣rj(p) < 2 d0} is finite
for all p ∈ Hn.

SÉMINAIRES & CONGRÈS 1



ANALYTIC MANIFOLDS OF NONPOSITIVE CURVATURE 13

We can view Wj as a slice of the 1–parameter groups ϑj (R/2πZ). The stabilizer

of Wj is the group Stabj = {ϑj(0), ϑj(π)}.

As a further consequence of Axiom 3.1, we obtain the following detailed descrip-

tion of the blow–up π: M̂n → H
n, which we shall state as a proposition for later

reference.

3.4. Proposition. — Suppose that UI ∩
⋃
j∈J H

n−2
j �= ∅ for some I ⊂ J . Then, I is

a finite, nonempty set {i1, . . . , ik}, and moreover

(i) the rotations ϑi′(ϕ′) and ϑi′′(ϕ′′) commute for all i′, i′′ ∈ I and for all angles

ϕ′, ϕ′′ ∈ R/2πZ. In particular, ϑI := ϑi1 ◦ . . . ◦ ϑik defines an injective
homomorphism

ϑI : (R/2πZ)# I → Iso(Hn) ;

(ii) the domain UI ⊂ Hn is invariant under the action of ϑI , and W
U
I is a slice

for this action restricted to UI . The stabilizer StabI of WU
I is the abelian

group

StabI =
{
ϑI(σ)

∣∣σ ∈ {0, π}# I} ;

clearly,

πI :WU
I × (R/2πZ)# I → UI

(p , ϕ) �→ ϑI(ϕ) p

is a surjective analytic map. The map πI is invariant under the discrete,

fixed point free action of StabI on its domain, which is given by

ϑI(σ):WU
I × (R/2πZ)# I → WU

I × (R/2πZ)# I

(p, ϕ) �→ (ϑI(σ) p, ϕ+ σ) ;

(iii) the quotient space

ÛI := StabI
∖(
WU
I × (R/2πZ)# I

)

is an open real analytic manifold with a natural projection πI : ÛI → UI ,

which is one to one when restricted to π−1
I

(
UI \

⋃
i∈I H

n−2
i

)
;

(iv) for I ′ ⊂ I the projection πI factors over πI′ , provided it is restricted to the

preimage of UI′ ∩ UI .
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14 U. ABRESCH V. SCHROEDER

By definition the manifold M̂ is defined by gluing the ÛI using the maps from

Proposition 3.4 (iv). The blow–down map π: M̂ → Hn is induced by the πI . Note

that by this description there is a natural action of Γ on M̂n which commutes with π

as stated in diagram (3.1).

We now turn to metric properties. Let g0 = 〈. , .〉 be the hyperbolic metric
on H

n. The Killing fields Kj := d
dt |t=0

ϑj(t) have length |Kj|2 = sinh2 rj where
rj := dist

(
. ,Hn−2

j

)
.

3.5. Definition. — Given α ∈ (0, π) and 4 ∈ R, we say that a real analytic function

h: [0,∞)→ [0,∞) satisfies the cone condition Cα(4), if and only if

(i) h can be extended holomorphically to the cone Cα := exp (R+ i (−α, α)) ;

(ii) for any α′ ∈ (0, α) there exists a constant cα′ such that |h(x)| ≤ cα′ |x|−� on
the subcone Cα′ ⊂ Cα.

Let us just list some basic properties of the cone condition

(3.2)
h1 ∈ Cα1(41), h2 ∈ Cα2(42)⇒ h1h2 ∈ Cmin{α1,α2}(41 + 42)

h ∈ Cα(4)⇒
dkh

dzk
∈ Cα(k + 4) for any k ≥ 0 .

3.6. Examples. — Let δ > 0. Then,

(i) hδ,�(x) := (1 + δx2)−�/2 lies in Cπ/2(4) for any 4 ≥ 0, and

(ii) hδ(x) := exp(−δx) lies in
⋂
�≥0

Cπ/2(4).

Doubly exponentially decaying functions like h(x) = exp(1− exp(x)) do however
not satisfy any cone condition at all.

3.7. Theorem. — Let h: [0,∞)→ [0,∞) be a real analytic function with h(0) = 1,
which satisfies the cone condition Cα(4) for some α > 0 and some 4 > n−1

2 , and let

η > 0 be arbitrary. Then,

(i) the Poincaré series

g(X, Y ) = 〈X , Y 〉+
∑
j∈J

η2|Kj |−2h
(
|Kj|2

)
〈X ,Kj〉〈Kj , Y 〉,

SÉMINAIRES & CONGRÈS 1
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where g0 = 〈. , .〉 denotes the standard hyperbolic metric on H
n, converges

compactly to a real analytic metric on Ω := H
n \

⋃
j∈J H

n−2
j ;

(ii) π∗(g) extends to a Γ-invariant, complete, real analytic metric g on M̂ , which

we shall denote again by g ;

(iii) for any subset I ⊂ J and any point p ∈ SI :=
⋂
i∈I H

n−2
i \

⋃
j∈J\I H

n−2
j

the preimage π−1{p} is a totally geodesic, flat, product torus isometric to
(R/πηZ)# I . Moreover, the stratum ŜI := π−1SI is intrinsically a flat bundle

over SI with fibres (R/πηZ)# I .

3.8. Remarks.

(i) In the general setup it is not clear that the strata ŜI are totally geodesic

with respect to the metric g on M̂ constructed in the preceding theorem.

(ii) On the other hand, ŜI must be totally geodesic, if (M̂, g) has nonpositive

sectional curvature. To see this, note that ŜI is foliated by totally geodesic,

flat tori ; these tori are absolutely minimizing in their homotopy class, since

K ≤ 0. Since the metric is analytic, ŜI coincides with the union of all
absolutely minimizing tori in this homotopy class.

(iii) Because of these two points we need an additional assumption in order to

deduce Theorem 1.1. This extra condition is a symmetry requirement for the

collection
(
H
n−2
j

)
j∈J . In Sections 5 and 6 we shall see that the metrics g

constructed in this theorem have the curvature properties claimed in The-

orem 1.1, provided that η is sufficiently small depending on n, h, d0, and

N̂ . This explains the proof of Theorem 1.1, since for any δ > 0 the function

hδ(x) = exp(−δx) from the preceding example satisfies all our requirements.

3.9. Remark. — However, some care is necessary when trying to interpret the

family of metrics g ≡ g(η), η > 0, from the preceding Theorem as an example for

collapsing
(
M, g(η)

)
−−→
η→0

(
Hn/Γ′, g0

)
. The problem is that the sectional curvatures of(

M, g(η)
)
must be unbounded when η approaches 0.

The reason is that by construction the length of the fibres RP
1 → Ŝi → Si

decreases proportionally to η as η → 0. Since the component M thick
η of the thick–thin
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16 U. ABRESCH V. SCHROEDER

decomposition of
(
M, g(η)

)
is nonempty, it follows that

sup
E⊂TMthin

η

|K(E)|1/2 diam
(
M thin
η

) >
≈ ln

cMargulis

length(RP
1)
= ln

cMargulis

πη
−−→
η→0

∞ .

On the other hand, diam
(
M, g(η)

)
is uniformly bounded for 0 < η ≤ 1.

In fact, the expression for R# shows directly5 that for sufficiently small values of

η the sectional curvature of any plane Êi over the stratum Si of the divisor which is

spanned by the unit normal vector of Ŝi and the tangent vector of the fibration Ŝi → Si

is approximately −η−2. Moreover, the region where the sectional curvature gets large

in absolute value concentrates more and more along the preimage of the divisor. This

behaviour is best understood when considering the Gauß–Bonnet Theorem, figuring

out what it means to add a cross–cap of size ∼ η to a fixed ball orthogonal to

Si ⊂ H
n−2
i .

For the subsequent calculations it is convenient to use the shorthand xj :=

|Kj|2 ≡ sinh2 rj . Given j ∈ J , we introduce a bilinear form gj and its dual en-

domorphism Gj by means of

(3.3) gj = 〈. , Gj .〉 = η2x−2
j h(xj) 〈. ,Kj〉〈Kj , .〉 .

Moreover, for any subset J ′ ⊂ J we let gJ ′ :=
∑
j∈J ′ gj . The convergence of gJ ′ im-

plies that the corresponding series GJ ′ :=
∑
j∈J ′ Gj of dual endomorphisms converges

as well and that its limit is dual to gJ ′ w.r.t. g0 = 〈 , 〉. In particular, the symmetric
endomorphism G := 1l+GJ is dual to the metric g from the Theorem. When working

on some domain Ω∩UI , I ⊂ J , it will be convenient to decompose the Poincaré series

for g as follows

(3.4) g = g0 + gJ = g0 + gI + gJ\I = g0 +
∑
j∈J

gj .

Proof of Theorem 3.7. (i) Since Ω is covered by the domains Ω∩UI where I ⊂ J is a

finite subset, we may refer to Proposition 4.1 for the actual convergence estimates.

5 cf. formula (5.27)
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(ii) We handle each open set ÛI in our covering of M̂ separately. Note that

π∗
I (g) = π∗

I (g0 + gI) + π∗
I (gJ\I) .

By Proposition 4.1 π∗
I (gJ\I) is a real analytic, positive semidefinite, bilinear form

on ÛI . Proposition 3.4 enables us to compute the term π∗
I (g0 + gI) on the domain

WU
I × (R/2πZ)# I ∩ π−1

I (Ω) explicitly. We get

(3.5) π∗
I (g0 + gI)|(p,ϕ) = g0|TpWU

I
×TpWU

I
+

∑
i∈I

(
xi + η2h(xi)

)
|p dϕi

2 .

Evidently, the right hand side describes a real analytic, StabI -invariant, Riemannian

metric on all of WU
I × (R/2πZ)# I .

(iii) Note that p ∈ SI is contained in some domain UI′ with I ⊂ I ′ ⊂ J . By

(3.5) it is clear that π−1
I′ {p} is a totally geodesic product torus in WU

I′ × (R/2πZ)# I
′

equipped with the metric π∗
I′

(
g0 + gI′

)
. If η is sufficiently small, then the function

x �→ x + η2h(x), x ≥ 0, takes its absolute minimum precisely at x = 0. Hence, for
these values of η all closed geodesics of the torus are absolutely minimizing elements

in their homotopy classes in WU
I′ × (R/2πZ)# I

′
. In order to pass from the partial

metric π∗
I′

(
g0 + gI′

)
to π∗

I′(g), we add a positive semidefinite term which vanishes on

the torus. Hence, these curves remain absolutely minimizing, and so the tori remain

totally geodesic with respect to g. In order to remove the dependence on the size of

η, we observe that g depends analytically on η, and so does the second fundamental

form of the torus.

The claimed flat bundle structure follows directly from formula (3.5).

We conclude this section explaining how the proof of Theorem 1.4 parallels the

real analytic case and why the C∞–case is nevertheless much simpler.

3.10. Remark. — Let us now assume that h: [0,∞) → [0,∞) is a C∞–function

with compact support such that h(0) = 1 rather than a real analytic function which

obeys some cone condition. Then, by Axiom 3.1, the Poincaré series g = g0+
∑
j∈J gj

reduces to a locally finite sum. We therefore obtain a C∞–metric g on M̂ such that

each stratum ŜI = π−1
I (SI) has the (local) product structure described in Theorem

3.7 (iii).
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18 U. ABRESCH V. SCHROEDER

Similarly, all formulae in Section 5 (and in Section 6) carry over literally to the

C∞–case. Since all the series in these computations are locally finite, we do not

need any convergence estimates. The curvature computations can be simplified even

further, if we pick a cut-off function h whose support is contained in the interval

[0, sinh2 d0). Here the key point is that by Axiom 3.1 (ii) the given upper bound

for the support of h causes many terms in Formula (5.18) to vanish identically. As a

result, we get the desired curvature control even without the estimate from Section 6.

This is explained in more detail in Remark 5.10 below.
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4. COMPLEXIFICATION AND COMPACT CONVERGENCE

The main purpose of this section is to prove the following slight generalization

of Theorem 3.7 (i).

4.1. Proposition. — Let I ⊂ J be a finite subset. Then, under the assumptions

of Theorem 3.7, the series gJ\I :=
∑
j∈J\I gj converges compactly on UI to a real

analytic, positive semidefinite, bilinear form. In the C 0–topology one has

(4.1)
∥∥gJ\I∥∥ ≤ c0η

2 on UI

where ‖ ‖ denotes the operator norm with respect to g0 and where c0 is a constant

depending just on n, h, d0, and N̂ .

The C0–bound (4.1) is a straightforward consequence of Lemma 3.2, since by the

cone condition x−1h(x) is bounded by const ·|x|(n+1)/2 for x ≥ sinh2 1
2
d0.

In a similar way one can easily prove uniform convergence of the series
∑
j∈J\I gj

on UI in any Ck–topology with 0 < k <∞. The crucial point is to establish that the
limit is real analytic and not just C∞. By standard results of complex analysis on

compact convergence we only have to prove C0–estimates by passing to a holomorphic

extension. Therefore, we first construct a suitable model for this extension. We think

of H
n as a component of the quadric

{
z ∈ R

n,1
∣∣ 〈〈z , z〉〉 = −1} .

Here 〈〈. , .〉〉 denotes the standard Lorentz inner product. The subspaces H
n−2
j are

intersections of this quadric with codimension 2 vector subspaces Ej ⊂ Rn,1. The

rotations ϑj preserve Ej and act on the space–like planes E⊥
j in the standard way.
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We choose a unit vector e1j ∈ E⊥
j such thatWj = H

n∩(e1j )⊥ and define e2j := ϑj(π2 )e
1
j .

Now the Killing field Kj can be expressed as

(4.2) Kj |z = 〈〈z , e
1
j 〉〉 e2j − 〈〈z , e2j 〉〉 e1j .

Evidently, W⊥
j = Hn ∩

(
e2j

)⊥ is a totally geodesic hyperplane, which intersects Wj

orthogonally along H
n−2
j . Using the fact that

sinh (dist(z,Wj)) =
∣∣〈〈z , e1j 〉〉∣∣

and by the Law of Sines we can identify the argument of h (i.e. |Kj|2) with a quadratic
expression on Rn,1

xj(z) = sinh2 rj(z) = sinh2 dist(z,Wj) + sinh2 dist(z,W⊥
j )(4.3)

= 〈〈z , e1j 〉〉
2
+ 〈〈z , e2j 〉〉

2
.

Thus gj can be expressed as

(4.4) gj |z (X, Y ) = η2xj(z)−2h(xj(z)) 〈〈X ,Kj |z〉〉 〈〈Kj |z , Y 〉〉

for all z ∈ Hn \ Ej and for all X, Y ∈ TzH
n.

By the Formulae (4.2)–(4.4) we have extended the basic geometric objects in a

real analytic way to an open neighborhood of Hn in Rn,1. This extension can be

complexified in an obvious manner. Let

C
n,1 := R

n,1 ⊗C

H
n
C :=

{
z ∈ C

n,1
∣∣ 〈〈z , z〉〉

C
= −1

}
where 〈〈 , 〉〉

C
is the complex bilinear extension of 〈〈 , 〉〉.

