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1. PRELIMINARIES

The notion of the k-dimensional systole of a Riemannian manifold was introduced

by Marcel Berger in 1972 following earlier work by Loewner (around 1949, unpub-

lished), Pu (1952), Accola (1960) and Blatter (1961). Recall that according to Berger

the k-dimensional systole of a Riemannian manifold V is defined as the infimum of

the k-dimensional volumes of the k-dimensional cycles (subvarieties) in V which are

not homologous to zero in V .

In fact, the idea of the 1-dimensional systole can be traced back to the classical

geometry of numbers as one considers minima of quadratic forms on lattices in Rn.

The fundamental result here is an upper bound on such a minimum in terms of the

discriminant of the form in question. This can be formulated in geometric language

as follows.

1.A. Bound on the 1-systole of a flat torus. — Let V be a flat Riemannian

torus of dimension n. Then, the 1-systole of V can be bounded in terms of the volume

of V by

systole ≤ constn (Volume)
1
n ,

where constn = C
√
n for some universal constant C (which is not far from one).

Reformulation and proof. The torus V can be isometrically covered by Rn and so

V = Rn/Γ for some lattice Γ, that is a discrete group of parallel translations of Rn.

(This group is isomorphic to Zn but is not, in general, equal to the standard lattice

Zn ⊂ Rn consisting of integral points in Rn.) If a point x ∈ Rn is moved by some

γ ∈ Γ to γ(x), then the segment [x, γ(x)] joining x with γ(x) in Rn projects to a

closed curve S in V = Rn/Γ whose length equals dist
(
x, γ(x)

)
. Furthermore, if γ is a

non-identity element in Γ (i.e., x �= γ(x)), then S is non-homologous to zero in V . In

fact, S is non-homotopic to zero by the elementary theory of covering spaces which
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implies “non-homologous to zero” since the group Γ = π1(V ) = Z
n is Abelian. Thus,

the bound on the 1-systole of V is equivalent to the following estimate.

1.A.1. Displacement estimate. — For the above lattice Γ acting on Rn by parallel

translations, there exists a point x ∈ Rn and a non-identity element γ ∈ Γ, such that

dist
(
x, γ(x)

)
≤ constnVol(Rn/Γ) .

Proof. Take a closed ball B of radius R in Rn such that the volume of B is greater

than or equal to that of V = Rn/Γ. Then, the projection p : B → V is not one-to-one

and we have distinct points x and x′ in B with p(x) = p(x′). This equality means

that x′ = γ(x) for some γ ∈ Γ (by the definition of the quotient space Rn/Γ) and,

since the diameter of B is 2R, the distance between x and γ(x) = x′ is at most 2R.

Now, we recall that the volume of B = B(R) equals

VolB = σnR
n ,

where σn is given by the familiar formula involving the Γ-function (here, Γ has nothing

to do with the lattice Γ),

σn = πn/2
/
Γ
(n
2

+ 1
)
.

Then, a pair of points x and x′ with p(x′) = p(x) necessarily appears for

R = (σn)−
1
n (VolV )

1
n .

So we obtain the required displacement bound

dist
(
x, γ(x)

)
≤ constnVolV

for

constn = 2
(
Γ
(n
2

+ 1
)) 1

n

/√
π ,

and the number constn is bounded by C
√
n according to Stirling’s formula Γ(n) ≈ nn.

Remarks. (a) The above argument is classical, going back to Gauss (to Diophan-

tus ?), Hermite and Minkowski. We dissected the proof in order to make visible the

anatomy of our more general systolic inequalities discussed later on.
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(b) Since Γ acts by parallel translations, the displacement dist
(
x, γ(x)

)
does

not depend on x, and we may take the origin 0 ∈ R
n for x. Then, our displacement

estimate bounds the Euclidean norm on the lattice Γ embedded into Rn as the Γ-orbit

of the origin by

inf ‖γ‖
R

n ≤ constn(VolRn/Γ)
1
n , (∗)

where inf is taken over γ ∈ Γ − {0}. (The squared Euclidean norm serves as the

quadratic form referred to at the beginning of this discussion.)

The above (∗) is called the Minkowski convex body theorem. It remains valid (by

the proof we gave) for an arbitrary Banach (Minkowski) norm on Rn. In traditional

language, every convex centrally symmetric body B in Rn contains a non-zero point

γ ∈ Γ, provided VolB ≥ 2nVol(Rn/Γ).

(c) The value of const2 and the extremal lattice Γ ⊂ R2 are known since An-

tiquity. Namely, const2 = (2/
√
3)

1
2 , and the extremal lattice has a regular hexagon

as fundamental domain. (Such an hexagon of unit width has area
√
3
/
2.) Thus, for

every flat 2-torus one has

systole ≤ (2/
√
3)

1
2 (Area)

1
2 , (+)

where equality holds if and only if the corresponding lattice Γ ⊂ R2 is hexagonal.

1.B. Loewner made an amazing discovery around 1949

Loewner torus theorem. — Let V be the topological 2-torus with an arbitrary

Riemannian metric. Then, the 1-systole of V satisfies the same inequality as in the

flat case,

systole ≤ (2/
√

3)
1
2 (Area)

1
2 ,

and equality holds if and only if the metric on V is flat and the corresponding lattice

is hexagonal.

Proof. The key argument is the following

The uniformization theorem for tori. — For every V there exists a flat torus V0

(which can be normalized by the condition AreaV0 = AreaV ) admitting a conformal

diffeomorphism ϕ : V0 → V .
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Granted this, the proof is immediate with the following lemma.

Easy Lemma. — Take a closed geodesic g in V0 of length �, and let gs be the

family of parallel geodesics parametrized by the circle S1 of length σ = A0/� for

A0 = AreaV0. Then, the average squared length of the ϕ-images ϕ(gs) ∈ V, s ∈ S1,

does not exceed �2, provided AreaV = A0 = AreaV0. Namely,

σ−1
∫
S1

(
lengthϕ(gs)

)2
ds ≤ �2 = (length g)2 .

Easy (length-area) proof. Denote by a(v), v ∈ V0, the implied conformal factor,

i.e.,
√

Jacobianϕ, and let dλ denote the length element on gs. Then, observe that

�σ = A0 = AreaV =
∫
V0

a2(v)dv =
∫
S1

ds

∫
gs

a2(v)dλ ≥
∫
S1

ds �−1
(∫

gs

a(v)dλ
)2

.

But, since ϕ is conformal, ∫
gs

a(v)dλ = lengthϕ(gs) ,

and the proof follows.

The lemma implies that ϕ shortens the lengths of the homology classes of the

flat torus and, in particular, it shortens the 1-systole which is the minimum of these

lengths. Thus, the Loewner theorem for general Riemannian tori follows from the

above inequality (+) for the flat tori.

Let us reformulate the Loewner theorems in terms of displacement.

Let the group Γ = Z2 discretely and isometrically act on a surface X for some

Riemannian metric. If X is homeomorphic to R2, then there exists a point x ∈ X

and an element γ ∈ Γ different from the identity such that

distX
(
x, γ(x)

)
≤ (2

/√
3)

1
2 (AreaX/Γ)

1
2 .

Warning. In the general case where X is not isometric to R2, the displacement

dist
(
x, γ(x)

)
does depend on x and may become uncomfortably large for some points
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in X . Such an X can be obtained, for example, by periodically attaching long thin

“fingers” to R2 at the points of some Z2-orbit, see Figure 1 below.

xγ(x)

ε

h

Figure 1

If the fingers have length h, then a point x at the tip of a finger has dist
(
x, γ(x)

)
≥

2h for all γ ∈ Γ = Z2, γ �= id, and this distance goes to infinity for h → ∞. But

the contribution of the fingers to the area of V = X/Γ is about εh, for ε being the

thickness of the fingers. This is a negligible quantity if ε is chosen small compared to

h.

The presence of such fingers has an unpleasant effect on the areas of certain

balls in X . If the center of an R-ball B(R) in X is located at the tip of a finger,

then AreaB(R) ≈ εR for R ∈ [ε, h]. This is significantly less than AreaB(R) ≈ R2

needed for the Minkowski argument based on the inequality AreaB(R) ≥ AreaX/Γ

for R ≈ (AreaX/Γ)
1
2 (see 1.A.1).

1.C. The purpose of this lecture is an introduction to (and a survey of) (in-

ter)systolic inequalities generalizing the Loewner theorem. Most of these inequalities
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are rather old and detailed proofs can be found in [Ber1,2] and [Gro2]. Yet, there

remain many unresolved problems which we explain along the way.

We also indicate the proof of a (new local) systolic bound for CP 2 using pseudo-

holomorphic curves (see § 4) and we explain, following a recent paper by Buser and

Sarnak, a relation between systolic inequalities for surfaces of large genus and the

geometry of the Jacobian locus in the moduli space of Abelian varieties (see § 2).
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2. SYSTOLES OF SURFACES

Let V be a closed connected surface with a Riemannian metric. We want to

find a bound on the systole of V , that is the length of the shortest closed curve in

V non-homologous to zero. An equally interesting question is finding the shortest

non-contractible curve in V . To distinguish these, we introduce the following

2.A. Notations. a) The length of the shortest non-contractible curve in V is denoted

by syst π1(V ).

b) The length of the shortest closed oriented curve in V representing a non-trivial

element in the homology H1(V ) = H1(V ; Z) is denoted by systH1(V ).

Notice that shortest curves in V do exist : they are certain simple closed geodesics

in V .

b′) One may replace H1(V ; Z) by H1(V ;A) for an arbitrary domain A of co-

efficients which leads to the notation systH1(V ;A). The most useful A after Z is

A = Z2 = Z/2Z. The corresponding systole systH1(V ; Z2) refers to the shortest

closed (non-oriented) curve non-homologous to zero mod 2 in V .

It is obvious that

syst π1(V ) ≤ systH1(V ) ≤ systH1(V ; Z2)

and, in fact, this remains true (and obvious) for Riemannian manifolds V of any

dimension.

Furthermore, if V is an oriented surface, then

systH1(V ) = systH1(V ; Z2) ,

because a simple closed curve (realizing syst1H1) in an oriented surface V which does

not bound in V cannot bound mod 2 in V .
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Non-orientable counter-example. Take the connected sums Vε of two copies of

the standard projective plane across an ε-circle (see Figure 2).

ε} } π

Figure 2

Then, systH1(Vε) = ε, that is the length of the joining circle. This can be made

arbitrarily small while keeping systH1(Vε; Z2) = π as for the original projective plane.

2.B. Surfaces of constant negative curvature. Our main objective is the in-

equality

systole ≤ const(Area)
1
2

where we want to understand the dependence of the constant upon the genus of the

surface in question. Here, we are guided by the following

2.B.1. Obvious (Minkowski type) observation. — If V has constant negative

curvature, then

systπ1(V ) ≤ const(AreaV )
1
2 ,

const = C0
log genusV√

genusV
,

 (∗)

where C0 is a universal constant.

Proof. It is convenient to scale the metric in order to have curvature −1. Then, the

R-balls in the universal covering X = Ṽ of V have area ≈ expR for R ≥ 1. Thus, if

R ≥ log AreaV , the projection of such a ball to V is not one-to-one and so

systπ1(V )>∼ log AreaV . (∗′)
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On the other hand, since curvature is −1, the area of V approximately equals the

genus (in fact, area = 4π(genus−1)), so (∗′) is equivalent to (∗).

Remarks. (a) A slight refinement of the above argument gives a similar bound on

systH1(V ) (see [Gro2]). In fact, a rather sharp evaluation of the implied constant in

the homological version of (∗′) is due to Buser and Sarnak (see [Bu-Sa]) who prove

that

systH1(V ) ≤ 2 log(4 genusV − 2) ,

for orientable surfaces V of curvature K = −1 (compare 2.D).

(b) F. Jenni, and later C. Bavard, show that every hyperelliptic surface V of

constant negative curvature K = −1 contains a closed non-contractible curve of length

s1 = syst π1(V ) bounded by

s1 ≤ 2 log
(
3 + 2

√
3 + 2

√
5+3

√
3

)
≈ 5.106 .

In fact, Bavard proves that

c h
s1

4
≤
(
2 sin

(g + 1)π
12g

)−1
,

for g = genusV , and exhibits extremal surfaces of genus 2 and 5 for which the latter

inequality is sharp. Notice that his inequality for g = 2 is equivalent to

s1 ≤ 2 log
(
1 +

√
2 +

√
2+2

√
2

)
≈ 3.057

and, for g = 5, to

s1 ≤ 2 log
(
1 +

√
5 + 2

√
2+

√
5

)
≈ 4.425 ,

(see [Jen], [Bav4]).

2.C. Main systolic inequality for surfaces of large genus. — Let V be a closed

connected surface of genus ≥ 2 with a Riemannian metric. Then,(
systH1(V ; Z2)

)2 ≤ constAreaV ,

const = C
(log genusV )2

genusV ,

 (+)

where C is a universal constant.
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Remarks. (a) Inequality (+) becomes more transparent if the metric in V is nor-

malized by the equality AreaV = genusV . Then, (+) reads

systH1(V ; Z2)<∼ log genusV , (+′)

which means that V contains a simple closed non-dividing curve in V of length

<∼ log genusV .

(b) The best (known) constant C in (+) is significantly greater than C0 in (∗).
In fact, one knows that C should be greater than C0 as the extremal surfaces of given

genus and area having the maximal possible systole do not have constant curvature

if genus ≥ 2. This contrasts with the case of V homeomorphic to the torus where

extremal metrics are flat according to the Loewner torus theorem (see 1.B). In fact,

extremal surfaces of genus ≥ 2 tend to have piecewise flat metrics. The study of these

extremal metrics was conducted by E. Calabi (see [Cal]) and C. Bavard (see [Bav2,3])

who established sharp systolic inequalities for some surfaces of low genus. For exam-

ple, Bavard finds the sharp bound on s1 = systH1(V ; Z2) for V homeomorphic to the

Klein bottle,

s21 ≤ (π/2
√
2) AreaV .

(This result can also be derived from a theorem by Blatter concerning Möbius bound

(see [Bla0]), as was pointed out by T. Sakai in a letter to M. Berger. Also recall that,

according to Loewner’s inequality cited earlier,

s21 ≤
√
3

2
AreaV

for V homeomorphic to T 2, and that the 1952-inequality by Pu for surfaces homeo-

morphic to the real projective plane P2 bounds the systole by

s21 ≤
π

2
Area ,

with the equality for the metrics of constant positive curvature on P 2.)
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Recently, Bavard completely solved the systolic problem for all 17 plane cristallo-

graphic groups Γ isometrically acting on a surface X homeomorphic to R2 by finding

the sharp bounds for inf
γ∈Γ∞

inf
x∈X

dist
(
x, γ(x)

)
, where Γ∞ ⊂ Γ denotes the set of the

elements of infinite order. He also solved the systolic problem for triangular groups

(see [Bav5]).

2.C.1. Dividing the proof of (+) into two steps.

Step 1. Let us show that (+) follows from a similar inequality for systπ1(V ),

that is the length of the shortest non-contractible curve S in V which may divide V .

