SYSTOLES AND INTERSYSTOLIC INEQUALITIES

Mikhael GROMOV
Institut des Hautes Études Scientifiques
35, route de Chartres
F-91440 Bures-sur-Yvette (France)

Abstract. This articles surveys inequalities involving systoles in Riemannian geometry.

Résumé. Cet article présente l'ensemble des inégalités connues sur les systoles en géométrie riemannienne.
M.S.C. Subject Classification Index (1991) : 53C22.

TABLE OF CONTENTS

1. PRELIMINARIES 293
2. SYSTOLES OF SURFACES 299
3. SYSTOLIC INEQUALITIES FOR $K(\Gamma, 1)$-SPACES 321
4. EVALUATION OF k-DIMENSIONAL SYSTOLES FOR $k \geq 2$ 342
BIBLIOGRAPHY 359

1. PRELIMINARIES

The notion of the k-dimensional systole of a Riemannian manifold was introduced by Marcel Berger in 1972 following earlier work by Loewner (around 1949, unpublished), Pu (1952), Accola (1960) and Blatter (1961). Recall that according to Berger the k-dimensional systole of a Riemannian manifold V is defined as the infimum of the k-dimensional volumes of the k-dimensional cycles (subvarieties) in V which are not homologous to zero in V.

In fact, the idea of the 1-dimensional systole can be traced back to the classical geometry of numbers as one considers minima of quadratic forms on lattices in \mathbb{R}^{n}. The fundamental result here is an upper bound on such a minimum in terms of the discriminant of the form in question. This can be formulated in geometric language as follows.
1.A. Bound on the 1 -systole of a flat torus. - Let V be a flat Riemannian torus of dimension n. Then, the 1-systole of V can be bounded in terms of the volume of V by

$$
\text { systole } \leq \text { const }_{n}(\text { Volume })^{\frac{1}{n}}
$$

where const $_{n}=C \sqrt{n}$ for some universal constant C (which is not far from one).
Reformulation and proof. The torus V can be isometrically covered by \mathbb{R}^{n} and so $V=\mathbb{R}^{n} / \Gamma$ for some lattice Γ, that is a discrete group of parallel translations of \mathbb{R}^{n}. (This group is isomorphic to \mathbb{Z}^{n} but is not, in general, equal to the standard lattice $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$ consisting of integral points in \mathbb{R}^{n}.) If a point $x \in \mathbb{R}^{n}$ is moved by some $\gamma \in \Gamma$ to $\gamma(x)$, then the segment $[x, \gamma(x)]$ joining x with $\gamma(x)$ in \mathbb{R}^{n} projects to a closed curve S in $V=\mathbb{R}^{n} / \Gamma$ whose length equals dist $(x, \gamma(x))$. Furthermore, if γ is a non-identity element in Γ (i.e., $x \neq \gamma(x)$), then S is non-homologous to zero in V. In fact, S is non-homotopic to zero by the elementary theory of covering spaces which
implies "non-homologous to zero" since the group $\Gamma=\pi_{1}(V)=\mathbb{Z}^{n}$ is Abelian. Thus, the bound on the 1 -systole of V is equivalent to the following estimate.
1.A.1. Displacement estimate. - For the above lattice Γ acting on \mathbb{R}^{n} by parallel translations, there exists a point $x \in \mathbb{R}^{n}$ and a non-identity element $\gamma \in \Gamma$, such that

$$
\operatorname{dist}(x, \gamma(x)) \leq \operatorname{const}_{n} \operatorname{Vol}\left(\mathbb{R}^{n} / \Gamma\right)
$$

Proof. Take a closed ball B of radius R in \mathbb{R}^{n} such that the volume of B is greater than or equal to that of $V=\mathbb{R}^{n} / \Gamma$. Then, the projection $p: B \rightarrow V$ is not one-to-one and we have distinct points x and x^{\prime} in B with $p(x)=p\left(x^{\prime}\right)$. This equality means that $x^{\prime}=\gamma(x)$ for some $\gamma \in \Gamma$ (by the definition of the quotient space \mathbb{R}^{n} / Γ) and, since the diameter of B is $2 R$, the distance between x and $\gamma(x)=x^{\prime}$ is at most $2 R$.

Now, we recall that the volume of $B=B(R)$ equals

$$
\operatorname{Vol} B=\sigma_{n} R^{n}
$$

where σ_{n} is given by the familiar formula involving the Γ-function (here, Γ has nothing to do with the lattice Γ),

$$
\sigma_{n}=\pi^{n / 2} / \Gamma\left(\frac{n}{2}+1\right)
$$

Then, a pair of points x and x^{\prime} with $p\left(x^{\prime}\right)=p(x)$ necessarily appears for

$$
R=\left(\sigma_{n}\right)^{-\frac{1}{n}}(\operatorname{Vol} V)^{\frac{1}{n}}
$$

So we obtain the required displacement bound

$$
\operatorname{dist}(x, \gamma(x)) \leq \operatorname{const}_{n} \operatorname{Vol} V
$$

for

$$
\operatorname{const}_{n}=2\left(\Gamma\left(\frac{n}{2}+1\right)\right)^{\frac{1}{n}} / \sqrt{\pi},
$$

and the number const ${ }_{n}$ is bounded by $C \sqrt{n}$ according to Stirling's formula $\Gamma(n) \approx n^{n}$.
Remarks. (a) The above argument is classical, going back to Gauss (to Diophantus ?), Hermite and Minkowski. We dissected the proof in order to make visible the anatomy of our more general systolic inequalities discussed later on.
(b) Since Γ acts by parallel translations, the displacement dist $(x, \gamma(x))$ does not depend on x, and we may take the origin $0 \in \mathbb{R}^{n}$ for x. Then, our displacement estimate bounds the Euclidean norm on the lattice Γ embedded into \mathbb{R}^{n} as the Γ-orbit of the origin by

$$
\begin{equation*}
\inf \|\gamma\|_{\mathbb{R}^{n}} \leq \operatorname{const}_{n}\left(\operatorname{Vol} \mathbb{R}^{n} / \Gamma\right)^{\frac{1}{n}} \tag{*}
\end{equation*}
$$

where inf is taken over $\gamma \in \Gamma-\{0\}$. (The squared Euclidean norm serves as the quadratic form referred to at the beginning of this discussion.)

The above $(*)$ is called the Minkowski convex body theorem. It remains valid (by the proof we gave) for an arbitrary Banach (Minkowski) norm on \mathbb{R}^{n}. In traditional language, every convex centrally symmetric body B in \mathbb{R}^{n} contains a non-zero point $\gamma \in \Gamma$, provided $\operatorname{Vol} B \geq 2^{n} \operatorname{Vol}\left(\mathbb{R}^{n} / \Gamma\right)$.
(c) The value of const $_{2}$ and the extremal lattice $\Gamma \subset \mathbb{R}^{2}$ are known since Antiquity. Namely, const ${ }_{2}=(2 / \sqrt{3})^{\frac{1}{2}}$, and the extremal lattice has a regular hexagon as fundamental domain. (Such an hexagon of unit width has area $\sqrt{3} / 2$.) Thus, for every flat 2-torus one has

$$
\begin{equation*}
\text { systole } \leq(2 / \sqrt{3})^{\frac{1}{2}}(\text { Area })^{\frac{1}{2}} \tag{+}
\end{equation*}
$$

where equality holds if and only if the corresponding lattice $\Gamma \subset \mathbb{R}^{2}$ is hexagonal.

1.B. Loewner made an amazing discovery around 1949

Loewner torus theorem. - Let V be the topological 2-torus with an arbitrary Riemannian metric. Then, the 1-systole of V satisfies the same inequality as in the flat case,

$$
\text { systole } \leq(2 / \sqrt{3})^{\frac{1}{2}}(\text { Area })^{\frac{1}{2}},
$$

and equality holds if and only if the metric on V is flat and the corresponding lattice is hexagonal.

Proof. The key argument is the following
The uniformization theorem for tori. - For every V there exists a flat torus V_{0} (which can be normalized by the condition Area $V_{0}=$ Area V) admitting a conformal diffeomorphism $\varphi: V_{0} \rightarrow V$.

Granted this, the proof is immediate with the following lemma.

Easy Lemma. - Take a closed geodesic g in V_{0} of length ℓ, and let g_{s} be the family of parallel geodesics parametrized by the circle S^{1} of length $\sigma=A_{0} / \ell$ for $A_{0}=$ Area V_{0}. Then, the average squared length of the φ-images $\varphi\left(g_{s}\right) \in V, s \in S^{1}$, does not exceed ℓ^{2}, provided Area $V=A_{0}=$ Area V_{0}. Namely,

$$
\sigma^{-1} \int_{S^{1}}\left(\text { length } \varphi\left(g_{s}\right)\right)^{2} d s \leq \ell^{2}=(\text { length } g)^{2}
$$

Easy (length-area) proof. Denote by $a(v), v \in V_{0}$, the implied conformal factor, i.e., $\sqrt{\text { Jacobian } \varphi}$, and let $d \lambda$ denote the length element on g_{s}. Then, observe that

$$
\ell \sigma=A_{0}=\text { Area } V=\int_{V_{0}} a^{2}(v) d v=\int_{S^{1}} d s \int_{g_{s}} a^{2}(v) d \lambda \geq \int_{S^{1}} d s \ell^{-1}\left(\int_{g_{s}} a(v) d \lambda\right)^{2}
$$

But, since φ is conformal,

$$
\int_{g_{s}} a(v) d \lambda=\text { length } \varphi\left(g_{s}\right)
$$

and the proof follows.
The lemma implies that φ shortens the lengths of the homology classes of the flat torus and, in particular, it shortens the 1-systole which is the minimum of these lengths. Thus, the Loewner theorem for general Riemannian tori follows from the above inequality $(+)$ for the flat tori.

Let us reformulate the Loewner theorems in terms of displacement.
Let the group $\Gamma=\mathbb{Z}^{2}$ discretely and isometrically act on a surface X for some Riemannian metric. If X is homeomorphic to \mathbb{R}^{2}, then there exists a point $x \in X$ and an element $\gamma \in \Gamma$ different from the identity such that

$$
\operatorname{dist}_{X}(x, \gamma(x)) \leq(2 / \sqrt{3})^{\frac{1}{2}}(\operatorname{Area} X / \Gamma)^{\frac{1}{2}}
$$

Warning. In the general case where X is not isometric to \mathbb{R}^{2}, the displacement dist $(x, \gamma(x))$ does depend on x and may become uncomfortably large for some points
in X. Such an X can be obtained, for example, by periodically attaching long thin "fingers" to \mathbb{R}^{2} at the points of some \mathbb{Z}^{2}-orbit, see Figure 1 below.

Figure 1

If the fingers have length h, then a point x at the tip of a finger has $\operatorname{dist}(x, \gamma(x)) \geq$ $2 h$ for all $\gamma \in \Gamma=\mathbb{Z}^{2}, \gamma \neq \mathrm{id}$, and this distance goes to infinity for $h \rightarrow \infty$. But the contribution of the fingers to the area of $V=X / \Gamma$ is about εh, for ε being the thickness of the fingers. This is a negligible quantity if ε is chosen small compared to h.

The presence of such fingers has an unpleasant effect on the areas of certain balls in X. If the center of an R-ball $B(R)$ in X is located at the tip of a finger, then Area $B(R) \approx \varepsilon R$ for $R \in[\varepsilon, h]$. This is significantly less than Area $B(R) \approx R^{2}$ needed for the Minkowski argument based on the inequality Area $B(R) \geq$ Area X / Γ for $R \approx(\text { Area } X / \Gamma)^{\frac{1}{2}}$ (see 1.A.1).
1.C. The purpose of this lecture is an introduction to (and a survey of) (inter)systolic inequalities generalizing the Loewner theorem. Most of these inequalities
are rather old and detailed proofs can be found in [Ber1,2] and [Gro2]. Yet, there remain many unresolved problems which we explain along the way.

We also indicate the proof of a (new local) systolic bound for $\mathbb{C} P^{2}$ using pseudoholomorphic curves (see §4) and we explain, following a recent paper by Buser and Sarnak, a relation between systolic inequalities for surfaces of large genus and the geometry of the Jacobian locus in the moduli space of Abelian varieties (see § 2).

2. SYSTOLES OF SURFACES

Let V be a closed connected surface with a Riemannian metric. We want to find a bound on the systole of V, that is the length of the shortest closed curve in V non-homologous to zero. An equally interesting question is finding the shortest non-contractible curve in V. To distinguish these, we introduce the following
2.A. Notations. a) The length of the shortest non-contractible curve in V is denoted by syst $\pi_{1}(V)$.
b) The length of the shortest closed oriented curve in V representing a non-trivial element in the homology $H_{1}(V)=H_{1}(V ; \mathbb{Z})$ is denoted by syst $H_{1}(V)$.

Notice that shortest curves in V do exist : they are certain simple closed geodesics in V.
$\left.\mathrm{b}^{\prime}\right)$ One may replace $H_{1}(V ; \mathbb{Z})$ by $H_{1}(V ; A)$ for an arbitrary domain A of coefficients which leads to the notation syst $H_{1}(V ; A)$. The most useful A after \mathbb{Z} is $A=\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$. The corresponding systole syst $H_{1}\left(V ; \mathbb{Z}_{2}\right)$ refers to the shortest closed (non-oriented) curve non-homologous to zero $\bmod 2$ in V.

It is obvious that

$$
\text { syst } \pi_{1}(V) \leq \operatorname{syst} H_{1}(V) \leq \operatorname{syst} H_{1}\left(V ; \mathbb{Z}_{2}\right)
$$

and, in fact, this remains true (and obvious) for Riemannian manifolds V of any dimension.

Furthermore, if V is an oriented surface, then

$$
\text { syst } H_{1}(V)=\operatorname{syst} H_{1}\left(V ; \mathbb{Z}_{2}\right)
$$

because a simple closed curve (realizing syst ${ }_{1} H_{1}$) in an oriented surface V which does not bound in V cannot bound mod 2 in V.

Non-orientable counter-example. Take the connected sums V_{ε} of two copies of the standard projective plane across an ε-circle (see Figure 2).

Figure 2
Then, syst $H_{1}\left(V_{\varepsilon}\right)=\varepsilon$, that is the length of the joining circle. This can be made arbitrarily small while keeping syst $H_{1}\left(V_{\varepsilon} ; \mathbb{Z}_{2}\right)=\pi$ as for the original projective plane.
2.B. Surfaces of constant negative curvature. Our main objective is the inequality

$$
\text { systole } \leq \operatorname{const}(\text { Area })^{\frac{1}{2}}
$$

where we want to understand the dependence of the constant upon the genus of the surface in question. Here, we are guided by the following
2.B.1. Obvious (Minkowski type) observation. - If V has constant negative curvature, then

$$
\left.\begin{array}{rl}
\text { syst } \pi_{1}(V) & \leq \operatorname{const}(\operatorname{Area} V)^{\frac{1}{2}} \\
\text { const } & =C_{0} \frac{\log \text { genus } V}{\sqrt{\text { genus } V}}, \tag{*}
\end{array}\right\}
$$

where C_{0} is a universal constant.
Proof. It is convenient to scale the metric in order to have curvature -1 . Then, the R-balls in the universal covering $X=\widetilde{V}$ of V have area $\approx \exp R$ for $R \geq 1$. Thus, if $R \geq \log$ Area V, the projection of such a ball to V is not one-to-one and so

$$
\text { syst } \pi_{1}(V) \gtrsim \log \text { Area } V
$$

On the other hand, since curvature is -1 , the area of V approximately equals the genus (in fact, area $=4 \pi($ genus -1$)$), so $\left(*^{\prime}\right)$ is equivalent to $(*)$.

Remarks. (a) A slight refinement of the above argument gives a similar bound on syst $H_{1}(V)$ (see [Gro2]). In fact, a rather sharp evaluation of the implied constant in the homological version of $\left(*^{\prime}\right)$ is due to Buser and Sarnak (see [Bu-Sa]) who prove that

$$
\text { syst } H_{1}(V) \leq 2 \log (4 \text { genus } V-2)
$$

for orientable surfaces V of curvature $K=-1$ (compare 2.D).
(b) F. Jenni, and later C. Bavard, show that every hyperelliptic surface V of constant negative curvature $K=-1$ contains a closed non-contractible curve of length $s_{1}=$ syst $\pi_{1}(V)$ bounded by

$$
s_{1} \leq 2 \log (3+2 \sqrt{3}+2 \sqrt{5+3 \sqrt{3}}) \approx 5.106
$$

In fact, Bavard proves that

$$
\operatorname{ch} \frac{s_{1}}{4} \leq\left(2 \sin \frac{(g+1) \pi}{12 g}\right)^{-1}
$$

for $g=$ genus V, and exhibits extremal surfaces of genus 2 and 5 for which the latter inequality is sharp. Notice that his inequality for $g=2$ is equivalent to

$$
s_{1} \leq 2 \log (1+\sqrt{2}+\sqrt{2+2 \sqrt{2}}) \approx 3.057
$$

and, for $g=5$, to

$$
s_{1} \leq 2 \log (1+\sqrt{5}+2 \sqrt{2+\sqrt{5}}) \approx 4.425
$$

(see [Jen], [Bav4]).
2.C. Main systolic inequality for surfaces of large genus. - Let V be a closed connected surface of genus ≥ 2 with a Riemannian metric. Then,

$$
\left.\begin{array}{rl}
\left(\text { syst } H_{1}\left(V ; \mathbb{Z}_{2}\right)\right)^{2} & \leq \text { const Area } V \tag{+}\\
\text { const } & =C \frac{(\log \text { genus } V)^{2}}{\text { genus } V},
\end{array}\right\}
$$

where C is a universal constant.

Remarks. (a) Inequality (+) becomes more transparent if the metric in V is normalized by the equality Area $V=$ genus V. Then, $(+)$ reads

$$
\text { syst } H_{1}\left(V ; \mathbb{Z}_{2}\right) \lesssim \log \text { genus } V
$$

which means that V contains a simple closed non-dividing curve in V of length $\lesssim \log$ genus V.
(b) The best (known) constant C in $(+)$ is significantly greater than C_{0} in $(*)$. In fact, one knows that C should be greater than C_{0} as the extremal surfaces of given genus and area having the maximal possible systole do not have constant curvature if genus ≥ 2. This contrasts with the case of V homeomorphic to the torus where extremal metrics are flat according to the Loewner torus theorem (see 1.B). In fact, extremal surfaces of genus ≥ 2 tend to have piecewise flat metrics. The study of these extremal metrics was conducted by E. Calabi (see [Cal]) and C. Bavard (see [Bav2,3]) who established sharp systolic inequalities for some surfaces of low genus. For example, Bavard finds the sharp bound on $s_{1}=$ syst $H_{1}\left(V ; \mathbb{Z}_{2}\right)$ for V homeomorphic to the Klein bottle,

$$
s_{1}^{2} \leq(\pi / 2 \sqrt{2}) \text { Area } V
$$

(This result can also be derived from a theorem by Blatter concerning Möbius bound (see [Bla0]), as was pointed out by T. Sakai in a letter to M. Berger. Also recall that, according to Loewner's inequality cited earlier,

$$
s_{1}^{2} \leq \frac{\sqrt{3}}{2} \text { Area } V
$$

for V homeomorphic to T^{2}, and that the 1952-inequality by Pu for surfaces homeomorphic to the real projective plane P_{2} bounds the systole by

$$
s_{1}^{2} \leq \frac{\pi}{2} \text { Area }
$$

with the equality for the metrics of constant positive curvature on P^{2}.)