Now, it is natural to extend (4.2) and (4.3) to Cn,1 as follows

KC

j |z := 〈〈z , e
1
j 〉〉C e2j − 〈〈z , e2j 〉〉C e1j(4.2′)

xC

j (z) := 〈〈z , e1j 〉〉
2

C
+ 〈〈z , e2j 〉〉

2

C
.(4.3′)

Furthermore, if h extends holomorphically to a sufficiently large domain in C, then

gj is the restriction of the holomorphic bilinear form

(4.4′) gC

j |z := η2xC

j (z)
−2h(xC

j (z)) 〈〈. ,Kj |z〉〉C 〈〈Kj |z , .〉〉C .
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We remark that the complexified data when restricted to H
n
C
do not depend on the

analytic extension from Hn to Rn,1.

In order to prove Proposition 4.1, we need to establish uniform convergence of

the series gC

J\I =
∑
j∈J\I g

C
j in an arbitrarily small open neighborhood in C

n,1 of any

given point z0 ∈ UI . Here, we may work with respect to any norm on Cn,1 which may

even depend on z0.

By homogeneity, we can assume that z0 = (0, . . . , 0, 1),6 and as a norm we take

the Hermitian inner product 〈 , 〉h from the standard identification of Cn,1 with

Cn × C.

Evidently, for all z1, z2 ∈ C
n,1 there is the inequality

(4.5)
∣∣〈〈z1 , z2〉〉C∣∣2 ≤ 〈z1 , z1〉h 〈z2 , z2〉h .

4.2. Lemma. — Let z = z0 + ξ ∈ Cn,1 with 〈ξ , ξ〉h ≤ a2. Then, for any e ∈ Rn,1

with 〈〈e , e〉〉 = 1, the following inequalities hold

∣∣〈〈e , z〉〉2
C
−〈〈e , z0〉〉2C

∣∣ ≤ a
(
a+

√
2
)(
1 + 2 〈〈e , z0〉〉2C

)
,(i) ∣∣xC

j (z)− xj(z0)
∣∣ ≤ 2a

(
a+

√
2
)(
1 + xj(z0)

)
.(ii)

Proof. (i) Write e = (ē, en+1) ∈ Rn × R. Since en+1 = −〈〈e , z0〉〉 and 〈ē , ē〉 =
1 + |en+1|2, we have

(4.6) 〈e , e〉h = 1 + 2 〈〈e , z0〉〉2 .

Now ∣∣〈〈e , z〉〉2
C
−〈〈e , z0〉〉2C

∣∣ ≤ (
2 | 〈〈e , z0〉〉C |+ | 〈〈e , ξ〉〉C |

) ∣∣〈〈e , ξ〉〉
C

∣∣ .
By (4.5) and (4.6) we obtain

(4.7)
∣∣〈〈e , ξ〉〉

C

∣∣2 ≤ a2
(
1 + 2 〈〈e , z0〉〉2

)

hence (i).

6 This moves of course the collection of subspaces H
n−2
j , j ∈ J .
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(ii) This inequality is a direct consequence of (i) since e1j , e
2
j are legitimate choices

for e.

As an immediate consequence we obtain the following

4.3. Corollary. — Suppose that 2a
(
a +

√
2
)
< sinα < 1, then it follows for any

z = z0 + ξ ∈ C
n,1 with 〈ξ , ξ〉h ≤ a2 that

xj(z) ∈ Cα and(i)

|xj(z)| > (1− sinα) |xj(z0)| ,(ii)

provided that |xj(z)| ∈ [0,∞) is greater than some constant depending on a and α.

Furthermore we obtain the following

4.4. Corollary. — Let z = z0 + ξ ∈ Cn,1 with 〈ξ , ξ〉h ≤ a2. Then,

∣∣〈〈. ,KC

j |z〉〉C 〈〈K
C

j |z , .〉〉C
∣∣
h
≤ 2

(
1 + 2a(a+

√
2)

)(
1 + 2xj(z0)

)2
.

Proof. A straightforward computation using (4.2′) shows that

〈〈X ,KC

j |z〉〉 〈〈K
C

j |z , Y 〉〉C
=〈〈z , e2j 〉〉C

2 〈〈e1j ,X〉〉C 〈〈e
1
j , Y 〉〉C+〈〈z , e

1
j 〉〉C

2 〈〈e2j , X〉〉C 〈〈e
2
j , Y 〉〉C

−〈〈z , e1j 〉〉C 〈〈z , e
2
j 〉〉C

[
〈〈e1j ,X〉〉C 〈〈e

2
j , Y 〉〉C+ 〈〈e

2
j ,X〉〉C 〈〈e

1
j , Y 〉〉C

]
.

By the Cauchy–Schwarz inequality we obtain

(4.8)

∣∣〈〈X ,KC

j |z〉〉C 〈〈K
C

j |z , Y 〉〉C
∣∣

≤ 2
∣∣〈〈z , e2j 〉〉C

∣∣2 ∣∣〈〈X , e2j 〉〉C
∣∣2 + 2 ∣∣〈〈z , e1j 〉〉C

∣∣2 ∣∣〈〈X , e2j 〉〉C
∣∣2 .

By Lemma 4.2 we have∣∣〈〈eµj , z〉〉C
∣∣2 ≤ a

(
a+

√
2
)
+

(
1 + 2a(a+

√
2)

)
〈〈eµj , z0〉〉C

≤ 1
2
(
1 + 2a(a+

√
2)

)(
1 + 2xj(z0)

)
.

Now (4.5) and (4.6) yield

∣∣〈〈eµj ,X〉〉C
∣∣2 ≤ (

1 + 2 〈〈eµj , z0〉〉
2)〈X ,X〉h

≤
(
1 + 2xj(z0)

)
〈X ,X〉h .

The claim follows from inserting these inequalities into (4.8).
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Now, we collect the information.

Proof of Proposition 4.1. (Analyticity of gJ\I). W.l.o.g. we may assume that the

function h lies in some space Cα(4) with α < π
2 . We pick a > 0 so small that

2a
(
a+

√
2
)
< sinα < 1 .

Let z ∈ UI ⊂ Hn ⊂ Cn,1 as above. Then for all but finitely many j ∈ J \ I, the value
xj(z0) is sufficiently large that Corollary 4.3 applies. Let J ′ ⊂ J \ I be the subset of
these indices. It is sufficient to show that the series

∑
j∈J ′ gj converges uniformly on

the ball

B(z0, a) =
{
z = z0 + ξ ∈ C

n,1
∣∣ 〈〈ξ , ξ〉〉h ≤ a2

}
.

Then, the Cauchy integral formula implies that the limit is holomorphic and hence

real analytic even after restricting to Hn again. This implies that gJ\I is analytic.

To prove the uniform convergence, note that by Corollary 4.3 we have

|h(xj(z))| ≤ Const |xj(z)|−�

|xj(z)|−2 ≤ (1− sin(α))−2 |xj(z0)|−2 .

By Corollary 4.4 we see

∣∣〈〈. ,KC

j |z〉〉C 〈〈K
C

j |z , .〉〉C
∣∣
h
≤ 4

(
1 + 2xj(z0)

)2
.

Using again that |xj(z0)| is bounded away from 0 for j ∈ J ′, we combine these

inequalities and obtain

∣∣gC

j |z

∣∣
h
≤ η2Const′ |1 + xj(z0)|−� .

Note that 1 + xj(z0) = cosh2(rj(z0)) ≥ 1
4
exp(2rj(z0)). Hence,

∣∣gC

j |z

∣∣
h
≤ η2 Const′′ e−2�rj(z0) .

Since by hypothesis 24 > n−1, we conclude from Lemma 3.2 that the right hand side
indeed converges.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



5. CURVATURE COMPUTATIONS

Our next goal is to compute the curvatures of the Riemannian manifold (M̂, g)

introduced in Theorem 3.7. In this section we restrict ourselves to the open dense

domain Ω̂ := π−1(Ω) ⊂ M̂ so that the Poincaré series from (3.4) is at our disposal.

Later, in Section 7, we shall determine the curvatures at points p̂ ∈ M̂ \ Ω̂ by means
of limiting arguments.

Whenever there are two Riemannian metrics g and 〈. , .〉 on the same domain Ω,
their covariant derivatives ∇ and D, respectively, are related through the equation

(5.1) ∇XY = DXY +G−1B(X, Y )

where G:TΩ→ TΩ is the symmetric endomorphism which represents g with respect

to 〈. , .〉, i.e. g = 〈. , G · .〉, and where the tensor field B:TΩ× TΩ→ TΩ is defined by

(5.2) 2〈B(X, Y ) , Z〉 = DXg(Y, Z) +DY g(X,Z)−DZg(X, Y ) .

It is more standard to introduce the Christoffel tensor Γ = G−1B right away by

replacing the left hand side of (5.2) by 2g (Γ(X, Y ), Z). With this notation the (3, 1)-

curvature tensors R and R0 of the metrics g and 〈. , .〉, respectively, are related by

(5.3)
R(X, Y )Z = R0(X, Y )Z +DXΓ(Y, Z)−DY Γ(X,Z)

+ Γ(X,Γ(Y, Z))− Γ(Y,Γ(X,Z)) .

Passing to the (4, 0)–curvature tensors R# = g
(
R(. , .). , .

)
and R#

0 = 〈R0(. , .). , .〉,
this formula can be rewritten as
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(5.4)

R#(X, Y ;Z,W )

=
1
4

[
R#
0 (GX, Y ;Z,W )+R

#
0 (X,GY ;Z,W )+R

#
0 (X, Y ;GZ,W )+R

#
0 (X, Y ;Z,GW )

]

− 1
2

[
D2

{X,W}g(Y, Z)−D2
{Y,W}g(X,Z)−D2

{X,Z}g(Y,W ) +D2
{Y,Z}g(X,W )

]

−
[
〈B(X,W ) ,G−1B(Y, Z)〉 − 〈B(Y,W ) ,G−1B(X,Z)〉

]

where D2
{X,W}g(Y, Z) :=

1
2

[
D2
X,W g(Y, Z) + D2

W,Xg(Y, Z)
]
is symmetrical in the ar-

guments X and W as well as in Y and Z. There are two reasons why the expression

given in (5.4) is much more suitable for the curvature computations in our example

than formula (5.3) :

(1) the right hand side in (5.4) comes as a sum of three tensors which sepa-

rately obey all the algebraic symmetries of a curvature tensor. Therefore,

these pieces can be estimated separately in terms of the eigenvalues of the

corresponding bilinear form on Λ2TΩ ;7

(2) evidently, the first two lines in the expression for R# constitute a linear

differential operator in g of 2nd order. Moreover, the map g �→ B is a linear

differential operator of 1st order. So the third term in the expression for R#

depends quadratically on the 1st derivatives of g, and the factor G−1 in each

pairing resembles a common denominator, which depends pointwise linearly

on g.

The next step is to evaluate the various terms on the right hand side of (5.4)

when g is the Poincaré series g0 +
∑
j∈J gj from (3.4). This is quite straightforward

except for a slight subtlety8 due to the last line in (5.4), which we may think of as an

essentially quadratic interaction term in an otherwise linear context.

7 Our sign conventions for the curvature operator R̂: Λ2TΩ→ Λ2TΩ or rather for
its associated bilinear form R̂#: Λ2TΩ × Λ2TΩ → R are explained by the equation
R̂#(X ∧ Y, Z ∧ W ) = −R#(X, Y ;Z,W ) . So, with our conventions, the curvature
operator of Hn is negative definite.

8 We explain this problem in detail below in Corollary 5.3.
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Recall that in our context g0 = 〈. , .〉 denotes the standard hyperbolic metric.
The metric g is defined as a Poincaré series where each term gj corresponds to a

particular Killing field Kj on Hn by means of (3.3). We shall find it convenient to

introduce for each j ∈ J some more objects related to the very special nature of

Kj . Since the corresponding group ϑj(R/2πZ) of rotations has a subspace H
n−2
j ⊂

Hn of codimension 2 as its fixed point set, it is clear that the endomorphism field

DKj has rank 2 at every point p ∈ H
n. Recall that xj = |Kj|2 = sinh2 rj where

rj = dist( . ,Hn−2
j ). On each domain Hn \ H

n−2
j we introduce the unit vector fields

vj := gradg0 rj and ξj := |Kj|−1Kj ≡ x
−1/2
j Kj. These two vector fields form an

orthogonal basis for the image of DKj , which is actually an integrable distribution

on Hn. Its leaves are 2–dimensional, totally geodesic subspaces which intersect H
n−2
j

orthogonally. It is easy to check that 〈−DKj
Kj , vj〉 = 〈Dvj

Kj ,Kj〉 = 1
2 dvj

xj =

x
1/2
j (1 + xj)1/2, and thus

(5.5) DKj = (1 + xj)1/2
(
〈. , vj〉ξj − 〈. , ξj〉vj

)
,

or equivalently,

(5.5′) |Kj|2DKj = 〈. ,Kj〉DKj − 〈. ,DKj〉Kj .

On H
n \H

n−2
j the orthogonal projector Pj onto the image of DKj is given by

(5.6) Pj = 〈. , vj〉vj + 〈. , ξj〉ξj .

The dual bilinear form pj = 〈. , Pj .〉 coincides with (1 + xj)−1〈DKj ,DKj〉, and thus
Pj and pj are actually real analytic tensor fields on all of Hn. Note, however, that

the components

(5.7)
pvj :=〈. , vj〉〈vj , .〉

pξj :=〈. , ξj〉〈ξj , .〉

of pj do not even extend continuously across H
n−2
j . Still, these fields constitute a

useful shorthand notation. The same is true for

(5.7′)
paj :=p

v
j − pξj and

pbj :=〈. , vj〉〈ξj , .〉+ 〈. , ξj〉〈vj , .〉 .
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5.1. Lemma. — Let g be the metric on Ω ⊂ H
n defined in Theorem 3.7. Then, the

first two lines in the expression for R# can be evaluated as follows

(5.8)

1
4

[
R#
0 (GX, Y ;Z,W ) +R#

0 (X,GY ;Z,W )

+R#
0 (X, Y ;GZ,W ) +R#

0 (X, Y ;Z,GW )
]

= −(g0 ©∧ g0)(X, Y ;Z,W )−
∑
j∈J

η2x−1
j h(xj) (g0 ©∧ pξj)(X, Y ;Z,W )

and

(5.9)

1
2

[
D2

{X,W}g(Y, Z)−D2
{Y,W}g(X,Z)−D2

{X,Z}g(Y,W ) +D2
{Y,Z}g(X,W )

]

=
∑
j∈J

[
Tj(X, Y ;Z,W ) + η2(2h′(xj)− x−1

j h(xj)) (g0 ©∧ pξj)(X, Y ;Z,W )
]

where

(5.9′) Tj := η2(1 + xj)
(
2h′′(xj)− x−1

j h′(xj) + x−2
j h(xj)

)
pj ©∧ pj .