If S actually divides V , we add round hemispherical cups to the pieces and obtain

two closed surfaces V1 and V2 satisfying

genusV1 + genusV2 = genusV

and

AreaV1 + AreaV2 = AreaV + (lengthS)2
/
π .

By the geometry of the hemisphere, every closed curve in Vi, i = 1, 2, can be

homotoped to the complement of the hemispherical cup without increasing the length.

Thus,

systH1(V ; Z2) ≤ min
i=1,2

systH1(Vi; Z2) ,

and a bound on systH1(V ; Z2) reduces to that for a surface of lower genus since

(lengthS)2 is bounded by

(lengthS)2 ≤ C1
(log genusV )2

genusV
AreaV ,

according to the π1-version of (+) which we assume to be valid.

Notice that the division steps necessarily stop if we arrive at a surface V0 homeo-

morphic to the torus or the projective plane. For such a V0 we have(
systH1(V0; Z2)

)2 ≤ C0 AreaV0 .

In fact, this inequality for the torus case is covered by the Loewner theorem and for the

projective plane this is a result by Pu (see above). (Notice, that the simple topology
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of V0 implies systH1(V0; Z2) = syst π1(V0).) Thus, by induction on the genus g of V ,

we have (
systH1(V ; Z2)

)2 ≤ const(g) AreaV .

S

V1 V2

Figure 3

Moreover, by the above discussion, const(g) satisfies the following functional

relation for all g = 2, 3, . . . either const(g) ≤ C1(log g)2/g or there exist natural

numbers g1 and g2 with g1+g2 = g and positive real numbers a1+a2 having a1+a2 =

1 + π−1C1(log g)2/g, such that

const(g) ≤ min
(
a1 const(g1), a2 const(g2)

)
.

Now, an elementary computation shows that

const(g) ≤ C(log g)2/g

for some universal constant C (depending on C0 and C1).

Step 2. We must estimate syst π1. We normalize the metric of V to have Area =

genus and we look for a ball B(R) ⊂ V of radius R ≈ log Area which does not lift

to the universal covering X of V . Unfortunately, we are unable to show that at least

some balls in X have area ≈ expR, but it is not hard to find some balls in X of
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SYSTOLES AND INTERSYSTOLIC INEQUALITIES 305

area ≈ R2 (see [Gro2,5]). In fact, one can reduce the general case to that where all

balls B(R) ⊂ V which lift to X have area ≥ R2. This is done by cutting off the

“fingers” of V and attaching semispherical cups to the cuts, see Figure 4.

cut

“finger”

hemispherical cup

Figure 4

This immediately implies a universal estimate (due to J. Hebda, see [Heb1])

(systπ1)2 ≤ constArea

with const independent of the genus (see [Gro2] for details).

Now, we want the quadratic bound AreaB(R) ≥ R2 to yield the estimate

const <∼ (log g)2/g

for g = genus. For this, we invoke the simplicial volume ‖V ‖∆ of V which measures

“the optimal number” of triangles needed to represent the fundamental class [V ] of

V by a real singular cycle. Namely, we assume for the moment that V is orientable

and represent [V ] ∈ H2(V ; R) = R by real singular cycles
∑
i

riσi, where ri ∈ R and
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σi are singular 2-simplices in V . Then, we set

‖V ‖∆ = Inf
∑
i

|ri|

over all representations of [V ] by
∑
i

riσi.

If all balls B(R) ⊂ V liftable to X have AreaB(R) ≥ R2, then one can show,

using a diffusion of chains in V , that ‖V ‖∆ is bounded by

‖V ‖∆ ≤ C2(A/s2)
(
log(C3A/s2)

)2 (∗)

where A = AreaA, s = systπ1(V ), and C2 and C3 are universal positive constants.

(See 3.B and 6.4.D in [Gro2].)

Warning. The statement of this inequality in 6.4.D′ and 6.4.D′′ in [Gro2] misses the

exponent 2 over log for surfaces and n = dimV in the general case.

Finally we recall that

‖V ‖∆ = 2|χ|(V ) ,

where χ is the Euler characteristic (see [Gro1]), and so (∗) implies the desired bound

A/s2 >∼ g/(log g)2 , (∗ ∗)

for orientable surfaces V since g = 1
2 |χ| + 1. The non-orientable case follows by

applying (∗ ∗) to the oriented double cover of V .

2.C.2. Remarks. (a) An earlier inequality (systole)2 ≤ constg Area due to

Accola (see [Acc]) and Blatter (see [Bla]) had constg ≈ g = genusV rather than

constg ≈ (log g)2/g of our inequality. The proof by Accola and Blatter relied on the

conformal Abel’s embedding of V to the Jacoby variety J(V ) which is a certain flat

torus of dimension 2g = rankH1(V ) (here V is assumed orientable). Then, the bound

on the systole of V was derived from such a bound for the torus J(V ) provided by

the Minkowski theorem (see 1.A and 2.D.6). In the next section we explain, following

ideas of Buser and Sarnak, how the discrepancy between the two constants serves to

distinguish Jacobians among all flat tori (as well as among all principally polarized

Abelian varieties).
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(b) One can estimate the above constg by a different method using the more

traditional topological meaning of the genus as 1
2 rankH1. At present the result one

can obtain this way is weaker than the one provided by the simplicial volume ‖V ‖∆,

namely constg ≈ g−1 exp(5
√

log g), and one does not know what to make out of it.

Notice the rankH1-interpretation of the genus is indispensable in certain situations

where the simplicial volume is not available, and so we do need a better understanding

of the direct effect of rankH1 on constg (compare 3.C.3).

(c) One expects further improvements on bounds on constg under suitable

geometric constraints on V . For example, if V admits an isometric involution with

about g isolated fixed points, then the present techniques of “cutting fingers” yield

the bound constg ≈ g−1, which means (systole)2<∼ g−1 Area. This generalizes the

hyperelliptic result by Jenni and Bavard (who assume that K(V ) = −1) cited earlier.

(d) One knows that a surface of genus g ≥ 2 contains a dividing non-contractible

geodesic of length s1 bounded by

s21 ≤ Cε g
−1+εAreaV ,

for every fixed ε > 0. In fact, this geodesic comes from the commutator of two loops

in V with the same kind of bound on their length (see 5.4 in [Gro2]). The question

is to decide whether this can be improved to

s21 <∼ g−1(log g)2 Area .

(The question becomes simpler if one is content to divide V by a system of several

non-contractible curves with a bound on their total length.)

2.D. The 2-systoles of the Jacobian tori. We want to refine the notion of the

2-systole of a Riemannian manifold W (which, in the following application, will be a

flat Riemannian torus of dimension 2g). First, we observe that every homology class

h ∈ H2(W ) defines via the cup-product a 2-form on the real cohomology H1(W,R)

denoted

h(α, β) = 〈α * β, h〉 , α, β ∈ H1(W ; R) .
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The rank of this form is denoted by rank h. Notice that the form h(α, β) is anti-

symmetric, and so rank h is even.

Example. Let W be an oriented surface of genus g. Then, the fundamental class

[W ] ∈ H2(W ) has rank[W ] = 2g.

2.D.1. Notation. Consider all two-dimensional cycles in W representing two-

dimensional homology classes of a given rank 2r, and let syst2r2 (W ) denote the infi-

mum of the areas of these cycles.

Example. Let W be the “square” torus, that is, the Cartesian product of d circles,

W = S1 × S2 × . . .× Sd, with length S1 = �, i = 1, . . . , d. Then,

syst2r2 = r�2 for r = 1, . . . ,
[d
2
]
.

Proof. Observe that each 2-torus Tij = Si×Sj ⊂W represents a class of rank two in

H2(W ) and AreaTij = �2. Furthermore, the sum (union) T1,2 + T3,4+, . . . ,+T2r−1,2r

has rank 2r and area r�2. It follows that syst2r2 (W ) ≤ r�2.

Next, take an arbitrary integral cycle h of rank 2r and evaluate its area. This h

is homologous to some integral combination of Tij , say

h ∼
∑

ai,j Ti,j ,

where {ai,j} is an integral antisymmetric matrix of rank 2r. Since the determinant of

some 2r × 2r submatrix in {ai,j} is non-zero, there are r non-zero entries among ai,j

where no two have a common index. Thus, we may assume (permuting the indices

if necessary) that the entries a1,2, a3,4, . . . a2r−1,2r do not vanish. Then, we take the

differential form

ω = ±ds1 ∧ ds2 ± ds3 ∧ ds4±, . . . ,±ds2r−1 ∧ ds2r

where the signs are equal to those of the corresponding ai,j . It is clear that∣∣∣∣∣∣
∫
h

ω

∣∣∣∣∣∣ = |a1,2|+ |a3,4|+, . . . ,+|a2r−1,2r| ≥ r .
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Furthermore, for every orthonormal bivector (τ1, τ2), one has |ω(τ1, τ2)| ≤ 1 by an

elementary argument (Wirtinger inequality) and thus,

Areah ≥

∣∣∣∣∣∣
∫
h

ω

∣∣∣∣∣∣ ≥ r �2 .

Exercise. Evaluate syst2r2 for the “rectangular” tori which are products of circles of

non-equal lengths.

Remark. — A simple (Minkowski type) argument shows that

syst22 <∼ d(Vol)
2
d

for every flat d-dimensional torus, but there is no such bound on syst2r2 for r ≥ 2, as

seen in the example of the “rectangular” tori.

2.D.2. Definition of syst2r,g2 . — Every 2-cycle in W may be thought of as a surface

V in W , and we want to incorporate the genus of V into the definition of syst2.

Namely, for given numbers 2r and g, we consider smooth maps of a closed connected

orientable surface V of genus g into W , such that the image of the fundamental class

of V has rank 2r in H2(W ). Then, we take the infimum of areas of these surfaces in

W and denote it by syst2r,g2 W .

It is clear that syst2r,g2 is monotone decreasing in g and

inf
g=1,2,...

syst2r,g2 = syst2r2 .

2.D.3. Example : Jacobians. Let V be a closed orientable surface of genus g and

W = J(V ) = H1(V ; R)/H1(V ; Z). This is a flat affine torus of dimension 2g without

any Riemannian metric. However, W carries a natural closed (Kähler) 2-form ωI

corresponding to the intersection form on H1(V ), where the implied correspondence

comes from the canonical isomorphism H1(V )−→∼H1(W ). Notice that this isomorphism

can be realized by a continuous map α : V →W which induces this isomorphism and

which is unique up to homotopy. Also observe that the 2-dimensional homology class

h = α∗[V ] ∈ H2(W ) has

rankh = 2g = 2
∫
V

α∗(ωI) .
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Now, let V be endowed with some Riemannian metric. Then, the space of 1-forms

on V acquires a Hilbert space structure which induces such a structure on the (de

Rham) cohomology group H1(V ; R), and, using the formal (non-Poincaré) duality

between H1 and H1, we obtain a Hilbertian (i.e., Euclidean) structure on H1(V ; R)

which descends to a flat Riemannian metric ρ on W = J(V ). Here is the standard

list of properties of this metric ρ.

1) The metric ρ is invariant under conformal changes of the metric on V (since

dimV = 2) and thus depends only on the conformal structure of V .

2) The metric ρ agrees with ωI (by Hodge theory on V ) in the following sense. Lift

ρ to a quadratic form ρ̃ on the linear space H = H1(V ; R), and lift ωI to an

exterior form ω̃ on H. (Notice that ρ and ωI were actually defined via ρ̃ and ω̃.)

Then, there exists a ρ̃-orthonormal basis in H, say h1, h2, . . . , h2g, such that

ω̃ = dh1 ∧ dh2 + dh3 ∧ dh4 + . . .+ dh2g−1 ∧ dh2g .

It follows that |ωI(τ1, τ2)| ≤ 1 for every orthonormal bivector (τ1, τ2) by Wirtinger

inequality. In particular,

Areaα(V ) ≥
∫
V

α∗(ωI) ≥ g ,

for our map α : V →W as well as for every map homotopic to α.

3) Vol(W, ρ) = 1, since ρ agrees with the form ωI which is unimodular with respect

to the lattice H1(V ; Z) ⊂ H = H1(V ; R).

4) There is a map α0 homotopic to α for which

Areaα0(V ) = g .

(In fact, this α0 is essentially unique and equals the harmonic representative of

the homotopy class of α.)

Corollary. — The “top” 2-systole of the Jacobian (torus) W = J(V ) is

syst2g,g2 (W ) = g = genusV . (∗)
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Now, we invoke our Main Inequality (see 2.C) and conclude to the following

relation between the homological 1- and 2-systoles of an arbitrary (not necessarily

flat) Riemannian manifold W .

2.D.4. Intersystolic inequality. — The systoles s1 = systH1(W ) and s2(g) =

syst2g,g2 (W ) are related for every g = 1, 2, . . . by

s21 ≤ C g−1
(
log(g + 1)

)2
s2(g) (∗ ∗)

for some universal constant C. (We put g + 1 instead of g to take care of g = 1.)

Now, we play (∗ ∗) against (∗) and obtain the following

Strengthened Minkowski for Jacobians. — The Jacobian variety W = J(V ) of

every surface V of genus g has volume one and

s21 =
(
systH1(W )

)2 ≤ C
(
log(g + 1)

)2
. (+)

This can be strengthened even further by the following

Theorem of Buser-Sarnak. — The 1-systole of the Jacobian of every surface

satisfies

s21 ≤ C∗ log(g + 1) (++)

for some universal constant C∗.

We shall prove this later on, but now recall that the original Minkowski theorem

bounds s1 by

s21 ≤ C′g (−)

as VolW = 1 (see 1.A), and so one is faced with the following alternative :

- either (++) distinguishes Jacobians among all flat tori,

- or (−) may be improved to (++) for all (or at least many) flat tori (which are

not Jacobians of anybody).
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This alternative is resolved in favour of (−) (as pointed out in [Bu-Sa]) by the

following classical theorem.

2.D.5. Minkowski-Hlawka theorem. (See [Cas].) — For every g = 1, 2, . . . , there

exists a flat 2g-torus W of unit volume and with (systH1)2 about g, namely with

C′′g ≤ s21 ≤ C′g ,

for some universal positive constant C′′.

Remark. — It is not easy to pinpoint an individual 2g-torus for a large g having

the first systole >∼
√
g. For example, the “square” and “rectangular” tori of unit

volume have s1 ≤ 1 for all g. However, the proof of the Minkowski-Hlawka theorem

shows that s1 ≈
√
g on the average for a natural measure on the space T2g of flat

tori. (Instead of T2g, one may think of the space of unimodular lattices in R2g, that

is SL2gR/SL2gZ which comes along with a finite measure associated to the Haar

measure on SL2gR.)

2.D.6. Cosystoles and the proof of the Buser-Sarnak theorem (inequality

(++)). Recall the L2-norm on 1-forms on V (here, V may be a Riemannian manifold

of any dimension ≥ 2), and define the first L2-cosystole, denoted cosystL2H1(V ), as

the infimum of the L2-norm of closed non-exact integral 1-forms λ on V where λ is

called integral if it represents a cohomology class in H1(V ; Z), i.e., if for every 1-cycle

S ⊂ V , the integral
∫
S
λ is an integer.