Recently, Bavard completely solved the systolic problem for all 17 plane cristallographic groups Γ isometrically acting on a surface X homeomorphic to \mathbb{R}^{2} by finding the sharp bounds for $\inf _{\gamma \in \Gamma_{\infty}} \inf _{x \in X} \operatorname{dist}(x, \gamma(x))$, where $\Gamma_{\infty} \subset \Gamma$ denotes the set of the elements of infinite order. He also solved the systolic problem for triangular groups (see [Bav5]).

2.C.1. Dividing the proof of $(+)$ into two steps.

Step 1. Let us show that $(+)$ follows from a similar inequality for syst $\pi_{1}(V)$, that is the length of the shortest non-contractible curve S in V which may divide V. If S actually divides V, we add round hemispherical cups to the pieces and obtain two closed surfaces V_{1} and V_{2} satisfying

$$
\text { genus } V_{1}+\text { genus } V_{2}=\text { genus } V
$$

and

$$
\text { Area } V_{1}+\text { Area } V_{2}=\text { Area } V+(\text { length } S)^{2} / \pi
$$

By the geometry of the hemisphere, every closed curve in $V_{i}, i=1,2$, can be homotoped to the complement of the hemispherical cup without increasing the length. Thus,

$$
\text { syst } H_{1}\left(V ; \mathbb{Z}_{2}\right) \leq \min _{i=1,2} \operatorname{syst} H_{1}\left(V_{i} ; \mathbb{Z}_{2}\right)
$$

and a bound on syst $H_{1}\left(V ; \mathbb{Z}_{2}\right)$ reduces to that for a surface of lower genus since $(\text { length } S)^{2}$ is bounded by

$$
(\text { length } S)^{2} \leq C_{1} \frac{(\log \text { genus } V)^{2}}{\text { genus } V} \text { Area } V
$$

according to the π_{1}-version of $(+)$ which we assume to be valid.
Notice that the division steps necessarily stop if we arrive at a surface V_{0} homeomorphic to the torus or the projective plane. For such a V_{0} we have

$$
\left(\text { syst } H_{1}\left(V_{0} ; \mathbb{Z}_{2}\right)\right)^{2} \leq C_{0} \text { Area } V_{0}
$$

In fact, this inequality for the torus case is covered by the Loewner theorem and for the projective plane this is a result by Pu (see above). (Notice, that the simple topology
of V_{0} implies syst $H_{1}\left(V_{0} ; \mathbb{Z}_{2}\right)=$ syst $\pi_{1}\left(V_{0}\right)$.) Thus, by induction on the genus g of V, we have

$$
\left(\text { syst } H_{1}\left(V ; \mathbb{Z}_{2}\right)\right)^{2} \leq \operatorname{const}(g) \text { Area } V
$$

Figure 3

Moreover, by the above discussion, const (g) satisfies the following functional relation for all $g=2,3, \ldots$ either const $(g) \leq C_{1}(\log g)^{2} / g$ or there exist natural numbers g_{1} and g_{2} with $g_{1}+g_{2}=g$ and positive real numbers $a_{1}+a_{2}$ having $a_{1}+a_{2}=$ $1+\pi^{-1} C_{1}(\log g)^{2} / g$, such that

$$
\operatorname{const}(g) \leq \min \left(a_{1} \operatorname{const}\left(g_{1}\right), a_{2} \operatorname{const}\left(g_{2}\right)\right)
$$

Now, an elementary computation shows that

$$
\operatorname{const}(g) \leq C(\log g)^{2} / g
$$

for some universal constant C (depending on C_{0} and C_{1}).
Step 2. We must estimate syst π_{1}. We normalize the metric of V to have Area $=$ genus and we look for a ball $B(R) \subset V$ of radius $R \approx \log$ Area which does not lift to the universal covering X of V. Unfortunately, we are unable to show that at least some balls in X have area $\approx \exp R$, but it is not hard to find some balls in X of
area $\approx R^{2}$ (see [Gro2,5]). In fact, one can reduce the general case to that where all balls $B(R) \subset V$ which lift to X have area $\geq R^{2}$. This is done by cutting off the "fingers" of V and attaching semispherical cups to the cuts, see Figure 4.

Figure 4

This immediately implies a universal estimate (due to J. Hebda, see [Heb1])

$$
\left(\text { syst } \pi_{1}\right)^{2} \leq \mathrm{const} \text { Area }
$$

with const independent of the genus (see [Gro2] for details).
Now, we want the quadratic bound Area $B(R) \geq R^{2}$ to yield the estimate

$$
\text { const } \lesssim(\log g)^{2} / g
$$

for $g=$ genus. For this, we invoke the simplicial volume $\|V\|_{\Delta}$ of V which measures "the optimal number" of triangles needed to represent the fundamental class $[V]$ of V by a real singular cycle. Namely, we assume for the moment that V is orientable and represent $[V] \in H_{2}(V ; \mathbb{R})=\mathbb{R}$ by real singular cycles $\sum_{i} r_{i} \sigma_{i}$, where $r_{i} \in \mathbb{R}$ and
σ_{i} are singular 2-simplices in V. Then, we set

$$
\|V\|_{\Delta}=\operatorname{Inf} \sum_{i}\left|r_{i}\right|
$$

over all representations of $[V]$ by $\sum_{i} r_{i} \sigma_{i}$.
If all balls $B(R) \subset V$ liftable to X have Area $B(R) \geq R^{2}$, then one can show, using a diffusion of chains in V, that $\|V\|_{\Delta}$ is bounded by

$$
\begin{equation*}
\|V\|_{\Delta} \leq C_{2}\left(A / s^{2}\right)\left(\log \left(C_{3} A / s^{2}\right)\right)^{2} \tag{*}
\end{equation*}
$$

where $A=$ Area $A, s=\operatorname{syst} \pi_{1}(V)$, and C_{2} and C_{3} are universal positive constants. (See 3.B and 6.4.D in [Gro2].)

Warning. The statement of this inequality in $6.4 . \mathrm{D}^{\prime}$ and $6.4 . \mathrm{D}^{\prime \prime}$ in [Gro2] misses the exponent 2 over \log for surfaces and $n=\operatorname{dim} V$ in the general case.

Finally we recall that

$$
\|V\|_{\Delta}=2|\chi|(V),
$$

where χ is the Euler characteristic (see [Gro1]), and so (*) implies the desired bound

$$
\begin{equation*}
A / s^{2} \gtrsim g /(\log g)^{2}, \tag{**}
\end{equation*}
$$

for orientable surfaces V since $g=\frac{1}{2}|\chi|+1$. The non-orientable case follows by applying $(* *)$ to the oriented double cover of V.
2.C.2. Remarks. (a) An earlier inequality (systole) ${ }^{2} \leq$ const $_{g}$ Area due to Accola (see [Acc]) and Blatter (see [Bla]) had const ${ }_{g} \approx g=$ genus V rather than const $_{g} \approx(\log g)^{2} / g$ of our inequality. The proof by Accola and Blatter relied on the conformal Abel's embedding of V to the Jacoby variety $J(V)$ which is a certain flat torus of dimension $2 g=\operatorname{rank} H_{1}(V)$ (here V is assumed orientable). Then, the bound on the systole of V was derived from such a bound for the torus $J(V)$ provided by the Minkowski theorem (see 1.A and 2.D.6). In the next section we explain, following ideas of Buser and Sarnak, how the discrepancy between the two constants serves to distinguish Jacobians among all flat tori (as well as among all principally polarized Abelian varieties).
(b) One can estimate the above const ${ }_{g}$ by a different method using the more traditional topological meaning of the genus as $\frac{1}{2} \operatorname{rank} H_{1}$. At present the result one can obtain this way is weaker than the one provided by the simplicial volume $\|V\|_{\Delta}$, namely const ${ }_{g} \approx g^{-1} \exp (5 \sqrt{\log g})$, and one does not know what to make out of it. Notice the rank H_{1}-interpretation of the genus is indispensable in certain situations where the simplicial volume is not available, and so we do need a better understanding of the direct effect of rank H_{1} on const $_{g}$ (compare 3.C.3).
(c) One expects further improvements on bounds on const $_{g}$ under suitable geometric constraints on V. For example, if V admits an isometric involution with about g isolated fixed points, then the present techniques of "cutting fingers" yield the bound const ${ }_{g} \approx g^{-1}$, which means (systole) ${ }^{2} \lesssim g^{-1}$ Area. This generalizes the hyperelliptic result by Jenni and Bavard (who assume that $K(V)=-1$) cited earlier.
(d) One knows that a surface of genus $g \geq 2$ contains a dividing non-contractible geodesic of length s_{1} bounded by

$$
s_{1}^{2} \leq C_{\varepsilon} g^{-1+\varepsilon} \text { Area } V
$$

for every fixed $\varepsilon>0$. In fact, this geodesic comes from the commutator of two loops in V with the same kind of bound on their length (see 5.4 in [Gro2]). The question is to decide whether this can be improved to

$$
s_{1}^{2} \lesssim g^{-1}(\log g)^{2} \text { Area } .
$$

(The question becomes simpler if one is content to divide V by a system of several non-contractible curves with a bound on their total length.)
2.D. The 2-systoles of the Jacobian tori. We want to refine the notion of the 2-systole of a Riemannian manifold W (which, in the following application, will be a flat Riemannian torus of dimension $2 g$). First, we observe that every homology class $h \in H_{2}(W)$ defines via the cup-product a 2-form on the real cohomology $H^{1}(W, \mathbb{R})$ denoted

$$
h(\alpha, \beta)=\langle\alpha \smile \beta, h\rangle, \alpha, \beta \in H^{1}(W ; \mathbb{R})
$$

The rank of this form is denoted by rank h. Notice that the form $h(\alpha, \beta)$ is antisymmetric, and so rank h is even.

Example. Let W be an oriented surface of genus g. Then, the fundamental class $[W] \in H_{2}(W)$ has $\operatorname{rank}[W]=2 g$.
2.D.1. Notation. Consider all two-dimensional cycles in W representing twodimensional homology classes of a given rank $2 r$, and let $\operatorname{syst}_{2}^{2 r}(W)$ denote the infimum of the areas of these cycles.

Example. Let W be the "square" torus, that is, the Cartesian product of d circles, $W=S_{1} \times S_{2} \times \ldots \times S_{d}$, with length $S_{1}=\ell, i=1, \ldots, d$. Then,

$$
\operatorname{syst}_{2}^{2 r}=r \ell^{2} \quad \text { for } r=1, \ldots,\left[\frac{d}{2}\right]
$$

Proof. Observe that each 2-torus $T_{i j}=S_{i} \times S_{j} \subset W$ represents a class of rank two in $H_{2}(W)$ and Area $T_{i j}=\ell^{2}$. Furthermore, the sum (union) $T_{1,2}+T_{3,4}+\ldots,+T_{2 r-1,2 r}$ has rank $2 r$ and area $r \ell^{2}$. It follows that $\operatorname{syst}_{2}^{2 r}(W) \leq r \ell^{2}$.

Next, take an arbitrary integral cycle h of rank $2 r$ and evaluate its area. This h is homologous to some integral combination of $T_{i j}$, say

$$
h \sim \sum a_{i, j} T_{i, j}
$$

where $\left\{a_{i, j}\right\}$ is an integral antisymmetric matrix of rank $2 r$. Since the determinant of some $2 r \times 2 r$ submatrix in $\left\{a_{i, j}\right\}$ is non-zero, there are r non-zero entries among $a_{i, j}$ where no two have a common index. Thus, we may assume (permuting the indices if necessary) that the entries $a_{1,2}, a_{3,4}, \ldots a_{2 r-1,2 r}$ do not vanish. Then, we take the differential form

$$
\omega= \pm d s_{1} \wedge d s_{2} \pm d s_{3} \wedge d s_{4} \pm, \ldots, \pm d s_{2 r-1} \wedge d s_{2 r}
$$

where the signs are equal to those of the corresponding $a_{i, j}$. It is clear that

$$
\left|\int_{h} \omega\right|=\left|a_{1,2}\right|+\left|a_{3,4}\right|+, \ldots,+\left|a_{2 r-1,2 r}\right| \geq r
$$

Furthermore, for every orthonormal bivector $\left(\tau_{1}, \tau_{2}\right)$, one has $\left|\omega\left(\tau_{1}, \tau_{2}\right)\right| \leq 1$ by an elementary argument (Wirtinger inequality) and thus,

$$
\text { Area } h \geq\left|\int_{h} \omega\right| \geq r \ell^{2}
$$

Exercise. Evaluate syst ${ }_{2}^{2 r}$ for the "rectangular" tori which are products of circles of non-equal lengths.

Remark. - A simple (Minkowski type) argument shows that

$$
\operatorname{syst}_{2}^{2} \lesssim d(\mathrm{Vol})^{\frac{2}{d}}
$$

for every flat d-dimensional torus, but there is no such bound on $\operatorname{syst}_{2}^{2 r}$ for $r \geq 2$, as seen in the example of the "rectangular" tori.
2.D.2. Definition of $\operatorname{syst}_{2}^{2 r, g}$. - Every 2-cycle in W may be thought of as a surface V in W, and we want to incorporate the genus of V into the definition of syst $_{2}$. Namely, for given numbers $2 r$ and g, we consider smooth maps of a closed connected orientable surface V of genus g into W, such that the image of the fundamental class of V has rank $2 r$ in $H_{2}(W)$. Then, we take the infimum of areas of these surfaces in W and denote it by $\operatorname{syst}_{2}^{2 r, g} W$.

It is clear that syst ${ }_{2}^{2 r, g}$ is monotone decreasing in g and

$$
\inf _{g=1,2, \ldots} \text { syst }_{2}^{2 r, g}=\operatorname{syst}_{2}^{2 r}
$$

2.D.3. Example : Jacobians. Let V be a closed orientable surface of genus g and $W=J(V)=H_{1}(V ; \mathbb{R}) / H_{1}(V ; \mathbb{Z})$. This is a flat affine torus of dimension $2 g$ without any Riemannian metric. However, W carries a natural closed (Kähler) 2-form ω_{I} corresponding to the intersection form on $H_{1}(V)$, where the implied correspondence comes from the canonical isomorphism $H_{1}(V) \gtrsim H_{1}(W)$. Notice that this isomorphism can be realized by a continuous map $\alpha: V \rightarrow W$ which induces this isomorphism and which is unique up to homotopy. Also observe that the 2-dimensional homology class $h=\alpha_{*}[V] \in H_{2}(W)$ has

$$
\operatorname{rank} h=2 g=2 \int_{V} \alpha^{*}\left(\omega_{I}\right)
$$

Now, let V be endowed with some Riemannian metric. Then, the space of 1-forms on V acquires a Hilbert space structure which induces such a structure on the (de Rham) cohomology group $H^{1}(V ; \mathbb{R})$, and, using the formal (non-Poincaré) duality between H^{1} and H_{1}, we obtain a Hilbertian (i.e., Euclidean) structure on $H_{1}(V ; \mathbb{R})$ which descends to a flat Riemannian metric ρ on $W=J(V)$. Here is the standard list of properties of this metric ρ.

1) The metric ρ is invariant under conformal changes of the metric on V (since $\operatorname{dim} V=2$) and thus depends only on the conformal structure of V.
2) The metric ρ agrees with ω_{I} (by Hodge theory on V) in the following sense. Lift ρ to a quadratic form $\tilde{\rho}$ on the linear space $H=H_{1}(V ; \mathbb{R})$, and lift ω_{I} to an exterior form $\tilde{\omega}$ on H. (Notice that ρ and ω_{I} were actually defined via $\tilde{\rho}$ and $\tilde{\omega}$.) Then, there exists a $\tilde{\rho}$-orthonormal basis in H, say $h_{1}, h_{2}, \ldots, h_{2 g}$, such that

$$
\tilde{\omega}=d h_{1} \wedge d h_{2}+d h_{3} \wedge d h_{4}+\ldots+d h_{2 g-1} \wedge d h_{2 g}
$$

It follows that $\left|\omega_{I}\left(\tau_{1}, \tau_{2}\right)\right| \leq 1$ for every orthonormal bivector $\left(\tau_{1}, \tau_{2}\right)$ by Wirtinger inequality. In particular,

$$
\text { Area } \alpha(V) \geq \int_{V} \alpha^{*}\left(\omega_{I}\right) \geq g
$$

for our map $\alpha: V \rightarrow W$ as well as for every map homotopic to α.
3) $\operatorname{Vol}(W, \rho)=1$, since ρ agrees with the form ω_{I} which is unimodular with respect to the lattice $H_{1}(V ; \mathbb{Z}) \subset H=H_{1}(V ; \mathbb{R})$.
4) There is a map α_{0} homotopic to α for which

$$
\text { Area } \alpha_{0}(V)=g
$$

(In fact, this α_{0} is essentially unique and equals the harmonic representative of the homotopy class of α.)

Corollary. - The "top" 2-systole of the Jacobian (torus) $W=J(V)$ is

$$
\begin{equation*}
\operatorname{syst}_{2}^{2 g, g}(W)=g=\operatorname{genus} V \tag{*}
\end{equation*}
$$

Now, we invoke our Main Inequality (see 2.C) and conclude to the following relation between the homological 1- and 2-systoles of an arbitrary (not necessarily flat) Riemannian manifold W.
2.D.4. Intersystolic inequality. - The systoles $s_{1}=\operatorname{syst} H_{1}(W)$ and $s_{2}(g)=$ $\operatorname{syst}_{2}^{2 g, g}(W)$ are related for every $g=1,2, \ldots$ by

$$
\begin{equation*}
s_{1}^{2} \leq C g^{-1}(\log (g+1))^{2} s_{2}(g) \tag{**}
\end{equation*}
$$

for some universal constant C. (We put $g+1$ instead of g to take care of $g=1$.)
Now, we play $(* *)$ against $(*)$ and obtain the following
Strengthened Minkowski for Jacobians. - The Jacobian variety $W=J(V)$ of every surface V of genus g has volume one and

$$
\begin{equation*}
s_{1}^{2}=\left(\text { syst } H_{1}(W)\right)^{2} \leq C(\log (g+1))^{2} \tag{+}
\end{equation*}
$$

This can be strengthened even further by the following
Theorem of Buser-Sarnak. - The 1-systole of the Jacobian of every surface satisfies

$$
s_{1}^{2} \leq C_{*} \log (g+1)
$$

for some universal constant C_{*}.
We shall prove this later on, but now recall that the original Minkowski theorem bounds s_{1} by

$$
\begin{equation*}
s_{1}^{2} \leq C^{\prime} g \tag{-}
\end{equation*}
$$

as $\operatorname{Vol} W=1$ (see 1.A), and so one is faced with the following alternative :

- either (++) distinguishes Jacobians among all flat tori,
- or (-) may be improved to (++) for all (or at least many) flat tori (which are not Jacobians of anybody).