The basic facts about the ©∧–product of symmetric bilinear forms are summarized

in Appendix A.

Proof. The curvature tensor of the standard hyperbolic metric is R#
0 = −g0 ©∧ g0.

Hence, the first line in the expression for R# equals

−g0 ©∧ 〈. , G .〉(X, Y ;Z,W ) .

Since 〈. ,G .〉 = g ≡ g0 +
∑
j∈J gj , we can deduce Formula (5.8) by purely formal

manipulations using Equation (3.3). The relevant issues of convergence have been

dealt with in Proposition 4.1.

In order to obtain Equation (5.9) we note that by the same reasoning as in

Section 4 the Poincaré series of Theorem (3.7) may be differentiated term by term.

Hence, we get
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DXg(Y, Z)(5.10)

=
∑
j∈J

[
2η2x−2

j

(
h′(xj)−2x−1

j h(xj)
)
〈Kj ,DXKj〉〈Y ,Kj〉〈Kj , Z〉

+ η2x−2
j h(xj)

(
〈Y ,DXKj〉〈Kj , Z〉+ 〈Y ,Kj〉〈DXKj , Z〉

)]

and

(5.11)

D2
X,W g(Y, Z)

=
∑
j∈J
4η2x−2

j

(
h′′(xj)− 4x−1

j h′(xj) + 6x−2
j h(xj)

)

〈Kj ,DXKj〉〈Kj ,DWKj〉〈Kj , Y 〉〈Kj , Z〉

+
∑
j∈J
2η2x−2

j

(
h′(xj)−2x−1

j h(xj)
)

[
〈Kj , Y 〉〈Kj , Z〉

(
〈DXKj ,DWKj〉 − 〈R0(Kj, X)W ,Kj〉

)

+ 〈Kj , Y 〉
(
〈Kj ,DWKj〉〈DXKj , Z〉+ 〈Kj ,DXKj〉〈DWKj , Z〉

)

+ 〈Kj , Z〉
(
〈Kj , DXKj〉〈DWKj , Y 〉+ 〈Kj ,DWKj〉〈DXKj , Y 〉

)]

+
∑
j∈J

η2x−2
j h(xj)

[
〈DWKj , Y 〉〈DXKj , Z〉+ 〈DXKj , Y 〉〈DWKj , Z〉

− 〈R0(Kj, X)W ,Y 〉〈Kj , Z〉 − 〈Kj , Y 〉〈R0(Kj, X)W ,Z〉
]
.

In this computation we have used the identity D2
X,WKj + R0(Kj, X)W = 0 in

order to determine the second derivatives D2Kj .

Modifying just the last line in this display, we pass from D2
X,W g to D2

{X,W}g.

We insert this expression into the left hand side of (5.9). After expressing Kj and

DKj in terms of vj and ξj , we just need to collect terms appropriately, using just the

definitions of pj , p
ξ
j , and the ©∧–product.

5.2. Lemma. — Let g be the metric on Ω ⊂ Hn defined in Theorem 3.7. Then, the

bilinear mapB introduced in Equations (5.1) and (5.2) is given as a sum B =
∑
j∈J Bj

where

(5.12)
Bj(Y, Z) := −η2x−1/2

j (1+xj)
1/2

h′(xj) p
ξ
j(Y, Z) vj

+η2x−1/2
j (1+xj)

1/2(
h′(xj)− x−1

j h(xj)
)
pbj(Y, Z) ξj .
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Proof. The series of the right hand side of (5.10) is locally absolutely convergent,

and thus it may be inserted into the right hand side of Formula (5.3). We use the

notations and elementary properties expressed in Equations (5.5)–(5.7′) and collect

terms appropriately, hence Formula (5.12).

Let us extend the ©∧–product of symmetric bilinear forms to a ©∧–product de-

fined for triples consisting of a symmetric bilinear form l:TΩ× TΩ → R and of two

symmetric bilinear maps B1, B2:TΩ× TΩ→ TΩ

(B1 ©∧ l B2)(X, Y ;Z,W )

:=
1
2

[
l
(
B1(X,W ), B2(Y, Z)

)
− l

(
B1(Y,W ), B2(X,Z)

)
(5.13)

− l
(
B1(X,Z), B2(Y,W )

)
+ l

(
B1(Y, Z), B2(X,W )

)]
.

Again B1 ©∧ l B2 has all the algebraic symmetries of a curvature tensor. For a sym-

metric endomorphism L:TΩ → TΩ we shall also use the shorthand B1 ©∧LB2 :=

B1 ©∧〈. , L.〉B2.

With this notation we can summarize the content of Equation (5.4) and of the

Lemmas 5.1 and 5.2 as follows.

5.3. Corollary. — Let g be the metric on Ω ⊂ Hn defined in Theorem 3.7. Then,

the (4, 0)–curvature tensor of this metric is given by

(5.14) R# = −g0 ©∧ g0 −
∑
j∈J

[
Tj + 2η2h′(xj) g0 ©∧ pξj

]
−

∑
(j1,j2)
∈J×J

Bj1 ©∧G−1 Bj2

where the fields Tj and Bj are given by (5.9′) and (5.12), respectively.

Still, Formula (5.14) is not the expression for the curvature tensor of g which we

eventually want to have. The tensor fields T :=
∑
j∈J

[
Tj + 2η2h′(xj) g0 ©∧ pξj

]
and

B =
∑
j∈J Bj blow up too quickly when the footpoint p approaches the boundary of

Ω. In particular, they do not extend continuously from Ω̂ to all of M̂ . On the other

hand, R# is the curvature tensor of a real analytic metric g on M̂ , and thus R# is a

globally defined, real analytic, and hence continuous tensor field on M̂ .

To be more explicit about this phenomenon, we pick a subspace H
n−2
j0
in our

collection, a point p∞ ∈ U{j0} ∩ H
n−2
j0
, and a sequence (pµ)∞µ=1 ∈ U{j0} ∩ Ω which
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converges to p∞ in H
n. Using just the definition of Uj0 and Formulae (3.3), (3.4),

and (5.9′), it is easy to compute the asymptotic behaviour of g©∧ g and T in the limit

where pµ → p∞. In particular,

(g©∧ g)(vj0 , ξj0; ξj0 , vj0)|pµ
∼ η2xj0(pµ)

−1 and(5.15)

T (vj0 , ξj0 ; ξj0 , vj0)|pµ
∼ Tj0(vj0 , ξj0 ; ξj0 , vj0)|pµ

(5.16)

∼ η2xj0(pµ)
−2 .

As explained above, Formula (5.15) implies that R#(vj0 , ξj0 ; ξj0, vj0)|pµ
is bounded

by const η2 xj0(pµ)
−1 as µ →∞. Hence, the leading order term in the expansion of

Tj0 must cancel versus a suitable counterterm in B©∧G−1 B.

In order to get reasonable estimates for R# on a term by term basis, we need to

perform this cancelation explicitly. Looking at the special case9 where J = {j0}, it
seems natural to try the “self–interaction” term Bj0 ©∧ (1l+Gj0 )

−1 Bj0 for canceling the

leading order term of Tj0 for each j0 in the case of a large index set J as well. We are

going to handle the various domains UI ∩Ω, where I runs over all finite subsets of J ,
separately. For ease of notation, we introduce for any subset J ′ ⊂ J the partial sums

(5.17) BJ ′ :=
∑
j∈J ′

Bj and TJ ′ :=
∑
j∈J ′

Tj .

5.4. Lemma. — Let g be as above. Then, there exist constants c1, c2, and c3

depending on n, d0, h, and N̂ such that on any nonempty set Ω ∩ UI one has

−c1 g0 ©∧ g0 ≤
∑

j∈J
2h′(xj) g0 ©∧ pξj ≤ c1 g0 ©∧ g0(i)

−c2η2 g0 ©∧ g0 ≤ TJ\I ≤ c2η
2 g0 ©∧ g0(ii) ∥∥BJ\I∥∥ ≤ c3η

2(iii)

−c3η4 g0 ©∧ g0 ≤ BJ\I ©∧G−1 BJ\I ≤ c23η
4 g0 ©∧ g0 .(iv)

9 This is compatible with Axiom 3.1. It is only the more special setting covered
by the theorems in the introduction which always leads to countably infinite sets J .
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Here, ‖ ‖ stands for the operator norm of symmetric bilinear maps.10

Proof. The standard properties of the cone condition imply that the functions h′(x),

x−1h(x) , (1 + x) h′(x) , x−1(1 + x) h′′(x) , and x−2(1 + x) h(x) are bounded by

const |x|−�−1 for x ≥ sinh2 1
2
d0. Note that the functions h, h′, and h′′ themselves

are also bounded on [0, sinh2 1
2 d0]. Since by hypothesis 4 >

n−1
2 , we obtain absolute

convergence by means of Lemma 3.2. In fact,

c1 := sup
p∈Hn

∑
j∈J

∣∣h′(xj(p))∣∣

c2 := sup
p∈UI

∑
j∈J\I

(1 + xj)
∣∣h′′(xj)− x−1

j h′(xj) + x−2
j h(xj)

∣∣

c3 := sup
p∈UI

∑
j∈J\I

x
−1/2
j (1 + xj)

(∣∣h′(xj)− x−1
j h′(xj)

∣∣+ ∣∣h′(xj)∣∣)

are finite numbers. In order to establish (i)–(iii), it remains to point out that

0 ≤ 2g0 ©∧ pξj ≤ g0 ©∧ g0 , that 0 ≤ pj ©∧ pj ≤ g0 ©∧ g0, and that max{|pξj(W,W )|,
|pbj(W,W )|} ≤ 〈W ,W 〉. In order to deduce the bounds for BJ\I ©∧G−1 BJ\I given

in (iv), we need to employ in addition the inequality G ≥ 1l as well as Lemma A.1 (iii).

5.5. Proposition. — Let g be the metric on Ω ⊂ Hn defined in Theorem 3.7, and

let I ⊂ J be any finite subset. Then, on Ω∩UI , the curvature tensor of g is given by

(5.18)

R# =− g0 ©∧ g0 −
∑
i∈I

(
1+η2h′(xi)

)(
ϕ0(η, xi)− ϕ1(η, xi)

)
pi©∧ pi

− TJ\I −
∑
j∈J
2η2h′(xj) g0 ©∧ pξj −

∑
i∈I
2η2(1+xi)h′′(xi) pi©∧ pi

−BI ©∧G−1−(1l+GI )−1 BI −
∑
i1,i2∈I

η4h′(xi1)h
′(xi2) p

ξ
i1

©∧ pξi2

− 2BJ\I ©∧G−1 BI − BJ\I ©∧G−1 BJ\I

where B, G, and T are as above, and where

(5.19) ϕ0(η, x) := (1+ x−1)
η2h(x)

x+ η2h(x)
and ϕ1(η, x) := (1+ x−1)

η2xh′(x)
x+ η2h(x)

.

10 By definition ‖B‖ := supY �=0 |Y |−2|B(Y, Y )| = supY �=0,Z �=0 |Y |−1|Z|−1|B(Y, Z)|.
Note that throughout this paper we take the pointwise norm of any tangent vector
w.r.t. the metric g0.
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Proof. Starting with Equations (B.1) and (B.2), it is straightforward to compute that

for any pair of distinct indices i1, i2 ∈ I

(5.20) Bi1 ©∧ (1l+GI )−1 Bi2 = η4h′(xi1)h
′(xi2) p

ξ
i1

©∧ pξi2 .

In the case where i1 = i2 =: i we observe that p
ξ
i ©∧ pξi = pξi ©∧ pbi = 0 and p

b
i ©∧ pbi =

−pi©∧ pi Thus, we get

Bi©∧ (1l+GI )−1 Bi = −
η4(1 + xi)
xi + η2h(xi)

(
−h′(xi) + x−1

i h(xi)
)2
pi©∧ pi

and hence

(5.21)
Ti +Bi©∧ (1l+GI)−1 Bi

=
[(
1+η2h′(xi)

)(
ϕ0(η, xi)− ϕ1(η, xi)

)
+ 2η2(1+xi)h′′(xi)

]
pi©∧ pi .

Identities (5.20) and (5.21) and the convergence result from Lemma 5.4 (i) are

sufficient to deduce the Equation (5.18) directly from Corollary 5.3.

The next task is to control the various terms on the right hand side of (5.18). Of

course, −g0 ©∧ g0 is negative definite.

5.6. Remarks.

(i) By Lemma 5.4 we may absorb the third, fourth, and nineth term in our ex-

pression for R# into −g0 ©∧ g0, provided η > 0 is sufficiently small.

(ii) The cone condition in the hypotheses of Theorem 3.7 implies that c4 :=

supx≥0 |h′(x)| and c5 := supx≥0(1+ x)|h′′(x)| are finite numbers. Hence, the inequal-
ities

−c24 g0 ©∧ g0 ≤
∑
i1,i2∈I

h′(xi1) h
′(xi2) p

ξ
i1

©∧ pξi2 ≤ c24 g0 ©∧ g0

−c5 g0 ©∧ g0 ≤
∑
i∈I
(1 + xi) h′′(xi) pi©∧ pi ≤ c5 g0 ©∧ g0

enable us to absorb the fifth and seventh term on the right hand side of Formula (5.18)

by −g0 ©∧ g0 for small positive values of η, too.

The second term in the expression on the right hand side of (5.18) can be ap-

proximated for small values of η by

(5.22) ΦI :=
∑
i∈I

ϕ0(η, xi) pi©∧ pi
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which is a sum of manifestly positive semidefinite tensor fields which are defined on

the domain Ω ⊂ Hn. The precise estimates are stated in the following lemma.

5.7. Lemma. — Suppose that the function h: [0,∞)→ [0,∞) satisfies the hypothe-
ses of Theorem 3.7, and let c4 := supx≥0 |h′(x)| as above. Then,

(5.23)
∣∣ϕ1(η, x)

∣∣ ≤
{
c4η ϕ0(η, x) for 0 < x ≤ η

1+c4η

c4η (1 + η + c4η) for x ≥ η
1+c4η

.

In particular, for any ε > 0 there exists some η0 ≡ η0(h, ε) > 0 such that for

0 < η < η0 and for any subset I ⊂ J with Ω∩UI �= ∅ the second term in Formula (5.18)
is pinched as follows

−ε g0 ©∧ g0 − (1 + ε) ΦI

≤ −
∑
i∈I

(
1+η2h′(xi)

)(
ϕ0(η, xi)− ϕ1(η, xi)

)
pi©∧ pi(5.24)

≤ ε g0 ©∧ g0 − (1− ε) ΦI .

Proof. Since h is nonnegative and h(0) = 1, it is straightforward to verify Inequal-

ity (5.23). In order to deduce chains of inequalities (5.24) from (5.23), we recall that

|1 + η2h′(x)| ≤ 1 + c4η
2 and that 0 ≤

∑
i∈I pi©∧ pi ≤ g0 ©∧ g0.