An equivalent definition appeals to the “dual Jacobian”

J∗(V ) = H1(V ; R)/H1(V ; Z) ,

where the (flat Riemannian) metric on J∗(V ) comes from the L2-norm on the (de

Rham) cohomology H1(V ; R). With this metric one sees immediately that

cosystL2H1(V ) = systH1

(
J∗(V )

)
.

Notice that for dimV = 2, the L2-norm on 1-forms is conformally invariant and

so cosystL2H1(V ) is a conformal invariant of surfaces V .
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Remark. — The notion of cosystole (though not the word itself) appears in the

work by Accola [Acc], Blatter [Bla] and Berger [Ber2] where these authors obtain a

bound on the 1-cosystole of a Riemann surface V by applying the Minkowski theorem

to the dual Jacobian J∗(V ). This gives a bound on the 1-systole of V via the following

inequality

systH1(V ) ≤ cosystL2H1(V )(AreaV )
1
2 .

Proof. (Berger, see [Ber2].) We may assume by scaling the metric of V that AreaV =

1 (notice, that the cosystole is scale invariant) and then, the L2-norm bounds the L1-

norm (on 1-forms). Now, a closed integral 1-form λ on V defines (by integration)

a C1-map µ of V to the circle Π = R/Z of unit length such that dµ = λ. Then,

the coarea formula expresses the L1-norm of λ = dµ in terms of the lengths of the

pull-backs µ−1(t), t ∈ Π, by

‖λ‖L1 =
∫
Π

lengthµ−1(t) dt .

Since the form λ is non-exact, the curves µ−1(t), t ∈ Π are not homologous to zero,

and some of them are not longer than ‖λ‖L1 ≤ ‖λ‖L2 .

(Notice that this argument is used by Berger also for n ≥ 3 where it gives a bound

on 1-cosystoles, see [Ber2].)

Cosystolic inequality of Buser-Sarnak. — The cosystole of a closed oriented

Riemann surface V of genus g is bounded by

cosystL2H1(V ) ≤ C∗
√

log(g + 1) , (++)∗

for some universal constant C∗.

Proof. Suppose there is an annulus A ⊂ V non-homologous to zero, which is conformal

to S� × [0, 1] where S� is the circle of length �. Then,

cosystL2H1(V ) ≤
√
� .

To see that, start with the form dt on A = S� × [0, 1], t ∈ [0, 1], and then slightly

perturb it into the differential dθ for θ : (s, t) �→ τ(t) where τ : [0, 1] → [0, 1] is a
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self-mapping of the interval fixing the ends and having zero derivative at the ends.

Such a perturbed form extends by zero outside A ⊂ V to a closed non-exact integral

form (which is Poincaré dual to S� in V ), say λ on V , which has support in A and

whose pointwise norm on A only slightly exceeds 1 = ‖dt‖. Thus, the L2-norm of λ

on V (which, by the conformal invariance, equals such norm on A with the product

metric) can be made arbitrarily close to
√
� = ‖dt‖L2 , and with such λ the inequality

cosyst ≤
√
� is ensured.

Now, we need an annulus A in V conformal to S� × [0, 1] with �<∼ log g and non-

homologous to zero. To find this, we first conformally change the metric in V to make

the curvature constant −1 and then take the shortest closed non-dividing geodesic γ

in V with the new metric. It follows from 2.C that length γ<∼ log g, and it is easy to

see (with the classical Zassenhaus-Kazhdan-Margulis lemma) that γ admits a collar

neighbourhood A of width ε > 0 for a universal ε, say ε = 1
4

(see §5.5.C in [Gro2],

but beware of an incorrect claim in Example (a) there). Clearly, A is conformal to

S� × [0, 1] with � <∼ log g, and the proof of (++)∗ is concluded.

Remark. — The existence of the “short” γ was claimed without proof in §5.5.C′

of [Gro2]. The proof was found by Buser and Sarnak independently of the sys-

tolic discussions in [Gro2]. In fact, Buser and Sarnak construct a geodesic γ with

length ≤ 2 log(4g − 2) and with a collar of width ≥ arctanh(2/3). This makes

cosystL2H1(V ) ≤
√
� for � =

3
π

log(4g + 2) .

It remains to show that the systolic bound (++)∗ for the dual Jacobian J∗(V ) =

H1(V ; R)/H1(V ; Z) implies the corresponding bound (++) for the Jacobian J(V ) =

H1(V ; R)/H1(V ; Z). But this is immediate as J∗(V ) is isometric to J(V ) for all

Riemann surfaces V . In fact, the isometry is given by the Poincaré duality isomor-

phism H1(V,Z)−→∼H1(V ; Z).

Remark. — This final step is not truly necessary. The strong bound (++)∗ on

syst1 J∗(V ) serves as well to distinguish the Jacobian tori J∗(V ) and J(V ) (which

are, by definition, mutually dual) from general flat tori.

Minkowski-Hlawka for Abelian varieties. Jacobians are distinguished among

all flat tori W not only by strong systolic inequalities but also by the existence of
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a translation invariant closed integral 2-form ω which agrees with the metric by the

property 2 in 2.D.3. But the presence of such an ω does not have much effect on the

1-systole of W . In fact, Buser and Sarnak show that the Minkowski-Hlawka remains

valid for the tori admitting such ω. Namely, for every g, there exists such a special

torus W of unit volume having

systH1(W ) ≥ C′′′g

for some universal constant C′′′ > 0. In fact, a majority of special tori W satisfies

such an inequality (see [Bu-Sa]).

Problem. Consider a Riemann surface V of genus g canonically embedded into its

Jacobian J(V ) and recall that the bound on the 1-systole of V with the induced

metric provided by our Main Inequality (see 2.C) reads

syst1 V <∼ log g ,

while the bound for the 1-systole of J(V ) ⊃ V is stronger,

syst1 J(V ) <∼
√
log g .

There may be two (not mutually exclusive) explanations for the discrepancy between

these two inequalities. First, it might happen that the metric in V induced from

J(V ) is so special that it satisfies a sublogarithmic (in g) systolic inequality. The

second possibility is that V is so much curved in J(V ) that certain geodesics of length

� ≈ log g in V shorten to ≈
√
� in J(V ). I am inclined to believe that “generic” V

have syst1 ≈ log g for the metric induced from J(V ) (this is known for the metric

of constant curvature −1) and the extra shortening in J(V ) is due to large exterior

curvature of V in J(V ).

Remark. — Buser and Sarnak show that their inequality syst1 J(V ) <∼ log g is sharp.

The relevant examples are provided by congruence coverings of a fixed arithmetic

Riemann surface (see [Bu-Sa] and 3.C).

2.E. Systolic characterization of Jacobians. Recall the definition of the 2-systole

of rank r from 2.D.1, denoted by systr2, and let W be a flat Riemannian torus of

dimension 2g and unit volume.
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Theorem. — The 2-systole of rank r = 2g of W is bounded from below by

syst2g2 W ≥ g (∗)

and equality holds if and only if W is isometric to the Jacobian of some Riemann

surface V or to a limit of Jacobians.

First proof of (∗). The (linear) space of bilinear antisymmetric forms ω on R2g carries

two natural O(2g)-invariant (non-Euclidean) norms : mass and comass defined as

follows

comass ω = supω(x, y) ,

where “sup” has taken over the pairs of orthonormal vectors x, y ∈ R2g ; then by

definition, mass is the dual norm on the space of 2-forms, or better (but not necessary)

to say, on the space of bivectors dual to forms.

Lemma. — The mass of a form ω bounds its discriminant by

|Discrω| 1g ≤ g−1 massω .

Proof. Recall, that the discriminant of ω is just the determinant of the coefficient

matrix of ω in some orthonormal basis. We use an orthonormal basis x1, . . . , x2g

which diagonalizes ω, that is

ω = µ1 x1 ∧ x2 + µ2 x3 ∧ x4 + . . .+ µg x2g−1 ∧ x2g .

The discriminant of this ω is the product µ1µ2 . . . µg, and the mass is the sum

µ1 + µ2 + . . .+ µg.

Now, we prove (∗) by observing that every homology class h ∈ H2(W ; Z) ⊂
H2(W ; R) = ∧2R2g has integral discriminant which is non-zero for rankh = 2g.

Hence, massh ≥ g, which means (by the definition of mass) that there exists a closed

translation invariant 2-form ω on W having unit comass (on every tangent space of

W ) such that
∫
h
ω ≥ g. This immediately implies that every cycle C realizing h has

areaC ≥ g.
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Digression : Stability of h. The above argument reproduces a fragment of the

discussion by Lawson in [Law], where the author shows (among many other results)

that every 2-dimensional integral homology class h in a flat torus is stable. This

means there exists an integer N such that the multiple class Nh can be realized by a

surface C of area N massh. In other words,

AreaC = massNh .

Sketch of the proof. First, by restricting to a subtorus, one may assume that dimW =

2g. Then, by linear algebra, there exists a translation invariant complex struc-

ture J : T (W ) → T (W ) which preserves the metric of W and the form (bivec-

tor) corresponding to h and such that the symmetric 2-form corresponding to h

(i.e., h(x, y) = h(x, Jy)) is positive definite. Now, one knows (this is highly non-

trivial) that there exists a subvariety D ⊂ W of real codimension 2 which is J-

complex (i.e., the singularity of D has codimension ≥ 2 in D and the tangent subbun-

dle of the non-singular locus of D is J-invariant) and such that the homology class

[D] ∈ Hn−2(W ) satisfies

[D] 6 [D] 6 . . . 6 [D] = (g − 1)!h .

Finally, the required surface C is obtained by intersecting (g − 1) generic translates

of D. (Notice that this C may have a singularity.)

Remarks. (a) It is unlikely that there exists a direct proof of Lawson’s theorem

without using complex analysis (and the Θ-divisor D).

(b) It is, probably, unknown if there are integers N not contained in the subset

(g − 1)!Z ⊂ Z for which

AreaNh = massNh(= N massh)

(where the area of a homology class is understood as the infimum of areas of surfaces

representing this class).
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(c) The above inequality (∗) is implicit in Lawson’s paper [Law] though it is not

stated in such form.

(d) It is shown in [Law] that the homology classes of flat tori are stable in dimen-

sions and codimensions 1 and 2 but not stable, in general, for the other dimensions.

(A homology class h of any dimension is called stable if VolNh = massNh for some

N ∈ Z.)

Now, we return to our inequality (∗) and observe that the above argument bounds

from below the mass of h as well as the area. In fact, the mass of every closed current

representing an integral homology class h of rank 2g is bounded from below by g. It

is also clear at this stage that the equality massh = g implies that W is an Abelian

variety principally polarized by h and then the equality Areah = h makes W a

Jacobian by the following characterization of Jacobians (compare [Law]).

Matsusaka criterion. (See [Mat].) — The Abelian variety W is a Jacobian if and

only if it contains an algebraic curve C (i.e., an effective 1-cycle) whose homology

class [C] ∈ H2(W ) is related to the class [D] ∈ H2g−2(W ) of the Θ-divisor D ⊂ W

by the relation

[C] =
1

(g − 1)!
[D] ∩ [D] ∩ . . . ∩ [D]︸ ︷︷ ︸

g−1

.

(Notice that the intersection class [D]∩ [D]∩ . . .∩ [D] ∈ H2(W ) without the coefficient

1/(g−1)! can always be realized by a curve, namely by the intersection of g−1 generic

translates of D.)

A short proof of the Matsusaka theorem is incorporated into our second proof of

(∗) as we shall presently see.

Second proof of (∗). Let V ⊂W be the minimal surface of area = syst2g2 W represent-

ing a class of rank 2g. Then, the cyclic coordinates of W are harmonic functions on

V (with the induced metric) and therefore, there exists an affine map of the Jacobian

J(V ) onto W which conformally maps V canonically embedded into J(V ) to V in W .

For example, if genusV = g, then this map p : J(V ) → W is an affine isomorphism

and, in fact, one obtains J(V ) by just modifying the (flat) metric on W as follows.

Define the new norm on translation invariant 1-forms λ on W by restricting λ to V

and taking the L2-norm of the restriction on V . This gives a norm on the cotangent
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bundle of W and hence on W . Clearly, W , with this new norm, equals the Jacobian

of V .

The area of V in W equals the energy of the map p : J(V ) → W restricted to

V ⊂ J(V ) which equals in this case the energy of the map p : J(V ) → W , that is,
1
2 TraceD∗

pDp for the differential Dp of p at some point. If genusV = g and p is an

isomorphism, this energy must at least be g since VolW = VolJ(V ) = 1 = DetD∗
p,

and the proof is finished. In the general case, where dim J(V ) = 2 genusV > dimW ,

we observe that the fibers of the projection p : J(V )→W must have volume at least

one. In fact, the condition rankh = 2g forces the Kähler form ωI of J(V ) (see 2.D.3)

to be non-singular on the fibers, hence has lower bound on the volume by one as ωI

is integral.

The equality case. It follows from the above discussion that the area of V in W

equals g if and only if J(V ) splits as a polarized Abelian variety, i.e., with respect to

the Riemannian metric ρ in J(V ) and the form ωI . In fact, J(V ) = W ⊕W⊥, where

W⊥ is a fiber of the projection with the structure (ρ, ωI) |W⊥. For example, if genus

V = g, we have J(V ) isometric to W and so W is a Jacobian. In general, we need

the following algebro-geometric fact provided to me with proof by Jean-Benôıt Bost.

Fact. — Jacobians of non-singular curves do not split in the above sense. If a limit

of such Jacobians splits, then the underlying curves converge to a reducible curve.

Proof. If a polarized Abelian variety splits, A = A1 ⊕ A2, then the Θ-divisor D of A

can be represented by A1×D2 +D1 ×A2 for the Θ-divisors Di in Ai. This divisor is

reducible, but in a Jacobian J(V ) the Θ-divisor is unique up to translations and thus

irreducible as it can be represented by the sum of g − 1 copies of V in J(V ).

Remarks. (a) The minimal surface V ⊂ W might have singularities, but it can be

parametrized by a non-singular (possibly disconnected) Riemann surface (see [Chan]),

and this is all what matters for the above proof.

(b) If W is a Minkowski-Hlawka 2g-dimensional torus with the first systole

syst1W ≈ √g (see 2.D.5), then, according to 2.D.4,

syst2g,g2 (W ) >∼ g2
(
log(g + 1)

)2
.
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We shall see in 3.C.3 that these tori have

syst2g2 >∼ g2−ε ,

where ε is an arbitrary positive number and the constant (for the sign >∼ ) depends

on ε.

Problem. What is the actual behaviour of the functions W �→ systr2(W ) and

W �→ systr,g2 (W ) on the space of flat tori ? What are the average values of these

functions ?