This alternative is resolved in favour of $(-)$ (as pointed out in [Bu-Sa]) by the following classical theorem.
2.D.5. Minkowski-Hlawka theorem. (See [Cas].) - For every $g=1,2, \ldots$, there exists a flat $2 g$-torus W of unit volume and with (syst $\left.H_{1}\right)^{2}$ about g, namely with

$$
C^{\prime \prime} g \leq s_{1}^{2} \leq C^{\prime} g
$$

for some universal positive constant $C^{\prime \prime}$.
Remark. - It is not easy to pinpoint an individual $2 g$-torus for a large g having the first systole $\gtrsim \sqrt{g}$. For example, the "square" and "rectangular" tori of unit volume have $s_{1} \leq 1$ for all g. However, the proof of the Minkowski-Hlawka theorem shows that $s_{1} \approx \sqrt{g}$ on the average for a natural measure on the space $\mathcal{T}_{2 g}$ of flat tori. (Instead of $\mathcal{T}_{2 g}$, one may think of the space of unimodular lattices in $\mathbb{R}^{2 g}$, that is $S L_{2 g} \mathbb{R} / S L_{2 g} \mathbb{Z}$ which comes along with a finite measure associated to the Haar measure on $S L_{2 g} \mathbb{R}$.)
2.D.6. Cosystoles and the proof of the Buser-Sarnak theorem (inequality $(++))$. Recall the L^{2}-norm on 1-forms on V (here, V may be a Riemannian manifold of any dimension ≥ 2), and define the first L^{2}-cosystole, denoted $\operatorname{cosyst} L^{2} H^{1}(V)$, as the infimum of the L^{2}-norm of closed non-exact integral 1-forms λ on V where λ is called integral if it represents a cohomology class in $H^{1}(V ; \mathbb{Z})$, i.e., if for every 1-cycle $S \subset V$, the integral $\int_{S} \lambda$ is an integer.

An equivalent definition appeals to the "dual Jacobian"

$$
J^{*}(V)=H^{1}(V ; \mathbb{R}) / H^{1}(V ; \mathbb{Z}),
$$

where the (flat Riemannian) metric on $J^{*}(V)$ comes from the L^{2}-norm on the (de Rham) cohomology $H^{1}(V ; \mathbb{R})$. With this metric one sees immediately that

$$
\text { cosyst } L^{2} H^{1}(V)=\text { syst } H_{1}\left(J^{*}(V)\right)
$$

Notice that for $\operatorname{dim} V=2$, the L^{2}-norm on 1-forms is conformally invariant and so cosyst $L^{2} H^{1}(V)$ is a conformal invariant of surfaces V.

Remark. - The notion of cosystole (though not the word itself) appears in the work by Accola [Acc], Blatter [Bla] and Berger [Ber2] where these authors obtain a bound on the 1-cosystole of a Riemann surface V by applying the Minkowski theorem to the dual Jacobian $J^{*}(V)$. This gives a bound on the 1-systole of V via the following inequality

$$
\text { syst } H_{1}(V) \leq \operatorname{cosyst} L^{2} H^{1}(V)(\text { Area } V)^{\frac{1}{2}}
$$

Proof. (Berger, see [Ber2].) We may assume by scaling the metric of V that Area $V=$ 1 (notice, that the cosystole is scale invariant) and then, the L^{2}-norm bounds the L^{1} norm (on 1-forms). Now, a closed integral 1-form λ on V defines (by integration) a C^{1}-map μ of V to the circle $\Pi=\mathbb{R} / \mathbb{Z}$ of unit length such that $d \mu=\lambda$. Then, the coarea formula expresses the L^{1}-norm of $\lambda=d \mu$ in terms of the lengths of the pull-backs $\mu^{-1}(t), t \in \Pi$, by

$$
\|\lambda\|_{L^{1}}=\int_{\Pi} \operatorname{length} \mu^{-1}(t) d t
$$

Since the form λ is non-exact, the curves $\mu^{-1}(t), t \in \Pi$ are not homologous to zero, and some of them are not longer than $\|\lambda\|_{L^{1}} \leq\|\lambda\|_{L^{2}}$.
(Notice that this argument is used by Berger also for $n \geq 3$ where it gives a bound on 1-cosystoles, see [Ber2].)

Cosystolic inequality of Buser-Sarnak. - The cosystole of a closed oriented Riemann surface V of genus g is bounded by

$$
\text { cosyst } L^{2} H^{1}(V) \leq C_{*} \sqrt{\log (g+1)}
$$

for some universal constant C_{*}.
Proof. Suppose there is an annulus $A \subset V$ non-homologous to zero, which is conformal to $S_{\ell} \times[0,1]$ where S_{ℓ} is the circle of length ℓ. Then,

$$
\text { cosyst } L^{2} H^{1}(V) \leq \sqrt{\ell}
$$

To see that, start with the form $d t$ on $A=S_{\ell} \times[0,1], t \in[0,1]$, and then slightly perturb it into the differential $d \theta$ for $\theta:(s, t) \mapsto \tau(t)$ where $\tau:[0,1] \rightarrow[0,1]$ is a
self-mapping of the interval fixing the ends and having zero derivative at the ends. Such a perturbed form extends by zero outside $A \subset V$ to a closed non-exact integral form (which is Poincaré dual to S_{ℓ} in V), say λ on V, which has support in A and whose pointwise norm on A only slightly exceeds $1=\|d t\|$. Thus, the L^{2}-norm of λ on V (which, by the conformal invariance, equals such norm on A with the product metric) can be made arbitrarily close to $\sqrt{\ell}=\|d t\|_{L_{2}}$, and with such λ the inequality cosyst $\leq \sqrt{\ell}$ is ensured.

Now, we need an annulus A in V conformal to $S_{\ell} \times[0,1]$ with $\ell \lesssim \log g$ and nonhomologous to zero. To find this, we first conformally change the metric in V to make the curvature constant -1 and then take the shortest closed non-dividing geodesic γ in V with the new metric. It follows from 2.C that length $\gamma \lesssim \log g$, and it is easy to see (with the classical Zassenhaus-Kazhdan-Margulis lemma) that γ admits a collar neighbourhood A of width $\varepsilon>0$ for a universal ε, say $\varepsilon=\frac{1}{4}$ (see §5.5.C in [Gro2], but beware of an incorrect claim in Example (a) there). Clearly, A is conformal to $S_{\ell} \times[0,1]$ with $\ell \lesssim \log g$, and the proof of $(++)^{*}$ is concluded.

Remark. - The existence of the "short" γ was claimed without proof in §5.5. ${ }^{\prime}$ of [Gro2]. The proof was found by Buser and Sarnak independently of the systolic discussions in [Gro2]. In fact, Buser and Sarnak construct a geodesic γ with length $\leq 2 \log (4 g-2)$ and with a collar of width $\geq \arctan h(2 / 3)$. This makes

$$
\text { cosyst } L^{2} H^{1}(V) \leq \sqrt{\ell} \quad \text { for } \ell=\frac{3}{\pi} \log (4 g+2) \text {. }
$$

It remains to show that the systolic bound $(++)^{*}$ for the dual Jacobian $J^{*}(V)=$ $H^{1}(V ; \mathbb{R}) / H^{1}(V ; \mathbb{Z})$ implies the corresponding bound $(++)$ for the Jacobian $J(V)=$ $H_{1}(V ; \mathbb{R}) / H_{1}(V ; \mathbb{Z})$. But this is immediate as $J^{*}(V)$ is isometric to $J(V)$ for all Riemann surfaces V. In fact, the isometry is given by the Poincaré duality isomorphism $H_{1}(V, \mathbb{Z}) \gtrsim H^{1}(V ; \mathbb{Z})$.

Remark. - This final step is not truly necessary. The strong bound $(++)^{*}$ on syst $_{1} J^{*}(V)$ serves as well to distinguish the Jacobian tori $J^{*}(V)$ and $J(V)$ (which are, by definition, mutually dual) from general flat tori.

Minkowski-Hlawka for Abelian varieties. Jacobians are distinguished among all flat tori W not only by strong systolic inequalities but also by the existence of
a translation invariant closed integral 2-form ω which agrees with the metric by the property 2 in 2.D.3. But the presence of such an ω does not have much effect on the 1-systole of W. In fact, Buser and Sarnak show that the Minkowski-Hlawka remains valid for the tori admitting such ω. Namely, for every g, there exists such a special torus W of unit volume having

$$
\text { syst } H_{1}(W) \geq C^{\prime \prime \prime} g
$$

for some universal constant $C^{\prime \prime \prime}>0$. In fact, a majority of special tori W satisfies such an inequality (see [Bu-Sa]).

Problem. Consider a Riemann surface V of genus g canonically embedded into its Jacobian $J(V)$ and recall that the bound on the 1 -systole of V with the induced metric provided by our Main Inequality (see 2.C) reads

$$
\operatorname{syst}_{1} V \lesssim \log g,
$$

while the bound for the 1-systole of $J(V) \supset V$ is stronger,

$$
\operatorname{syst}_{1} J(V) \lesssim \sqrt{\log g} .
$$

There may be two (not mutually exclusive) explanations for the discrepancy between these two inequalities. First, it might happen that the metric in V induced from $J(V)$ is so special that it satisfies a sublogarithmic (in g) systolic inequality. The second possibility is that V is so much curved in $J(V)$ that certain geodesics of length $\ell \approx \log g$ in V shorten to $\approx \sqrt{\ell}$ in $J(V)$. I am inclined to believe that "generic" V have syst ${ }_{1} \approx \log g$ for the metric induced from $J(V)$ (this is known for the metric of constant curvature -1) and the extra shortening in $J(V)$ is due to large exterior curvature of V in $J(V)$.

Remark. - Buser and Sarnak show that their inequality syst ${ }_{1} J(V) \lesssim \log g$ is sharp. The relevant examples are provided by congruence coverings of a fixed arithmetic Riemann surface (see [Bu-Sa] and 3.C).
2.E. Systolic characterization of Jacobians. Recall the definition of the 2-systole of rank r from 2.D.1, denoted by syst ${ }_{2}^{r}$, and let W be a flat Riemannian torus of dimension $2 g$ and unit volume.

Theorem. - The 2-systole of $\operatorname{rank} r=2 g$ of W is bounded from below by

$$
\begin{equation*}
\operatorname{syst}_{2}^{2 g} W \geq g \tag{*}
\end{equation*}
$$

and equality holds if and only if W is isometric to the Jacobian of some Riemann surface V or to a limit of Jacobians.

First proof of $(*)$. The (linear) space of bilinear antisymmetric forms ω on $\mathbb{R}^{2 g}$ carries two natural $O(2 g)$-invariant (non-Euclidean) norms : mass and comass defined as follows

$$
\operatorname{comass} \omega=\sup \omega(x, y)
$$

where "sup" has taken over the pairs of orthonormal vectors $x, y \in \mathbb{R}^{2 g}$; then by definition, mass is the dual norm on the space of 2 -forms, or better (but not necessary) to say, on the space of bivectors dual to forms.

Lemma. - The mass of a form ω bounds its discriminant by

$$
|\operatorname{Discr} \omega|^{\frac{1}{g}} \leq g^{-1} \operatorname{mass} \omega
$$

Proof. Recall, that the discriminant of ω is just the determinant of the coefficient matrix of ω in some orthonormal basis. We use an orthonormal basis $x_{1}, \ldots, x_{2 g}$ which diagonalizes ω, that is

$$
\omega=\mu_{1} x_{1} \wedge x_{2}+\mu_{2} x_{3} \wedge x_{4}+\ldots+\mu_{g} x_{2 g-1} \wedge x_{2 g}
$$

The discriminant of this ω is the product $\mu_{1} \mu_{2} \ldots \mu_{g}$, and the mass is the sum $\mu_{1}+\mu_{2}+\ldots+\mu_{g}$.

Now, we prove $(*)$ by observing that every homology class $h \in H_{2}(W ; \mathbb{Z}) \subset$ $H_{2}(W ; \mathbb{R})=\wedge^{2} \mathbb{R}^{2 g}$ has integral discriminant which is non-zero for rank $h=2 g$. Hence, mass $h \geq g$, which means (by the definition of mass) that there exists a closed translation invariant 2 -form ω on W having unit comass (on every tangent space of $W)$ such that $\int_{h} \omega \geq g$. This immediately implies that every cycle C realizing h has area $C \geq g$.

Digression : Stability of h. The above argument reproduces a fragment of the discussion by Lawson in [Law], where the author shows (among many other results) that every 2-dimensional integral homology class h in a flat torus is stable. This means there exists an integer N such that the multiple class $N h$ can be realized by a surface C of area N mass h. In other words,

$$
\text { Area } C=\operatorname{mass} N h
$$

Sketch of the proof. First, by restricting to a subtorus, one may assume that $\operatorname{dim} W=$ $2 g$. Then, by linear algebra, there exists a translation invariant complex structure $J: T(W) \rightarrow T(W)$ which preserves the metric of W and the form (bivector) corresponding to h and such that the symmetric 2 -form corresponding to h (i.e., $h(x, y)=h(x, J y))$ is positive definite. Now, one knows (this is highly nontrivial) that there exists a subvariety $D \subset W$ of real codimension 2 which is J complex (i.e., the singularity of D has codimension ≥ 2 in D and the tangent subbundle of the non-singular locus of D is J-invariant) and such that the homology class $[D] \in H_{n-2}(W)$ satisfies

$$
[D] \frown[D] \frown \ldots \frown[D]=(g-1)!h
$$

Finally, the required surface C is obtained by intersecting $(g-1)$ generic translates of D. (Notice that this C may have a singularity.)

Remarks. (a) It is unlikely that there exists a direct proof of Lawson's theorem without using complex analysis (and the Θ-divisor D).
(b) It is, probably, unknown if there are integers N not contained in the subset $(g-1)!\mathbb{Z} \subset \mathbb{Z}$ for which

$$
\text { Area } N h=\operatorname{mass} N h(=N \text { mass } h)
$$

(where the area of a homology class is understood as the infimum of areas of surfaces representing this class).
(c) The above inequality $(*)$ is implicit in Lawson's paper [Law] though it is not stated in such form.
(d) It is shown in [Law] that the homology classes of flat tori are stable in dimensions and codimensions 1 and 2 but not stable, in general, for the other dimensions. (A homology class h of any dimension is called stable if $\operatorname{Vol} N h=$ mass $N h$ for some $N \in \mathbb{Z}$.)

Now, we return to our inequality $(*)$ and observe that the above argument bounds from below the mass of h as well as the area. In fact, the mass of every closed current representing an integral homology class h of rank $2 g$ is bounded from below by g. It is also clear at this stage that the equality mass $h=g$ implies that W is an Abelian variety principally polarized by h and then the equality Area $h=h$ makes W a Jacobian by the following characterization of Jacobians (compare [Law]).

Matsusaka criterion. (See [Mat].) - The Abelian variety W is a Jacobian if and only if it contains an algebraic curve C (i.e., an effective 1-cycle) whose homology class $[C] \in H_{2}(W)$ is related to the class $[D] \in H_{2 g-2}(W)$ of the Θ-divisor $D \subset W$ by the relation

$$
[C]=\frac{1}{(g-1)!} \underbrace{[D] \cap[D] \cap \ldots \cap[D]}_{g-1}
$$

(Notice that the intersection class $[D] \cap[D] \cap \ldots \cap[D] \in H_{2}(W)$ without the coefficient $1 /(g-1)$! can always be realized by a curve, namely by the intersection of $g-1$ generic translates of D.)

A short proof of the Matsusaka theorem is incorporated into our second proof of $(*)$ as we shall presently see.
Second proof of $(*)$. Let $V \subset W$ be the minimal surface of area $=\operatorname{syst}_{2}^{2 g} W$ representing a class of rank $2 g$. Then, the cyclic coordinates of W are harmonic functions on V (with the induced metric) and therefore, there exists an affine map of the Jacobian $J(V)$ onto W which conformally maps V canonically embedded into $J(V)$ to V in W. For example, if genus $V=g$, then this map $p: J(V) \rightarrow W$ is an affine isomorphism and, in fact, one obtains $J(V)$ by just modifying the (flat) metric on W as follows. Define the new norm on translation invariant 1-forms λ on W by restricting λ to V and taking the L^{2}-norm of the restriction on V. This gives a norm on the cotangent
bundle of W and hence on W. Clearly, W, with this new norm, equals the Jacobian of V.

The area of V in W equals the energy of the map $p: J(V) \rightarrow W$ restricted to $V \subset J(V)$ which equals in this case the energy of the map $p: J(V) \rightarrow W$, that is, $\frac{1}{2}$ Trace $D_{p}^{*} D_{p}$ for the differential D_{p} of p at some point. If genus $V=g$ and p is an isomorphism, this energy must at least be g since $\operatorname{Vol} W=\operatorname{Vol} J(V)=1=\operatorname{Det} D_{p}^{*}$, and the proof is finished. In the general case, where $\operatorname{dim} J(V)=2$ genus $V>\operatorname{dim} W$, we observe that the fibers of the projection $p: J(V) \rightarrow W$ must have volume at least one. In fact, the condition rank $h=2 g$ forces the Kähler form ω_{I} of $J(V)$ (see 2.D.3) to be non-singular on the fibers, hence has lower bound on the volume by one as ω_{I} is integral.

The equality case. It follows from the above discussion that the area of V in W equals g if and only if $J(V)$ splits as a polarized Abelian variety, i.e., with respect to the Riemannian metric ρ in $J(V)$ and the form ω_{I}. In fact, $J(V)=W \oplus W^{\perp}$, where W^{\perp} is a fiber of the projection with the structure $\left(\rho, \omega_{I}\right) \mid W^{\perp}$. For example, if genus $V=g$, we have $J(V)$ isometric to W and so W is a Jacobian. In general, we need the following algebro-geometric fact provided to me with proof by Jean-Benoît Bost.