It will be shown in the next section that the terms BI ©∧G−1−(1l+GI)−1 BI and

2BJ\I ©∧G−1 BI in our expression for R# can also be absorbed into −g0 ©∧ g0 − ΦI ,
provided that η > 0 is sufficiently small. The relevant estimates are stated precisely

in Proposition 6.1. They require the following additional hypothesis on the collection(
H
n−2
j

)
j∈J of subspaces which enters our construction.

5.8. Axiom. — For any j ∈ J there is a nontrivial rotation �j = ϑj(2π/mj) ∈ Iso(Hn)
which fixes H

n−2
j and maps the divisor

⋃
j′∈J H

n−2
j′ into itself. In other words, each

H
n−2
j shall have a nontrivial stabilizer in the group Γ introduced in the context of

Diagram (3.1).

The result of our considerations can be summarized as follows.

5.9. Theorem. — Suppose that H
n−2
j ⊂ Hn, j ∈ J , is a collection of totally

geodesic, hyperbolic subspaces of codimension 2 which satisfies Axioms 3.1 and 5.8.
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Let h: [0,∞)→ [0,∞) be a real analytic function such that h(0) = 1 and that h lies
in Cα(4) for some α > 0 and some 4 > n−1

2 . Then, for every ε > 0, there exists some

η1 ≡ η1(n, h, d0, N̂ , ε) > 0 such that for any η ∈ (0, η1] the curvature tensor R# of

the metric

(5.25) g = g0 +
∑
j∈J

η2x−1
j h(xj) p

ξ
j

defined in Theorem 3.7 is pinched on each domain Ω ∩ UI as follows

(5.26) −(1 + ε)
(
g0 ©∧ g0 + ΦI

)
≤ R# ≤ −(1− ε)

(
g0 ©∧ g0 + ΦI

)
.

In particular, the curvature operator of g is negative definite on the domain Ω ⊂ Hn,

which is as usual identified with Ω̂ ⊂ M̂ .

Here, ΦI is the tensor field introduced in (5.22). We emphasize that this theorem

is just a summary of Proposition 5.5, Remarks 5.6, Lemma 5.7, and Proposition 6.1.

In view of these facts it is also possible to interpret the summands of ΦI geometrically :

for small values of η and xi the sectional curvature of the plane Ei = span{ξi, vi} is
approximately

(5.27)

K(Ei) ≈
(−g0 ©∧ g0 − ϕ0(η, xi) pi©∧ pi)(vi, ξi, ξi, vi)

g©∧ g(vi, ξi, ξi, vi)

= −1− η2h(xi)
xi + η2h(xi)

1− η2h(xi)
xi + η2h(xi)

≈ − 1
η2 + xi

>
≈ − η−2 .

Note that this curvature is unbounded as η → 0. Clearly, −ϕ0(η, xi) pi©∧ pi is the

dominant term in Formula (5.27).

If
⋃
j∈J H

n−2
j is the pre-image under the covering map pr:Hn → Hn/Γ′ of a

set
⋃N
i=1 V̄

n−2
i which has the symmetry properties assumed in Theorem 1.1, then

the collection
(
H
n−2
j

)
j∈J satisfies indeed Axioms 3.1 and 5.8 as required. Recall that

for each δ > 0 the function hδ(x) := exp(−δx) satisfies the required hypotheses on h
as well, and hence we obtain Theorem 1.1 in the introduction from Theorems 3.7 and

5.9.
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5.10. Remark. —Let us assume in addition to the hypotheses stated in Remark 3.10

that supp(h) ⊂ [0, sinh2 1
2 d0]. Then, the fields BJ\I , TJ\I , and G

−1 − (1l + GI)−1

vanish identically on Ω ∩ UI for each I ⊂ J , and Formula (5.18) reduces to

(5.18′)

R# =− g0 ©∧ g0 −
∑
i∈I

(
1+η2h′(xi)

)(
ϕ0(η, xi)− ϕ1(η, xi)

)
pi©∧ pi

−
∑
i∈I
2η2h′(xi) g0 ©∧ pξi −

∑
i∈I
2η2(1 + xi) h′′(xi) pi©∧ pi

−
∑
i1,i2∈I

η4h′(xi1) h
′(xi2) p

ξ
i1

©∧ pξi2 .

Thus, we get the final chain of inequalities for R# exactly as stated in (5.26), except

that we need not refer to Proposition 6.1 and Axiom 5.8 at all. These considerations

conclude the proof of Theorem 1.4.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



6. SYMMETRIES AND FURTHER ESTIMATES

The purpose of this section is to analyze the sixth and eighth term in the ex-

pression for the curvature tensor R# as computed in Proposition 5.5. The estimates

which have been used to deduce Theorem 5.9 above are summarized in the following

6.1. Proposition. — Suppose that the collection
(
H
n−2
j

)
j∈J of subspaces in H

n and

the function h: [0,∞)→ [0,∞) satisfy the same hypotheses as in Theorem 5.9. Then,

for any ε > 0, there exists a constant η2 = η2
(
n, h, d0, N̂ , ε

)
such that for 0 < η < η2

the following estimates hold on each domain Ω ∩ UI

(i) −ε
(
g0 ©∧ g0 + ΦI

)
≤ BI ©∧G−1−(1l+GI)−1 BI ≤ ε

(
g0 ©∧ g0 +ΦI

)
(ii) −ε

(
g0 ©∧ g0 + ΦI

)
≤ BJ\I ©∧G−1 BI ≤ ε

(
g0 ©∧ g0 + ΦI

)
.

We emphasize that this proposition requires all hypotheses of Theorem 5.9, in-

cluding in particular the Symmetry Axiom 5.8. Its proof is given as a series of lemmas

culminating in 6.8 and 6.9 below.

The first step is to rewrite the terms under consideration in such a way that they

can be estimated more easily. For this purpose, we shall introduce some additional

notation. We consider a fixed (finite!) subset I ⊂ J such that Ω ∩ UI �= ∅. Note that
1l +Gi, 1l +GI , and G = 1l +GI +GJ\I are invertible, and thus we may set

B̂i := (1l +Gi)−1Bi ,(6.1)

LI := GJ\I −GJ\IG
−1GJ\I .(6.2)

A straightforward computation yields

(6.3) LI = GJ\IG
−1(1l +GI) = (1l +GI)− (1l +GI)G−1(1l +GI) ,
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or equivalently,

(6.3′) G−1 − (1l +GI)−1 = −(1l +GI)−1LI(1l +GI )−1 ,

hence our interest in LI . The basic inequalities are

6.2. Lemma. — On Ω ∩ UI , there are the following bounds for the operator norm
of LI and (1l +GI)G−1 in terms of the constant c0 from Proposition 4.1

∥∥LI∥∥ ≤ c0η
2 ,(i) ∥∥(1l +GI)G−1

∥∥ ≤ 1 + c0η
2 .(ii)

Proof. (i) Note that Equation (6.2) implies directly that 0 ≤ LI ≤ GJ\I .

(ii) We apply the bound from Proposition 4.1 to the right hand side of the identity

(1l +GI)G−1 = 1l−GJ\IG
−1.

Next, we shall discuss the quantities B̂i. From (5.12) we obtain

(6.4)
B̂i(Y, Z) = − x

−1/2
i (1+xi)

1/2
β(η, xi) pbi(Y, Z) ξi

− η2x
−1/2
i (1+xi)

1/2
h′(xi) p

ξ
i (Y, Z) vi

where

(6.4′)
β(η, x) :=

η2h(x)
x+ η2h(x)

− x

x+ η2h(x)
η2h′(x)

= x(1+x)−1
(
ϕ0(η, x)− ϕ1(η, x)

)
.

and ϕ0 and ϕ1 are as introduced in (5.19). Recall that |h′(x)| ≤ c4, and hence

|β(η, x)| ≤ 1 + c4η
2. In particular, B̂i has only a singularity of order x

−1/2
i along

H
n−2
i which is much milder than the singularity of Bi itself. The following identities

are easy to check

(6.5) BI ©∧G−1−(1l+GI )−1 BI = −
∑
i1,i2∈I

B̂i1 ©∧LI
B̂i2 ,

(6.6) BJ\I ©∧G−1 BI =
∑
i∈I

BJ\I ©∧G−1(1l +GI)B̂i .
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Moreover, for any i, i1, i2 ∈ I we compute that

(6.5′)

x
1/2
i1

x
1/2
i2
(1+xi1)

−1/2(1+xi2)
−1/2

B̂i1 ©∧LI
B̂i2

= β(η, xi1) β(η, xi2) 〈ξi1 , LI ξi2〉pbi1 ©∧ pbi2

+ η2β(η, xi1) h
′(xi2) 〈ξi1 , LI vi2〉pbi1 ©∧ pξi2

+ η2h′(xi1) β(η, xi2) 〈vi1 , LI ξi2〉p
ξ
i1

©∧ pbi2

+ η4h′(xi1) h
′(xi2) 〈vi1 , LI vi2〉p

ξ
i1

©∧ pξi2

and

(6.6′)

x
1/2
i (1+xi)

−1/2
BJ\I ©∧G−1(1l +GI)B̂i

= β(η, xi) 〈ξi ,(1l +GI)G−1 PiBJ\I( . , . )〉©∧ pbi
+ η2h′(xi) 〈vi ,(1l +GI)G−1 PiBJ\I( . , . )〉©∧ pξi

+ β(η, xi) 〈ξi , Pi(1l +GI)G−1(1l− Pi)BJ\I( . , . )〉©∧ pbi
+ η2h′(xi) 〈vi , Pi(1l +GI)G−1(1l− Pi)BJ\I( . , . )〉©∧ pξi .

By Lemma 5.4 and 6.2 the tensor fields LI , (1l+GI )G−1, and BJ\I are uniformly

bounded on Ω ∩ UI . In fact, the estimates for LI and BJ\I are proportional to

η2. However, because of the factors x1/2i1 x
1/2
i2
(1+xi1)

−1/2(1+xi2)
−1/2 and x1/2i (1+

xi)
−1/2 the straightforward bounds for BI ©∧G−1−(1l+GI)−1 BI and BJ\I ©∧G−1 BI are

still singular near the divisor. Roughly speaking, our plan is to show that

(1) most terms on the right hand side of (6.5′) and (6.6′) actually contain a

hidden zero of the same order, and so they only make a contribution to

BI ©∧G−1−(1l+GI )−1 BI resp. BJ\I ©∧G−1 BI which is small enough to be ab-

sorbed into −g0 ©∧ g0 ;

(2) the remaining terms are of such a special nature that their contribution can

still be dominated by ε(g0 ©∧ g0 + ΦI) despite the fact that it is singular.

The Symmetry Axiom 5.8 is required precisely for these refined estimates. Note

that the terms gJ\I and BJ\I are actually real analytic tensor fields on all of UI and

not just on Ω ∩ UI .

6.3. Lemma. — Let I ⊂ J be as above. Suppose that the collection
(
H
n−2
j

)
j∈J

of subspaces in Hn satisfies Axioms 3.1 and 5.8. Then, the following identities hold
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ANALYTIC MANIFOLDS OF NONPOSITIVE CURVATURE 39

along H
n−2
i ∩ UI for any i ∈ I

PiGJ\I(1l− Pi) = (1l− Pi)GJ\IPi = 0(i)

PiBJ\I
(
(1l− Pi) . , (1l− Pi) .

)
= 0 .(ii)

Similarly, (1l − Pi)BJ\I
(
Pi . , (1l − Pi) .

)
and (1l − Pi)BJ\I

(
(1l − Pi) . , Pi .

)
vanish.

Moreover, PiBJ\I
(
Pi . , Pi .

)
= 0, provided mi ≡ ord �i �= 3.

Proof. Clearly, the isometry �i:Hn → Hn maps each subspace H
n−2
i′ , i

′ ∈ I, into

itself, and it permutes the other subspaces H
n−2
j , j ∈ J \ I. Hence, �∗i (gJ\I) = gJ\I ,

or equivalently

d�iGJ\I = GJ\I d�i .

Since BJ\I is a linear combination of covariant derivatives of gJ\I , we get

d�iBJ\I = BJ\I
(
d�i . , d�i .

)
.

Because of these two identities it is sufficient to observe that at any point p ∈ H
n−2
i

the differential d�i|p acts as a rotation of order mi = ord �i on the 2–dimensional

subspace imPi|p ⊂ TpH
n
i , whereas it acts as the identity on its orthogonal complement

kerPi|p ⊂ TpH
n
i .

6.4. Remarks.

(i) This lemma is the only place in the proof of Proposition 6.1, and hence

in the proof of Theorem 5.9, where we make explicit use of the symmetry

requirements from Axiom 5.8.

(ii) The crucical statement in this lemma is that the terms PiGJ\I(1l− Pi) and

PiBJ\I
(
(1l − Pi) . , (1l − Pi) .

)
vanish along H

n−2
i ∩ UI , and this claim is

essentially equivalent to saying that all the strata ŜI ⊂ M̂ are totally geodesic.

The latter property is actually also a necessary condition forKM̂ ≤ 0 because
of the intrinsic product structure of the SI as explained in Remark 3.8 (ii).

(iii) This explains that the symmetry requirements from Axiom 5.8 are in fact

natural hypotheses for Theorem 5.9. If one wants to drop them, one has to

change the construction of the new metric g in such a way that the strata

ŜI ⊂ M̂ are automatically totally geodesic.
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The next step is to prove estimates11 in a neighborhood of the divisor which

reflect the vanishing results of Lemma 6.3. For this purpose, we need

6.5. Lemma. — Let g be as in Theorem 3.7. Then, there exist constants c6 and c7

depending just on n, h, d0, and N̂ such that on UI ⊂ Hn

∥∥DGJ\I∥∥ ≤ c6η
2 ,(i) ∥∥D2GJ\I

∥∥ ≤ c7η
2 ,(ii) ∥∥DBJ\I∥∥ ≤ 3

2
c7η

2 .(iii)

Proof. The expressions for DgJ\I and for D2gJ\I differ from those given in Formu-

lae (5.10) and (5.11) only with respect to the range of indices j in the overall sum-

mation. Here, this range is restricted to the subset J \ I ⊂ J . Since h satisfies

the cone condition Cα(4) for some α > 0 and some 4 > n−1
2
, it is clear that the

functions (1 + x) h′′(x), x−1(1 + x) h′(x) and x−2(1 + x) h(x) are all bounded by

Const |x|−(n+1)/2 for x ≥ sinh2 1
2 d0. Now, the first two inequalities are direct con-

sequences of Axiom 3.1 and Lemma 3.2. The third inequality in the Lemma follows

from the second one, since

2 〈W ,DXBJ\I(Y, Z)〉

= D2
X,Y gJ\I(Z,W ) +D2

X,ZgJ\I(Y,W )−D2
X,W gJ\I(Y, Z) .