A more elementary problem concerns the behaviour of the (systolic) R-mass

(instead of area) and, more generally, of the eigenvalues µi of classes h ∈ H2(W ) (see

the first proof of (∗) above).
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3. SYSTOLIC INEQUALITIES FOR K(Γ, 1)-SPACES

We start with a general inequality for closed aspherical Riemannian manifolds

V , where “aspherical” means that the universal covering X of V is contractible

(e.g., homeomorphic to Rn for n = dimV ).

3.A. Basic inequality. — The length s1 of the shortest non-contractible curve in

V is bounded by

s1 =
def

syst π1(V ) ≤ Cn(VolV )
1
n (∗)

for n = dimV and some constant in the interval 0 < Cn < 6(n + 1)nn
√

(n + 1)! .

Idea of the proof. (See [Gro2] for details.) One can regularize V by a suitable process

of chopping away long narrow fingers (see Figure 4) such that VolVreg ≤ VolV and

syst π1(Vreg) = systπ1(V ), and such that the balls in Vreg liftable to the universal

covering Ṽreg have volumes bounded from below by

VolB(R) >∼ Rn .

This gives the desired upper bound on R, that is

R <∼ (VolVreg)
1
n .

One can reformulate the above theorem in the spirit of Minkowski as the following

3.A.1. Bound on displacement. — Let a group Γ discretely and isometrically act

on a complete Riemannian manifold X . If X is contractible (i.e., homeomorphic to

Rn), then there exists a point x ∈ X and a non-identity element γ ∈ Γ, such that

dist
(
x, γ(x)

)
≤ Cn(VolX/Γ)

1
n , n = dimX . (∗)′

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



322 M. GROMOV

Remarks (a) Notice that we do not assume X/Γ to be compact, but the theorem

holds true all the same (see [Gro2]).

(b) We do not need the metric in X to be Riemannian. The space X may be

a contractible manifold with an arbitrary metric and then the displacement bound

remains valid with the n-dimensional Hausdorff measure of X/Γ instead of the Rie-

mannian volume.

(c) If X is non-contractible, then the above bound (∗)′ may fail. For example, we

may multiply X by a small sphere S with trivial action which makes Vol(X × S/Γ)

small without changing the displacement. Yet we shall see below some instances of

(∗) and (∗)′ where X is non-contractible.

(d) Our basic inequality provides a positive answer to one of the conjectures

raised by Berger in [Ber1].

3.B. Sharpening the bound on syst1 by the topology of V . If V is a surface

of genus g, then systπ1(V ) <∼ g−
1
2 (log g)(AreaV )

1
2 (see 2.C), and this generalizes

to manifolds V of dimension ≥ 3 which admit auxiliary Riemannian metrics ρ′ of

negative sectional curvature K(ρ′) ≤ −1. The topological invariant which we shall

use for such V (where V appears in our discussion with an arbitrary metric ρ �= ρ′)

is the volume of (V, ρ′) playing the role of the genus.

3.B.1. Theorem. — If a Riemannian manifold V admits a(n) (auxiliary) metric

with curvature ≤ −1 and volume g, then

syst π1(V ) ≤ Cn g−
1
n

(
log(1 + g)

)
(VolV )

1
n . (∗ ∗)

Idea of the proof. One knows that the simplicial volume ‖V ‖ of V is bounded from

below by εng, εn > 0, (see [Thu], [Gro1]). On the other hand, a suitable “diffusion of

chains” provides an upper bound on ‖V ‖∆ by

‖V ‖∆ <∼ (V �/sn)
(
log(C′

nV �/sn)
)n

for V � = VolV and s = syst π1V . (Compare Step 2 in 2.C.1 and 6.4.D in [Gro2]; we

repeat the warning : the exponent n/ logn is missing in 6.4.D′ of [Gro2].)
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Remark. — The inequality (∗ ∗) is obvious for the auxiliary metric with K ≤ −1 as

the balls of radius 12 for this metric in the universal covering have VolB(R) >∼ expR

for R ≥ 1.

3.B.2. A bound on syst1 with Betti numbers. Let b = b(V ) denote the sum of

the Betti numbers of V , i.e.,

b =sup
F

rankH∗(V ;F ) ,

where F runs over all fields.

Theorem. (See 6.4.C′′ in [Gro2].) — The shortest non-contractible curve in a closed

aspherical Riemannian manifold V is bounded by

systπ1(V ) ≤ Cnb
− 1

n

(
expC′

n

√
log b

)
(VolV )

1
n (∗ ∗ ∗)

for some universal positive constants Cn and C′
n.

Corollary. — One has

systπ1(V ) <∼ b−
1
n+ε(VolV )

1
n

for every fixed ε > 0.

Question. Can one replace exp
√

log in (∗ ∗ ∗) by log as in (∗ ∗) ?

3.B.3. Simplicial height h(V ). Denote by h = h(V ) the minimal possible number

of simplices of a finite simplicial n-dimensional polyhedron P, for n = dimV , which

admits a continuous map u : P → V surjective on the top dimensional homology.

Thus, we want the fundamental class of V (V is assumed connected) to be in the

image u∗
(
Hn(P )

)
if V is orientable. In the non-orientable case we pass to the oriented

double cover Ṽ → V , take the corresponding double cover P̃ → P induced by u from

Ṽ → V , and require the fundamental class of Ṽ to be in the image u∗
(
Hn(P̃ )

)
.

Theorem. — The inequality (∗ ∗ ∗) remains valid with h = h(V ) in place of b,

syst π1(V ) ≤ Cn h− 1
n

(
expC′

n

√
logh

)
(VolV )

1
n . (∗ ∗ ∗)′

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



324 M. GROMOV

In fact, the proof of (∗ ∗ ∗) in [Gro2] proceeds via (∗ ∗ ∗)′ as h ≤ b by elementary

algebra.

Remarks. (a) The above question applies to (∗ ∗ ∗)′ as well as to (∗ ∗ ∗).

(b) One could replace h(V ) by an a priori larger number h+ = h+(V ) by insist-

ing that P were a pseudomanifold. This enlarged “height” dominates the simplicial

volume, and so the conjectural inequality

systπ1 <∼ h
− 1

n
+ (logh+)(Vol)

1
n

would imply (∗ ∗) as well as (∗ ∗ ∗).

Idea of the proof of (∗ ∗ ∗). First, we regularize the manifold V by chopping off long

narrow fingers in order to bound from below the volumes of relevant R-balls by ≈ Rn.

Then, the regularized V is covered by a controlled amount of such balls, and the nerve

of this covering serves for P (see [Gro2] for details).

3.B.4. Basic inequality for essential manifolds V . Let Γ be the fundamental

group Γ = π1(V ), take the Γ-classifying Eilenberg-MacLane K(Γ, 1)-space W and

let f : V → W be a classifying map. Recall that W is an aspherical space with

π1(W ) = Γ and f is uniquely defined up to homotopy by being the identity on the

fundamental group,

f∗ : π1(V ) = Γ→
id

Γ = π1(W ) .

The space V is called essential if its fundamental class does not vanish in Hn(W ), n =

dimV , i.e., f∗[V ] �= 0, and we use the Z2-homology in the case where V is non-

orientable.

Examples. (a) Every closed aspherical manifold V is essential as one may take

W = V and f the identity map.

(b) The projective space RPn is essential as W = RP∞ and the inclusion RPn ↪→
RP∞ is not homologous to zero mod 2.

(c) If V admits a map of non-zero degree to an essential (e.g., aspherical) manifold

V ′, then V is essential. In particular, the connected sum V = V ′#V ′′ is essential for

an essential V ′ and an arbitrary V ′′.
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Theorem. — The basic inequality (∗) remains valid for essential manifolds V ,

systπ1(V ) ≤ Cn(VolV )
1
n . (∗)ess

Example. (Conjectured by Berger in [Ber1], compare [Ber4]). — Let Ṽ be a topo-

logical sphere with a Riemannian metric and α : Ṽ → Ṽ be an isometric involution.

Then, there exists a point ṽ ∈ Ṽ for which

dist
(
ṽ, α(ṽ)

)
≤ Cn(Vol Ṽ )

1
n .

This follows from (∗)ess applied to V/α.

Remarks. (a) This result for n = 2 is due to Pu (see [Pu]) who obtains the sharp

value C2 =
√
π
/
2 with equality for the metrics of constant positive curvature. It is

unknown if metrics of constant curvature are extremal for dim Ṽ ≥ 3.

(b) Berger (see [Ber6 1
2
]) also studied non-isometric involutions of S2 where he ob-

tained the above distance inequality with C2 = 2 and conjectured the sharp inequality

(compare (E′
5) in Appendix 1 of [Gro2]).

3.C. Intersystolic inequalities for W = K(Γ, 1). Let W be a Riemannian manifold

with π1(W ) = Γ for some group Γ and π2(W ) = π3(W ) = . . . = πn(W ) = 0 for

some n ≥ 2. We want to bound the 1-systole of W in terms of the n-systole, thus

generalizing the results in 3.A and 3.B. This will give us, in particular, a bound on the

homological 1-systole systH1(V ) under suitable assumptions by using the classifying

map of V to K(Γ, 1) for Γ = H1(V ).

At this stage we fix the coefficient field F to be Z or Zp, and denote by systHk(W )

the infimum of the volumes of k-dimensional F -cycles in W non-homologous to zero.

The following inequality generalizes the above (∗)ess.

3.C.1. Basic intersystolic inequality. (See [Gro2].) — The infimum of the length

of closed non-contractible curves in W is bounded by

systπ1(W ) ≤ Cn
(
systHn(W )

) 1
n . (∗)inter
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Let us derive (∗)ess from (∗)inter. For this, we take Γ = π1(V ), use an embedding

V ⊂W for the classifying map, and take such a metric on W for which the embedding

is isometric and such that the shortest curves in V are also shortest in W (this is easy

to arrange). Then, we get a bound on syst1 by (systHnW )
1
n which clearly is ≤ VolV .

Let us modify the above construction by using H1(V ) for Γ instead of π1. Then,

we get a bound on the homological 1-systole of V , by

systH1(V ) ≤ Cn(VolV )
1
n , (∗)homol

provided [V ] does not vanish in H1

(
K(Γ; 1)

)
,Γ = H1(V ). Thus, (∗)homol is valid for an

n-dimensional Riemannian manifold V , provided there are 1-dimensional cohomology

classes α1, . . . , αn in V over some coefficient field whose cup-product does not vanish,

α1 * α2 * . . . * αn �= 0 .

3.C.2. K(Γ; 1)-spaces with universal metrics. The inequality (∗)ess can be

derived from (∗)inter for the classifying space W with a certain canonical metric which

is locally very much similar to the metric in the Banach space �∞ = {x1, x2, . . .} with

the sup-norm. For example, if Γ = Z2, we first take the unit sphere S∞ ⊂ �∞ and

P∞ = S∞/Z2, where P∞ comes along with the metric induced by S∞ from �∞.

Then, the basic systolic inequality for essential n-dimensional manifolds V with

π1(V ) = Z2 is equivalent to the lower bound

systHn(P∞; Z2) ≥ εn > 0 , (∗ ∗)

with an appropriate convention on how the n-volume is understood in P∞. In fact,

if syst1(V ) with π1(V ) = Z2 is ≥ 2 + δ, then V admits (by an easy argument,

see 6.1 in [Gro2]), a distance decreasing classifying map V → P∞, and (∗ ∗) yields

VolV ≥ systHn(P∞; Z2) ≥ εn > 0.

Now, we can approach (∗ ∗) by the variational method, i.e., by looking at the

minimal n-dimensional Z2-cycle in P∞ non-homologous to zero. One can show that

such cycles satisfy a version of the classical monotonicity property which insures the
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bound VolB(R) >∼ Rn for balls in this cycle and thus gives a lower bound on the

volume of the cycle.

The monotonicity property is proven on the basis of a suitable Federer-Fleming

type isoperimetric inequality in P∞ which (implicitly) depends on a possibility to

chop away long narrow fingers as is customary in geometric measure theory (see §6
in [Gro2]).

3.C.3. Strenghtening (∗)inter by topology of a cycle in W . Let us introduce

the following four characteristics of a homology class α ∈ Hn(W ) :

(1) the simplicial norm ‖α‖∆, i.e., the infimum of the sums
∑
|ri| for all represen-

tations of α by singular cycles
∑
i

riσi with real coefficients ri (and singular simplices

σi : ∆n →W ) ;

(2) the rank b = b(α) of the bilinear form on H∗(W ) defined by evaluation of the

cup product on α, that is (ω1, ω2) �→ 〈ω1 ∪ ω2, α〉, where this is assumed to be zero if

the sum of the degrees of ω1 and ω2 is different from n ; (Here one may take arbitrary

coefficients. Also, one can use L2-Betti numbers and the corresponding L2-rank which

may sometimes dominate the ordinary rank.)

(3) the simplicial height h = h(α) is the minimal possible number of simplices of

a polyhedron P admitting a map into W whose image in Hn contains α ;

(4) modified height h+, that is, the infimum of the sums
∑
i

|ri| over all repre-

sentations of α by combinations of singular n-simplices σ with integer coefficients

ri.

Finally, we denote by Volα the infimum of the volumes of n-cycles representing

α.

Topological intersystolic inequalities. — Let W be a Riemannian manifold with

π2(W ) = π3(W ) = . . . = πn(W ) = 0 for some n ≥ 2 and let α be an n-dimensional

homology class of W . Then, the infimum of the lengths of non-contractible curves in

W , i.e., s1 = syst π1(W ), is bounded by the following inequalities

s1 ≤ Cn‖α‖
− 1

n

∆ (log ‖α‖∆)(Volα)
1
n , (1)
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s1 ≤ Cn h− 1
n

(
expC′

n

√
log h

)
(Volα)

1
n , (2)

s1 ≤ Cn b−
1
n

(
expC′

n

√
log b

)
(Volα)

1
n . (3)

It is clear that (2) ⇒ (3). It is unclear whether (2) and/or (3) can be brought to the

shape of (1). It is desirable to have an inequality with h+ similar to the above. It is

easy to show that the inequalities for aspherical manifolds stated in 3.B are special

cases of the above. Namely (1) ⇒ (∗ ∗) in 3.B, (3) ⇒ (∗ ∗ ∗) and (2) ⇒ (∗ ∗ ∗)′. Also

notice that inequalities (1) and (3) are already interesting for n = 2 and W a flat

torus as they generalize the systolic inequalities for surfaces (see 2.D).

3.C.4. An application of (3) to Abelian varieties. Let W be a principally

polarized Abelian variety of complex dimension g with Θ-divisor D ⊂ W and let

δ(W ) denote the minimal positive integer such that the homology class

(
δ/(g − 1)!