Fact. - Jacobians of non-singular curves do not split in the above sense. If a limit of such Jacobians splits, then the underlying curves converge to a reducible curve.

Proof. If a polarized Abelian variety splits, $A=A_{1} \oplus A_{2}$, then the Θ-divisor D of A can be represented by $A_{1} \times D_{2}+D_{1} \times A_{2}$ for the Θ-divisors D_{i} in A_{i}. This divisor is reducible, but in a Jacobian $J(V)$ the Θ-divisor is unique up to translations and thus irreducible as it can be represented by the sum of $g-1$ copies of V in $J(V)$.

Remarks. (a) The minimal surface $V \subset W$ might have singularities, but it can be parametrized by a non-singular (possibly disconnected) Riemann surface (see [Chan]), and this is all what matters for the above proof.
(b) If W is a Minkowski-Hlawka $2 g$-dimensional torus with the first systole syst $_{1} W \approx \sqrt{g}$ (see 2.D.5), then, according to 2.D.4,

$$
\operatorname{syst}_{2}^{2 g, g}(W) \gtrsim g^{2}(\log (g+1))^{2}
$$

We shall see in 3.C. 3 that these tori have

$$
\operatorname{syst}_{2}^{2 g} \gtrsim g^{2-\varepsilon}
$$

where ε is an arbitrary positive number and the constant (for the sign \gtrsim) depends on ε.

Problem. What is the actual behaviour of the functions $W \mapsto \operatorname{syst}_{2}^{r}(W)$ and $W \mapsto \operatorname{syst}_{2}^{r, g}(W)$ on the space of flat tori ? What are the average values of these functions?

A more elementary problem concerns the behaviour of the (systolic) \mathbb{R}-mass (instead of area) and, more generally, of the eigenvalues μ_{i} of classes $h \in H_{2}(W)$ (see the first proof of $(*)$ above).

3. SYSTOLIC INEQUALITIES FOR $K(\Gamma, 1)$-SPACES

We start with a general inequality for closed aspherical Riemannian manifolds V, where "aspherical" means that the universal covering X of V is contractible (e.g., homeomorphic to \mathbb{R}^{n} for $n=\operatorname{dim} V$).
3.A. Basic inequality. - The length s_{1} of the shortest non-contractible curve in V is bounded by

$$
\begin{equation*}
s_{1} \underset{\text { def }}{=} \operatorname{syst} \pi_{1}(V) \leq C_{n}(\operatorname{Vol} V)^{\frac{1}{n}} \tag{*}
\end{equation*}
$$

for $n=\operatorname{dim} V$ and some constant in the interval $0<C_{n}<6(n+1) n^{n} \sqrt{(n+1)!}$.
Idea of the proof. (See [Gro2] for details.) One can regularize V by a suitable process of chopping away long narrow fingers (see Figure 4) such that $\operatorname{Vol} V_{\text {reg }} \leq \operatorname{Vol} V$ and syst $\pi_{1}\left(V_{\text {reg }}\right)=$ syst $\pi_{1}(V)$, and such that the balls in $V_{\text {reg }}$ liftable to the universal covering $\widetilde{V}_{\text {reg }}$ have volumes bounded from below by

$$
\operatorname{Vol} B(R) \gtrsim R^{n}
$$

This gives the desired upper bound on R, that is

$$
R \lesssim\left(\operatorname{Vol} V_{\mathrm{reg}}\right)^{\frac{1}{n}}
$$

One can reformulate the above theorem in the spirit of Minkowski as the following
3.A.1. Bound on displacement. - Let a group Γ discretely and isometrically act on a complete Riemannian manifold X. If X is contractible (i.e., homeomorphic to $\left.\mathbb{R}^{n}\right)$, then there exists a point $x \in X$ and a non-identity element $\gamma \in \Gamma$, such that

$$
\begin{equation*}
\operatorname{dist}(x, \gamma(x)) \leq C_{n}(\operatorname{Vol} X / \Gamma)^{\frac{1}{n}}, n=\operatorname{dim} X \tag{*}
\end{equation*}
$$

Remarks (a) Notice that we do not assume X / Γ to be compact, but the theorem holds true all the same (see [Gro2]).
(b) We do not need the metric in X to be Riemannian. The space X may be a contractible manifold with an arbitrary metric and then the displacement bound remains valid with the n-dimensional Hausdorff measure of X / Γ instead of the Riemannian volume.
(c) If X is non-contractible, then the above bound $(*)^{\prime}$ may fail. For example, we may multiply X by a small sphere S with trivial action which makes $\operatorname{Vol}(X \times S / \Gamma)$ small without changing the displacement. Yet we shall see below some instances of $(*)$ and $(*)^{\prime}$ where X is non-contractible.
(d) Our basic inequality provides a positive answer to one of the conjectures raised by Berger in [Ber1].
3.B. Sharpening the bound on syst ${ }_{1}$ by the topology of V. If V is a surface of genus g, then syst $\pi_{1}(V) \lesssim g^{-\frac{1}{2}}(\log g)(\text { Area } V)^{\frac{1}{2}}$ (see 2.C), and this generalizes to manifolds V of dimension ≥ 3 which admit auxiliary Riemannian metrics ρ^{\prime} of negative sectional curvature $K\left(\rho^{\prime}\right) \leq-1$. The topological invariant which we shall use for such V (where V appears in our discussion with an arbitrary metric $\rho \neq \rho^{\prime}$) is the volume of $\left(V, \rho^{\prime}\right)$ playing the role of the genus.
3.B.1. Theorem. - If a Riemannian manifold V admits a(n) (auxiliary) metric with curvature ≤-1 and volume g, then

$$
\text { syst } \pi_{1}(V) \leq C_{n} g^{-\frac{1}{n}}(\log (1+g))(\operatorname{Vol} V)^{\frac{1}{n}}
$$

Idea of the proof. One knows that the simplicial volume $\|V\|$ of V is bounded from below by $\varepsilon_{n} g, \varepsilon_{n}>0$, (see [Thu], [Gro1]). On the other hand, a suitable "diffusion of chains" provides an upper bound on $\|V\|_{\Delta}$ by

$$
\|V\|_{\Delta} \lesssim\left(V \ell / s^{n}\right)\left(\log \left(C_{n}^{\prime} V \ell / s^{n}\right)\right)^{n}
$$

for $V \ell=\operatorname{Vol} V$ and $s=$ syst $\pi_{1} V$. (Compare Step 2 in 2.C. 1 and 6.4.D in [Gro2]; we repeat the warning : the exponent $n / \log n$ is missing in 6.4. D^{\prime} of [Gro2].)

Remark. - The inequality $(* *)$ is obvious for the auxiliary metric with $K \leq-1$ as the balls of radius 12 for this metric in the universal covering have $\operatorname{Vol} B(R) \gtrsim \exp R$ for $R \geq 1$.
3.B.2. A bound on syst $_{1}$ with Betti numbers. Let $b=b(V)$ denote the sum of the Betti numbers of V, i.e.,

$$
b=\sup _{F} \operatorname{rank} H_{*}(V ; F),
$$

where F runs over all fields.

Theorem. (See 6.4.C ${ }^{\prime \prime}$ in [Gro2].) - The shortest non-contractible curve in a closed aspherical Riemannian manifold V is bounded by

$$
\text { syst } \pi_{1}(V) \leq C_{n} b^{-\frac{1}{n}}\left(\exp C_{n}^{\prime} \sqrt{\log b}\right)(\operatorname{Vol} V)^{\frac{1}{n}} \quad(* * *)
$$

for some universal positive constants C_{n} and C_{n}^{\prime}.

Corollary. - One has

$$
\text { syst } \pi_{1}(V) \lesssim b^{-\frac{1}{n}+\varepsilon}(\operatorname{Vol} V)^{\frac{1}{n}}
$$

for every fixed $\varepsilon>0$.

Question. Can one replace $\exp \sqrt{\log }$ in $(* * *)$ by log as in $(* *)$?
3.B.3. Simplicial height $h(V)$. Denote by $h=h(V)$ the minimal possible number of simplices of a finite simplicial n-dimensional polyhedron P, for $n=\operatorname{dim} V$, which admits a continuous map $u: P \rightarrow V$ surjective on the top dimensional homology. Thus, we want the fundamental class of V (V is assumed connected) to be in the image $u_{*}\left(H_{n}(P)\right)$ if V is orientable. In the non-orientable case we pass to the oriented double cover $\widetilde{V} \rightarrow V$, take the corresponding double cover $\widetilde{P} \rightarrow P$ induced by u from $\widetilde{V} \rightarrow V$, and require the fundamental class of \widetilde{V} to be in the image $u_{*}\left(H_{n}(\widetilde{P})\right)$.

Theorem. - The inequality $(* * *)$ remains valid with $h=h(V)$ in place of b,

$$
\text { syst } \pi_{1}(V) \leq C_{n} h^{-\frac{1}{n}}\left(\exp C_{n}^{\prime} \sqrt{\log h}\right)(\operatorname{Vol} V)^{\frac{1}{n}}
$$

In fact, the proof of $(* * *)$ in [Gro2] proceeds via $(* * *)^{\prime}$ as $h \leq b$ by elementary algebra.

Remarks. (a) The above question applies to $(* * *)^{\prime}$ as well as to $(* * *)$.
(b) One could replace $h(V)$ by an a priori larger number $h_{+}=h_{+}(V)$ by insisting that P were a pseudomanifold. This enlarged "height" dominates the simplicial volume, and so the conjectural inequality

$$
\text { syst } \pi_{1} \lesssim h_{+}^{-\frac{1}{n}}\left(\log h_{+}\right)(\mathrm{Vol})^{\frac{1}{n}}
$$

would imply $(* *)$ as well as $(* * *)$.
Idea of the proof of $(* * *)$. First, we regularize the manifold V by chopping off long narrow fingers in order to bound from below the volumes of relevant R-balls by $\approx R^{n}$. Then, the regularized V is covered by a controlled amount of such balls, and the nerve of this covering serves for P (see [Gro2] for details).
3.B.4. Basic inequality for essential manifolds V. Let Γ be the fundamental group $\Gamma=\pi_{1}(V)$, take the Γ-classifying Eilenberg-MacLane $K(\Gamma, 1)$-space W and let $f: V \rightarrow W$ be a classifying map. Recall that W is an aspherical space with $\pi_{1}(W)=\Gamma$ and f is uniquely defined up to homotopy by being the identity on the fundamental group,

$$
f_{*}: \pi_{1}(V)=\Gamma \underset{\mathrm{id}}{\longrightarrow} \Gamma=\pi_{1}(W) .
$$

The space V is called essential if its fundamental class does not vanish in $H_{n}(W), n=$ $\operatorname{dim} V$, i.e., $f_{*}[V] \neq 0$, and we use the \mathbb{Z}_{2}-homology in the case where V is nonorientable.

Examples. (a) Every closed aspherical manifold V is essential as one may take $W=V$ and f the identity map.
(b) The projective space $\mathbb{R} P^{n}$ is essential as $W=\mathbb{R} P^{\infty}$ and the inclusion $\mathbb{R} P^{n} \hookrightarrow$ $\mathbb{R} P^{\infty}$ is not homologous to zero $\bmod 2$.
(c) If V admits a map of non-zero degree to an essential (e.g., aspherical) manifold V^{\prime}, then V is essential. In particular, the connected sum $V=V^{\prime} \# V^{\prime \prime}$ is essential for an essential V^{\prime} and an arbitrary $V^{\prime \prime}$.

Theorem. - The basic inequality (*) remains valid for essential manifolds V,

$$
\text { syst } \pi_{1}(V) \leq C_{n}(\operatorname{Vol} V)^{\frac{1}{n}}
$$

Example. (Conjectured by Berger in [Ber1], compare [Ber4]). - Let \widetilde{V} be a topological sphere with a Riemannian metric and $\alpha: \widetilde{V} \rightarrow \widetilde{V}$ be an isometric involution. Then, there exists a point $\tilde{v} \in \widetilde{V}$ for which

$$
\operatorname{dist}(\tilde{v}, \alpha(\tilde{v})) \leq C_{n}(\operatorname{Vol} \tilde{V})^{\frac{1}{n}}
$$

This follows from $(*)_{\text {ess }}$ applied to V / α.

Remarks. (a) This result for $n=2$ is due to Pu (see $[\mathrm{Pu}]$) who obtains the sharp value $C_{2}=\sqrt{\pi} / 2$ with equality for the metrics of constant positive curvature. It is unknown if metrics of constant curvature are extremal for $\operatorname{dim} \widetilde{V} \geq 3$.
(b) Berger (see $\left[\operatorname{Ber} 6 \frac{1}{2}\right]$) also studied non-isometric involutions of S^{2} where he obtained the above distance inequality with $C_{2}=2$ and conjectured the sharp inequality (compare (E_{5}^{\prime}) in Appendix 1 of [Gro2]).
3.C. Intersystolic inequalities for $W=K(\Gamma, 1)$. Let W be a Riemannian manifold with $\pi_{1}(W)=\Gamma$ for some group Γ and $\pi_{2}(W)=\pi_{3}(W)=\ldots=\pi_{n}(W)=0$ for some $n \geq 2$. We want to bound the 1 -systole of W in terms of the n-systole, thus generalizing the results in 3.A and 3.B. This will give us, in particular, a bound on the homological 1-systole syst $H_{1}(V)$ under suitable assumptions by using the classifying map of V to $K(\Gamma, 1)$ for $\Gamma=H_{1}(V)$.

At this stage we fix the coefficient field F to be \mathbb{Z} or \mathbb{Z}_{p}, and denote by syst $H_{k}(W)$ the infimum of the volumes of k-dimensional F-cycles in W non-homologous to zero.

The following inequality generalizes the above $(*)_{\text {ess }}$.
3.C.1. Basic intersystolic inequality. (See [Gro2].) - The infimum of the length of closed non-contractible curves in W is bounded by

$$
\text { syst } \pi_{1}(W) \leq C_{n}\left(\text { syst } H_{n}(W)\right)^{\frac{1}{n}}
$$

Let us derive $(*)_{\text {ess }}$ from $(*)_{\text {inter }}$. For this, we take $\Gamma=\pi_{1}(V)$, use an embedding $V \subset W$ for the classifying map, and take such a metric on W for which the embedding is isometric and such that the shortest curves in V are also shortest in W (this is easy to arrange). Then, we get a bound on syst ${ }_{1}$ by (syst $\left.H_{n} W\right)^{\frac{1}{n}}$ which clearly is $\leq \operatorname{Vol} V$.

Let us modify the above construction by using $H_{1}(V)$ for Γ instead of π_{1}. Then, we get a bound on the homological 1-systole of V, by

$$
\text { syst } H_{1}(V) \leq C_{n}(\operatorname{Vol} V)^{\frac{1}{n}}, \quad(*)_{\mathrm{homol}}
$$

provided $[V]$ does not vanish in $H_{1}(K(\Gamma ; 1)), \Gamma=H_{1}(V)$. Thus, $(*)_{\text {homol }}$ is valid for an n-dimensional Riemannian manifold V, provided there are 1-dimensional cohomology classes $\alpha_{1}, \ldots, \alpha_{n}$ in V over some coefficient field whose cup-product does not vanish,

$$
\alpha_{1} \smile \alpha_{2} \smile \ldots \smile \alpha_{n} \neq 0 .
$$

3.C.2. $K(\Gamma ; 1)$-spaces with universal metrics. The inequality $(*)_{\text {ess }}$ can be derived from $(*)_{\text {inter }}$ for the classifying space W with a certain canonical metric which is locally very much similar to the metric in the Banach space $\ell_{\infty}=\left\{x_{1}, x_{2}, \ldots\right\}$ with the sup-norm. For example, if $\Gamma=\mathbb{Z}_{2}$, we first take the unit sphere $S^{\infty} \subset \ell_{\infty}$ and $P^{\infty}=S^{\infty} / \mathbb{Z}_{2}$, where P^{∞} comes along with the metric induced by S^{∞} from ℓ_{∞}.

Then, the basic systolic inequality for essential n-dimensional manifolds V with $\pi_{1}(V)=\mathbb{Z}_{2}$ is equivalent to the lower bound

$$
\begin{equation*}
\text { syst } H_{n}\left(P^{\infty} ; \mathbb{Z}_{2}\right) \geq \varepsilon_{n}>0 \tag{**}
\end{equation*}
$$

with an appropriate convention on how the n-volume is understood in P^{∞}. In fact, if $\operatorname{syst}_{1}(V)$ with $\pi_{1}(V)=\mathbb{Z}_{2}$ is $\geq 2+\delta$, then V admits (by an easy argument, see 6.1 in [Gro2]), a distance decreasing classifying map $V \rightarrow P^{\infty}$, and $(* *)$ yields $\operatorname{Vol} V \geq \operatorname{syst} H_{n}\left(P^{\infty} ; \mathbb{Z}_{2}\right) \geq \varepsilon_{n}>0$.

Now, we can approach $(* *)$ by the variational method, i.e., by looking at the minimal n-dimensional \mathbb{Z}_{2}-cycle in P^{∞} non-homologous to zero. One can show that such cycles satisfy a version of the classical monotonicity property which insures the
bound $\operatorname{Vol} B(R) \gtrsim R^{n}$ for balls in this cycle and thus gives a lower bound on the volume of the cycle.

The monotonicity property is proven on the basis of a suitable Federer-Fleming type isoperimetric inequality in P^{∞} which (implicitly) depends on a possibility to chop away long narrow fingers as is customary in geometric measure theory (see $\S 6$ in [Gro2]).
3.C.3. Strenghtening $(*)_{\text {inter }}$ by topology of a cycle in W. Let us introduce the following four characteristics of a homology class $\alpha \in H_{n}(W)$:
(1) the simplicial norm $\|\alpha\|_{\Delta}$, i.e., the infimum of the sums $\sum\left|r_{i}\right|$ for all representations of α by singular cycles $\sum_{i} r_{i} \sigma_{i}$ with real coefficients r_{i} (and singular simplices $\left.\sigma_{i}: \Delta^{n} \rightarrow W\right) ;$
(2) the rank $b=b(\alpha)$ of the bilinear form on $H^{*}(W)$ defined by evaluation of the cup product on α, that is $\left(\omega_{1}, \omega_{2}\right) \mapsto\left\langle\omega_{1} \cup \omega_{2}, \alpha\right\rangle$, where this is assumed to be zero if the sum of the degrees of ω_{1} and ω_{2} is different from n; (Here one may take arbitrary coefficients. Also, one can use L^{2}-Betti numbers and the corresponding L^{2}-rank which may sometimes dominate the ordinary rank.)
(3) the simplicial height $h=h(\alpha)$ is the minimal possible number of simplices of a polyhedron P admitting a map into W whose image in H_{n} contains α;
(4) modified height h_{+}, that is, the infimum of the sums $\sum_{i}\left|r_{i}\right|$ over all representations of α by combinations of singular n-simplices σ with integer coefficients r_{i}.