6.6. Lemma. — Under the hypotheses of Theorem 5.9 there exist constants c8, c9,

and c10 depending just on n, h, d0, and N̂ such that on any domain UI ⊂ Hn the

following estimates hold for any i, i1, i2 ∈ I with i1 �= i2

∥∥PiGJ\I(1l− Pi)
∥∥ ≤ c8η

2 x
1/2
i (1 + xi)

−1/2
,(i) ∥∥PiBJ\I((1l− Pi)g. , (1l− Pi) .

)∥∥ ≤ c9η
2x

1/2
i (1 + xi)

−1/2
,(ii) ∥∥Pi1GJ\IPi2∥∥ ≤ c10η

2x
1/2
i1

x
1/2
i2
(1 + xi1)

−1/2(1 + xi2)
−1/2

.(iii)

11 We continue to work with the operator norms taken w.r.t. g0.
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Proof. (i) and (ii) Any point p in the domain UI ⊂ H
n can be reached by a normal

geodesic c: [0, ri(p)] → UI with c(0) ∈ H
n−2
i and ċ(0) ⊥ Tc(0)H

n−2
i . We restrict the

tensor fields in question to c and rely on the Fundamental Theorem of Calculus.

Lemma 6.3 provides the required initial values. Since Pi is parallel along c, we obtain

(6.7)

∥∥PiGJ\I(1l− Pi)|p
∥∥ ≤

∫ ri(p)

0

∥∥D
dt

(
PiGJ\I(1l− Pi)

)
|c(t)

∥∥ dt

≤
∫ ri(p)

0

∥∥Dċ(t)GJ\I∥∥ dt

and

(6.8)
∥∥PiBJ\I((1l− Pi) . , (1l− Pi) .

)
|p

∥∥ ≤
∫ ri(p)

0

∥∥Dċ(t)BJ\I∥∥ dt .

We set c8 := 2max{c0, c6} and c9 := 2max{c3, c7}. If xi(p) ≤ 1, we observe that

ri(p) ≤ 2 tanh ri(p) = 2xi(p)1/2(1 + xi(p))−1/2

and deduce Inequalities (i) and (ii) from (6.7) and (6.8) by means of Lemma 6.5. If

on the other hand xi(p) ≥ 1, we may refer to Proposition 4.1 and Lemma 5.4 (iii)
directly.

(iii) Let i1, i2 ∈ I be distinct elements. Since Pi1Pi2 = 0 along H
n−2
i1

∪ H
n−2
i2
, it

follows from Lemma 6.3 (i) that Pi1GJ\IPi2 vanishes along H
n−2
i1

∪H
n−2
i2
as well. So

here the idea is to integrate suitable bounds for the derivatives of Pi1GJ\IPi2 over

the hyperbolic quadrilateral Qp which is defined by p and its footpoints in H
n−2
i1
,

H
n−2
i1

∩H
n−2
i2
, and H

n−2
i2
. In order to get such bounds we observe that DPi and D2Pi

are uniformly bounded12 on Hn. Hence, Proposition 4.1 and Lemma 6.5 imply that

on the domain UI

(6.9)

∥∥Pi1GJ\IPi2∥∥ ≤ c0η
2 ,∥∥D.(Pi1GJ\IPi2)∥∥ ≤ ĉ6η
2 ,∥∥D2

. ,.

(
Pi1GJ\IPi2

)∥∥ ≤ ĉ7η
2 ,

12 It is not hard to see that

DXPi Y = tanh(ri)
(
〈vi , Y 〉 (1l− Pi)X + 〈X ,(1l− Pi)Y 〉 vi

)
.
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where ĉ6 and ĉ7 depend only on n, h, d0, and N̂ . Now, the claim follows by Lemma B.3

in the Appendix.

6.7. Corollary. — Under the hypotheses of Theorem 5.9 there exist continuous

functions ĉ11, ĉ12: [0,∞)→ [0,∞) such that on any domain Ω∩UI ⊂ Hn the following

estimates hold for any i, i1, i2 ∈ I with i1 �= i2

∥∥Pi(1l +GI)G−1(1l− Pi)
∥∥ ≤ η2ĉ11(η) x

1/2
i (1 + xi)

−1/2
,(i) ∥∥Pi1LIPi2∥∥ ≤ η2ĉ12(η) x

1/2
i1

x
1/2
i2
(1 + xi1)

−1/2(1 + xi2)
−1/2

.(ii)

These estimates are much more suitable for the proof of Proposition 6.1 than the

corresponding inequalities in Lemma 6.6. However, the symmetry argument used in

the proof of that Lemma does not apply directly, since neither (1l +GI)G−1 nor LI
extends even continously from Ω ∩ UI to all of UI .

Proof. (i) Since the projector Pi commutes with 1l +GI , it is clear that

GPi − PiG = GJ\IPi − PiGJ\I

= (1l− Pi)GJ\IPi − PiGJ\I(1l− Pi) .

Hence, Lemma 6.6 (i) implies that

(6.10)
∥∥GPi − PiG

∥∥ ≤ c8η
2x

1/2
i (1 + xi)−1/2 .

The following identity is easy to verify

Pi(1l +GI)G−1(1l− Pi) = (1l +GI)G−1 (GPi − PiG)G−1 (1l− Pi) .

The factors on the right hand side can be controlled separately by means of Inequal-

ity (6.10) and Lemma 6.2 (ii), and it is sufficient to set ĉ11(η) := c8(1 + c0η
2).

(ii) Expanding GJ\I as G − (1l + GI) and commuting the factors (1l + GI) and

Piµ where appropriate, it is also straightforward to verify the equation

Pi1LIPi2 = Pi1 GJ\IG
−1(1l +GI)Pi2

= GJ\IG
−1 Pi1Pi2 GJ\IG

−1(1l +GI)

+ (1l +GI)G−1 Pi1GJ\IPi2 G
−1(1l +GI)

+ (1l +GI)G−1 (GPi1 − Pi1G)G
−1 (GPi2 − Pi2G)G

−1(1l +GI ) .
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Using Inequality (6.10), Lemma 6.2, and Lemma 6.6 (iii) we obtain sufficiently

good bounds for the second and third term in the preceding sum. In order to deal

with the first term, we note that for i1 �= i2 the operator norm of the product Pi1Pi2
is given by

∥∥Pi1Pi2∥∥ = 〈vi1 , vi2〉 = x
1/2
i1

x
1/2
i2
(1 + xi1)

−1/2(1 + xi2)
−1/2

.

Hence Corollary 6.7 (ii) holds with ĉ12(η) :=
(
1 + c0η

2
)2(

c10 + η2(c0+c28)
)
.

It remains to use all these inequalities in order to establish good bounds for the

various terms on the right hand side of Formulae (6.5′) and (6.6′), thereby proving

Proposition 6.1. For this purpose, it is not sufficient to use just the crude estimates∣∣β(η, x)∣∣ ≤ 1 + c4η
2 and η2

∣∣h′(x)∣∣ ≤ c4η
2 mentioned above. Note, however, that by

Inequality (5.23) from Lemma 5.7 we can do quite a bit better

(6.11)
(1+x−1)

∣∣β(η, x)∣∣ ≤ ϕ0(η, x) +
∣∣ϕ1(η, x)

∣∣
≤ (1 + c4η)ϕ0(η, x) + c4η (1 + η + c4η)

and

(6.12)
(1+x−1)η2

∣∣h′(x)∣∣ = η2ϕ0(η, x)
∣∣h′(x)∣∣+ ∣∣ϕ1(η, x)

∣∣
≤ c4η (1+η)ϕ0(η, x) + c4η (1+η+c4η) .

Now, we have finished our preparations and come to the two final lemmata in this

section.

6.8. Lemma. — Under the hypotheses of Theorem 5.9 there exist continuous

functions ĉ13, ĉ14, ĉ15: [0,∞) → [0,∞) such that on any domain Ω ∩ UI ⊂ Hn the

following inequalities hold for any i, i1, i2 ∈ I with i1 �= i2

− η2ĉ13(η) g0 ©∧ g0 ≤ B̂i1 ©∧LI
B̂i2 ≤ η2ĉ13(η) g0 ©∧ g0(i)

− η2
(
ĉ14(η)ϕ0(η, xi) + ĉ15(η)

)
pi©∧ pi(ii)

≤ B̂i©∧LI
B̂i ≤ η2

(
ĉ14(η)ϕ0(η, xi) + ηĉ15(η)

)
pi©∧ pi .

These inequalities enable us to absorb BI ©∧G−1−(1l+GI)−1 BI =
∑
i1,i2∈I B̂i1 ©∧LI

B̂i2

for small η > 0 into −g0 ©∧ g0 − ΦI as claimed in Proposition 6.1 (i).
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Proof. (i) Since |h′(x)| ≤ c4 and |β(η, x)| ≤ 1 + c4η
2 for any x ∈ [0,∞), it follows

directly from Corollary 6.7 (ii) that
∣∣β(η, xi1) β(η, xi2) 〈ξi1 , LI ξi2〉∣∣+ η2

∣∣β(η, xi1) h′(xi2) 〈ξi1 , LI vi2〉∣∣
+η2

∣∣h′(xi1) β(η, xi2) 〈vi1 , LI ξi2〉∣∣+ η4
∣∣h′(xi1) h′(xi2) 〈vi1 , LI vi2〉∣∣

≤ η2(1 + 2c4η2)2ĉ12(η)x
1/2
i1

x
1/2
i2
(1 + xi1)

−1/2(1 + xi2)
−1/2

hence the claim.

(ii) In this case Equation (6.5′) can be simplified substantially using that the

products pbi ©∧ pξi and p
ξ
i ©∧ pξi vanish identically and that p

b
i ©∧ pbi = −pi©∧ pi

(6.13) B̂i©∧LI
B̂i =

(
1 + x−1

i

)
β(η, xi)2〈ξi , LIξi〉 pi©∧ pi .

Using the inequality
∣∣β(η, x)∣∣ ≤ 1 + c4η

2, Formula (6.11), and Lemma 6.2 (i),

we can finish the proof setting ĉ14 := c0(1 + c4η)(1 + c4η
2) and ĉ15 := c0c4(1 + η +

c4η)(1 + c4η
2) .

It remains to deal with the second part of Proposition 6.1. We decompose the

bilinear map PiBJ\I in the expression on the right hand side of (6.6′) as

(6.14) PiBJ\I = B0,i
J,I +B1,i

J,I +B2,i
J,I

where
B0,i
J,I(Y, Z) := PiBJ\I

(
Pi Y , PiZ

)
B1,i
J,I(Y, Z) := PiBJ\I

(
Pi Y , (1l−Pi )Z

)
+ PiBJ\I

(
(1l−Pi )Y , PiZ

)
B2,i
J,I(Y, Z) := PiBJ\I

(
(1l−Pi )Y , (1l−Pi )Z

)
.

It is convenient to introduce

(6.15)
ΨµJ,I,i := β(η, xi)〈ξi ,(1l +GI)G−1Bµ,iJ,I( . , . )〉©∧ pbi

+η2h′(xi)〈vi ,(1l +GI)G−1Bµ,iJ,I( . , . )〉©∧ pξi

(6.16)
ΨJ,I,i := β(η, xi)〈ξi , Pi(1l +GI)G−1(1l− Pi)BJ,I( . , . )〉©∧ pbi

+η2h′(xi)〈vi , Pi(1l +GI)G−1(1l− Pi)BJ,I( . , . )〉©∧ pξi .
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With this notation Formula (6.6′) can be rewritten as

(6.6′′)
BJ\I ©∧ (1l +GI)B̂i

= −x−1/2
i (1+ xi)

1/2(Ψ0
J,I,i +Ψ

1
J,I,i +Ψ

2
J,I,i +ΨJ,I,i

)
.

The relevant estimates can be summarized as follows.

6.9. Lemma. — Under the hypotheses of Theorem 5.9 there exist continuous

functions ĉ16, . . . , ĉ20: [0,∞)→ [0,∞) such that on any domain Ω ∩ UI the following
inequalities hold for any i ∈ I

−η2
(
ĉ16(η)ϕ0(η, xi) + ηĉ17(η)

)
pi©∧ pi + η2ĉ18(η) g0 ©∧ g0(i)

≤ x
−1/2
i (1+ xi)

1/2(Ψ0
J,I,i +Ψ

1
J,I,i

)
≤ η2

(
ĉ16(η)ϕ0(η, xi) + η ĉ17(η)

)
pi©∧ pi + η2ĉ18(η) g0 ©∧ g0

−η2ĉ19(η) g0 ©∧ g0 ≤ x
−1/2
i (1+ xi)

1/2Ψ2
J,I,i ≤ η2ĉ19(η) g0 ©∧ g0(ii)

−η4ĉ20(η) g0 ©∧ g0 ≤ x
−1/2
i (1+ xi)

1/2ΨJ,I,i ≤ η4ĉ20(η) g0 ©∧ g0 .(iii)

Proof. (i) We consider the subspace E = span{vi, ξi} and the symmetric bilinear
forms

bξJ,I,i(Y, Z) := 〈ξi ,(1l +GI)G−1(B1,i
J,I(Y, Z) +B2,i

J,I(Y, Z))〉

bvJ,I,i(Y, Z) := 〈vi ,(1l +GI)G−1(B1,i
J,I(Y, Z) +B2,i

J,I(Y, Z))〉 .

By the definition of B1,i
J,I and B

2,i
J,I it is clear that Corollary A.4 applies to b

ξ
J,I,i

©∧ pbi

as well as to bvJ,I,i©∧ pξi . From Lemma 5.4 (iii) and Lemma 6.2 (ii) we conclude that

‖bξJ,I,i‖ ≤ c3η
2(1 + c0η

2) and ‖bvJ,I,i‖ ≤ c3η
2(1 + c0η

2). Working with δ = x
−1/2
i (1+

xi)
1/2|β(η, xi)| (resp. δ = x

−1/2
i (1+ xi)

1/2|η2h′(xi)|), we obtain

−c3η2(1+c0η2) g0 ©∧ g0

−c3η2(1+c0η2)
(
1+ x−1

i

)(
β(η, xi)2 + η4h′(xi)2

)
pi©∧ pi

≤ x
−1/2
i (1+ xi)

1/2(Ψ0
J,I,i +Ψ

1
J,I,i

)
≤ c3η

2(1+c0η2)
(
1+ x−1

i

)(
β(η, xi)2 + η4h′(xi)2

)
pi©∧ pi

+ c3η
2(1+c0η2) g0 ©∧ g0 .
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In order to control the coefficients of pi©∧ pi, we combine Inequalities (6.11)

and (6.12) with the crude estimates for β(η, x2) and η2h′(xi). As a result we get

Inequality (i) with

ĉ16(η) = c3(1+c0η2)(1+c4η+c4η2+2c24η
3+c24η

4) ,

ĉ17(η) = c3c4(1+c0η2)(1+2c4η2)(1+η+c4η) ,

ĉ18(η) = c3(1+c0η2) .

(ii) Here, we set ĉ19(η) := c9(1+ c0η2)(1+2c4η2) and refer to Lemma 6.2 (ii) and

Lemma 6.6 (ii).