)
[D] ∩ [D] ∩ . . . ∩ [D]︸ ︷︷ ︸

g−1

∈ H2(W )

can be realized by an algebraic curve (effective 1-cycle) V ⊂W (compare 2.E). Thus,

δ(W ) = 1 if and only if W is a Jacobian by the Matsusaka theorem (see 2.E). We

denote by Ag the moduli space of principally polarized Abelian varieties W of dimen-

sion g and let Ag,δ ⊂ Ag consist of W with δ(W ) ≤ δ. We want to show that for δ

sufficiently small compared to g the subset Ag,δ is rather thin in Ag, as in the case

δ = 1, where this is the Buser-Sarnak theorem (see 2.D.6). First, we recall that, ac-

cording to the Minkowski-Hlawka theorem for Abelian varieties (due to Buser-Sarnak,

see 2.D.6), a “typical” W ∈ Ag has

syst1W ≥ C0
√
g, C0 > 0 .

On the other hand, each W ∈ Ad,δ contains a surface V of area δg which represents

a homology class in H2(W ) of rank 2g. It follows by (3) that

syst1W ≤ C g−
1
2 expC′√log g

√
δ . (∗)
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Therefore, Ag,δ in Ag is indeed thin if δ is significantly smaller than g/ expC′√log g

for a fixed large constant C′, say C′ = 1000.

Remarks. (a) Inequality (∗) above does not look sharp, and it is unclear what the

(asymptotically) sharp inequality should be for large δ.

(b) A purely algebro-geometric consequence of (∗) is the positivity of codimension

of Ag,δ in Ag for δ � g/ expC′√
log g. Probably, algebraic geometers know much more

about codimAd,δ for various δ.

A related algebro-geometric question is an estimate of the minimal genus of a

curve in W in terms of δ(W ).

3.C.5. Inequalities (1) – (3) in 3.C.3 can be significantly strenghtened under addi-

tional geometric and topological assumptions on W and α. For example, the theorem

of Buser-Sarnak gives estimates better than (1) - (3) for flat tori W , albeit the whole

situation is far from clear even for the flat tori.

Another source of strengthening of these inequalities comes from symmetries of

(W,α), as suggested by the result by Bavard on hyperelliptic curves cited in 2.C. For

example, suppose W admits an isometric involution I which fixes α, and let Volα refer

to the infimum of the volumes of I-invariant cycles in W . Then, one may suggest the

same homological conditions on W, α and I mimicking those satisfied by hyperelliptic

inductions, and conjecture for such W, α and I the inequality

s1 ≤ Cn b−
1
n (Volα)

1
n .

(A suitable homological condition in the case n = 2 is Trace I∗ ≈ −b for the operator

I∗ : H1(W ; R)→ H1

(
W ; (R) .

)
The effect of extra symmetries can also be expressed in the language of displace-

ments where we have a discrete isometry group Γ acting on a contractible space X ,

and we want a bound

inf
γ∈Γ∞

dist
x∈X

(
x, γ(x)

)
≤ CΓ

(
Vol(X/Γ)

) 1
n , (∗)
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where Γ may have torsion and Γ∞ denotes the torsionless part of Γ (compare Bavard’s

result on cristallographic groups cited in 2.C). It may happen that the presence

of “strong torsion” makes CΓ small for some groups Γ. (At the present stage of

knowledge, one cannot rule out the possibility of Γ being pure torsion which would

make CΓ =∞.)

Let us indicate several more specific questions.

Questions. Let Vk be homeomorphic to the connected sum of k copies of a fixed

closed essential (e.g., aspherical) manifold V1 of dimension n ≥ 3. What is the

asymptotics for k →∞ of the (best) constant Cn,k in the inequality

syst π1(Vk) ≤ Cn,k(VolVk)
1
n ?

The most we can say about Cn,k is where V1 has non-zero simplicial volume ‖V1‖∆
which ensures the bound Cn,k ≤ Cn(log k)k− 1

n by the above (1) (since ‖Vk‖∆ =

k‖V1‖∆ according to [Gro]1). Maybe this is the best possible estimate, and then, for

every V1, the manifolds Vk, k = 1, 2, . . ., would admit metrics for which

(VolVk)
1
n

/
syst π1(Vk) ≤ C k

1
n

/
log k

for some constant C = C(V1). On the other hand, we cannot rule out the possibility

of the bound Cn,k ≤ CV1k
− 1

n . This would give us an ideal systolic inequality, namely

systπ1(Vk) <∼ k− 1
n (VolVk)

1
n ,

where the extremal metric may look something like in Figure 5.

(Notice that for dimV = 2, we do have examples with (AreaVk)
1
2
/
syst(Vk) ≈

k
1
2
/
log k obtained with congruence coverings (compare [Bu-Sa]) which look quite

different from Figure 5, see below.)

The above question extends to many other natural sequences Vk, such as a se-

quence of cyclic k-sheeted coverings of a fixed V1 corresponding to a given non-zero

cohomology class in H1(V1; Z). An interesting V1 to start with is a closed manifold

with a metric g of negative (e.g., constant negative) curvature. The covering mani-

folds Vk with induced metrics g̃k have Vol
/
(syst1)n ≈ k. The question is if one can

SÉMINAIRES & CONGRÈS 1
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find different metrics, say g̃′k on Vk, for which the ratio Vol
/
(syst1)

n becomes signif-

icantly smaller than k for large k → ∞. In fact, this is not at all clear if we restrict

to metrics g̃′k of negative (or even pinched negative) curvature. Here, as earlier, the

case dimV1 = 2 is exceptional (one can significantly decrease Area
/
(syst)2 by a de-

formation with constant negative curvature), but one may expect certain “rigidity”

of Vol
/
(syst1)

n for higher dimensions.

Figure 5

Provisional conjecture. Let (V, g) be a compact irreducible locally symmetric

space with non-positive curvature and denote by s+1 (V ) the maximum of the twice

injectivity radius 2Radv(V ) over v ∈ V . (Notice that s+1 > syst1.) Then, the systole

of an arbitrary metric g′ on V normalized by the condition Vol(V, g′) = Vol(V, g) has

syst π1(V, g′) ≤ Cs+1 (V )

for some constant C depending only on n = dimV .

Of course, this conjecture is violated for surfaces and so one has to assume that

n ≥ 3. Also, 3-dimensional manifolds of constant curvature may provide counter-
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examples. On the other hand, the conjecture stands a chance for more rigid locally

symmetric spaces especially if one adds extra conditions on V and/or limits possible

metrics g′, e.g., as follows :

(i) the function Radv(V ) is “nearly constant” in v. This means, Radv V ≤
B syst π1(V ), where B is a given constant which is kept fixed as the manifolds V

vary (and where the above constant C may depend on B if one varies B). For

example, if all our manifolds V appear as finite Galois covers of a single V0, then

Radv is “nearly constant” for these manifolds V . (It is, probably, not hard to find

for each class of local isometry a sequence of compact manifolds V in this class

for which the ratio s+1 (V )/ systπ1(V ) goes to infinity. In fact, finite non-Galois

coverings of a fixed manifold V1 seem to provide such examples. On the other

hand, it is much harder to produce non-compact locally symmetric manifolds V

with given behaviour of the function v �→ Radv V on V .)

(ii) if the original metric g had negative curvature K(g), one might restrict g′ by

K(g′) ≤ 0 or −a ≤ K(g′) ≤ −b for some a, b ≥ 0. (One may try |K(g′)| ≤ const,

but this does not appear especially restrictive in the present context.) One also

may restrict some global invariants of g′, e.g., by requiring the diameter and/or

the first eigenvalue of the Laplacian of g′ to be close to those of g.

Next, we want to indicate some interesting (sequences of) manifolds which are

far from being locally symmetric. We start with V1 containing a submanifold W ⊂ V1

of codimension 2 which is homologous to zero and take the cyclic k-sheeted ramified

covers Vk of V1 with ramification locus W (compare [Gr-Th]). About these Vk we

ask the same questions as the ones for the connected sums Vk = V1 # . . .#V1 and

for non-ramified coverings earlier. It seems plausible in view of an intersystolic in-

equality proven in [Gr-Th] that for certain V1 and W such Vk may be systolically

almost extremal, i.e., every metric g′k on Vk normalized by Vol(Vk, g′k) = k may have

syst π1(Vk, g′k) ≤ C for a constant C = C(V,W ).

Notice that the sequences of manifolds Vk we consider have the following common

feature : each Vk can be triangulated into ≈ k simplices. This suggests two general

questions indicating two opposite, mutually exclusive possibilities.
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(A) Does every manifold V which can be divided into at most k simplices admit

a metric for which

systπ1 ≥ Cn k
−1
n (log k)(Vol)

1
n , n = dimV ?

(B) Does there exist a sequence Vk, k = 1, 2, . . . , of Riemannian manifolds of a

fixed dimension n where Vk can be triangulated into at most k simplices and such

that

syst π1(Vk) ≤ C′
nk

− 1
n (VolVk)

1
n ?

Of course, the true answer may lie somewhere strictly between (A) and (B).

3.C.6. Congruence coverings. Consider some coverings Vk of a fixed compact

manifold V . Then,

VolVk ≈ k =
def

the number of sheets ,

and syst π1(Vk) can also be approximately expressed in terms of the subgroups Γk =

π1(Vk) ⊂ Γ = π1(V ) as follows. Fix a finite generating set C ⊂ Γ and denote

syst1(Γk, G) as the minimal G-word length of a non-identity element in Γk ⊂ Γ.

The general systolic problem for a finitely generated group Γ consists of finding

the possible values of syst1(Γk, G) for subgroups Γk ⊂ Γ of index k →∞. Notice that

syst1(Γk, G)
/
syst(Γk, G′) is pinched between two constants independent of Γk, and

so we may suppress G in the discussion of the rough asymptotics of syst1(Γk, G) for

k →∞.

Examples. (a) If Γ is the free Abelian group of rank n then, obviously, syst1 Γk <∼ k
1
n

(i.e., ≤ Ck
1
n for C = C(Γ, G)) for all Γk and (obviously), there are subgroups Γk ⊂

Γ, k →∞, where syst1 Γk ≈ k
1
n .

(b) If Γ is a torsionless nilpotent group of polynomial growth of degree d then,

clearly, syst1 Γk <∼ k
1
d for all subgroups Γk. This is sharp. In fact, Γ contains sub-

groups Γk of indices k → ∞ with syst1 Γk ≈ k
1
d if and only if the Lie algebra corre-

sponding to Γ is graded, as a simple argument shows.

(c) If Γ has exponential growth, then syst1 Γk <∼ log k, but this inequality may be

non-sharp. Yet it is sharp for subgroups Γ of exponential growth in SLNZ according

to the following lemma.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



334 M. GROMOV

Elementary Lemma. — Let Γ ⊂ SLNZ contain no unipotent elements and denote

by Γ′
k ⊂ Γ the subgroup of the matrices which are equal to the unit diagonal matrix

modulo k. Then,

syst1 Γ′
k ≥ C log k .

(Notice that the index of Γ′
k in Γ does not equal k but it is ≤ kN which is as good

for our purpose.)

Now, if we take a compact locally symmetric manifold V with a fundamental

group Γ embeddable into SLNZ, then we shall have k-sheeted coverings Vk of V

with syst π1(Vk) ≈ log k. (If V is of non-compact type with no flat factor, then the

simplicial volume of Vk is ≈ k (see [Sav]), and so every metric on Vk with volume k

has syst π1 <∼ log k.) Notice that arithmetic groups embed into SLNZ and also that

there are non-arithmetic examples. Also, the congruence construction of Γk extends

to S-arithmetic groups (and to more general groups of matrices with entries m/s for

m ∈ Z and s ∈ S, where S a finitely generated multiplicative semigroup in Z+) where

the situation is similar to the above.

Remarks on λ1 and diameter. (a) If Γ is arithmetic, then one knows (this is rather

deep) that the first eigenvalue of the Laplace operator on Vk for prime numbers k is

bounded away from zero,

λ1(Vk) ≥ ε > 0 for k →∞ ,

(and this property can be expressed combinatorially in terms of the Cayley graphs of

Γ/Γk). Then, it easily follows that the ratio DiamVk/ systπ1(Vk) remains bounded as

k →∞. Notice that the diameter of Vk approximately equals the minimal number D,

such that Γk ⊂ Γ can be generated by some elements γ ∈ Γk of G-length ≤ D. This

number D can be called DiamΓ/Γk, and there are many (how many ?) examples of

non-arithmetic groups Γ ⊂ SLNZ for which (DiamΓ/Γk)/ syst1 Γk remains bounded

for k →∞.

Counter example. The Heisenberg subgroup Γ ⊂ SL3Z of triangular matrices,

Γ =


1 a c
0 1 b
0 0 1

, has DiamΓ/Γk ≈ k and syst1 Γk ≈
√
k. (Yet, there is a sequence of
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“round” subgroups Γ′
k where Diam ≈ syst1 ≈ k. These are defined by the congruences

a, b ≡ 0(mod k) and c ≡ 0(mod k2).)

(b) It was suggested by Sakai (during my lecture in Tokyo) that a complicated

topology of a manifold V may force a non-trivial bound on syst π1(V )/DiamV (which

is trivially bounded by 2, unless π1(V ) = 0). The above examples indicate that such a

bound cannot be too strong for locally symmetric spaces. Furthermore, for every non-

trivial finitely presented group Γ, one can construct a (piecewise Riemannian metric of

curvature +1) on a 2-polyhedron P corresponding to the presentation of Γ, such that

syst π1(P ) = 2π and DiamP = π. It follows that every manifold of dimension ≥ 5

admits a smooth Riemannian metric g for which systπ1(V )/DiamV ≥ 2 − ε for an

arbitrarily chosen ε > 0. But, if syst π1(V ) = 2DiamV and g is smooth Riemannian,

then (V, g) is, probably, isometric to the projective space (compare [Ber-Ka]).

3.C.7. Systolic finiteness problem. Choose some number n = 2, 3, . . ., take ε > 0,

and consider all closed aspherical Riemannian manifolds V of dimension n, such that

syst π1(V ) ≥ ε(VolV )
1
n .

Then, we ask whether the number of isomorphism classes of the fundamental groups

Γ = π1(V ) is finite (and thus bounded by N = N(n, ε)). The known regularization

techniques (see §6 in [Gro2]) show that there is a finite number (bounded by N =

N(n, ε)) of finitely presentable groups ∆, such that each Γ = π1(V ) is dominated

by some ∆ which means there exists a (split) epimorphism α : ∆ → Γ and an

embedding β : Γ → ∆, such that α ◦ β = Id. This gives a bound on the torsion

of H1(Γ) (and also on the torsion τ of all of H∗(Γ) by log τ ≤ CnVol /(systπ1)n as

follows from §6 in [Gro2]). This solves the finiteness problem for certain essential

(rather than aspherical) manifolds V with Abelian Γ = π1(V ). For example, if V is

covered by a homotopy n-sphere, then the order of the fundamental group Γ = π1(V )

(which is cyclic since it is assumed Abelian) is bounded by N = N(n, ε) (in fact,

by expCn
(
Vol(V )/

(
syst π1(V )

)n). Also notice that, if Γ is nilpotent of nilpotency

degree d, then the group ∆ may also be assumed nilpotent of degree d which strongly

(how strongly?) restricts Γ.
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3.C.8. Compactness problem and the thick-thin decomposition of

general manifolds. One would like to have a (pre)compactness theorem for closed n-

dimensional manifolds V with VolV ≤ const (and, possibly, with systπ1(V ) ≥ ε > 0)

similar to that known for n-cycles in a fixed compact manifold. Such (pre)compactness

is immediate if all ρ-balls in V have VolB(ρ) ≥ δ = δ(ρ) > 0, e.g., δ(ρ) ≥ δρn for a

fixed positive δ = δn. In general, in order to achieve (pre)compactness, we should re-

strict to the “thick part” of V where the volumes of balls are bounded from below. Of

course, the thick-thin decomposition of an individual manifold V is quite ambiguous,

but, if we have a sequence of manifolds Vi, then a sequence of points vi ∈ V can be

called thick if VolB(vi, ρ) ≥ δ = δ(δ) > 0 for all ρ > 0 (independently of i = 1, 2 . . .).