Finally, we denote by $\operatorname{Vol} \alpha$ the infimum of the volumes of n-cycles representing α.

Topological intersystolic inequalities. - Let W be a Riemannian manifold with $\pi_{2}(W)=\pi_{3}(W)=\ldots=\pi_{n}(W)=0$ for some $n \geq 2$ and let α be an n-dimensional homology class of W. Then, the infimum of the lengths of non-contractible curves in W, i.e., $s_{1}=$ syst $\pi_{1}(W)$, is bounded by the following inequalities

$$
\begin{equation*}
s_{1} \leq C_{n}\|\alpha\|_{\Delta}^{-\frac{1}{n}}\left(\log \|\alpha\|_{\Delta}\right)(\operatorname{Vol} \alpha)^{\frac{1}{n}} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& s_{1} \leq C_{n} h^{-\frac{1}{n}}\left(\exp C_{n}^{\prime} \sqrt{\log h}\right)(\operatorname{Vol} \alpha)^{\frac{1}{n}} \tag{2}\\
& s_{1} \leq C_{n} b^{-\frac{1}{n}}\left(\exp C_{n}^{\prime} \sqrt{\log b}\right)(\operatorname{Vol} \alpha)^{\frac{1}{n}} \tag{3}
\end{align*}
$$

It is clear that $(2) \Rightarrow(3)$. It is unclear whether (2) and/or (3) can be brought to the shape of (1). It is desirable to have an inequality with h_{+}similar to the above. It is easy to show that the inequalities for aspherical manifolds stated in 3.B are special cases of the above. Namely $(1) \Rightarrow(* *)$ in $3 . \mathrm{B},(3) \Rightarrow(* * *)$ and $(2) \Rightarrow(* * *)^{\prime}$. Also notice that inequalities (1) and (3) are already interesting for $n=2$ and W a flat torus as they generalize the systolic inequalities for surfaces (see 2.D).
3.C.4. An application of (3) to Abelian varieties. Let W be a principally polarized Abelian variety of complex dimension g with Θ-divisor $D \subset W$ and let $\delta(W)$ denote the minimal positive integer such that the homology class

$$
(\delta /(g-1)!) \underbrace{[D] \cap[D] \cap \ldots \cap[D]}_{g-1} \in H_{2}(W)
$$

can be realized by an algebraic curve (effective 1-cycle) $V \subset W$ (compare 2.E). Thus, $\delta(W)=1$ if and only if W is a Jacobian by the Matsusaka theorem (see 2.E). We denote by A_{g} the moduli space of principally polarized Abelian varieties W of dimension g and let $A_{g, \delta} \subset A_{g}$ consist of W with $\delta(W) \leq \delta$. We want to show that for δ sufficiently small compared to g the subset $A_{g, \delta}$ is rather thin in A_{g}, as in the case $\delta=1$, where this is the Buser-Sarnak theorem (see 2.D.6). First, we recall that, according to the Minkowski-Hlawka theorem for Abelian varieties (due to Buser-Sarnak, see 2.D.6), a "typical" $W \in A_{g}$ has

$$
\operatorname{syst}_{1} W \geq C_{0} \sqrt{g}, C_{0}>0
$$

On the other hand, each $W \in A_{d, \delta}$ contains a surface V of area δg which represents a homology class in $H_{2}(W)$ of rank $2 g$. It follows by (3) that

$$
\begin{equation*}
\operatorname{syst}_{1} W \leq C g^{-\frac{1}{2}} \exp C^{\prime} \sqrt{\log g} \sqrt{\delta} \tag{*}
\end{equation*}
$$

Therefore, $A_{g, \delta}$ in A_{g} is indeed thin if δ is significantly smaller than $g / \exp C^{\prime} \sqrt{\log g}$ for a fixed large constant C^{\prime}, say $C^{\prime}=1000$.

Remarks. (a) Inequality (*) above does not look sharp, and it is unclear what the (asymptotically) sharp inequality should be for large δ.
(b) A purely algebro-geometric consequence of $(*)$ is the positivity of codimension of $A_{g, \delta}$ in A_{g} for $\delta \ll g / \exp C^{\prime} \sqrt{\log g}$. Probably, algebraic geometers know much more about codim $A_{d, \delta}$ for various δ.

A related algebro-geometric question is an estimate of the minimal genus of a curve in W in terms of $\delta(W)$.
3.C.5. Inequalities (1) - (3) in 3.C. 3 can be significantly strenghtened under additional geometric and topological assumptions on W and α. For example, the theorem of Buser-Sarnak gives estimates better than (1) - (3) for flat tori W, albeit the whole situation is far from clear even for the flat tori.

Another source of strengthening of these inequalities comes from symmetries of (W, α), as suggested by the result by Bavard on hyperelliptic curves cited in 2.C. For example, suppose W admits an isometric involution I which fixes α, and let $\operatorname{Vol} \alpha$ refer to the infimum of the volumes of I-invariant cycles in W. Then, one may suggest the same homological conditions on W, α and I mimicking those satisfied by hyperelliptic inductions, and conjecture for such W, α and I the inequality

$$
s_{1} \leq C_{n} b^{-\frac{1}{n}}(\operatorname{Vol} \alpha)^{\frac{1}{n}}
$$

(A suitable homological condition in the case $n=2$ is Trace $I_{*} \approx-b$ for the operator

$$
I_{*}: H_{1}(W ; \mathbb{R}) \rightarrow H_{1}(W ;(R) .)
$$

The effect of extra symmetries can also be expressed in the language of displacements where we have a discrete isometry group Γ acting on a contractible space X, and we want a bound

$$
\begin{equation*}
\inf _{\gamma \in \Gamma_{\infty}} \operatorname{dist}_{x \in X}(x, \gamma(x)) \leq C_{\Gamma}(\operatorname{Vol}(X / \Gamma))^{\frac{1}{n}} \tag{*}
\end{equation*}
$$

where Γ may have torsion and Γ_{∞} denotes the torsionless part of Γ (compare Bavard's result on cristallographic groups cited in 2.C). It may happen that the presence of "strong torsion" makes C_{Γ} small for some groups Γ. (At the present stage of knowledge, one cannot rule out the possibility of Γ being pure torsion which would make $C_{\Gamma}=\infty$.)

Let us indicate several more specific questions.
Questions. Let V_{k} be homeomorphic to the connected sum of k copies of a fixed closed essential (e.g., aspherical) manifold V_{1} of dimension $n \geq 3$. What is the asymptotics for $k \rightarrow \infty$ of the (best) constant $C_{n, k}$ in the inequality

$$
\text { syst } \pi_{1}\left(V_{k}\right) \leq C_{n, k}\left(\operatorname{Vol} V_{k}\right)^{\frac{1}{n}} ?
$$

The most we can say about $C_{n, k}$ is where V_{1} has non-zero simplicial volume $\left\|V_{1}\right\|_{\Delta}$ which ensures the bound $C_{n, k} \leq C_{n}(\log k) k^{-\frac{1}{n}}$ by the above (1) (since $\left\|V_{k}\right\|_{\Delta}=$ $k\left\|V_{1}\right\|_{\Delta}$ according to $\left.[\mathrm{Gro}]_{1}\right)$. Maybe this is the best possible estimate, and then, for every V_{1}, the manifolds $V_{k}, k=1,2, \ldots$, would admit metrics for which

$$
\left(\operatorname{Vol} V_{k}\right)^{\frac{1}{n}} / \operatorname{syst} \pi_{1}\left(V_{k}\right) \leq C k^{\frac{1}{n}} / \log k
$$

for some constant $C=C\left(V_{1}\right)$. On the other hand, we cannot rule out the possibility of the bound $C_{n, k} \leq C_{V_{1}} k^{-\frac{1}{n}}$. This would give us an ideal systolic inequality, namely

$$
\text { syst } \pi_{1}\left(V_{k}\right) \lesssim k^{-\frac{1}{n}}\left(\operatorname{Vol} V_{k}\right)^{\frac{1}{n}}
$$

where the extremal metric may look something like in Figure 5.
(Notice that for $\operatorname{dim} V=2$, we do have examples with $\left(\operatorname{Area} V_{k}\right)^{\frac{1}{2}} / \operatorname{syst}\left(V_{k}\right) \approx$ $k^{\frac{1}{2}} / \log k$ obtained with congruence coverings (compare [Bu-Sa]) which look quite different from Figure 5, see below.)

The above question extends to many other natural sequences V_{k}, such as a sequence of cyclic k-sheeted coverings of a fixed V_{1} corresponding to a given non-zero cohomology class in $H^{1}\left(V_{1} ; \mathbb{Z}\right)$. An interesting V_{1} to start with is a closed manifold with a metric g of negative (e.g., constant negative) curvature. The covering manifolds V_{k} with induced metrics \tilde{g}_{k} have $\mathrm{Vol} /\left(\operatorname{syst}_{1}\right)^{n} \approx k$. The question is if one can
find different metrics, say \tilde{g}_{k}^{\prime} on V_{k}, for which the ratio $\mathrm{Vol} /\left(\text { syst }_{1}\right)^{n}$ becomes significantly smaller than k for large $k \rightarrow \infty$. In fact, this is not at all clear if we restrict to metrics \tilde{g}_{k}^{\prime} of negative (or even pinched negative) curvature. Here, as earlier, the case $\operatorname{dim} V_{1}=2$ is exceptional (one can significantly decrease Area $/$ (syst) ${ }^{2}$ by a deformation with constant negative curvature), but one may expect certain "rigidity" of $\mathrm{Vol} /\left(\text { syst }_{1}\right)^{n}$ for higher dimensions.

Figure 5
Provisional conjecture. Let (V, g) be a compact irreducible locally symmetric space with non-positive curvature and denote by $s_{1}^{+}(V)$ the maximum of the twice injectivity radius $2 \operatorname{Rad}_{v}(V)$ over $v \in V$. (Notice that $s_{1}^{+}>\operatorname{syst}_{1}$.) Then, the systole of an arbitrary metric g^{\prime} on V normalized by the condition $\operatorname{Vol}\left(V, g^{\prime}\right)=\operatorname{Vol}(V, g)$ has

$$
\text { syst } \pi_{1}\left(V, g^{\prime}\right) \leq C s_{1}^{+}(V)
$$

for some constant C depending only on $n=\operatorname{dim} V$.
Of course, this conjecture is violated for surfaces and so one has to assume that $n \geq 3$. Also, 3 -dimensional manifolds of constant curvature may provide counter-
examples. On the other hand, the conjecture stands a chance for more rigid locally symmetric spaces especially if one adds extra conditions on V and/or limits possible metrics g^{\prime}, e.g., as follows :
(i) the function $\operatorname{Rad}_{v}(V)$ is "nearly constant" in v. This means, $\operatorname{Rad}_{v} V \leq$ B syst $\pi_{1}(V)$, where B is a given constant which is kept fixed as the manifolds V vary (and where the above constant C may depend on B if one varies B). For example, if all our manifolds V appear as finite Galois covers of a single V_{0}, then Rad_{v} is "nearly constant" for these manifolds V. (It is, probably, not hard to find for each class of local isometry a sequence of compact manifolds V in this class for which the ratio $s_{1}^{+}(V) /$ syst $\pi_{1}(V)$ goes to infinity. In fact, finite non-Galois coverings of a fixed manifold V_{1} seem to provide such examples. On the other hand, it is much harder to produce non-compact locally symmetric manifolds V with given behaviour of the function $v \mapsto \operatorname{Rad}_{v} V$ on V.)
(ii) if the original metric g had negative curvature $K(g)$, one might restrict g^{\prime} by $K\left(g^{\prime}\right) \leq 0$ or $-a \leq K\left(g^{\prime}\right) \leq-b$ for some $a, b \geq 0$. (One may try $\left|K\left(g^{\prime}\right)\right| \leq$ const, but this does not appear especially restrictive in the present context.) One also may restrict some global invariants of g^{\prime}, e.g., by requiring the diameter and/or the first eigenvalue of the Laplacian of g^{\prime} to be close to those of g.

Next, we want to indicate some interesting (sequences of) manifolds which are far from being locally symmetric. We start with V_{1} containing a submanifold $W \subset V_{1}$ of codimension 2 which is homologous to zero and take the cyclic k-sheeted ramified covers V_{k} of V_{1} with ramification locus W (compare [Gr-Th]). About these V_{k} we ask the same questions as the ones for the connected sums $V_{k}=V_{1} \# \ldots \# V_{1}$ and for non-ramified coverings earlier. It seems plausible in view of an intersystolic inequality proven in [Gr-Th] that for certain V_{1} and W such V_{k} may be systolically almost extremal, i.e., every metric g_{k}^{\prime} on V_{k} normalized by $\operatorname{Vol}\left(V_{k}, g_{k}^{\prime}\right)=k$ may have syst $\pi_{1}\left(V_{k}, g_{k}^{\prime}\right) \leq C$ for a constant $C=C(V, W)$.

Notice that the sequences of manifolds V_{k} we consider have the following common feature : each V_{k} can be triangulated into $\approx k$ simplices. This suggests two general questions indicating two opposite, mutually exclusive possibilities.
(A) Does every manifold V which can be divided into at most k simplices admit a metric for which

$$
\text { syst } \pi_{1} \geq C_{n} k^{\frac{-1}{n}}(\log k)(\mathrm{Vol})^{\frac{1}{n}}, n=\operatorname{dim} V ?
$$

(B) Does there exist a sequence $V_{k}, k=1,2, \ldots$, of Riemannian manifolds of a fixed dimension n where V_{k} can be triangulated into at most k simplices and such that

$$
\text { syst } \pi_{1}\left(V_{k}\right) \leq C_{n}^{\prime} k^{-\frac{1}{n}}\left(\operatorname{Vol} V_{k}\right)^{\frac{1}{n}} ?
$$

Of course, the true answer may lie somewhere strictly between (A) and (B).
3.C.6. Congruence coverings. Consider some coverings V_{k} of a fixed compact manifold V. Then,

$$
\operatorname{Vol} V_{k} \approx k \underset{\text { def }}{=} \text { the number of sheets }
$$

and syst $\pi_{1}\left(V_{k}\right)$ can also be approximately expressed in terms of the subgroups $\Gamma_{k}=$ $\pi_{1}\left(V_{k}\right) \subset \Gamma=\pi_{1}(V)$ as follows. Fix a finite generating set $C \subset \Gamma$ and denote $\operatorname{syst}_{1}\left(\Gamma_{k}, G\right)$ as the minimal G-word length of a non-identity element in $\Gamma_{k} \subset \Gamma$.

The general systolic problem for a finitely generated group Γ consists of finding the possible values of $\operatorname{syst}_{1}\left(\Gamma_{k}, G\right)$ for subgroups $\Gamma_{k} \subset \Gamma$ of index $k \rightarrow \infty$. Notice that $\operatorname{syst}_{1}\left(\Gamma_{k}, G\right) / \operatorname{syst}\left(\Gamma_{k}, G^{\prime}\right)$ is pinched between two constants independent of Γ_{k}, and so we may suppress G in the discussion of the rough asymptotics of $\operatorname{syst}_{1}\left(\Gamma_{k}, G\right)$ for $k \rightarrow \infty$.

Examples. (a) If Γ is the free Abelian group of rank n then, obviously, syst $_{1} \Gamma_{k} \lesssim k^{\frac{1}{n}}$ (i.e., $\leq C k^{\frac{1}{n}}$ for $\left.C=C(\Gamma, G)\right)$ for all Γ_{k} and (obviously), there are subgroups $\Gamma_{k} \subset$ $\Gamma, k \rightarrow \infty$, where syst ${ }_{1} \Gamma_{k} \approx k^{\frac{1}{n}}$.
(b) If Γ is a torsionless nilpotent group of polynomial growth of degree d then, clearly, syst $_{1} \Gamma_{k} \lesssim k^{\frac{1}{d}}$ for all subgroups Γ_{k}. This is sharp. In fact, Γ contains subgroups Γ_{k} of indices $k \rightarrow \infty$ with $\operatorname{syst}_{1} \Gamma_{k} \approx k^{\frac{1}{d}}$ if and only if the Lie algebra corresponding to Γ is graded, as a simple argument shows.
(c) If Γ has exponential growth, then $\operatorname{syst}_{1} \Gamma_{k} \lesssim \log k$, but this inequality may be non-sharp. Yet it is sharp for subgroups Γ of exponential growth in $S L_{N} \mathbb{Z}$ according to the following lemma.

Elementary Lemma. - Let $\Gamma \subset S L_{N} \mathbb{Z}$ contain no unipotent elements and denote by $\Gamma_{k}^{\prime} \subset \Gamma$ the subgroup of the matrices which are equal to the unit diagonal matrix modulo k. Then,

$$
\operatorname{syst}_{1} \Gamma_{k}^{\prime} \geq C \log k
$$

(Notice that the index of Γ_{k}^{\prime} in Γ does not equal k but it is $\leq k^{N}$ which is as good for our purpose.)

Now, if we take a compact locally symmetric manifold V with a fundamental group Γ embeddable into $S L_{N} \mathbb{Z}$, then we shall have k-sheeted coverings V_{k} of V with syst $\pi_{1}\left(V_{k}\right) \approx \log k$. (If V is of non-compact type with no flat factor, then the simplicial volume of V_{k} is $\approx k$ (see [Sav]), and so every metric on V_{k} with volume k has syst $\pi_{1} \lesssim \log k$.) Notice that arithmetic groups embed into $S L_{N} \mathbb{Z}$ and also that there are non-arithmetic examples. Also, the congruence construction of Γ_{k} extends to S-arithmetic groups (and to more general groups of matrices with entries m / s for $m \in \mathbb{Z}$ and $s \in S$, where S a finitely generated multiplicative semigroup in \mathbb{Z}_{+}) where the situation is similar to the above.

Remarks on λ_{1} and diameter. (a) If Γ is arithmetic, then one knows (this is rather deep) that the first eigenvalue of the Laplace operator on V_{k} for prime numbers k is bounded away from zero,

$$
\lambda_{1}\left(V_{k}\right) \geq \varepsilon>0 \quad \text { for } k \rightarrow \infty
$$

(and this property can be expressed combinatorially in terms of the Cayley graphs of $\left.\Gamma / \Gamma_{k}\right)$. Then, it easily follows that the ratio Diam $V_{k} /$ syst $\pi_{1}\left(V_{k}\right)$ remains bounded as $k \rightarrow \infty$. Notice that the diameter of V_{k} approximately equals the minimal number D, such that $\Gamma_{k} \subset \Gamma$ can be generated by some elements $\gamma \in \Gamma_{k}$ of G-length $\leq D$. This number D can be called $\operatorname{Diam} \Gamma / \Gamma_{k}$, and there are many (how many ?) examples of non-arithmetic groups $\Gamma \subset S L_{N} \mathbb{Z}$ for which $\left(\operatorname{Diam} \Gamma / \Gamma_{k}\right) / \operatorname{syst}_{1} \Gamma_{k}$ remains bounded for $k \rightarrow \infty$.