(iii) According to Lemma 5.4 (iii) and Corollary 6.7 (i) the result follows when

setting ĉ20(η) := c3ĉ11(η).
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7. ZERO CURVATURE

It has been shown in Theorem 5.9 that for sufficiently small η the curvature

operator R̂# of the metric g is negative definite on the open dense set Ω̂ ⊂ M̂ and

this defines a metric with negative semi-definite curvature operator on all of M . In

this section we are going to describe the 2–planes E with curvature K(E) = 0. We

will show that our metric has as little zero curvature as is allowed by the fundamental

group of the blow–up π:M → Hn/Γ′.

When constructing g in Theorem 3.7 (iii), we have already seen that the subman-

ifolds π−1(V̄i) ⊂ M̂ are totally geodesic, flat RP
1–bundles. In other words, they split

off a local RP
1–factor. More generally, if V̄i1 ∩ . . . ∩ V̄is �= ∅ for distinct V̄i1 , . . . , V̄is ,

then π−1(V̄i1 ∩ . . . ∩ V̄is) is totally geodesic and splits off a local torus–factor of di-
mension s. In Theorem 7.3 we show that all zero curvatures of the metric g come

from these product submanifolds.

In the second part of this chapter, we show that the existence of the submanifolds

π−1(V̄i1 ∩ . . . ∩ V̄is) follows from algebraic properties of the fundamental group, and

so do the basic geometric properties of V̄i1 , . . . , V̄is . More precisely, if M
∗ is another

compact, real analytic, Riemannian manifold with K ≤ 0 and π1(M∗) ∼= π1(M), then

we find in M∗ similar totally geodesic product submanifolds. The details are given

in Theorem 7.8. Roughly speaking, this result implies that all zero curvatures of the

metric g are enforced by the fundamental group.

We start with the description of the planes E ⊂ Tp̂M̂ with K(E) = 0. Since the

metric has strictly negative sectional curvature on Ω̂, the footpoint p̂ must lie in some

singular stratum ŜI , I �= ∅. At p̂ ∈ ŜI the tangent space of M̂ splits naturally as an

orthogonal sum

(7.1) Tp̂M = Tp̂FI ⊕ νp̂ŜI ⊕HŜ,p̂
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where FI denotes the foliation of ŜI ⊂ M̂ by the fibres of the blow–up πI : M̂ → H
n,

i.e. by flat tori T# I := (R/πηZ)# I , where HŜ,p̂ is the horizontal space of πI := π|ŜI
,

and where νp̂ŜI stands for the normal space of ŜI at p̂. Evidently,

Tp̂ŜI = Tp̂FI ⊕HŜ,p̂ .

We shall find it convenient to introduce the shorthand

(7.2) Hp̂ := νp̂ŜI ⊕HŜ,p̂ .

In fact, the subbundles TFI and νŜI of TM̂ |ŜI
even split naturally as an orthogonal

sum of # I line bundles

(7.3) TFI =
⊕
i∈I Li and νŜI =

⊕
i∈I L

ν
i .

This decomposition is characterized by the property that the plane bundles Li ⊕ Lνi
extend (imPi)|Ω to an analytic plane bundle Êi on Si∪Ω̂ for any i ∈ I. More precisely,
each Êi is the pull-back of the corresponding bundle Ei = imPi ⊂ THn under the
blow–up.

7.1. Proposition. — Let I ⊂ J and suppose that η > 0 is sufficiently small 13.

Then, at any point p̂ ∈ ŜI , the metric g has strictly negative sectional curvature

(i) on each plane Êi|p̂, i ∈ I, and

(ii) on any plane E ⊂ Hp̂.
In fact, the restriction of the curvature operator R̂# to Λ2Hp̂ is negative definite.
The proof of this proposition will be given later in this section. The method is

to approximate the plane E ⊂ Tp̂M̂ in question by a sequence E(µ) of planes whose
footpoints p̂µ lie in Ω̂. We then compute the limit

(7.4) K(E) = lim
µ→∞

K(E(µ)) .

By similar limiting arguments we can read off directly that the metric g has in fact
zero curvature on at least those planes which are required by Remark 3.8 (ii).

7.2. Proposition. — Let η > 0 be sufficently small13. Then, at a given point
p̂ ∈ ŜI , the curvature K of the metric g vanishes on

(i) any plane E ⊂ Tp̂FI , and on
(ii) any plane E which intersects Êi|p̂ orthogonally in Li|p.

13 cf. Theorem 5.9.

SÉMINAIRES & CONGRÈS 1
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By continuity we know already that the sectional curvature of (M̂, g) is non-

positive. This extra piece of information is enough to deduce from Propositions 7.1

and 7.2 the following result by purely algebraic manipulations.

7.3. Theorem. — Consider a point p̂ ∈ ŜI , I ⊂ J . Then, under the hypotheses of

Theorem 5.9, the sectional curvature K of the metric g constructed in Theorem 3.7

vanishes on a plane E ⊂ Tp̂M̂ , if and only if

(i) E lies in Tp̂FI , or

(ii) E is the span of a vector w =
∑
i∈I aiK̃i ∈ Tp̂FI and a vector w̄ such that

w̄ is perpendicular to all planes Êi, i ∈ I, with ai �= 0.

7.4. Remark. — Note that E ⊂ Tp̂FI means that E is tangent to the torus factor
of ŜI . If E is spanned by w and w̄ as in the Theorem, let i1, . . . , is ∈ I be the indices

with ai �= 0. Then, p̂ ∈ π−1(Hn−2
i1

∩ . . .∩H
n−2
is
), and this submanifold splits as Ts×D

with an s–dimensional torus factor. The vector w is tangent to Ts, and, since w̄ is

perpendicular to Êik , 1 ≤ k ≤ s, it follows that w̄ is tangent to D. Thus, Theorem 7.3

tells us that all the zero curvatures come from the totally geodesic product manifolds

of the type π−1(Hn−2
i1

∩ . . . ∩H
n−2
is
).

Taking into account the stronger statement that the curvature operator of the

metric g is negative semi-definite everywhere, we can deduce from Proposition 7.1

and 7.2 by standard polarisation formulae a fairly precise structural statement about

the curvature operator along each singular stratum ŜI .

7.5. Theorem. — For any I ⊂ J and any p̂ ∈ ŜI the curvature operator R̂|p̂ of the

metric g has the following properties :

(i) the 1–dimensional spaces Λ2Êi|p̂, i ∈ I, are eigenspaces of R̂#
|p̂ with a strictly

negative eigenvalue ;

(ii) Λ2Hp̂ is an invariant subspace, and the bilinear form R̂|p̂ is negative definite

on this subspace ;

(iii) ker(R̂|p̂) =
(
Λ2Hp̂ ⊕

⊕
i∈I Λ

2Êi|p
)⊥

.

It remains to prove Proposition 7.1. For this purpose, we use the local formulae

for each set ÛI′ such that I ⊂ I ′ ⊂ J . These domains cover ŜI ⊂ M̂ . For convenience

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



50 U. ABRESCH V. SCHROEDER

we shall actually work in the 2# I
′
–fold covering ˆ̂U I′ := WU

I′ × (R/2πZ)# I
′ prI′−→ ÛI .

Note that pr−1
I′ ŜI decomposes into 2

# I′−# I connected components. By slight abuse

of notation we continue to write Li and L
ν
i for the pull–backs pr

∗
I′ Li and pr

∗
I′ L

ν
i

which describe the decomposition of Tˆ̂p
ˆ̂
U I , at some point ˆ̂p ∈ pr−1

I′ (ŜI). For each

i′ ∈ I ′ the field ˆ̂Ki′ = (0; 0, . . . , 1, . . . , 0) is the unique real analytic vector field such

that dπI′
ˆ̂
Ki′ = Ki′ . Evidently,

ˆ̂
Ki|̂̂p

lies in the intersection of Tˆ̂pF̂ with the analytic

lift ˆ̂Ei|̂̂p . Since
ˆ̂
Ki|̂̂p

�= 0, we can use this vector as a generator for pr∗I′ Li |̂̂p. Hence,
the orthogonal sum decomposition stated in the first ormula in (7.3) follows directly

from the next lemma.

7.6. Lemma. — The vector fields
(
1
η
ˆ̂
Ki|̂̂p

)
i∈I form an orthonormal basis for Tˆ̂pF̂

with respect to the metric g from Theorem 7.5.

Proof. For any i1, i2 ∈ I ⊂ I ′ the expression gJ\I′(Ki1 , Ki2) vanishes identically on

SI ⊂ Hn. Thus, it is sufficient to work with the finite piece g0 + gI′ and verify that

on ˆ̂U I′ ∩ ˆ̂Ω the following identity holds

(g0 + gI′)
( ˆ̂
Ki1 ,

ˆ̂
Ki2

)
=

(
xi1+η

2h(xi1)
)
δi1i2 .

Here, we have made use of the fact that by the local geometry of the intersection

〈Ki1 ,Ki2〉 = xi1δi1i2 on UI′ , provided that i1, i2 ∈ I ′. To finish the proof, we recall

that xi1 vanishes identically on SI for any i1 ∈ I and take into account that h(0) = 1

by hypothesis.

The next ingredient into our evaluation of the sectional curvatures along ŜI

are analytic vector fields v̂i on
ˆ̂
U I′ whose restrictions to pr−1

I′ (ŜI) generate the line

bundles Lνi , i ∈ I. For this step it is crucial that we are working on ˆ̂UI′ and not

on its quotient ÛI′ =
ˆ̂
U I′

/
StabI′ . On each hyperplane Wi′ ⊂ (Hn, g0) we choose an

oriented distance function �i′ :Wi →→ R, i.e. |�i′(p)| = dist(p,Hn−2
i′ ). Evidently, its

gradient field v8i′ := gradg0 �i′ takes values in the tangent bundle TWi′ . Moreover, for

any ˆ̂p ∈ WU
I′ ⊂ Wi′ it is clear that v

8
i′ ∈ TWU

I′ . It is standard to extend �i′ and v
8
i′

to functions ˆ̂�i′ :
ˆ̂
UI′ ≡WU

I′ × (R/2πZ)# I
′ → R and horizontal vector fields ˆ̂v

8

i′ on
ˆ̂
U I′ .

Note that (dπI′ ˆ̂v
8

i′)|̂̂p = ±vi |πI′ (̂̂p)
at any point ˆ̂p = (p, ϕ) ∈ ˆ̂U I′ ∩ π−1

I′ (Ω), and hence

the pull–back pr∗I′ Êi is generated by
1
η
ˆ̂
Ki and ˆ̂v

8

i for any i ∈ I ⊂ I ′.
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7.7. Lemma.

(i) The inner products of the vector fields ˆ̂v
8

i′ , i
′ ∈ I ′, with respect to the metric

g0 + gI′ on
ˆ̂
U I′ are given by

(7.5)
(g0 + gI′)

(1
η
ˆ̂
Ki′1

, ˆ̂v
8

i′2

)
= 0

(g0 + gI′)
( ˆ̂v8i′1 , ˆ̂v8i′2

)
= δi′1i′2 + (1−δi′1i′2) tanh �i′1 tanh �i′2 .

(ii) At any point ˆ̂p ∈ pr−1
I′

(
ŜI

)
the vectors (ˆ̂v

8

i |̂̂p)i∈I form an orthogonal basis of

almost unit vectors for the normal space pr∗I′
(
νŜI

)
|̂̂p of pr

−1
I′

(
ŜI

)
w.r.t. the metric g

on M̂ . In particular,

(7.6) 1− c0η
2 ≤ g

(̂̂
v
8

i ,
ˆ̂v
8

i

)
|̂̂p ≤ 1 + c0η

2 ,

where c0 is the constant from Proposition 4.1.

(iii) A non–trivial vector w ∈ Hp̂, p̂ ∈ ŜI , is orthogonal to νp̂ŜI with respect to

the metric g on M̂ if and only if its image dπI′ |p̂w ∈ TπI′ (p̂)H
n is orthogonal to all

spaces Ei|π
I′ (p̂) , i ∈ I, with respect to the hyperbolic metric.

By construction it is clear that pr∗I′ L
ν
i |̂̂p = R ˆ̂v

8

i |̂̂p for any i ∈ I and any point
ˆ̂p ∈ pr−1

I′ ŜI , and thus the lemma implies the orthogonal sum decomposition of νŜI
described in the second formula in (7.3).

Proof. (i) On the open dense set pr−1
I′ (Ω̂) these formulae are a mere restatement of

the local trigonometric properties of the divisor listed in (B.1). By continuity they

can be extended to the entire domain ˆ̂U I′ .

(ii) and (iii) As explained in Lemma 6.3 (i), the symmetry properties from

Axiom 5.8 imply that

(7.7) gJ\I′
(
dπI′ v

8
i′1
, dπI′ v

8
i′2

)
= 0

for any pair of distinct indices i′1, i
′
2 ∈ I ′. However, in the case that i′1 = i′2 we only

have the inequality

(7.7′) gJ\I′
(
dπI′ v

8
i′1
, dπI′ v

8
i′1

)
≤ c0η

2

from Proposition 4.1. The claim follows when combining Formulae (7.5), (7.7), and

(7.7′).
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Proof of Proposition 7.1. (i) For any i ∈ I it follows from Theorem 5.9 that

−(1+ ε) η−2
(
xi +

(1 + xi)η2h(xi)
xi + η2h(xi)

)
|̂̂pν

≤ pr∗I′
(
R#

)(
1
η
ˆ̂
Ki ,
ˆ̂v
8

i ,
ˆ̂v
8

i ,
1
η
ˆ̂
Ki

)
|̂̂pν

≤ −(1−ε) η−2
(
xi +

(1 + xi)η2h(xi)
xi + η2h(xi)

)
|̂̂pν

for any sequence of points ˆ̂pν ∈ pr−1
I′ (Ω̂) converging to ˆ̂p. In the limit, we obtain

−(1+ε) η−2 ≤ pr∗I′
(
R#

)(
1
η
ˆ̂
Ki ,
ˆ̂v
8

i ,
ˆ̂v
8

i ,
1
η
ˆ̂
Ki

)
|̂̂p ≤ −(1−ε) η−2 ,

hence the claim.

(ii) A similar argument based on the horizontal vector fields w1 and w2 yields

−(1+ε)
(
g0 ©∧ g0 +

∑
i′∈I′\I

Φi′
)
(w1, w2;w2, w1)|p̂

≤ R#(w1, w2;w2, w1)|p̂

≤ −(1−ε)
(
g0 ©∧ g0 +

∑
i′∈I′\I

Φi′
)
(w1, w2;w2, w1)|p̂ .

Note that xi′(p̂) �= 0 for i′ ∈ I ′ \I and p̂ ∈ ŜI . Since the area g©∧ g(w1, w2;w2, w1)|p̂ is

finite, the inequality proves that the plane span{w1, w2} ⊂ Tp̂M̂ has bounded, strictly

negative sectional curvature.