One may try to produce some (sub)limit space (in the Hausdorff sense) out of thick

sequences and one wants to know how much is lost with the thin parts of Vi.

Questions. Let V be δ-thin, which may be understood in the following two different

ways.

(a) Every unit ball in V has volume ≤ δ.

(b) Every ρ-ball in V for ρ ≤ 1 has volume ≤ δρn.

Does it follow that

syst π1V ≤ Cnδ
1
n ,

provided V is essential and δ ≤ δn for some sufficiently small δn > 0 for n = dimV ?

(This is so for n = 2, by 5.2.A in [Gro2]).

More generally, without assuming that V is essential, one may ask whether the

filling radius of V (as defined in [Gro2]) is bounded by Cnδ
1
n for sufficiently small

δ ≤ δn.

Finally, the most optimistic (and least realistic) conjecture would be a bound of

the (n − 1)th Uryson width of V (see [Gro6]) in terms of δ. Notice that this width

is essentially the same as Diamn−1 and Radn−1 defined in [Gro2] and that even the

bound of this width by VolV remains an open problem for n ≥ 3 (see p. 127 in

[Gro2]). Notice that this width may be used to define the thick-thin decomposition

of an arbitrary V . Namely, a point v ∈ V is called (ρ, δ)-thin if the ρ-balls around v

have widthn−1 ≤ δρ and this notion seems reasonably behaved as we vary ρ and δ.
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SYSTOLES AND INTERSYSTOLIC INEQUALITIES 337

(A similar definition can be made up with widthk for each k as well as with FillRad.)

The main problem is to relate this thinness to the one defined with volumes of balls.

In fact, the ideal (and improbable) result would be a bound of widthn−1 by the

hyper-Euclidean size of B(ρ) (instead of VolB(ρ)) that is the maximal radius ρ0 of

the Euclidean ball B(ρ0) ⊂ Rn for which there exists a proper distance decreasing

map B(ρ)→ B(ρ0) of positive degree (compare [Gro5], [C-G-M], [Katz2]).

Systolic area of groups. Let Γ be a finitely presented group, consider all 2-

polyhedra P with piecewise linear metrics such that π1(P ) = Γ, and set

syst area Γ =
def

inf
P

AreaP
/(

systπ1(P )
)2

.

It is not hard to show that syst areaΓ ≥ ε > 0 unless Γ is free (see 6.7.A in [Gro2]), but

one knows little else about the function Γ �→ syst area Γ. For example, one does not

know how large is the set of isomorphism classes of groups Γ having syst areaΓ ≤ C

for a given (large) constant C. Another specific question is that of the evaluation of

the systolic area of the free product of k non-free groups.

In fact, many of the systolic inequalities for manifolds extend to essential n-

dimensional polyhedra P where P is called essential if the classifying map P →
K(Γ, 1), for Γ = π1(P ), does not contract to an (n−1)-dimensional subset in K(Γ, 1).

For example, every metric on an essential polyhedron P has

syst π1(P ) ≤ Cn(VolP )
1
n

(see Appendix 2 in [Gro2]). In fact, this inequality can be given the intersystolic

shape by defining the absolute systole absystn(W ) of a Riemannian manifold W as

the infimum of n-volumes of those subsets in W which cannot be homotoped to (n−1)-

dimensional subsets in W . It is clear that absystn ≤ systHn and yet this absolute

systole bounds syst π1(= absyst1) if πk(W ) = 0 for k = 2, . . . , n. Probably, such a

bound can be strengthened in the spirit of (1) - (3) in 3.C.2, using some regularization

based on the filling indicated in Appendix 2 in [Gro2].

3.C.9. Absolute systoles of congruence coverings. Consider a sequence of k-

sheeted coverings Vk of a fixed manifold V and try to evaluate absystmVk for a given

m and k →∞. Here are several observations in this regard.
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1. If V is a closed aspherical manifold, then the m-skeleton is essential in V for

every m = 1, 2, . . . n = dimV , and thus

absystmVk ≤ C k

for some constant C = C(V,m).

2. If the universal covering Ṽ of V satisfies the m-dimensional isoperimetric

inequality of exponent α = β/β − 1, i.e., if every (m − 1)-dimensional polyhedron

Q ⊂ Ṽ bounds a cone such that

Volm cone ≤ const(Volm−1Q)α ,

then,

absystmVk ≥ const′(absyst1Vk)
β ,

provided α > 1. If α = 1, then

absystmVk ≥ const′ exp(λ absyst1Vk)

for some positive const′ and λ.

Remark. — Notice, that the asymptotic behaviour of absystVk for k → ∞ for

aspherical manifolds V depends solely on Γ = π1(V ) and Γk = π1(Vk) ⊂ Γ. Similarly,

the isoperimetric exponents of Ṽ are determined by Γ for contractible Ṽ .

Example. If V has non-positive sectional curvature, then Ṽ satisfies the isoperimetric

inequality of exponent m/m − 1 in dimension m for all m = 2, 3, . . . , n = dimV .

Furthermore, if V is compact and Ṽ contains no m-dimensional flat (i.e., an isometric

copy of Rm), then, there is the linear inequality (with exponent α = 1) in dimensions

m, m + 1, . . . , n. This applies, in particular, to locally symmetric spaces of non-

compact type of rank ≤ m (and their congruence coverings, see 3.C.6).

Questions. Let V be a compact (locally) irreducible, locally symmetric space of non-

compact type and Vk be a sequence of congruence coverings. What are the asymptotic

relations between the absolute systoles of Vk in different dimensions as k → ∞. In

SÉMINAIRES & CONGRÈS 1
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particular, are there meaningful upper bounds on absystm ? For example, is absystm

for m ≤ rankV bounded by const(absyst1)β for some β ∈ [m,∞) ? Is there a bound

absystm ≤ const(Vol)γ

for given m < n = dimV and γ < 1 ? Notice that in the arithmetic case V may

contain arithmetic totally geodesic submanifolds U ⊂ V of dimension m and then,

the bound absystm ≤ const(Vol)γ does hold for certain γ < 1 as k →∞.

3.C.10. Generalized intersystolic bounds on syst1. The inequalities

syst1 <∼ (Vol)
1
n and/or syst1 <∼ (systn)

1
n can be generalized in two ways.

1. Instead of locating a single short non-contractible curve one may look for

certain systems of such curves. Namely, one may take a (possibly disconnected) 1-

complex (graph) S with a prescribed subset of subgraphs Si ⊂ S, i = 1, . . . , p and

a certain set Φ of continuous maps ϕ = S → P . Typically, Φ consists of homotopy

classes of maps, e.g., of all non-contractible maps S → P or of all maps for which

the induced homomorphism π1(S)→ π1(P ) is injective or surjective. Then, one tries

to find a “short” map ϕ ∈ Φ with a certain bound on the lengths of ϕ(Si) ⊂ P

or on combinations of these lengths, where such a bound should be linked to some

n-dimensional volume characteristic of P , e.g., to systn P . (Here, P is a polyhedron

with a certain metric.)

The prototypical example of such a bound is the following Minkowski theorem

extending the bound on the 1-systole of a flat torus Tn cited at the beginning of this

article.

Second Minkowski theorem. — There exist closed curves S1, . . . , Sn in Tn which

generate H1(Tn) and such that

n∏
i=1

lengthSi ≤ CnVolTn .

It is unknown if such an inequality remains valid for non-flat tori, but some

results in this direction can be obtained with the regularization techniques mentioned

earlier (see 5.4, 6.5, 6.6 and 7.5 in [Gro2]).
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2. The bound on syst1 and other 1-dimensional characteristics of P can some-

times be improved if one allows a use of the volumes of more elaborate higher dimen-

sional configurations than those incorporated into Voln P or systn P . For example,

one may consider the volumes Vi of the i-skeletons of P for a given set I of dimensions

i ≥ 3 and then try to bound syst1 (and the lengths of more complicated graphs in P )

in terms of these Vi. More generally, one may choose some subpolyhedra Pi ⊂ P of

dimensions ni and look for length bounds in P in terms of Volni
Pi. (Here, one can

restrict a relevant set Φ of maps ϕ : S → P by requiring certain subgraphs of S to go

to some chosen subpolyhedra in P .)

Example. (See [Gr-Th].) — Let P be covered by m subpolyhedra P1, . . . , Pm homeo-

morphic to a fixed compact manifold of negative curvature with totally geodesic

boundary, such that all Pi’s intersect inside P across this boundary, called P0 ⊂ P .

Then, there exists a point p0 ∈ P0 and m loops Si ⊂ Pi, i = 1, . . . , m based at p0, such

that these loops are freely independent in π1(P, p0) and their lengths are bounded by

� for

� = Cnmax
(
(Voln−1 P0)

1
n−1 , (Voln P1)

1
n , (Voln P2)

1
n , . . . , (Voln Pm)

1
n

)
,

where n = dimP is assumed to be ≥ 3.

One does not know what is the true general inequality for which the above serves

as an example.

3.C.11. Filling and embolic inequalities. If π1(P ) = 0 (or P is non-essential),

then there is no meaningful bound on syst1 P , but there are other 1-dimensional

geometric invariants which can sometimes be bounded by VolP . Here is a remarkable

instance of such a bound.

Embolic inequality. (See [Ber3,5,7].) — The injectivity radius of a Riemannian

manifold V is (sharply!) bounded by

InjRadV ≤ π(VolV/VolSn)
1
n ,

where Sn is the unit n-sphere for n = dimV .
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There are more general (but non-sharp) inequalities of this kind where the in-

jectivity radius is replaced by the minimal radius R of a ball in V which cannot be

contracted within the concentric ball of radius ρ(R) for a given function ρ(R). These

follow from bounds on the filling radius of V in [Gro2]. (See [Ber8], [Gro5], [Katz1,4],

[Gre-Pe].)
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4. EVALUATION OF k-DIMENSIONAL SYSTOLES FOR k ≥ 2

4.A. The first results concerning higher homological k-systoles are due to Berger (see

[Ber1]) who computed systk for the projective spaces

– systkRPn. The homology of the real projective space mod 2 is generated in

each dimension k = 1, 2, . . . , n by a k-dimensional subspace RP k ⊂ R and Berger

shows for the standard metric in RPn that

systk
(
= systHk(R, Pn; Z2)

)
= VolRPn .

Proof. The inequality systk ≤ VolRPn follows from the fact that RP k ⊂ RPn is

not homologous to zero. To prove the opposite inequality, we must show that every

k-cycle C in RPn non-homologous to zero has VolC ≥ VolRPn. This is obtained

with integral geometry by observing that VolC equals the integral of the number of

the intersection points of C with the (n−k)-dimensional projective subspaces in RPn.

If VolC < VolRPn, this integral is less than that for RP k in RPn, and so, there is

an (n− k)-subspace missing C. Hence, C is homologous to zero.

— syst2kCPn. The (integral) homology in every even dimension is generated by

CP k and

syst2k
(
= systH2k(CPn)

)
= VolCP k .

Proof. Let us show that every 2k-cycle C ⊂ CPn with VolC < VolCP k misses some

projective subspace in CPn of (complex) dimension n− k, and thus C is homologous

to zero. The averaged (oriented) intersection number of an arbitrary 2k-chain C with
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(n − k)-subspaces equals, by integral geometry, the integral
∫
C

Ω, where Ω is the 2k-

form on CPn obtained by averaging the 2k-current corresponding to CPn−k over the

isometry group G of CPn. Plainly speaking, Ω is defined by∫
C

Ω =
∫
G

#
(
C ∩ g(CPn−k)

)
dg

for all 2k-chains C (where dg refers to the normalized Haar measure). Since Ω is

G-invariant, it necessarily equals a scalar multiple of ωk for the Kähler form ω of

CPn. We agree to normalize the metric in CPn to have
∫

CPn ωn = 1 = n! VolCPn

which makes Ω = ωk. Then, we recall the Wirtinger inequality

comassωk ≤ k!

which means, by definition, ∫
C

ωk ≤ k! VolC

for all 2k-chains C. Therefore, if VolC < VolCP k = (k!)−1, then some (n − k)-

subspace misses C, and so C is homologous to zero.

— syst4kHPn. Here, in the quaternionic case, we have again

syst4k = VolHP k ,

and the proof boils down to the inequality comass Ω ≤ 1, where Ω is the 4k-form ob-

tained by the G-averaging of the current corresponding to HPn−k. The form Ω, being

G-invariant, is unique (up to a scalar constant) and can be written down explicitly.

It is proven in [Ber1] that, indeed, comass Ω ≤ 1.

– syst8CaP 2. In this case (of the Cayley plane) the proof is as above, though

the inequality comassΩ ≤ 1 is rather complicated (see [Ber1]). The conclusion is the

same as earlier

syst8 = VolCaP 1 .

4.A.1. Remark. — The above argument (due to Berger) is called, nowadays, the

method of calibrations. A calibration for us is a closed k-form Ω with a controlled

comass,

comassΩ ≤ a ,
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where comass is defined as the supremum of the values of Ω on all orthonormal

k-frames in the Riemannian manifold V where Ω lives. The above inequality is equiv-

alent to ∫
C

Ω ≤ aVolC

for all k-chains. Therefore, if Ω is integral, i.e., the class [Ω] is contained in Hk(V ; Z) ⊂
Hk(V ; R), then the volume of every homology class h ∈ Hk(V ) satisfying 〈h, [Ω]〉 �= 0

is bounded from below by

Volh ≥ a−1 , (∗)

where Volh is defined as the infimum of the volumes of cycles C representing h.

One can place (∗) in a more conceptual framework by defining the norm “mass”

on k-currents (in particular on k-cyles) as the dual to the comass norm on forms. In

other words, mass is the minimal norm for which∫
C

Ω ≤ (massC)(comassΩ)

for all C and Ω. Then, (∗) reads

Volh ≥ massh

where massh is the infimum of mass of (real) closed k-currents representing h. The

following theorem by Federer (see [Fed]) renders a geometric meaning to mass.

Federer’s formula.

massh = lim
i→∞

i−1 Vol ih .