Counter example. The Heisenberg subgroup $\Gamma \subset S L_{3} \mathbb{Z}$ of triangular matrices, $\Gamma=\left\{\begin{array}{lll}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right\}, \operatorname{has} \operatorname{Diam} \Gamma / \Gamma_{k} \approx k$ and $\operatorname{syst}_{1} \Gamma_{k} \approx \sqrt{k}$. (Yet, there is a sequence of
"round" subgroups Γ_{k}^{\prime} where Diam \approx syst $_{1} \approx k$. These are defined by the congruences $a, b \equiv 0(\bmod k)$ and $c \equiv 0\left(\bmod k^{2}\right)$.)
(b) It was suggested by Sakai (during my lecture in Tokyo) that a complicated topology of a manifold V may force a non-trivial bound on syst $\pi_{1}(V) / \operatorname{Diam} V$ (which is trivially bounded by 2 , unless $\pi_{1}(V)=0$). The above examples indicate that such a bound cannot be too strong for locally symmetric spaces. Furthermore, for every nontrivial finitely presented group Γ, one can construct a (piecewise Riemannian metric of curvature +1) on a 2 -polyhedron P corresponding to the presentation of Γ, such that syst $\pi_{1}(P)=2 \pi$ and $\operatorname{Diam} P=\pi$. It follows that every manifold of dimension ≥ 5 admits a smooth Riemannian metric g for which syst $\pi_{1}(V) / \operatorname{Diam} V \geq 2-\varepsilon$ for an arbitrarily chosen $\varepsilon>0$. But, if syst $\pi_{1}(V)=2 \operatorname{Diam} V$ and g is smooth Riemannian, then (V, g) is, probably, isometric to the projective space (compare [Ber-Ka]).
3.C.7. Systolic finiteness problem. Choose some number $n=2,3, \ldots$, take $\varepsilon>0$, and consider all closed aspherical Riemannian manifolds V of dimension n, such that

$$
\text { syst } \pi_{1}(V) \geq \varepsilon(\operatorname{Vol} V)^{\frac{1}{n}}
$$

Then, we ask whether the number of isomorphism classes of the fundamental groups $\Gamma=\pi_{1}(V)$ is finite (and thus bounded by $N=N(n, \varepsilon)$). The known regularization techniques (see $\S 6$ in [Gro2]) show that there is a finite number (bounded by $N=$ $N(n, \varepsilon))$ of finitely presentable groups Δ, such that each $\Gamma=\pi_{1}(V)$ is dominated by some Δ which means there exists a (split) epimorphism $\alpha: \Delta \rightarrow \Gamma$ and an embedding $\beta: \Gamma \rightarrow \Delta$, such that $\alpha \circ \beta=\mathrm{Id}$. This gives a bound on the torsion of $H_{1}(\Gamma)$ (and also on the torsion τ of all of $H_{*}(\Gamma)$ by $\log \tau \leq C_{n} \operatorname{Vol} /\left(\text { syst } \pi_{1}\right)^{n}$ as follows from $\S 6$ in [Gro2]). This solves the finiteness problem for certain essential (rather than aspherical) manifolds V with Abelian $\Gamma=\pi_{1}(V)$. For example, if V is covered by a homotopy n-sphere, then the order of the fundamental group $\Gamma=\pi_{1}(V)$ (which is cyclic since it is assumed Abelian) is bounded by $N=N(n, \varepsilon)$ (in fact, by $\exp C_{n}\left(\operatorname{Vol}(V) /\left(\operatorname{syst} \pi_{1}(V)\right)^{n}\right)$. Also notice that, if Γ is nilpotent of nilpotency degree d, then the group Δ may also be assumed nilpotent of degree d which strongly (how strongly?) restricts Γ.
3.C.8. Compactness problem and the thick-thin decomposition of general manifolds. One would like to have a (pre)compactness theorem for closed n dimensional manifolds V with $\operatorname{Vol} V \leq$ const (and, possibly, with syst $\pi_{1}(V) \geq \varepsilon>0$) similar to that known for n-cycles in a fixed compact manifold. Such (pre)compactness is immediate if all ρ-balls in V have $\operatorname{Vol} B(\rho) \geq \delta=\delta(\rho)>0$, e.g., $\delta(\rho) \geq \delta \rho^{n}$ for a fixed positive $\delta=\delta_{n}$. In general, in order to achieve (pre)compactness, we should restrict to the "thick part" of V where the volumes of balls are bounded from below. Of course, the thick-thin decomposition of an individual manifold V is quite ambiguous, but, if we have a sequence of manifolds V_{i}, then a sequence of points $v_{i} \in V$ can be called thick if $\operatorname{Vol} B\left(v_{i}, \rho\right) \geq \delta=\delta(\delta)>0$ for all $\rho>0$ (independently of $i=1,2 \ldots$). One may try to produce some (sub)limit space (in the Hausdorff sense) out of thick sequences and one wants to know how much is lost with the thin parts of V_{i}.

Questions. Let V be δ-thin, which may be understood in the following two different ways.
(a) Every unit ball in V has volume $\leq \delta$.
(b) Every ρ-ball in V for $\rho \leq 1$ has volume $\leq \delta \rho^{n}$.

Does it follow that

$$
\text { syst } \pi_{1} V \leq C_{n} \delta^{\frac{1}{n}},
$$

provided V is essential and $\delta \leq \delta_{n}$ for some sufficiently small $\delta_{n}>0$ for $n=\operatorname{dim} V$? (This is so for $n=2$, by 5.2.A in [Gro2]).

More generally, without assuming that V is essential, one may ask whether the filling radius of V (as defined in [Gro2]) is bounded by $C_{n} \delta^{\frac{1}{n}}$ for sufficiently small $\delta \leq \delta_{n}$.

Finally, the most optimistic (and least realistic) conjecture would be a bound of the $(n-1)^{\text {th }}$ Uryson width of V (see [Gro6]) in terms of δ. Notice that this width is essentially the same as $\operatorname{Diam}_{n-1}$ and Rad_{n-1} defined in [Gro2] and that even the bound of this width by $\operatorname{Vol} V$ remains an open problem for $n \geq 3$ (see p. 127 in [Gro2]). Notice that this width may be used to define the thick-thin decomposition of an arbitrary V. Namely, a point $v \in V$ is called (ρ, δ)-thin if the ρ-balls around v have width $_{n-1} \leq \delta \rho$ and this notion seems reasonably behaved as we vary ρ and δ.
(A similar definition can be made up with width $_{k}$ for each k as well as with Fill Rad.) The main problem is to relate this thinness to the one defined with volumes of balls. In fact, the ideal (and improbable) result would be a bound of width $_{n-1}$ by the hyper-Euclidean size of $B(\rho)$ (instead of $\operatorname{Vol} B(\rho)$) that is the maximal radius ρ_{0} of the Euclidean ball $B\left(\rho_{0}\right) \subset \mathbb{R}^{n}$ for which there exists a proper distance decreasing $\operatorname{map} B(\rho) \rightarrow B\left(\rho_{0}\right)$ of positive degree (compare [Gro5], [C-G-M], [Katz2]).

Systolic area of groups. Let Γ be a finitely presented group, consider all 2polyhedra P with piecewise linear metrics such that $\pi_{1}(P)=\Gamma$, and set

$$
\text { syst area } \Gamma \underset{\operatorname{def}}{=} \inf _{P} \text { Area } P /\left(\operatorname{syst} \pi_{1}(P)\right)^{2}
$$

It is not hard to show that syst area $\Gamma \geq \varepsilon>0$ unless Γ is free (see 6.7.A in [Gro2]), but one knows little else about the function $\Gamma \mapsto$ syst area Γ. For example, one does not know how large is the set of isomorphism classes of groups Γ having syst area $\Gamma \leq C$ for a given (large) constant C. Another specific question is that of the evaluation of the systolic area of the free product of k non-free groups.

In fact, many of the systolic inequalities for manifolds extend to essential ndimensional polyhedra P where P is called essential if the classifying map $P \rightarrow$ $K(\Gamma, 1)$, for $\Gamma=\pi_{1}(P)$, does not contract to an $(n-1)$-dimensional subset in $K(\Gamma, 1)$. For example, every metric on an essential polyhedron P has

$$
\text { syst } \pi_{1}(P) \leq C_{n}(\operatorname{Vol} P)^{\frac{1}{n}}
$$

(see Appendix 2 in [Gro2]). In fact, this inequality can be given the intersystolic shape by defining the absolute systole $\operatorname{absyst}_{n}(W)$ of a Riemannian manifold W as the infimum of n-volumes of those subsets in W which cannot be homotoped to ($n-1$)dimensional subsets in W. It is clear that absyst ${ }_{n} \leq$ syst H_{n} and yet this absolute systole bounds syst $\pi_{1}\left(=\right.$ absyst $\left._{1}\right)$ if $\pi_{k}(W)=0$ for $k=2, \ldots, n$. Probably, such a bound can be strengthened in the spirit of (1) - (3) in 3.C.2, using some regularization based on the filling indicated in Appendix 2 in [Gro2].
3.C.9. Absolute systoles of congruence coverings. Consider a sequence of k sheeted coverings V_{k} of a fixed manifold V and try to evaluate $\operatorname{absyst}_{m} V_{k}$ for a given m and $k \rightarrow \infty$. Here are several observations in this regard.

1. If V is a closed aspherical manifold, then the m-skeleton is essential in V for every $m=1,2, \ldots n=\operatorname{dim} V$, and thus

$$
\text { absyst }_{m} V_{k} \leq C k
$$

for some constant $C=C(V, m)$.
2. If the universal covering \widetilde{V} of V satisfies the m-dimensional isoperimetric inequality of exponent $\alpha=\beta / \beta-1$, i.e., if every $(m-1)$-dimensional polyhedron $Q \subset \widetilde{V}$ bounds a cone such that

$$
\operatorname{Vol}_{m} \text { cone } \leq \operatorname{const}\left(\operatorname{Vol}_{m-1} Q\right)^{\alpha}
$$

then,

$$
\operatorname{absyst}_{m} V_{k} \geq \text { const }^{\prime}\left(\text { absyst }_{1} V_{k}\right)^{\beta}
$$

provided $\alpha>1$. If $\alpha=1$, then

$$
\operatorname{absyst}_{m} V_{k} \geq \text { const }^{\prime} \exp \left(\lambda \text { absyst }_{1} V_{k}\right)
$$

for some positive const ${ }^{\prime}$ and λ.

Remark. - Notice, that the asymptotic behaviour of absyst V_{k} for $k \rightarrow \infty$ for aspherical manifolds V depends solely on $\Gamma=\pi_{1}(V)$ and $\Gamma_{k}=\pi_{1}\left(V_{k}\right) \subset \Gamma$. Similarly, the isoperimetric exponents of \widetilde{V} are determined by Γ for contractible \widetilde{V}.

Example. If V has non-positive sectional curvature, then \widetilde{V} satisfies the isoperimetric inequality of exponent $m / m-1$ in dimension m for all $m=2,3, \ldots, n=\operatorname{dim} V$. Furthermore, if V is compact and \widetilde{V} contains no m-dimensional flat (i.e., an isometric copy of \mathbb{R}^{m}), then, there is the linear inequality (with exponent $\alpha=1$) in dimensions $m, m+1, \ldots, n$. This applies, in particular, to locally symmetric spaces of noncompact type of rank $\leq m$ (and their congruence coverings, see 3.C.6).

Questions. Let V be a compact (locally) irreducible, locally symmetric space of noncompact type and V_{k} be a sequence of congruence coverings. What are the asymptotic relations between the absolute systoles of V_{k} in different dimensions as $k \rightarrow \infty$. In
particular, are there meaningful upper bounds on absyst ${ }_{m}$? For example, is absyst ${ }_{m}$ for $m \leq \operatorname{rank} V$ bounded by const $\left(\text { absyst }_{1}\right)^{\beta}$ for some $\beta \in[m, \infty)$? Is there a bound

$$
\text { absyst }_{m} \leq \operatorname{const}(\mathrm{Vol})^{\gamma}
$$

for given $m<n=\operatorname{dim} V$ and $\gamma<1$? Notice that in the arithmetic case V may contain arithmetic totally geodesic submanifolds $U \subset V$ of dimension m and then, the bound absyst $_{m} \leq \operatorname{const}(\mathrm{Vol})^{\gamma}$ does hold for certain $\gamma<1$ as $k \rightarrow \infty$.
3.C.10. Generalized intersystolic bounds on syst $_{1}$. The inequalities syst $_{1} \lesssim(\mathrm{Vol})^{\frac{1}{n}}$ and/or syst ${ }_{1} \lesssim\left(\text { syst }_{n}\right)^{\frac{1}{n}}$ can be generalized in two ways.

1. Instead of locating a single short non-contractible curve one may look for certain systems of such curves. Namely, one may take a (possibly disconnected) 1complex (graph) S with a prescribed subset of subgraphs $S_{i} \subset S, i=1, \ldots, p$ and a certain set Φ of continuous maps $\varphi=S \rightarrow P$. Typically, Φ consists of homotopy classes of maps, e.g., of all non-contractible maps $S \rightarrow P$ or of all maps for which the induced homomorphism $\pi_{1}(S) \rightarrow \pi_{1}(P)$ is injective or surjective. Then, one tries to find a "short" map $\varphi \in \Phi$ with a certain bound on the lengths of $\varphi\left(S_{i}\right) \subset P$ or on combinations of these lengths, where such a bound should be linked to some n-dimensional volume characteristic of P, e.g., to syst $_{n} P$. (Here, P is a polyhedron with a certain metric.)

The prototypical example of such a bound is the following Minkowski theorem extending the bound on the 1-systole of a flat torus T^{n} cited at the beginning of this article.

Second Minkowski theorem. - There exist closed curves S_{1}, \ldots, S_{n} in T^{n} which generate $H_{1}\left(T^{n}\right)$ and such that

$$
\prod_{i=1}^{n} \operatorname{length} S_{i} \leq C_{n} \operatorname{Vol} T^{n}
$$

It is unknown if such an inequality remains valid for non-flat tori, but some results in this direction can be obtained with the regularization techniques mentioned earlier (see 5.4, 6.5, 6.6 and 7.5 in [Gro2]).
2. The bound on syst $_{1}$ and other 1-dimensional characteristics of P can sometimes be improved if one allows a use of the volumes of more elaborate higher dimensional configurations than those incorporated into $\operatorname{Vol}_{n} P$ or syst ${ }_{n} P$. For example, one may consider the volumes V_{i} of the i-skeletons of P for a given set I of dimensions $i \geq 3$ and then try to bound syst $_{1}$ (and the lengths of more complicated graphs in P) in terms of these V_{i}. More generally, one may choose some subpolyhedra $P_{i} \subset P$ of dimensions n_{i} and look for length bounds in P in terms of $\operatorname{Vol}_{n_{i}} P_{i}$. (Here, one can restrict a relevant set Φ of maps $\varphi: S \rightarrow P$ by requiring certain subgraphs of S to go to some chosen subpolyhedra in P.)

Example. (See [Gr-Th].) - Let P be covered by m subpolyhedra P_{1}, \ldots, P_{m} homeomorphic to a fixed compact manifold of negative curvature with totally geodesic boundary, such that all P_{i} 's intersect inside P across this boundary, called $P_{0} \subset P$. Then, there exists a point $p_{0} \in P_{0}$ and m loops $S_{i} \subset P_{i}, i=1, \ldots, m$ based at p_{0}, such that these loops are freely independent in $\pi_{1}\left(P, p_{0}\right)$ and their lengths are bounded by ℓ for

$$
\ell=C_{n} \max \left(\left(\operatorname{Vol}_{n-1} P_{0}\right)^{\frac{1}{n-1}},\left(\operatorname{Vol}_{n} P_{1}\right)^{\frac{1}{n}},\left(\operatorname{Vol}_{n} P_{2}\right)^{\frac{1}{n}}, \ldots,\left(\operatorname{Vol}_{n} P_{m}\right)^{\frac{1}{n}}\right)
$$

where $n=\operatorname{dim} P$ is assumed to be ≥ 3.
One does not know what is the true general inequality for which the above serves as an example.
3.C.11. Filling and embolic inequalities. If $\pi_{1}(P)=0$ (or P is non-essential), then there is no meaningful bound on syst $_{1} P$, but there are other 1-dimensional geometric invariants which can sometimes be bounded by $\operatorname{Vol} P$. Here is a remarkable instance of such a bound.

Embolic inequality. (See [Ber3,5,7].) - The injectivity radius of a Riemannian manifold V is (sharply!) bounded by

$$
\operatorname{Inj} \operatorname{Rad} V \leq \pi\left(\operatorname{Vol} V / \operatorname{Vol} S^{n}\right)^{\frac{1}{n}}
$$

where S^{n} is the unit n-sphere for $n=\operatorname{dim} V$.

There are more general (but non-sharp) inequalities of this kind where the injectivity radius is replaced by the minimal radius R of a ball in V which cannot be contracted within the concentric ball of radius $\rho(R)$ for a given function $\rho(R)$. These follow from bounds on the filling radius of V in [Gro2]. (See [Ber8], [Gro5], [Katz1,4], [Gre-Pe].)

4. EVALUATION OF k-DIMENSIONAL SYSTOLES FOR $k \geq 2$

4.A. The first results concerning higher homological k-systoles are due to Berger (see [Ber1]) who computed syst $_{k}$ for the projective spaces
$-\operatorname{syst}_{k} \mathbb{R} P^{n}$. The homology of the real projective space $\bmod 2$ is generated in each dimension $k=1,2, \ldots, n$ by a k-dimensional subspace $\mathbb{R} P^{k} \subset \mathbb{R}$ and Berger shows for the standard metric in $\mathbb{R} P^{n}$ that

$$
\operatorname{syst}_{k}\left(=\operatorname{syst} H_{k}\left(\mathbb{R}, P^{n} ; \mathbb{Z}_{2}\right)\right)=\operatorname{Vol} \mathbb{R} P^{n}
$$

Proof. The inequality syst $_{k} \leq \operatorname{Vol} \mathbb{R} P^{n}$ follows from the fact that $\mathbb{R} P^{k} \subset \mathbb{R} P^{n}$ is not homologous to zero. To prove the opposite inequality, we must show that every k-cycle C in $\mathbb{R} P^{n}$ non-homologous to zero has $\operatorname{Vol} C \geq \operatorname{Vol} \mathbb{R} P^{n}$. This is obtained with integral geometry by observing that $\operatorname{Vol} C$ equals the integral of the number of the intersection points of C with the $(n-k)$-dimensional projective subspaces in $\mathbb{R} P^{n}$. If $\operatorname{Vol} C<\operatorname{Vol} \mathbb{R} P^{n}$, this integral is less than that for $\mathbb{R} P^{k}$ in $\mathbb{R} P^{n}$, and so, there is an ($n-k$)-subspace missing C. Hence, C is homologous to zero.