Our next goal is to show that the manifold M has as little zero curvature as

allowed by the fundamental group. In other words, we shall reconstruct all the zero

curvatures ofM from its fundamental group. By Theorem 7.3 it is sufficient to recover

the submanifolds π−1
(
V̄i1 ∩ . . .∩ V̄is

)
from the fundamental group ofM and recognize

them as flat Ts–bundles.

More precisely, we shall consider another n–dimensional manifold M∗ with a

complete, real analytic Riemannian metric of non-positive sectional curvature and

with isomorphic fundamental group π1(M) ∼= π1(M∗). We represent M = M̃/∆ and

M∗ = M̃∗/∆∗, where M̃ , M̃∗ are the universal covering spaces, and where ∆ and ∆∗

are the deck-transformation groups. Note that ∆ and ∆∗ are isomorphic. In a first
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step we describe the geometric structure of M̃ and relate it to the algebraic structure

of ∆. Afterwards, in Theorem 7.8, we reconstruct the geometric structure of M̃∗ from

the algebraic structure of ∆∗(∼= ∆).

To begin with, we observe that the pre-image of the embedded submanifolds

π−1(V̄i) ⊂ M under the canonical projection M̃ → M consists of a collection of

totally geodesic hypersurfaces Yj ⊂ M̃ , j ∈ J̃ . In fact, since the covering M̃ → M

factors over M̂ , the Yj can also be described as the connected components of the pre-

images of the various singular varieties π−1(Hn−2
 ) ⊂ M̂ ,  ∈ J . By Theorem 3.7 (iii)

Yj splits isometrically as Yj = Y ′
j × R. From the description of the zero curvatures

of M we conclude that R is the euclidean de Rham factor, i.e., Yj does not split

off a higher dimensional euclidean factor. Let ∆j :=
{
γ ∈ ∆

∣∣ γYj = Yj
}
, then

Yj/∆j is compact and can be identified with a component of one of the submanifolds

π−1(V̄i) ⊂M , i = 1, . . . , N .

From the properties of the metric on M̂ as described in Theorem 3.7 (iii) we see

that there is an element αj ∈ ∆j operating as identity× translation on Y ′
j ×R in such

a way that the translational part is minimal. The pair α±1
j is uniquely determined by

the minimality condition. The displacement function of each of these two elements is

constant on Yj , and thus αj is a Clifford translation. However, αj acts as −1l on the 1–
dimensional normal space of Yj. Hence, αj is an orientation reversing isometry of M̃ .

The group 〈αj〉 ∼= Z is a normal subgroup of ∆j , and by [E1] it can be characterized

as the unique maximal normal abelian subgroup of ∆j . Hence, ∆j is contained in the

normalizer N(〈αj〉). We claim that indeed

(7.8) ∆j = N(〈αj〉) .

To see this, we consider γ ∈ N(〈αj〉). Then, γαjγ−1 = α±1
j . Let c be an axis of αj.

The description of the operation of αj shows that c = {p′}×R ⊂ Yj . Since α±1
j (c) = c

we have αj
(
γ−1(c)

)
= γ−1(c), which means that γ−1(c) is an axis of c, too. Thus Yj

is invariant under γ.

We consider now the case that Yj ∩ Yk �= ∅. By the construction of the metric
the intersection is orthogonal, i.e., πYj

(Yk) = Yj ∩ Yk where πYj
is the orthogonal
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projection onto Yj . Therefore αj leaves Yk invariant. Furthermore, αj operates as a

Clifford translation on Yj ∩Yk. On the normal space of the hypersurface Yj ∩Yk ⊂ Yk

it acts as −1l, and thus αj is orientation reversing when considered as an isometry
of Yk. The intersection Yj ∩ Yk splits isometrically as Y ′

jk × R
2, and αj , αk operate

as translations on the R2–factor. More generally, if I ⊂ J̃ is a subset such that

YI :=
⋂
i∈I Yi �= ∅, then YI = Y ′

I × R# I , and the αi, i ∈ I, leave YI invariant. They

are translations generating a lattice in R# I .

Next, we show how to recover all these geometric properties from purely algebraic

properties of the fundamental group.

7.8. Theorem. — Let M∗ = M̃∗/∆∗ be an n–dimensional, real analytic Rieman-

nian manifold with nonpositive sectional curvature such that there is an isomorphism

ϕ: ∆→ ∆∗. Then,

(i) M∗ is compact ;

(ii) for any α∗
j := ϕ(αj), j ∈ J̃ , there are complete, totally geodesic submanifolds

Y ∗
j ⊂ M̃∗, j ∈ J̃ , of codimension 1 which split isometrically as Y ∗

j
′ × R

such that the isometry α∗
j leaves Y

∗
j invariant and operates as identity ×

translation. In the directions perpendicular to Y ∗
j the differential of α

∗
j acts

as −1l ;

(iii)
{
γ∗ ∈ ∆∗ ∣∣ γ∗Y ∗

j = Y ∗
j

}
= ϕ(∆j) ;

(iv) Y ∗
j ∩ Y ∗

k �= ∅ ⇔ Yj ∩ Yk �= ∅ and in this case the intersection is orthogonal ;

(v) for any finite subset I ⊂ J̃ one has

Y ∗
I :=

⋂
i∈I

Y ∗
i �= ∅ ⇔ YI :=

⋂
i∈I

Yi �= ∅ .

Moreover, these sets Y ∗
I split isometrically as Y

∗
I
′ × R# I , and the α∗

i , i ∈ I, span a

lattice in the euclidean factor.

Before we prove the theorem, we recall some results about topological properties

which are determined by the fundamental group. In particular, we are concerned with

the compactness and orientability.
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7.9. Lemma. — Let Γ be an abstract group. Then,

(i) a properly discontinuous, fixed point free action of Γ on a manifold X diffeo-

morphic to Rm has a compact quotient14 X/Γ, if and only ifHm
(
Γ;Z/2Z

) ∼=
Z/2Z ;

(ii) there exists a universal homomorphism w1: Γ → Z/2Z with the property

that for any properly discontinuous, fixed point free, co-compact action of

Γ on Rm

γ ∈ Γ is orientation preserving ⇔ w1(γ) = 0 .

Proof. (i) By hypothesis X is an Eilenberg–MacLane space K(Γ, 1). Therefore,

Hm
(
Γ;Z/2Z

) ∼= Hm
(
X/Γ;Z/2Z

)
, hence the claim.

(ii) By (i) we know that X/Γ is closed. Let w1(X/Γ) ∈ H1
(
X/Γ,Z/2Z

)
be

the first Stiefel–Whitney class of X/Γ. We identify H1
(
X/Γ;Z/2Z

)
with the space

HomZ/2Z

(
H1

(
X/Γ;Z/2Z

)
,Z/2Z

)
. By composition with the Hurewicz homomorphism

π1(X/Γ) → H1

(
X/Γ;Z/2Z

)
and the identification π1(X/Γ) ∼= Γ we may consider

w1(X/Γ): Γ → Z/2Z. By [Hus, Chap. 16, §12.1] X/Γ is orientable, if and only if
w1(X/Γ) = 0. Thus, γ ∈ Γ is orientation preserving if and only if γ ∈ ker(w1(X/Γ)).

Since the Stiefel–Whitney classes of closed manifolds are homotopy invariants [Hus,

Chap. 17, §8.3], w1(X/Γ) depends only on the homotopy type of X/Γ, hence on Γ.

Thus, w1 defines a homeomorphism w1: Γ→ Z/2Z with the required properties.

Proof of Theorem 7.8. (i) Since M is compact and n–dimensional, we know that

Hn
(
∆;Z/2Z

)
�= 0, and hence Hn

(
∆∗;Z/2Z

)
= ϕ∗Hn

(
∆;Z/2Z

)
�= 0. Since M̃∗ is

n–dimensional and contractible, it follows that M∗ is compact.

(ii) We consider the subgroup ∆∗
j
∼= ∆j containing α∗

j . Since M
∗ is compact,

α∗
j is a hyperbolic isometry [BGS, §8.2]. We consider the set Y ∗

j := MIN(α
∗
j ) ⊂ M̃∗

consisting of all axes of α∗
j [BGS, §6]. Since the metric on M∗ is real analytic, Y ∗

j

is a complete, totally geodesic submanifold of M̃∗ which splits isometrically as Y ∗
j =

14 Note that this criterion depends just on the group Γ and the dimension of X ,
but not on the particular choice of the action.
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Y ∗
j
′×R such that α∗

j operates as identity×translation. Since 〈α∗
j 〉 is a normal subgroup

of ∆∗
j , we have for every γ

∗ ∈ ∆∗
j that γ

∗α∗
jγ

∗−1 = α∗
j
±1. Hence, α∗

j (γ
∗−1c) = γ∗−1c

for every axis c of α∗
j . In particular, γ

∗−1c is also an axis of α∗
j . We conclude that

∆∗
j leaves Y

∗
j = MIN(α

∗
j ) invariant,

∆∗
j ⊂

{
γ∗ ∈ ∆∗ ∣∣ γ∗Y ∗

j = Y ∗
j

}
.

Next, we show that Y ∗
j is (n−1)–dimensional. First, dimY ∗

j ≤ n−1, since Y ∗
j = M̃∗

would imply that M̃∗ has a non-trivial euclidean de Rham factor. But, by [E1] the

euclidean de Rham factor can be detected by the fundamental group, and therefore

M̃ would have a nontrivial euclidean de Rham factor which is not true. Secondly,

Hn−1

(
∆∗
j ;Z/2Z

)
�= ∅ , since ∆j ∼= ∆∗

j is the fundamental group of the compact

manifold Yj/∆j . Thus, dimYj ≥ n − 1. By Lemma 7.9, α∗
j is orientation reversing,

since αj is orientation reversing. This implies that the isometry α∗
j acts as −1l on the

normal space of Y ∗
j .

(iii) Recall that ∆∗
j leaves Y

∗
j invariant. Since Hn−1

(
∆∗
j ;Z/2Z

)
�= 0, the group

∆∗
j operates with a compact quotient. As above [E1] tells us that the euclidean

de Rham factors of Yj and Y
∗
j are of the same dimension, and hence Y

∗
j = Y ∗

j
′×R is

the de Rham splitting. If γ∗ ∈ ∆∗ leaves Y ∗
j invariant, then γ

∗
|Y ∗

j
respects the splitting

Y ∗
j
′×R. Since α∗

j only translates in the R–direction, γ∗ is contained in the normalizer

of 〈α∗
j 〉.

In order to establish the remaining parts of the Theorem, we need the following

7.10. Lemma.

Yj ∩ Yk �= ∅ ⇔ αj and αk commute ;(i)

Y ∗
j ∩ Y ∗

k �= ∅ ⇔ α∗
j and α

∗
k commute.(ii)

Proof. (i) “⇐” Since Yj = MIN(αj) and Yk = MIN(αk), we may refer to [BGS, §7.1].
“⇒” This implication follows directly from our construction of the metric g.

(ii) “⇐” By our definition of Y ∗
j and Y

∗
k , we may again refer to [BGS, §7.1].

“⇒” To prove this direction, we shall first deal with the special case where Y ∗
j = Y ∗

k .
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Then, the de Rham splittings of Y ∗
j and Y

∗
k coincide. It follows that α

∗
i = α∗

j
±1, and

we are done.

It remains to handle the case where Y ∗
j �= Y ∗

k . Note that S := Y ∗
j ∩ Y ∗

k is a complete,

totally geodesic hypersurface in Y ∗
j = Y ∗

j
′ × R. We first show that S respects the

splitting, i.e., either S = Y ∗
j
′ × {p} or S = S′

j ×R where S′
j is a hypersurface in Y

∗
j
′.

To prove this, let N be a unit normal vector field in Y ∗
j to S and let p1:Y

∗
j
′×R → Y ∗′

be the canonical projection. Clearly, N is a global parallel field along S, and hence

p1∗N is a global parallel field on the convex set p1(S) ⊂ Y ∗′ .

Since Y ∗
j
′ has no euclidean de Rham factor, p1∗N is either trivial, or p1(S) is a proper

subset of Y ∗
j
′. In the first case S = Y ∗

j
′ × {p}, and in the second case S = S′

j × R.

In the first case S has no euclidean factor, in the second case S has a euclidean

factor. Thus, the type of splitting of S is the same in Y ∗
j and Y

∗
k . Let us assume that

S = Y ∗
j
′ × {p} = Y ∗

k
′ × {q} , then Y ∗

j and Y
∗
k are foliated by parallels to S. This

implies that the set of all parallels to S is n–dimensional, and by real analyticity M̃∗

would split isometrically as S×Q with dimQ = 2. However, such a splitting could be

detected by the fundamental group. In fact, it would follow by [BE] that rank∆∗ ≥ 2,
which is not true, since M̃ does not split. We conclude that S = S′

j × R ⊂ Y ∗
j
′ × R.

By symmetry, we also have an isometric splitting S = S′
k ×R ⊂ Y ∗

k
′ ×R.

Since the euclidean factors of Y ∗
j and Y

∗
k do not point in the same direction, S indeed

splits as S′′
jk ×R

2, and the elements α∗
j , α

∗
k ∈ Iso(M̃∗) operate as translations on the

R2–factor. Hence they commute.

Proof of Theorem 7.8 (continuation)

(iv) Lemma 7.10 implies that Y ∗
j ∩ Y ∗

k �= ∅ ⇔ Yj ∩ Yk �= ∅. We have to show
that Y ∗

j and Y ∗
k intersect orthogonally. Since α

∗
j and α∗

k commute, α
∗
j leaves Y

∗
k

invariant. Thus, Y ∗
k is a closed convex α

∗
j–invariant subset of M̃

∗, and by [BGS, §6.4]
the orthogonal projection πY ∗

k
onto Y ∗

k does not increase the displacement function

dα∗
j
(x) := d(x, α∗

j (x)). In other words, dα∗
j
(πY ∗

k
(x)) ≤ dα∗

j
(x) for all x ∈ M̃∗. Since

by definition Y ∗
j =

{
x ∈ M̃∗ ∣∣ dα∗

j
(x) minimal

}
, we see that πY ∗

k
(Y ∗
j ) ⊂ Y ∗

j ∩ Y ∗
k , as

desired.

(v) If YI =
⋂
i∈I Yi �= ∅, then the αi commute pairwise by Lemma 7.10. Hence,

the α∗
i commute, and Y

∗
I =

⋂
Yi =

⋂
MIN(α∗

i ) �= ∅ by [BGS, §7.1]. Because of the
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symmetry of the argument we see that YI �= ∅ ⇔ Y ∗
I �= ∅.

By Theorem 3.7 (iii) YI splits isometrically as Y ′
I × R# I . On the other hand, Y ∗

I =⋂
MIN(α∗

i ) splits off a euclidean factor Y
∗
I ×Rs such that the α∗

i operate as identity×
translation and span a lattice in R

s by [BGS, § 7.1]. Thus s = # I, and we have the

desired splitting.
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APPENDIX A. Basic Properties of the ©∧–Product of Bilinear Forms

Recall that the ©∧–product of two bilinear forms b1, b2:Rn×Rn �→ R, the so–called
Kulkarni–Nomizu product, is the (4, 0)–tensor defined by

(A.1)

b1 ©∧ b2(X, Y ;Z,W )

:=
1
2

[
b1(X,W ) b2(Y, Z)− b1(Y,W ) b2(X,Z)

− b1(X,Z) b2(Y,W ) + b1(Y, Z) b2(X,W )
]
.