4.A.2. Berger asks in [Ber1] what happens to systk of a projective space when the

standard metric g is deformed keeping the volume unchanged. We shall see presently

that

1. there are many non-trivial (i.e., non-Kähler) deformations g′ of the standard

metric g of CPn, such that the systoles syst2 do not change ;

2. every small deformation g′′ of g on CP 2 with Vol g′′ = Vol g has

syst2 g
′′ ≤ syst2 g ;
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3. there are arbitrarily small deformations g′ of g on CPn for every n ≥ 3,

keeping the total volume unchanged and such that

syst2k(g
′) > syst2k(g)

for k = 2, 3, . . . , n− 1.

Quasi-Kähler deformations of g. The Kähler form ω on CPn defines a (linear)

symplectic structure in each tangent space Tv(CPn), and we consider the (gauge)

group Sp� of fiberwise (linear) symplectic transformations of T (CPn). The metrics g

on CPn of the form g′ = σ(g) for σ ∈ Sp� are called quasi-Kähler deformations of g.

(If we use the full gauge group of all fiberwise linear transformations, then the orbit

of g equals the set of all Riemannian metrics on CPn. If we use the transformations

preserving ωn in the tangent spaces we obtain all metrics having the same volume

element as g.)

Theorem. — Every quasi Kähler deformation g′ of g satisfies

syst2 g
′ = syst2 g .

Proof. Let J ′ denote the almost complex structure obtained by σ from the original

complex structure J on CPn, i.e., J ′ = σ(J). Then, according to [Gro4], there exists

a J ′-holomorphic curve C ⊂ (CPn, Jn) representing the generator in H2(CPn). It is

easy to see that areaC = area(CP 1, g), and so syst2 g
′ ≤ syst2 g. This implies that

the theorem as the opposite inequality syst2 g
′ ≥ syst2 g follows from the Wirtinger

inequality for ω with respect to g′,

comassg′ ω(= comassg ω) ≤ 1

(as ω is gauge invariant).

Conformal changes of g. — Let g = ϕg for some positive function ϕ on CPn such

that (
Vol(CPn, gϕ) =

) ∫
CPn

ϕndg = Vol(CPn, g) .
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Then,

syst2k gϕ ≤ syst2k g, k = 1, . . . , n− 1 .

Proof. The required “small” 2k-cycle for gϕ comes from some k-dimensional complex

projective subspace in CPn. Namely, there is such a subspace S(= CP k) in CPn

whose gϕ-volume, i.e.,
∫
S
ϕk is less than or equal to VolCP k.

In fact, the average of
(
Vol(S, g)

)n
k over all subspaces S ⊂ CPn is bounded by(

Vol(S, g)
)n

k = (VolCP k)
n
k . To simplify the computation, we normalize the metric g

on CPn such that Vol(S, g) becomes 1. We denote by Σ the (Grassmann) manifold

of all k-dimensional subspaces S in CPn and observe the following property of Σ.

(B) There exists a smooth positive measure µ on Σ, such that, for every function

ψ on CPn, one has ∫
CPn

ψ dg =
∫
Σ

dµ

∫
S

ψ ds , (B)

where dg denotes the Riemannian volume element on (CPn, g) and ds is the volume

element on S ⊂ CPn with the induced metric.

Proof. The properly normalized (Haar) measure on Σ invariant under isometries of

CPn satisfies the above, as everybody knows.

Now, we apply the above formula to ψ = ϕn and use the Schwarz inequality∫
S
ϕn ≥

(∫
S
ϕk
)n

k (issuing from VolS = 1). We recall that
∫

CPn ϕn = 1 and conclude

to the inequality ∫
Σ

dµ(VolS, gϕ)
n
k ≤ Vol(CPn, gϕ) = Vol(CPn, g) .

This implies our assertion, since∫
Σ

dµ
(
Vol(S, g)

)n
k = Vol(CPn, g) ,

according to (B) applied to ψ = 1.

Stability of (B). Let us slightly C∞-perturb the family Σ and denote the perturbed

submanifolds S′ ⊂ CPn. Here, each S′ is C
∞-close (and diffeomorphic) to some S and

the variety Σ′ of all S′ is diffeomorphic to Σ. (The simplest perturbations are those

obtained by small diffeomorphisms of CPn.) Then, we slightly perturb the metric g
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to some g′ on CPn, such that the g′-volumes of all S′ become ≤ 1 (where we assume

that the original metric is normalized to have g-volumes of S equal one).

(B′) There exists a positive measure µ′ on Σ′ such that every function ψ on CPn

satisfies ∫
CPn

ψ dg′ =
∫
Σ′

dµ′
∫
S′

ψ ds′ . (B)′

Proof. Denote by R′ the Radon operator (transform) from functions on CPn to those

on Σ′ defined by R′ψ(S′) =
∫
S′

ψ ds′ for all S′ ∈ Σ′ and let R′
∗ denote the adjoint

operator from measures on Σ′ to those on CPn. Our claim can be stated in this

language by saying that the Riemannian measure dg′ on CPn lies in the image of R′
∗.

Moreover, there exists a positive measure µ′ on Σ′ solving the equation R′
∗(µ

′) = dg′.

(We use interchangingly µ′ and dµ′ in the hope that no confusion follows.) One

knows in this regard that the Radon transform R for the original Σ and g is injective.

Moreover, it is bijective (for appropriate function spaces) for codimR S = 2 (see [Hel]).

Furthermore, R and R∗ are elliptic Fourier integral operators for codimR S = 2 (see

[Gu-St]) and therefore, bijectivity remains intact for small perturbations R′ and R′
∗

corresponding to Σ′ and g′. Moreover, the solution of R′
∗(µ

′) = dg′ remains C0-close

to the Haar measure µ on Σ which implies positivity of µ′. This proves (B′) for

codimS′ = 2 and the general case (which we do not use in the sequel) is left to the

reader.

Corollary. — Every conformal metric g′ϕ = ϕg′ with Vol g′ϕ ≤ Vol g′ has∫
Σ′

(
Vol(S′, g′�)

)n
k d µ′ ≤

∫
Σ′

d µ′

and, consequently, there exists S′ ⊂ Σ for which Vol(S′, g′�) ≤ 1.

This follows by the same argument as used in the case of (Σ, g) with (B′) in place

of (B).

Small perturbations of CP 2. Let g′′ be an arbitrary Riemannian metric on CP 2

and let ω′′ be the harmonic form generating H2(CP 2; Z) ⊂ H2(CP 2; R). This form

is self-dual, i.e., at each point v ∈ CP 2 there exists a g′′-orthonormal frame where

ω′′ = ϕdx1 ∧ dy1 + ϕdx2 ∧ dy2. Therefore, if ϕ = ϕ(v) does not vanish on CP 2,
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the metric g′′ is conformal to a quasi-Kähler metric g′ with respect to which ω′′ =

dx1 ∧ dy1 + dx2 ∧ dy2. (This was pointed out to me by Berger.) If g′′ is close to the

standard metric g on CP 2, then so is g′, and in fact, g′ is isometric to some small quasi-

Kähler deformation of g (since ω′′ is simplectomorphic to ω by a transformation of CP

close to the identity). We assume that g′ itself is such a deformation and invoke the

corresponding J ′-holomorphic curves in CP 2. One knows (see [Gro4]) that there is a

family Σ′ of such “curves”(which are topologically 2-spheres) in CP 2 which is close to

the family Σ of the projective lines and where each S′ ∈ Σ′ has areag′ = 1 = areag S.

Hence, our metric g′′, conformal to g′, admits some S′ ∈ Σ′ with g′′-area ≤ 1. Thus,

every metric g′′ close to the standard metric g and having Volg′′ ≤ Vol g = 2 satisfies

the systolic bound

syst2 g
′′ ≤ syst2 g = 1 ,

as was claimed in 2 earlier.

Finally, we prove the claim 3 by observing that a generic quasi-Kähler deforma-

tion g′ of g on CPn has

syst2k g
′ ≥ syst2k g

for 2 ≤ k < n. In fact, by the Wirtinger inequality, every non-trivial k-cycle C with

Volg′ C = Volg C = (k!)−1
∫
C

ω

must be J ′-holomorphic (since ωk(τ1, . . . , τ2k) < k! for g′-orthonormal frames with

non-complex spans). On the other hand, a generic J ′ (being quite non-integrable)

admits no germs of J ′-holomorphic submanifolds for 2 ≤ k < n, and our claim follows

by applying all that to the minimal cycle C realizing a relevant homology class in

H2(CP 2).

Remarks and open questions. (a) One recaptures the sharp systolic inequality

for all metrics on CPn if one uses mass instead of the volume. Namely, the mass of

the generator h ∈ H2k(CPn) is bounded by

massh ≤ k!
n!

(Vol)
k
n
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for all Riemannian metrics on CPn, provided n is divisible by k. More generally,

generators hi ∈ H2ki
(CPn), i = 1, . . . , j, with

j∑
i=1

kj = m ≤ n, satisfy

j∏
i=1

masshi ≤ C masshm

where hm is the generator in H2m(CPn) and C =
(∏
i
(k!)
)/

m! . This follows from the

discussion in §7.4 of [Gro2] (which also yields similar results for HPn and CaP 2).

Example. If g′ is a quasi-Kähler deformation of the standard metric g on CPn, then

the mass of the (n−k)-th power of the corresponding symplectic form ω′ = ω viewed

as a 2k-current equals k! (where, as earlier, g and g′ are normalized by
∫

CPn

ωn = 1). It

follows by Federer’s formula cited earlier that the minimizing 2k-cycles Ci ⊂ (CPn, g′)

representing i h for the generator h ∈ H2k(CPn) satisfy

lim
i→∞

i−1 VolCi = (k!)−1 .

It follows by the Wirtinger inequality that the cycles Ci must be “almost J ′-

holomorphic” most of the time. This means, there are subsets C′
i ⊂ Ci which contain

no singular points of Ci, which have Vol2k C′
i

/
Vol2k Ci → 1 for i → ∞, such that

the tangent space T to Ci at each point c ∈ C′
i is εi-complex with respect to J ′ for

εi → 0 as i → ∞ (where “ε-complex” means dist(T, J ′T ) ≤ ε). On the other hand,

for generic g′ and J ′ and 2 ≤ k < n, no C1-smooth 2k-dimensional submanifold can

be J ′-complex. It follows that there is no geometric limit of the cycles Ci, although

they may weakly converge to the 2k-current corresponding to ωn−k. (I must admit

that I am unable to visualize the actual geometry of Ci for i→∞.)

(b) The statements 1, 2 and 3 provide partial answers to the local (in the neigh-

bourhood of the standard metric) systolic problem for CPn raised by Berger in [Ber2].

This problem remains open for non-complex projective spaces and for syst2 g′ for small

non-quasi-Kähler deformations of g on CPn, n ≥ 3. On the other hand, there proba-

bly exist metrics g′ far away from the standard one where the ratio syst2k g
′/(Vol g′)

k
n

becomes arbitrarily large. (In fact, such examples must be rather easy for k not di-

viding n. Compare 4.A.3 and 4.A.5 below.)
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4.A.3. Systolic problem for manifolds of general topological type. This

problem consists of finding inequalities between systk V, k = 1, . . . , n = dimV . For

example, if Hk(V ) �= 0, one looks for an inequality of the form systk systn−k ≤
constVol. More generally, if there are cohomology classes hi, i = 1, . . . , j, of degrees

ki, such that
j∑
i=1

ki = m ≤ n = dimV and the cup product h1 * h2 *, . . . * hj does

not vanish, then the desired inequality reads

j∏
i=1

systki
≤ const systm . (∗)

The inequalities of the shape of (∗) are known for the systoles defined with the mass

instead of the volume and these can be most conveniently expressed in terms of the

geometry of the mass-Jacobians

Jk(V ) = Hk(V ; R)
/
Hk(V ; Z)

with the (flat Minkowski) metrics coming from the mass on Hk(V ; R) (see §7.4 in

[Gro2], [Heb2] and [Bab1,2,3]). On the other hand, there is no single known upper

bound on systk for 2 ≤ k < n in terms of other systoles and/or more sophisticated

metric characteristics of V pertaining to dimensions not equal to k.

In fact, there are obvious counterexamples to the inequality syst1 systn−1 ≤
constVol. For instance, if a simply connected manifold V0 admits a free isometric

S1-action, then V = (V0 × R)/Z may have arbitrarily large ratio (syst1 systn−1)/Vol

for a suitable action of Z on V0 × R. Namely, if we rotate V0 by a small angle

α = 2π/i ∈ S1 and translate R by ε = α/i ≈ α2, then the corresponding isometry of

V0×R and all its multiples have displacement >∼α and so, the corresponding manifold

V = Vα,ε has

syst1 V ≥ constα .

On the other hand, the masses of the (n − 1)-cycles in V for n − 1 = dimV0 equal

those in V0 (by an easy argument) and so

systn−1 V = VolV0
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(while evaluation of systk for 2 ≤ k ≤ n− 2 is more interesting in this example). As

VolV = εVolV0, we have

syst1 systn−1 /Vol ≈ α/ε = i

which can be made as large as we wish. Next, suppose we can modify the metric g0 on

V0 in order to make VolV0 small without diminishing the induced distance function on

the S1-orbits. (This can easily be achieved, for instance, if V0 = (V1×V2, g0 = g1⊕g2)

with the S1-action free on V1, as we may take g′0 = g1⊕δg2 with small δ > 0. But such

modification is impossible if V0 is a homotopy sphere as follows from the isosystolic

inequality for V0/{0, α, 2α, . . .}, α = 2π/i). Then, we adjust

syst1 ≈ α, systn−1 ≈ αn−1, Vol ≈ εαn−1 ≈ αn+1

which scales to a metric on V with syst1 and systn−1 bounded from below by one and

Vol = α→ 0.

The simplest example where this happens is V = S3 × S2 × S1 with a suitable

family of homogeneous (!) metrics.

I realized somewhat belatedly that the above examples can be topologically varied

and simplified by a suitable geometrically controlled surgery. For example, it is not

hard to exhibit (highly non-homogeneous) metrics on S5 × S5 with syst5 ≥ 1 and

Vol→ 0 (compare [Ber9] and see [Be-Ka] and [Pit] for a more recent development; also

see [Gro10] for a similar surgical construction of large manifolds with large eigenvalues

of the Laplacian).

The above examples, as well as those indicated in 4.A.5 and 4.A.6 make quite

interesting the evaluation of systoles for particular classes of manifolds and finding

non-trivial inequalities between metric invariants (including the systoles) in these

classes. Here are some possibilities.

(a) Manifolds with a bound on the absolute values of the sectional curvature.

These are especially interesting when they collapse to lower dimensional manifolds

(which, for |K| ≤ const, amounts to inj rad→ 0). The simplest example of a collapsed

manifold V is a circle bundle over some V0. This is determined, besides the metric
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g0 on V0, by the (closed integral) curvature 2-form ω on V0 and the length ε of the

implied circle. If ε is small compared to ‖ω‖, the curvature of V is approximately

the same as that of V0 and, in particular, it remains bounded for ε → 0. Yet the

geometry of k-dimensional cycles in V for k = 2, . . . , n− 1, is not quite easy to see.