- $\operatorname{syst}_{2 k} \mathbb{C} P^{n}$. The (integral) homology in every even dimension is generated by $\mathbb{C} P^{k}$ and

$$
\operatorname{syst}_{2 k}\left(=\operatorname{syst} H_{2 k}\left(\mathbb{C} P^{n}\right)\right)=\operatorname{Vol} \mathbb{C} P^{k}
$$

Proof. Let us show that every $2 k$-cycle $C \subset \mathbb{C} P^{n}$ with $\operatorname{Vol} C<\operatorname{Vol} \mathbb{C} P^{k}$ misses some projective subspace in $\mathbb{C} P^{n}$ of (complex) dimension $n-k$, and thus C is homologous to zero. The averaged (oriented) intersection number of an arbitrary $2 k$-chain C with
($n-k$)-subspaces equals, by integral geometry, the integral $\int_{C} \Omega$, where Ω is the $2 k$ form on $\mathbb{C} P^{n}$ obtained by averaging the $2 k$-current corresponding to $\mathbb{C} P^{n-k}$ over the isometry group G of $\mathbb{C} P^{n}$. Plainly speaking, Ω is defined by

$$
\int_{C} \Omega=\int_{G} \#\left(C \cap g\left(\mathbb{C} P^{n-k}\right)\right) d g
$$

for all $2 k$-chains C (where $d g$ refers to the normalized Haar measure). Since Ω is G-invariant, it necessarily equals a scalar multiple of ω^{k} for the Kähler form ω of $\mathbb{C} P^{n}$. We agree to normalize the metric in $\mathbb{C} P^{n}$ to have $\int_{\mathbb{C} P^{n}} \omega^{n}=1=n!\operatorname{Vol} \mathbb{C} P^{n}$ which makes $\Omega=\omega^{k}$. Then, we recall the Wirtinger inequality

$$
\operatorname{comass} \omega^{k} \leq k!
$$

which means, by definition,

$$
\int_{C} \omega^{k} \leq k!\mathrm{Vol} C
$$

for all $2 k$-chains C. Therefore, if $\operatorname{Vol} C<\operatorname{Vol} \mathbb{C} P^{k}=(k!)^{-1}$, then some $(n-k)$ subspace misses C, and so C is homologous to zero.

- $\operatorname{syst}_{4 k} \mathbb{H} P^{n}$. Here, in the quaternionic case, we have again

$$
\operatorname{syst}_{4 k}=\operatorname{Vol} \mathbb{H} P^{k}
$$

and the proof boils down to the inequality comass $\Omega \leq 1$, where Ω is the $4 k$-form obtained by the G-averaging of the current corresponding to $\mathbb{H} P^{n-k}$. The form Ω, being G-invariant, is unique (up to a scalar constant) and can be written down explicitly. It is proven in [Ber1] that, indeed, comass $\Omega \leq 1$.

- syst $_{8} \mathbb{C} a P^{2}$. In this case (of the Cayley plane) the proof is as above, though the inequality comass $\Omega \leq 1$ is rather complicated (see [Ber1]). The conclusion is the same as earlier

$$
\text { syst }_{8}=\operatorname{Vol} \mathbb{C} a P^{1}
$$

4.A.1. Remark. - The above argument (due to Berger) is called, nowadays, the method of calibrations. A calibration for us is a closed k-form Ω with a controlled comass,

$$
\operatorname{comass} \Omega \leq a
$$

where comass is defined as the supremum of the values of Ω on all orthonormal k-frames in the Riemannian manifold V where Ω lives. The above inequality is equivalent to

$$
\int_{C} \Omega \leq a \operatorname{Vol} C
$$

for all k-chains. Therefore, if Ω is integral, i.e., the class $[\Omega]$ is contained in $H^{k}(V ; \mathbb{Z}) \subset$ $H^{k}(V ; \mathbb{R})$, then the volume of every homology class $h \in H_{k}(V)$ satisfying $\langle h,[\Omega]\rangle \neq 0$ is bounded from below by

$$
\begin{equation*}
\text { Vol } h \geq a^{-1} \tag{*}
\end{equation*}
$$

where $\operatorname{Vol} h$ is defined as the infimum of the volumes of cycles C representing h.
One can place $(*)$ in a more conceptual framework by defining the norm "mass" on k-currents (in particular on k-cyles) as the dual to the comass norm on forms. In other words, mass is the minimal norm for which

$$
\int_{C} \Omega \leq(\operatorname{mass} C)(\operatorname{comass} \Omega)
$$

for all C and Ω. Then, $(*)$ reads

$$
\text { Vol } h \geq \text { mass } h
$$

where mass h is the infimum of mass of (real) closed k-currents representing h. The following theorem by Federer (see [Fed]) renders a geometric meaning to mass.

Federer's formula.

$$
\operatorname{mass} h=\lim _{i \rightarrow \infty} i^{-1} \operatorname{Vol} i h
$$

4.A.2. Berger asks in [Ber1] what happens to syst_{k} of a projective space when the standard metric g is deformed keeping the volume unchanged. We shall see presently that

1. there are many non-trivial (i.e., non-Kähler) deformations g^{\prime} of the standard metric g of $\mathbb{C} P^{n}$, such that the systoles syst ${ }_{2}$ do not change ;
2. every small deformation $g^{\prime \prime}$ of g on $\mathbb{C} P^{2}$ with $\operatorname{Vol} g^{\prime \prime}=\operatorname{Vol} g$ has

$$
\operatorname{syst}_{2} g^{\prime \prime} \leq \operatorname{syst}_{2} g ;
$$

3. there are arbitrarily small deformations g^{\prime} of g on $\mathbb{C} P^{n}$ for every $n \geq 3$, keeping the total volume unchanged and such that

$$
\operatorname{syst}_{2 k}\left(g^{\prime}\right)>\operatorname{syst}_{2 k}(g)
$$

for $k=2,3, \ldots, n-1$.
Quasi-Kähler deformations of g. The Kähler form ω on $\mathbb{C} P^{n}$ defines a (linear) symplectic structure in each tangent space $T_{v}\left(\mathbb{C} P^{n}\right)$, and we consider the (gauge) group $\mathcal{S} p \ell$ of fiberwise (linear) symplectic transformations of $T\left(\mathbb{C} P^{n}\right)$. The metrics g on $\mathbb{C} P^{n}$ of the form $g^{\prime}=\sigma(g)$ for $\sigma \in \mathcal{S} p \ell$ are called quasi-Kähler deformations of g. (If we use the full gauge group of all fiberwise linear transformations, then the orbit of g equals the set of all Riemannian metrics on $\mathbb{C} P^{n}$. If we use the transformations preserving ω^{n} in the tangent spaces we obtain all metrics having the same volume element as g.)

Theorem. - Every quasi Kähler deformation g^{\prime} of g satisfies

$$
\text { syst }_{2} g^{\prime}=\operatorname{syst}_{2} g
$$

Proof. Let J^{\prime} denote the almost complex structure obtained by σ from the original complex structure J on $\mathbb{C} P^{n}$, i.e., $J^{\prime}=\sigma(J)$. Then, according to [Gro4], there exists a J^{\prime}-holomorphic curve $C \subset\left(\mathbb{C} P^{n}, J^{n}\right)$ representing the generator in $H_{2}\left(\mathbb{C} P^{n}\right)$. It is easy to see that area $C=\operatorname{area}\left(\mathbb{C} P^{1}, g\right)$, and so $\operatorname{syst}_{2} g^{\prime} \leq$ syst $_{2} g$. This implies that the theorem as the opposite inequality syst $_{2} g^{\prime} \geq$ syst $_{2} g$ follows from the Wirtinger inequality for ω with respect to g^{\prime},

$$
\operatorname{comass}_{g^{\prime}} \omega\left(=\operatorname{comass}_{g} \omega\right) \leq 1
$$

(as ω is gauge invariant).
Conformal changes of g. Let $g=\varphi g$ for some positive function φ on $\mathbb{C} P^{n}$ such that

$$
\left(\operatorname{Vol}\left(\mathbb{C} P^{n}, g_{\varphi}\right)=\right) \int_{\mathbb{C} P^{n}} \varphi^{n} d g=\operatorname{Vol}\left(\mathbb{C} P^{n}, g\right)
$$

Then,

$$
\operatorname{syst}_{2 k} g_{\varphi} \leq \operatorname{syst}_{2 k} g, k=1, \ldots, n-1
$$

Proof. The required "small" $2 k$-cycle for g_{φ} comes from some k-dimensional complex projective subspace in $\mathbb{C} P^{n}$. Namely, there is such a subspace $S\left(=\mathbb{C} P^{k}\right)$ in $\mathbb{C} P^{n}$ whose g_{φ}-volume, i.e., $\int_{S} \varphi^{k}$ is less than or equal to $\operatorname{Vol} \mathbb{C} P^{k}$.

In fact, the average of $(\operatorname{Vol}(S, g))^{\frac{n}{k}}$ over all subspaces $S \subset \mathbb{C} P^{n}$ is bounded by $(\operatorname{Vol}(S, g))^{\frac{n}{k}}=\left(\operatorname{Vol} \mathbb{C} P^{k}\right)^{\frac{n}{k}}$. To simplify the computation, we normalize the metric g on $\mathbb{C} P^{n}$ such that $\operatorname{Vol}(S, g)$ becomes 1 . We denote by Σ the (Grassmann) manifold of all k-dimensional subspaces S in $\mathbb{C} P^{n}$ and observe the following property of Σ.
(\star) There exists a smooth positive measure μ on Σ, such that, for every function ψ on $\mathbb{C} P^{n}$, one has

$$
\int_{\mathbb{C} P^{n}} \psi d g=\int_{\Sigma} d \mu \int_{S} \psi d s
$$

where $d g$ denotes the Riemannian volume element on $\left(\mathbb{C} P^{n}, g\right)$ and $d s$ is the volume element on $S \subset \mathbb{C} P^{n}$ with the induced metric.

Proof. The properly normalized (Haar) measure on Σ invariant under isometries of $\mathbb{C} P^{n}$ satisfies the above, as everybody knows.

Now, we apply the above formula to $\psi=\varphi^{n}$ and use the Schwarz inequality $\int_{S} \varphi^{n} \geq\left(\int_{S} \varphi^{k}\right)^{\frac{n}{k}}$ (issuing from $\operatorname{Vol} S=1$). We recall that $\int_{\mathbb{C} P^{n}} \varphi^{n}=1$ and conclude to the inequality

$$
\int_{\Sigma} d \mu\left(\operatorname{Vol} S, g_{\varphi}\right)^{\frac{n}{k}} \leq \operatorname{Vol}\left(\mathbb{C} P^{n}, g_{\varphi}\right)=\operatorname{Vol}\left(\mathbb{C} P^{n}, g\right)
$$

This implies our assertion, since

$$
\int_{\Sigma} d \mu(\operatorname{Vol}(S, g))^{\frac{n}{k}}=\operatorname{Vol}\left(\mathbb{C} P^{n}, g\right)
$$

according to (\star) applied to $\psi=1$.
Stability of (\star). Let us slightly C^{∞}-perturb the family Σ and denote the perturbed submanifolds $S^{\prime} \subset \mathbb{C} P^{n}$. Here, each S^{\prime} is \mathbb{C}^{∞}-close (and diffeomorphic) to some S and the variety Σ^{\prime} of all S^{\prime} is diffeomorphic to Σ. (The simplest perturbations are those obtained by small diffeomorphisms of $\mathbb{C} P^{n}$.) Then, we slightly perturb the metric g
to some g^{\prime} on $\mathbb{C} P^{n}$, such that the g^{\prime}-volumes of all S^{\prime} become ≤ 1 (where we assume that the original metric is normalized to have g-volumes of S equal one).
$\left(\star^{\prime}\right)$ There exists a positive measure μ^{\prime} on Σ^{\prime} such that every function ψ on $\mathbb{C} P^{n}$ satisfies

$$
\int_{\mathbb{C} P^{n}} \psi d g^{\prime}=\int_{\Sigma^{\prime}} d \mu^{\prime} \int_{S^{\prime}} \psi d s^{\prime}
$$

Proof. Denote by R^{\prime} the Radon operator (transform) from functions on $\mathbb{C} P^{n}$ to those on Σ^{\prime} defined by $R^{\prime} \psi\left(S^{\prime}\right)=\int_{S^{\prime}} \psi d s^{\prime}$ for all $S^{\prime} \in \Sigma^{\prime}$ and let R_{*}^{\prime} denote the adjoint operator from measures on Σ^{\prime} to those on $\mathbb{C} P^{n}$. Our claim can be stated in this language by saying that the Riemannian measure $d g^{\prime}$ on $\mathbb{C} P^{n}$ lies in the image of R_{*}^{\prime}. Moreover, there exists a positive measure μ^{\prime} on Σ^{\prime} solving the equation $R_{*}^{\prime}\left(\mu^{\prime}\right)=d g^{\prime}$. (We use interchangingly μ^{\prime} and $d \mu^{\prime}$ in the hope that no confusion follows.) One knows in this regard that the Radon transform R for the original Σ and g is injective. Moreover, it is bijective (for appropriate function spaces) for $\operatorname{codim}_{\mathbb{R}} S=2$ (see [Hel]). Furthermore, R and R_{*} are elliptic Fourier integral operators for $\operatorname{codim}_{\mathbb{R}} S=2$ (see [Gu-St]) and therefore, bijectivity remains intact for small perturbations R^{\prime} and R_{*}^{\prime} corresponding to Σ^{\prime} and g^{\prime}. Moreover, the solution of $R_{*}^{\prime}\left(\mu^{\prime}\right)=d g^{\prime}$ remains C^{0}-close to the Haar measure μ on Σ which implies positivity of μ^{\prime}. This proves (\star^{\prime}) for $\operatorname{codim} S^{\prime}=2$ and the general case (which we do not use in the sequel) is left to the reader.

Corollary. - Every conformal metric $g_{\varphi}^{\prime}=\varphi g^{\prime}$ with Vol $g_{\varphi}^{\prime} \leq \operatorname{Vol} g^{\prime}$ has

$$
\int_{\Sigma^{\prime}}\left(\operatorname{Vol}\left(S^{\prime}, g_{\ell}^{\prime}\right)\right)^{\frac{n}{k}} d \mu^{\prime} \leq \int_{\Sigma^{\prime}} d \mu^{\prime}
$$

and, consequently, there exists $S^{\prime} \subset \Sigma$ for which $\operatorname{Vol}\left(S^{\prime}, g_{\ell}^{\prime}\right) \leq 1$.
This follows by the same argument as used in the case of (Σ, g) with $\left(\star^{\prime}\right)$ in place of (\star).

Small perturbations of $\mathbb{C} P^{2}$. Let $g^{\prime \prime}$ be an arbitrary Riemannian metric on $\mathbb{C} P^{2}$ and let $\omega^{\prime \prime}$ be the harmonic form generating $H^{2}\left(\mathbb{C} P^{2} ; \mathbb{Z}\right) \subset H^{2}\left(\mathbb{C} P^{2} ; \mathbb{R}\right)$. This form is self-dual, i.e., at each point $v \in \mathbb{C} P^{2}$ there exists a $g^{\prime \prime}$-orthonormal frame where $\omega^{\prime \prime}=\varphi d x_{1} \wedge d y_{1}+\varphi d x_{2} \wedge d y_{2}$. Therefore, if $\varphi=\varphi(v)$ does not vanish on $\mathbb{C} P^{2}$,
the metric $g^{\prime \prime}$ is conformal to a quasi-Kähler metric g^{\prime} with respect to which $\omega^{\prime \prime}=$ $d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}$. (This was pointed out to me by Berger.) If $g^{\prime \prime}$ is close to the standard metric g on $\mathbb{C} P^{2}$, then so is g^{\prime}, and in fact, g^{\prime} is isometric to some small quasiKähler deformation of g (since $\omega^{\prime \prime}$ is simplectomorphic to ω by a transformation of $\mathbb{C} P$ close to the identity). We assume that g^{\prime} itself is such a deformation and invoke the corresponding J^{\prime}-holomorphic curves in $\mathbb{C} P^{2}$. One knows (see [Gro4]) that there is a family Σ^{\prime} of such "curves" (which are topologically 2 -spheres) in $\mathbb{C} P^{2}$ which is close to the family Σ of the projective lines and where each $S^{\prime} \in \Sigma^{\prime}$ has $\operatorname{area}_{g^{\prime}}=1=\operatorname{area}_{g} S$. Hence, our metric $g^{\prime \prime}$, conformal to g^{\prime}, admits some $S^{\prime} \in \Sigma^{\prime}$ with $g^{\prime \prime}$-area ≤ 1. Thus, every metric $g^{\prime \prime}$ close to the standard metric g and having $\operatorname{Vol} g^{\prime \prime} \leq \operatorname{Vol} g=2$ satisfies the systolic bound

$$
\operatorname{syst}_{2} g^{\prime \prime} \leq \operatorname{syst}_{2} g=1
$$

as was claimed in 2 earlier.
Finally, we prove the claim 3 by observing that a generic quasi-Kähler deformation g^{\prime} of g on $\mathbb{C} P^{n}$ has

$$
\operatorname{syst}_{2 k} g^{\prime} \geq \operatorname{syst}_{2 k} g
$$

for $2 \leq k<n$. In fact, by the Wirtinger inequality, every non-trivial k-cycle C with

$$
\operatorname{Vol}_{g^{\prime}} C=\operatorname{Vol}_{g} C=(k!)^{-1} \int_{C} \omega
$$

must be J^{\prime}-holomorphic (since $\omega^{k}\left(\tau_{1}, \ldots, \tau_{2 k}\right)<k$! for g^{\prime}-orthonormal frames with non-complex spans). On the other hand, a generic J^{\prime} (being quite non-integrable) admits no germs of J^{\prime}-holomorphic submanifolds for $2 \leq k<n$, and our claim follows by applying all that to the minimal cycle C realizing a relevant homology class in $H_{2}\left(\mathbb{C} P^{2}\right)$.