From now on, we concentrate on symmetric bilinear forms b1 and b2. Then, it is
clear that b1 ©∧ b2 can be considered as a symmetric bilinear form on Λ2Rn through
the equation

(A.2) (b1 ©∧ b2)(X ∧ Y , Z ∧W ) := −(b1 ©∧ b2)(X, Y ;Z,W ) .

The first Bianchi identity

(A.3) 0 = (b1 ©∧ b2)(X, Y ;Z,W ) + (b1 ©∧ b2)(Y, Z;X,W ) + (b1 ©∧ b2)(Z,X ;Y,W )

is easy to verify. In other words, b1 ©∧ b2 satisfies all the algebraic symmetries of a
curvature tensor. Note that g0 ©∧ g0 represents the metric on Λ2Rn induced by the
euclidean metric g0 = 〈. , .〉 on Rn. In particular, g0 ©∧ g0 is positive definite.

A.1. Lemma.

(i) Suppose that b1, b2 ≥ 0. Then, b1 ©∧ b2 ≥ 0 .
(ii) Suppose that 0 ≤ b1 ≤ b̄1 and 0 ≤ b2 ≤ b̄2. Then,

b1 ©∧ b2 ≤ b1 ©∧ b̄2 ≤ b̄1 ©∧ b̄2 .

(iii) Let b1 and b2 be possibly indefinite, generic symmetric bilinear form on Rn,

and let ‖bi‖ denote their operator norm w.r.t. the euclidean inner product

g0. Then

−‖b1‖ ‖b2‖ g0 ©∧ g0 ≤ b1 ©∧ b2 ≤ ‖b1‖ ‖b2‖ g0 ©∧ g0 .
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Proof. In order to establish (i), it is sufficient to spell out what the inequality means

when using a basis in which b1 and b2 diagonalize simultaneously. Part (ii) of the

lemma is an immediate consequence of (i) anyway. In order to obtain Part (iii), we

consider the positive and negative semi-definite parts b±i of bi = b+i − b−i . Since

this decomposition is taken w.r.t. the euclidean inner product on Rn, we find that

‖bi‖ = max{‖b+i ‖, ‖b−i ‖}, and hence 0 ≤ b±i ≤ b+i + b
−
i ≤ ‖bi‖ g0. Using (i) and (ii), it

is now straightforward to see that

b1 ©∧ b2 ≤ b+1 ©∧ b+2 + b−1 ©∧ b−2 ≤ ‖b1‖ g0 ©∧ (b+2 + b−2 ) ≤ ‖b1‖ ‖b2‖ g0 ©∧ g0

and similarly

b1 ©∧ b2 ≥ −b+1 ©∧ b−2 − b−1 ©∧ b+2 ≥ −‖b1‖ g0 ©∧ (b+2 + b−2 ) ≥ −‖b1‖ ‖b2‖g0 ©∧ g0 .

A.2. Application (in Sections 5 and 6). — Note that the fields pξj and p
v
j have rank 1

each. Hence, pξj ©∧ pξj = pvj ©∧ pvj = 0 and thus

(A.4) 0 ≤ pj ©∧ pj = 2 p
ξ
j ©∧ pvj ≤ 2 p

ξ
j ©∧

(
g0 − pξj

)
≤ g0 ©∧ g0 ≤ g©∧ g .

Next we want to estimate the symmetric bilinear forms qij :Rn ×R
n → R which

are defined by

(A.5) qij(x, y) :=
1
2
(
〈wi , x〉〈wj , y〉+ 〈wj , x〉〈wi , y〉

)
where (wi)i are some fixed vectors in Rn. Note that by the first Bianchi identity we

have

(A.6) 0 = qij ©∧ qkl + qjk ©∧ qil + qki©∧ qjl .

In particular,

qii©∧ qjk = −2 qijqik , and(A.7)

qii©∧ qik = 0 .(A.8)

In this context Lemma A.1 implies the following Cauchy–Schwarz inequality for cur-

vature operators.

A.3. Corollary. — Let qij be as above, and let b:Rn × Rn → R be an arbitrary,

positive semi-definite, symmetric bilinear form. Then, for any δ > 0

(A.9) −δ
2
b©∧ qii −

1
2δ

b©∧ qjj ≤ b©∧ qij ≤
δ

2
b©∧ qii +

1
2δ

b©∧ qjj .
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Proof. Note that qii and qjj are both positive semi-definite. Hence,

δ

2
qii +

1
2δ

qjj ± qij ≥ 0

for any δ > 0, and we apply Lemma A.1 (i) to the ©∧–product of b and the left hand

side of the preceding inequality.

A.4. Corollary. — Let E ⊂ Rn be a 2–dimensional subspace, and let (wi, wj) be

an orthonormal basis for E. Suppose that b:Rn × Rn → R is a symmetric bilinear

form such that b|E⊥×E⊥ = 0. Then,

−δ ‖b‖ (qii+qjj)©∧ (qii+qjj)−
1
δ
‖b‖ g0 ©∧ g0(i)

≤ qii©∧ b ≤ δ ‖b‖ (qii+qjj)©∧ (qii+qjj) +
1
δ
‖b‖ g0 ©∧ g0

−δ ‖b‖ (qii+qjj)©∧ (qii+qjj)−
1
δ
‖b‖ g0 ©∧ g0(ii)

≤ 2 qij ©∧ b ≤ δ ‖b‖ (qii+qjj)©∧ (qii+qjj) +
1
δ
‖b‖ g0 ©∧ g0 .

Here, ‖b‖ denotes the operator norm of b taken w.r.t. the metric g0 = 〈. , .〉.

In the proof we actually obtain slightly better constants, but this does not

make any difference when applying the corollary in Section 6 in order to establish

Lemma 6.9.

Proof. For clarity it is best to decompose b as a sum b0+b1 where b0 has the property

that E⊥ ⊂ ker b0 and where b1 has the property that b1|E×E = 0. Introducing suitable

unit vectors wk, wl ∈ E⊥, we may write15

(A.10)
b0 = b00 qii + 2 b01 qij + b02 qjj ,

b1 = 2 b11 qik + 2 b12 qjl .

We shall deal with b0 and b1 separately.

(1) By Formulae (A.7) and (A.8) we compute that

qii©∧ b0 = b02 qii©∧ qjj =
1
2
b02 (qii + qjj)©∧ (qii + qjj)

2 qij ©∧ b0 = 4 b01 qij ©∧ qij = −b01 (qii + qjj)©∧ (qii + qjj) .

15 wk and wl are not necessarily perpendicular.
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Since |b00|, |b01|, and |b02| are all bounded by ‖b0‖, we conclude that

−1
2
‖b0‖(qii+qjj)©∧ (qii+qjj) ≤ qii©∧ b0 ≤

1
2
‖b0‖(qii+qjj)©∧ (qii+qjj) ,

−‖b0‖(qii+qjj)©∧ (qii+qjj) ≤ 2 qij ©∧ b0 ≤ ‖b0‖(qii+qjj)©∧ (qii+qjj) .

(2) In this case, our computation makes in addition use of the inequality from

Corollary A.3. We obtain

qii©∧ b1 = 2 b12 qii©∧ qjl ≤ |b12|
(
δ qii©∧ qjj +

1
δ
qii©∧ qll

)
2 qij ©∧ b1 = −2 b11 qii©∧ qjk − 2 b12 qjj ©∧ qil

≤ δ

2
(
|b11|+|b12|

)
qii©∧ qjj +

2
δ

(
|b11| qii©∧ qkk + |b12| qjj ©∧ qll

)

These inequalities continue to hold if we replace b1 by −b1. Since |b11| ≤ ‖b1‖
and |b12| ≤ ‖b1‖, we conclude that

−δ
2
‖b1‖ (qii+qjj)©∧ (qii+qjj)−

1
2δ
‖b1‖ g0 ©∧ g0

≤ qii©∧ b1 ≤
δ

2
‖b1‖ (qii+qjj)©∧ (qii+qjj) +

1
2δ
‖b1‖ g0 ©∧ g0

−δ
2
‖b1‖ (qii+qjj)©∧ (qii+qjj)−

1
δ
‖b1‖ g0 ©∧ g0

≤ 2qij ©∧ b1 ≤
δ

2
‖b1‖ (qii+qjj)©∧ (qii+qjj) +

1
δ
‖b1‖ g0 ©∧ g0 .

Note that max{‖b0‖, ‖b1‖} ≤ ‖b‖. Hence, the claim follows from the two partial
results above.
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APPENDIX B. On Hyperbolic Quadrilaterals

Throughout this appendix γ1, γ2:R → H2 will be two normal geodesics in the

hyperbolic plane which intersect each other orthogonally in p0 := γ1(0) = γ2(0). Let

r̃µ:H2 → R be the oriented distance function for γµ ⊂ H2, µ = 1, 2. This means that

|r̃µ(p)| = dist(p, γµ(R)) , ∀p ∈ H
2

and

r̃u ◦ γµ+1(t) = t with indices taken mod2 .

The distance |r̃µ(p)| is represented by the length of an integral curve cµ,p of the unit
vector field

ṽµ := grad r̃µ .

All these integral curves are geodesics which intersect γµ perpendicularly. We may

assume that cµ,p(0) ∈ γµ(R). For any p ∈ H
2 \

(
γ1(R) ∪ γ2(R)

)
the geodesics γ1,

γ2, c1,p, and c2,p bound a hyperbolic quadrilateral Qp, which has precisely one acute

angle γ at p. Note that Qp has angles equal to π2 at its other vertices.

γ

γ1

γ2

p

p0

r1

r2

r01

r02

ν1

ν2

FIGURE 1. The Quadrilateral Qp in the Hyperbolic Plane
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In addition to the (signed) lengths r1, r2, r01, and r
0
2 of the four edges we introduce

the length r := dist(p, p0) of the diagonal which ends at the acute angle.

B.1. Facts from Planar Hyperbolic Trigonometry.

sinh2 r = sinh2 r1 + sinh2 r2 (by the Law of Sines)(i)

sinh rµ = sinh r0µ cosh rµ+1(ii)

cos γ ≡ 〈ṽ1 , ṽ2〉 = sinh r01 sinh r02 = tanh r1 tanh r2 .(iii)

B.2. Application (Local Geometry of the Divisor). — We consider a point in Ω ∩ UI
where UI ⊂ Hn is a domain as in Proposition 3.4. Let i1, i2 ∈ I are two distinct
elements. Then, there is a unique, totally geodesic, hyperbolic plane in H

n which
contains p and the geodesics cµ = exp(R viµ |p) , µ = 1, 2. This plane clearly intersects
H
n−2
i1
and H

n−2
i2
in geodesics, which we shall denote by γ1 and γ2, respectively. Thus,

the analysis of the local geometry of
⋃
j∈J H

n−2
j gets reduced to the 2–dimensional

configuration discussed above. Hence, we conclude from Property (iii) in the preceding
list and from Axiom 3.1 that for any i1, i2 ∈ I

(B.1)

〈vi1 , ξi2〉 = 0

〈ξi1 , ξi2〉 = δi1i2

〈vi1 , vi2〉 = tanh ri1 tanh ri2 + δi1i2 cosh
−2 ri1 .

Now, it requires just the definition of GI in the paragraph below formula (3.3)
to see that for any i ∈ I

(B.2)
(1l +GI)−1vi = vi

(1l +GI)−1ξi =
xi

xi + ηh(xi)
ξi .

Furthermore, the local geometry of the divisor leads to some useful estimates for
smooth sections of f of euclidean vector bundles F over H2.

B.3. Lemma. — Let F → H2 be a euclidean vector bundle with metric connection

∇. There exists a constant cH2 > 0 such that, for any point p ∈ H2 \ (γ1(R)∪ (γ2(R))
and any section f ∈ C2(H2, F ) which vanishes on γ1(R)∪(γ2(R), one has the following
pointwise upperbound for f |Qp

:

(B.3) ‖f(q)‖ ≤ cH2 ‖f‖C2(Q̄p) tanh |r1(q)| tanh |r2(q)| , ∀q ∈ Q̄p .
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Here, ‖f‖C2(Q̄p) := sup
{
‖f(q)‖ + ‖∇f |q‖ + ‖∇2f |q‖

∣∣ q ∈ Q̄p
}
stands for the

C 2–norm of the restriction f |Q̄p
.

Proof. For short we set bk := sup
{
‖∇kf |q‖

∣∣ q ∈ Q̄p
}
for k = 0, 1, 2. Integrating ∇f

along the geodesics cµ,q , we get :

(B.4) ‖f(q)‖ ≤ min
{
b0 , b1 |r1(q)| , b1 |r2(q)|

}
, ∀q ∈ Q̄p .

Note that ∇v1f vanishes along γ2. Integrating the inequality

d

dt
‖∇v1f‖ ≤ ‖∇2

ċ2,q,v
f‖+ ‖∇

dt
v1‖ ‖∇f‖

along the geodesic c2,q, we get

(B.5)

‖∇v1f |q‖ ≤
∫ |r2(q)|

0

(
b2 + b1

∥∥∇
dt
v1|c2,q(t)

∥∥)
dt

= b2 |r2(q)|+ b1 |
π

2
− γ(q)|

≤ b2 |γ2(q)|+ b1 arcsin
(
tanh |r1(q)| tanh |r2(q)|

)
.

Here we have used the identity
∥∥∇
dt v1|c2,q(t)

∥∥ = ∣∣ d
dt γ|c2,q(t)

∣∣ , which is due to the
fact that v1 is parallel along c2,q. For the second line of (B.5) we employ in addition

the monotonicity of γ, and for the final inequality we make use of the trigonometric

identity for cos γ = sin(π2 −γ).

The next step is to integrate (B.5) along the geodesic c1,p. Since |r2 ◦ c1,q(t)| ≤
|r2(q)| on the segment in question, and since arcsinα ≤ π

2 α for 0 ≤ α ≤ π
2 , this step

yields the inequality

(B.6) ‖f(g)‖ ≤ b2 |r1(q)| |r2(q)|+
π

2
b1 |r1(q)| tanh |r2(q)| .

It is clear how to improve (B.6) using the symmetry of the whole set-up with respect

to interchanging the roles of γ1 and γ2.

Inequality (B.6) is better than (B.4), provided |r1(q)| and |r2(q)| are both small.
The bound claimed in (B.3) is obtained by combining (B.4) and (B.6) into a single

estimate, which is slightly weaker but much more convenient to use.
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vature, Birkhäuser, Boston – Basel (1985).

[BaSch] V. Bangert, V. Schroeder, Existence of flat tori in analytic manifolds of
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