(Actually, this example is quite interesting for large ‖ω‖ where the curvature of V

may blow up.)

(b) Manifolds with K ≥ − const. These are in many respects similar to the above

but the proofs are harder. For example, according to Perelman, their local geometry

is roughly conical which, probably, allows an upper bound on the systoles in the

non-collapsed case. In the collapsed case, the k-dimensional volume looks harder

to understand but the Uryson widths w0, . . . , wk−1 behave as expected. Namely,

Perelman proved the conjecture from [Gro6] claiming a double-sided bound on the

product of the widths by the volume, the diameter and the lower bound on the

sectional curvatures.

(c) Manifolds with Ricci ≥ − const. These have been vigorously investigated in

the last couple of years by Anderson, Cheeger, Colding and Perelman. Yet, we do not

know how to construct k-dimensional submanifolds in such manifolds with controlled

volumes. For example, we do not know if every V with Ricci ≥ 1 admits a generic

smooth map to Rn−k where the pull-backs of all points have Volk ≤ constn (compare

with 4.A.7). Notice that this is quite easy for k = n − 1 (use the distance function)

and for all k assuming |K| ≤ const. Also, the case K ≥ − const looks within reach.

(d) Manifolds with positive scalar curvature. The condition Sc ≥ 0 is incompa-

rably weaker than Ricci ≥ 0 but yet it has non-trivial metric consequences obtained

with the minimal surface technique of Schoen-Yau and with the Dirac operator. For

example, 3-manifolds with Sc ≥ 1 have Uryson’s width w1 universally bounded (see

[Gro2], [Katz3] and [Gro10].)

(e) Random manifolds. If we are given a probability measure on the space of

Riemannian metrics on V , we may expect the values of geometric invariants to be

concentrated near their respective expectation values, and then we may speak, say,

of the systoles of random manifolds. For instance, we may have a sequence µi of such

measures, each supported on some finite dimensional subspace, where µi-random
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systoles have nice asymptotics for i→∞. For example, let V be a circle bundle over

the flat torus Tn governed by the curvature form ω on Tn. Then, we may look at

Gaussian measures µi on the spaces of Fourier polynomials of degree i (decomposing

2-forms) and try to evaluate the average and the typical values of the systoles

systk, k = 1, 2 . . . n + 1 for i→∞ .

Further classes of manifolds are indicated in 4.A.4 and 4.A.6 below.

4.A.4. Systolic invariants of symplectic manifolds. Let V be a closed sym-

plectic manifold with the structure from ω and let us look at an adapted Riemannian

metric g on V for which there exists a (necessarily unique) almost complex structure

J : T (V ) → T (V ), such that g is quasi-Kähler with respect to J . This means g and

Ω are J-invariant and ω(τ1, τ2) = g(τ1, Jτ2). Then, define

systk(V, ω) = sup
g

systk(V, g) ,

where g runs over all metrics adapted to ω.

One knows for some manifolds (V, ω) that syst2(V, ω) < ∞ as these V contain

J-holomorphic curves, but this is unknown in general. Here some test questions.

(a) Let V be the 2n-torus with a standard (translation invariant) symplectic

structure ω. Then, we ask whether syst2(V, ω) <∞.

(b) Does every ω on V diffeomorphic to CPn have

syst2(V, ω) =

∫
V

ωn


1
n

?

One would especially like to know if, for every ω on CP 2, there is an adapted metric

for which some non-zero multiple i h of the generator h ∈ H2(CP 2) has Vol(i h) ≤

i

( ∫
CP 2

ω2

) 1
2

. (Such i h is necessarily realized by a J-holomorphic curve in CP 2 and

the existence of such a curve implies that ω is symplectomorphic to the standard

symplectic structure on CP 2, as follows by the techniques of [Gro4]. Recently, two

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



354 M. GROMOV

remarkable new methods of constructing symplectic submanifolds came to light, one

is due to Donaldson and the other to Taubes. Both methods apply to CP 2 and rule

out exotic symplectic structures there.)

4.A.5. Further examples of metrics with bounded volume and systk → ∞.

If 2k > n = dimV , then there is no universal relation between VolV and systk.

This is shown by constructing metrics on V with Vol ≤ const and systk → ∞ as

follows. Take a submanifold M ⊂ V of codimension k with trivial normal bundle

whose connected components generate Hn−k(V ; R) and take the family of metrics

fε obtained by blowing up a fixed metric g in the directions normal to M by ε−a

and contracting g along M by εb. The blow-up (with a > 0) makes the mass norm

on Hk(V ) go to infinity for ε → 0, while the contraction in the M -direction with

b ≥ a(n−k)
k keeps the volume of (V, gε) bounded. (The actual expansion-contraction

takes place in a fixed trivialized tubular neighbourhood of M ⊂ V , see §2 in [Gro8].)

In general, we conjecture that all non-trivial intersystolic inequalities for simply

connected manifolds are associated to multiplicative relations in the cohomology in

the corresponding dimensions. This conjecture applies to the mass as well as to

the volume, but for the volume we actually expect no inequalities at all as every

closed, simply connected manifold probably admits a metric with arbitrarily given

systoles syst2, syst3, . . . , systn = Vol (and for the non-simply connected case the

only intersystolic inequalities are probably tied up with the π1-essentiality). On the

other hand, our conjecture should be refined in the case of mass by describing the

range of the geometries of the Jacobians J∗(V, g) as g runs over all metrics on V .

More specifically, we expect that the variation of systoles (and Jacobians) required

by conjecture is achieved by blowing and contracting a fixed metric in V along some

stratification in V . Here is an example.

Let V be a closed manifold and k be an odd number which does not divide

n = dimV . Then, there exists a family of metrics gε on V for which the mass-

norm on Hk(V ; R) goes to infinity for ε → 0 while VolV remains bounded. To see

that, take some k-codimensional submanifolds in V with trivial normal bundles whose

fundamental classes span Hn−k(V ; R). To simplify the matter, assume that there are

only two M ’s, say M1 and M2, transversally intersecting along M = M1∩M2. Then,
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we blow up a fixed metric g in V normally to M1 and M2 and simultaneously contract

it along M and along M1 and M2 away from M . The normal expansion (blow-up) of g

makes the mass-norm on Hk(V ) go to infinity while the contraction forces the volume

to stay bounded. (We suggest the reader would make up the details by him-/herself).

Let us indicate what should be done for k even. In this case, the topology of V

may not allow submanifolds M with trivial normal bundles as the cohomology dual

to [M] may have non-vanishing cup-squares. Yet, the above expansion-contraction

procedure can be adapted to this case as follows. Assume that there is a single M

whose intersection with a small generic perturbation M ′ of M has trivial normal

bundle. Then, we blow up the metric normally to this intersection M0 = M ∩M ′

and we also blow up normally to M away from M0, where we assume (in order for

the blow-up to have the desirable effect on massk) that the triviality of the normal

bundle of M −M0 in V .

Remarks. (a) Suppose we take a submanifold M in a Riemannian manifold (V, g),

such that the normal neighbourhood of M does not split. We still may perform the

expansion-contraction of g along M in an “infinitely small” normal neighbourhood

of M in V , but now the overall geometric effect of that will heavily depend on the

geometry of M , first of all on the curvature of the normal bundle of M . Some idea

of what happens near M may be gotten from the discussion in the following section

4.A.6.

(b) Suppose V is endowed with a symplectic structure ω. We want to construct

a family of quasi-Kähler metrics gε which are all adapted to ω (thus having a fixed

volume independent of ε) and which blow up transversally to a given k-codimensional

submanifold M . (This makes, for a suitable M , the systole systk V to go to infinity.)

To achieve this one needs, technically speaking, a closed k-form µ with the support

in an ε-neighbourhood U of M which is cohomologically dual to M , such that the

norm ‖µ‖gε
→ 0 for ε → 0. Such µ can be constructed on split neighbourhoods

U = M × Rk by pulling back a standard form from Rk to U by the projection

U → Rk. This works very well for general gε unrestricted by any ω (see [Gro8]) but

as we want gε adapted to ω, we need the splitting U = M × Rk to be also adapted

to ω as follows. The restrictions of ω to the fibers M × x, x ∈ Rk must be singular,
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i.e., of rank < n − k = the dimension of the fibers. The simplest splittings of this

kind live on neighbourhoods U of Lagrangian tori M ⊂ V where the corresponding

fibers are Lagrangian. Using these, one can easily construct, for instance, a family

of quasi-Kähler metrics gε adapted to ω on every even dimensional torus V = T 2m

with a translation invariant ω, such that systk gε →∞ for all k > m. But for general

symplectic manifolds V constructing such families gε seems more difficult.

4.A.6. Behaviour of systolic invariants for degenerate metrics. There are

some particularly nice ways in which a Riemannian metric g on V may degenerate

(or go to infinity), similar to geodesic rays in the space of flat tori. For example, let

At : T (v) → T (V ), t ∈ ]0,∞[, be a group of linear automorphisms of the tangent

bundle of V . Then, the family gt = Atg for a fixed g constitutes such an interesting

path of (possibly degenerating) metrics for t → ∞. (One can generalize by using

different t on different parts of V , e.g., by restricting the effect of At to a certain

stratification in V as in the previous section.) For example, one takes two mutually

normal subbundles T ′ and T ′′ in T (M) and blows up g in the T ′-direction. This

means, g splits as g = g′ + g′′ where g′ vanishes on T ′′ and g′′ on T ′ and then, gt is

defined by gt = tg′ + g′′. This is equivalent, up to scaling gt, to contracting along T ′′

which means taking gt = g′ + t−1g′′.

General problem (or program). Determine the asymptotic behaviour of metric

invariants of (V, gt) for t→∞.

We shall make below a few comments on systk gt in the special case of gt = tg′+g′′

for t→∞.

Contact case. Suppose T ′′ is a contact structure on V , i.e., the kernel of a

differential 1-form η, such that the restriction of dη to T ′′ is a non-singular 2-form.

Then, systk gt remains bounded for t → ∞, provided 2k < dimV and Hk(V ) �= 0.

(Here systk refers to the homological systole systHk(V ).) In fact, the k-dimensional

homology of V (with arbitrary coefficients) for 2k < dimV (notice that dimV is odd

in the contact case) can be realized by k-cycles in V tangent to T ′′ (see [Thom], and

p.p. 109 and 339 in [Gro3]).

Now, we take k above the middle dimension, 2k > dimV , and claim that mass-

norm on Hk(V ) grows as fast as t for t → ∞ (provided Hk(V ; R) �= 0). In fact, it is

SÉMINAIRES & CONGRÈS 1
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obvious that Vol(V, gt) ≈ t, and one can show that every non-trivial k-cycle also has

Vol ≈ t as it is “uniformly non-tangent” to T ′′ (see [Gro7] and [Gro9]).

Remark. — The family gt, t → ∞, converges to a limit (non-Riemannian Carnot-

Caratheodory) metric g∞ for which the Hausdorff dimension of V equals n + 1 for

n = dimtop V (see [G-L-P]). Every k-dimensional homology class for 2k < n can be

realized by a k-cycle of Hausdorff dimension k but if 2k > n, then every k-cycle

non-homologous to zero necessarily has g∞-Hausdorff dimension ≥ k+1 (see [Gro9]).

Generic subbundles of middle dimension. Let n = dimV be even and rankT ′′ =

m = 1
2 n. We assume that T ′′ is generic and m ≥ 3 and then, the limit (Carnot-

Caratheodory) metric g∞ gives to V Hausdorff dimension n + m. Next we try to

make a k-cycle C in V �-tangent to T ′′ which means dimTc(C) ∩ T ′′
c ≥ � for the

regular points c ∈ C. We think locally of our C at a regular point c as a graph of

a map Rk → Rn−k and then, the �-tangency condition is expressed in terms of the

homomorphism δ : T (C) → T ′ = T (V )/T ′′ by rank δ ≤ k − � which amounts to

(m− i + �)(k − i + �) equations for i = min(k,m). Therefore, if

n− k > (m− i + �)(k − i + �) (∗)

the system of P.D.E. expressing the relation rank δ ≤ k− � is undetermined and it is,

probably, not hard to prove that every homology class can be realized by a k-cycle

�-tangent to T ′′ (compare 2.3.8 in [Gro3]). In such a case one bounds the growth

systk gt by const tk−�. For example, if k = m, then (∗) reduces to k > �2 and the

expected growth of systk gt is at most tk−
√
k. (The expected Hausdorff dimension

of minimal k-cycles is ≤ 2k −
√
k.) On the other hand, if n − k > (m − i + �)(k −

i + �), then our P.D.E. system is overdetermined. We may think that the k-cycles

are “uniformly non-�-tangent” to T ′′ in the overdetermined case and, consequently,

systk >∼ tk−�. In particular, for k = m, the systole should grow at least as tk−
√
k

(and every non-trivial k-cycle would have Hausdorff dimension >∼ 2k −
√
k). This

would make (systk)
2
/
Vol → ∞ for t → ∞, and would settle (in the negative) the

basic systolic problem. Unfortunately, present day techniques give no better than
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systk gt >∼ t
√
k as these techniques apply via mass estimates. A related open problem

is that of finding the minimal g∞-Hausdorff dimension of non-trivial k-cycles in V

and/or of general topologically k-dimensional subsets. In fact, one does not know

if every (Carnot-Caratheodory) metric space of Hausdorff dimension N contains a

subset of middle topological dimension and of Hausdorff dimension ≤ N/2. Similarly,

one asks about the minimal Hausdorff dimensions of non-trivial k-cycles in Ck in V

with dimtop V = n and dimHau V = N if these (ever) satisfy inequalities of the form

dimHauCk + dimHauC� ≤ N for k + � = n.

Finally, we indicate another interesting class of families of metrics where the

above problems are also essentially open. These come with a dynamical system on V ,

say, the iterates f i of a single diffeomorphism f , and gj are defined as the pullbacks

of a fixed metric g by

gj =
j∑
i=1

(f i)∗g

or by

gj = max
0≤i≤j

(f i)∗(g) .

Notice that such gi are similar to the above gt (defined with an operator At on T (V ))

for hyperbolic (Anosov) diffeomorphisms f .

4.A.7. Families of cycles and isosystolic manifolds. One may generalize the

notion of systk by considering families of k-cycles with prescribed topological proper-

ties and minimizing the maximum of the volumes of cycles in such families. In fact,

cycles come in families for many natural manifolds, such as the family of projective

subspaces in a projective space, or the family of algebraic subvarieties of given dimen-

sion and degree in CPn. Unfortunately, the known results are limited to examples

(e.g., see [Fra-Ka]) and 2-cycles in some quasi-Kähler manifolds (see [Gro4], [Ruan]).
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en fonction du rayon d’injectivité, Ann. Inst. Fourier 30 (1980), 259–265.

[Ber6 1/2] M. Berger, Aire des disques et rayon d’injectivité dans les variétés
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différentielles globales, Bull. Soc. Math. France 87 (1959), 455–461.

[Thu] W.P. Thurston, Geometry and topology of 3-manifolds, preprint, Univ.
Princeton (1978).
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