Remarks and open questions. (a) One recaptures the sharp systolic inequality for all metrics on $\mathbb{C} P^{n}$ if one uses mass instead of the volume. Namely, the mass of the generator $h \in H_{2 k}\left(\mathbb{C} P^{n}\right)$ is bounded by

$$
\operatorname{mass} h \leq \frac{k!}{n!}(\mathrm{Vol})^{\frac{k}{n}}
$$

for all Riemannian metrics on $\mathbb{C} P^{n}$, provided n is divisible by k. More generally, generators $h_{i} \in H_{2 k_{i}}\left(\mathbb{C} P^{n}\right), i=1, \ldots, j$, with $\sum_{i=1}^{j} k_{j}=m \leq n$, satisfy

$$
\prod_{i=1}^{j} \operatorname{mass} h_{i} \leq C \operatorname{mass} h_{m}
$$

where h_{m} is the generator in $H_{2 m}\left(\mathbb{C} P^{n}\right)$ and $C=\left(\prod_{i}(k!)\right) / m!$. This follows from the discussion in $\S 7.4$ of [Gro2] (which also yields similar results for $\mathbb{H} P^{n}$ and $\mathbb{C} a P^{2}$).

Example. If g^{\prime} is a quasi-Kähler deformation of the standard metric g on $\mathbb{C} P^{n}$, then the mass of the $(n-k)$-th power of the corresponding symplectic form $\omega^{\prime}=\omega$ viewed as a $2 k$-current equals $k!$ (where, as earlier, g and g^{\prime} are normalized by $\int_{\mathbb{C} P^{n}} \omega^{n}=1$). It follows by Federer's formula cited earlier that the minimizing $2 k$-cycles $C_{i} \subset\left(\mathbb{C} P^{n}, g^{\prime}\right)$ representing $i h$ for the generator $h \in H_{2 k}\left(\mathbb{C} P^{n}\right)$ satisfy

$$
\lim _{i \rightarrow \infty} i^{-1} \operatorname{Vol} C_{i}=(k!)^{-1}
$$

It follows by the Wirtinger inequality that the cycles C_{i} must be "almost J^{\prime} holomorphic" most of the time. This means, there are subsets $C_{i}^{\prime} \subset C_{i}$ which contain no singular points of C_{i}, which have $\operatorname{Vol}_{2 k} C_{i}^{\prime} / \operatorname{Vol}_{2 k} C_{i} \rightarrow 1$ for $i \rightarrow \infty$, such that the tangent space T to C_{i} at each point $c \in C_{i}^{\prime}$ is ε_{i}-complex with respect to J^{\prime} for $\varepsilon_{i} \rightarrow 0$ as $i \rightarrow \infty$ (where " ε-complex" means $\operatorname{dist}\left(T, J^{\prime} T\right) \leq \varepsilon$). On the other hand, for generic g^{\prime} and J^{\prime} and $2 \leq k<n$, no C^{1}-smooth $2 k$-dimensional submanifold can be J^{\prime}-complex. It follows that there is no geometric limit of the cycles C_{i}, although they may weakly converge to the $2 k$-current corresponding to ω^{n-k}. (I must admit that I am unable to visualize the actual geometry of C_{i} for $i \rightarrow \infty$.)
(b) The statements 1, 2 and 3 provide partial answers to the local (in the neighbourhood of the standard metric) systolic problem for $\mathbb{C} P^{n}$ raised by Berger in [Ber2]. This problem remains open for non-complex projective spaces and for syst ${ }_{2} g^{\prime}$ for small non-quasi-Kähler deformations of g on $\mathbb{C} P^{n}, n \geq 3$. On the other hand, there probably exist metrics g^{\prime} far away from the standard one where the ratio syst ${ }_{2 k} g^{\prime} /\left(\operatorname{Vol} g^{\prime}\right)^{\frac{k}{n}}$ becomes arbitrarily large. (In fact, such examples must be rather easy for k not dividing n. Compare 4.A. 3 and 4.A. 5 below.)
4.A.3. Systolic problem for manifolds of general topological type. This problem consists of finding inequalities between $\operatorname{syst}_{k} V, k=1, \ldots, n=\operatorname{dim} V$. For example, if $H_{k}(V) \neq 0$, one looks for an inequality of the form syst $_{k}$ syst $_{n-k} \leq$ const Vol. More generally, if there are cohomology classes $h_{i}, i=1, \ldots, j$, of degrees k_{i}, such that $\sum_{i=1}^{j} k_{i}=m \leq n=\operatorname{dim} V$ and the cup product $h_{1} \smile h_{2} \smile, \ldots \smile h_{j}$ does not vanish, then the desired inequality reads

$$
\begin{equation*}
\prod_{i=1}^{j} \text { syst }_{k_{i}} \leq \text { const syst }_{m} \tag{*}
\end{equation*}
$$

The inequalities of the shape of $(*)$ are known for the systoles defined with the mass instead of the volume and these can be most conveniently expressed in terms of the geometry of the mass-Jacobians

$$
J_{k}(V)=H_{k}(V ; \mathbb{R}) / H_{k}(V ; \mathbb{Z})
$$

with the (flat Minkowski) metrics coming from the mass on $H_{k}(V ; \mathbb{R})$ (see $\S 7.4$ in [Gro2], [Heb2] and [Bab1,2,3]). On the other hand, there is no single known upper bound on syst_{k} for $2 \leq k<n$ in terms of other systoles and/or more sophisticated metric characteristics of V pertaining to dimensions not equal to k.

In fact, there are obvious counterexamples to the inequality syst $_{1}$ syst $_{n-1} \leq$ const Vol. For instance, if a simply connected manifold V_{0} admits a free isometric S^{1}-action, then $V=\left(V_{0} \times \mathbb{R}\right) / \mathbb{Z}$ may have arbitrarily large ratio $\left(\right.$ syst $_{1}$ syst $\left._{n-1}\right) / \mathrm{Vol}$ for a suitable action of \mathbb{Z} on $V_{0} \times \mathbb{R}$. Namely, if we rotate V_{0} by a small angle $\alpha=2 \pi / i \in S^{1}$ and translate \mathbb{R} by $\varepsilon=\alpha / i \approx \alpha^{2}$, then the corresponding isometry of $V_{0} \times \mathbb{R}$ and all its multiples have displacement $\gtrsim \alpha$ and so, the corresponding manifold $V=V_{\alpha, \varepsilon}$ has

$$
\operatorname{syst}_{1} V \geq \operatorname{const} \alpha
$$

On the other hand, the masses of the $(n-1)$-cycles in V for $n-1=\operatorname{dim} V_{0}$ equal those in V_{0} (by an easy argument) and so

$$
\operatorname{syst}_{n-1} V=\operatorname{Vol} V_{0}
$$

(while evaluation of syst_{k} for $2 \leq k \leq n-2$ is more interesting in this example). As $\operatorname{Vol} V=\varepsilon \operatorname{Vol} V_{0}$, we have

$$
\operatorname{syst}_{1} \text { syst }_{n-1} / \operatorname{Vol} \approx \alpha / \varepsilon=i
$$

which can be made as large as we wish. Next, suppose we can modify the metric g_{0} on V_{0} in order to make Vol V_{0} small without diminishing the induced distance function on the S^{1}-orbits. (This can easily be achieved, for instance, if $V_{0}=\left(V_{1} \times V_{2}, g_{0}=g_{1} \oplus g_{2}\right)$ with the S^{1}-action free on V_{1}, as we may take $g_{0}^{\prime}=g_{1} \oplus \delta g_{2}$ with small $\delta>0$. But such modification is impossible if V_{0} is a homotopy sphere as follows from the isosystolic inequality for $\left.V_{0} /\{0, \alpha, 2 \alpha, \ldots\}, \alpha=2 \pi / i\right)$. Then, we adjust

$$
\operatorname{syst}_{1} \approx \alpha, \text { syst }_{n-1} \approx \alpha^{n-1}, \mathrm{Vol} \approx \varepsilon \alpha^{n-1} \approx \alpha^{n+1}
$$

which scales to a metric on V with syst $_{1}$ and syst ${ }_{n-1}$ bounded from below by one and $\mathrm{Vol}=\alpha \rightarrow 0$.

The simplest example where this happens is $V=S^{3} \times S^{2} \times S^{1}$ with a suitable family of homogeneous (!) metrics.

I realized somewhat belatedly that the above examples can be topologically varied and simplified by a suitable geometrically controlled surgery. For example, it is not hard to exhibit (highly non-homogeneous) metrics on $S^{5} \times S^{5}$ with syst $_{5} \geq 1$ and $\mathrm{Vol} \rightarrow 0$ (compare [Ber9] and see [Be-Ka] and [Pit] for a more recent development; also see [Gro10] for a similar surgical construction of large manifolds with large eigenvalues of the Laplacian).

The above examples, as well as those indicated in 4.A.5 and 4.A. 6 make quite interesting the evaluation of systoles for particular classes of manifolds and finding non-trivial inequalities between metric invariants (including the systoles) in these classes. Here are some possibilities.
(a) Manifolds with a bound on the absolute values of the sectional curvature. These are especially interesting when they collapse to lower dimensional manifolds (which, for $|K| \leq$ const, amounts to inj rad $\rightarrow 0$). The simplest example of a collapsed manifold V is a circle bundle over some V_{0}. This is determined, besides the metric
g_{0} on V_{0}, by the (closed integral) curvature 2-form ω on V_{0} and the length ε of the implied circle. If ε is small compared to $\|\omega\|$, the curvature of V is approximately the same as that of V_{0} and, in particular, it remains bounded for $\varepsilon \rightarrow 0$. Yet the geometry of k-dimensional cycles in V for $k=2, \ldots, n-1$, is not quite easy to see. (Actually, this example is quite interesting for large $\|\omega\|$ where the curvature of V may blow up.)
(b) Manifolds with $K \geq$ - const. These are in many respects similar to the above but the proofs are harder. For example, according to Perelman, their local geometry is roughly conical which, probably, allows an upper bound on the systoles in the non-collapsed case. In the collapsed case, the k-dimensional volume looks harder to understand but the Uryson widths w_{0}, \ldots, w_{k-1} behave as expected. Namely, Perelman proved the conjecture from [Gro6] claiming a double-sided bound on the product of the widths by the volume, the diameter and the lower bound on the sectional curvatures.
(c) Manifolds with Ricci \geq - const. These have been vigorously investigated in the last couple of years by Anderson, Cheeger, Colding and Perelman. Yet, we do not know how to construct k-dimensional submanifolds in such manifolds with controlled volumes. For example, we do not know if every V with Ricci ≥ 1 admits a generic smooth map to \mathbb{R}^{n-k} where the pull-backs of all points have $\mathrm{Vol}_{k} \leq$ const $_{n}$ (compare with 4.A.7). Notice that this is quite easy for $k=n-1$ (use the distance function) and for all k assuming $|K| \leq$ const. Also, the case $K \geq-$ const looks within reach.
(d) Manifolds with positive scalar curvature. The condition $S c \geq 0$ is incomparably weaker than Ricci ≥ 0 but yet it has non-trivial metric consequences obtained with the minimal surface technique of Schoen-Yau and with the Dirac operator. For example, 3-manifolds with $S c \geq 1$ have Uryson's width w_{1} universally bounded (see [Gro2], [Katz3] and [Gro10].)
(e) Random manifolds. If we are given a probability measure on the space of Riemannian metrics on V, we may expect the values of geometric invariants to be concentrated near their respective expectation values, and then we may speak, say, of the systoles of random manifolds. For instance, we may have a sequence μ_{i} of such measures, each supported on some finite dimensional subspace, where μ_{i}-random
systoles have nice asymptotics for $i \rightarrow \infty$. For example, let V be a circle bundle over the flat torus T^{n} governed by the curvature form ω on T^{n}. Then, we may look at Gaussian measures μ_{i} on the spaces of Fourier polynomials of degree i (decomposing 2 -forms) and try to evaluate the average and the typical values of the systoles

$$
\text { syst }_{k}, k=1,2 \ldots n+1 \text { for } i \rightarrow \infty .
$$

Further classes of manifolds are indicated in 4.A. 4 and 4.A. 6 below.
4.A.4. Systolic invariants of symplectic manifolds. Let V be a closed symplectic manifold with the structure from ω and let us look at an adapted Riemannian metric g on V for which there exists a (necessarily unique) almost complex structure $J: T(V) \rightarrow T(V)$, such that g is quasi-Kähler with respect to J. This means g and Ω are J-invariant and $\omega\left(\tau_{1}, \tau_{2}\right)=g\left(\tau_{1}, J \tau_{2}\right)$. Then, define

$$
\operatorname{syst}_{k}(V, \omega)=\sup _{g} \operatorname{syst}_{k}(V, g),
$$

where g runs over all metrics adapted to ω.
One knows for some manifolds (V, ω) that $\operatorname{syst}_{2}(V, \omega)<\infty$ as these V contain J-holomorphic curves, but this is unknown in general. Here some test questions.
(a) Let V be the $2 n$-torus with a standard (translation invariant) symplectic structure ω. Then, we ask whether $\operatorname{syst}_{2}(V, \omega)<\infty$.
(b) Does every ω on V diffeomorphic to $\mathbb{C} P^{n}$ have

$$
\operatorname{syst}_{2}(V, \omega)=\left(\int_{V} \omega^{n}\right)^{\frac{1}{n}} ?
$$

One would especially like to know if, for every ω on $\mathbb{C} P^{2}$, there is an adapted metric for which some non-zero multiple $i h$ of the generator $h \in H_{2}\left(\mathbb{C} P^{2}\right)$ has $\operatorname{Vol}(i h) \leq$ $i\left(\int_{\mathbb{C} P^{2}} \omega^{2}\right)^{\frac{1}{2}} \cdot\left(\right.$ Such $i h$ is necessarily realized by a J-holomorphic curve in $\mathbb{C} P^{2}$ and the existence of such a curve implies that ω is symplectomorphic to the standard symplectic structure on $\mathbb{C} P^{2}$, as follows by the techniques of [Gro4]. Recently, two
remarkable new methods of constructing symplectic submanifolds came to light, one is due to Donaldson and the other to Taubes. Both methods apply to $\mathbb{C} P^{2}$ and rule out exotic symplectic structures there.)
4.A.5. Further examples of metrics with bounded volume and syst $_{k} \rightarrow \infty$. If $2 k>n=\operatorname{dim} V$, then there is no universal relation between $\operatorname{Vol} V$ and syst_{k}. This is shown by constructing metrics on V with $\mathrm{Vol} \leq$ const and syst $_{k} \rightarrow \infty$ as follows. Take a submanifold $M \subset V$ of codimension k with trivial normal bundle whose connected components generate $H_{n-k}(V ; \mathbb{R})$ and take the family of metrics f_{ε} obtained by blowing up a fixed metric g in the directions normal to M by ε^{-a} and contracting g along M by ε^{b}. The blow-up (with $a>0$) makes the mass norm on $H_{k}(V)$ go to infinity for $\varepsilon \rightarrow 0$, while the contraction in the M-direction with $b \geq \frac{a(n-k)}{k}$ keeps the volume of $\left(V, g^{\varepsilon}\right)$ bounded. (The actual expansion-contraction takes place in a fixed trivialized tubular neighbourhood of $M \subset V$, see $\S 2$ in [Gro8].)

In general, we conjecture that all non-trivial intersystolic inequalities for simply connected manifolds are associated to multiplicative relations in the cohomology in the corresponding dimensions. This conjecture applies to the mass as well as to the volume, but for the volume we actually expect no inequalities at all as every closed, simply connected manifold probably admits a metric with arbitrarily given systoles syst $_{2}$, syst $_{3}, \ldots$, syst $_{n}=\operatorname{Vol}$ (and for the non-simply connected case the only intersystolic inequalities are probably tied up with the π_{1}-essentiality). On the other hand, our conjecture should be refined in the case of mass by describing the range of the geometries of the Jacobians $J_{*}(V, g)$ as g runs over all metrics on V. More specifically, we expect that the variation of systoles (and Jacobians) required by conjecture is achieved by blowing and contracting a fixed metric in V along some stratification in V. Here is an example.

Let V be a closed manifold and k be an odd number which does not divide $n=\operatorname{dim} V$. Then, there exists a family of metrics g_{ε} on V for which the massnorm on $H_{k}(V ; \mathbb{R})$ goes to infinity for $\varepsilon \rightarrow 0$ while $\operatorname{Vol} V$ remains bounded. To see that, take some k-codimensional submanifolds in V with trivial normal bundles whose fundamental classes span $H_{n-k}(V ; \mathbb{R})$. To simplify the matter, assume that there are only two M 's, say M_{1} and M_{2}, transversally intersecting along $M=M_{1} \cap M_{2}$. Then,
we blow up a fixed metric g in V normally to M_{1} and M_{2} and simultaneously contract it along M and along M_{1} and M_{2} away from M. The normal expansion (blow-up) of g makes the mass-norm on $H_{k}(V)$ go to infinity while the contraction forces the volume to stay bounded. (We suggest the reader would make up the details by him-/herself).

Let us indicate what should be done for k even. In this case, the topology of V may not allow submanifolds M with trivial normal bundles as the cohomology dual to $[\mathrm{M}]$ may have non-vanishing cup-squares. Yet, the above expansion-contraction procedure can be adapted to this case as follows. Assume that there is a single M whose intersection with a small generic perturbation M^{\prime} of M has trivial normal bundle. Then, we blow up the metric normally to this intersection $M_{0}=M \cap M^{\prime}$ and we also blow up normally to M away from M_{0}, where we assume (in order for the blow-up to have the desirable effect on mass $_{k}$) that the triviality of the normal bundle of $M-M_{0}$ in V.

Remarks. (a) Suppose we take a submanifold M in a Riemannian manifold (V, g), such that the normal neighbourhood of M does not split. We still may perform the expansion-contraction of g along M in an "infinitely small" normal neighbourhood of M in V, but now the overall geometric effect of that will heavily depend on the geometry of M, first of all on the curvature of the normal bundle of M. Some idea of what happens near M may be gotten from the discussion in the following section 4.A.6.
(b) Suppose V is endowed with a symplectic structure ω. We want to construct a family of quasi-Kähler metrics g_{ε} which are all adapted to ω (thus having a fixed volume independent of ε) and which blow up transversally to a given k-codimensional submanifold M. (This makes, for a suitable M, the systole syst ${ }_{k} V$ to go to infinity.) To achieve this one needs, technically speaking, a closed k-form μ with the support in an ε-neighbourhood U of M which is cohomologically dual to M, such that the norm $\|\mu\|_{g_{\varepsilon}} \rightarrow 0$ for $\varepsilon \rightarrow 0$. Such μ can be constructed on split neighbourhoods $U=M \times \mathbb{R}^{k}$ by pulling back a standard form from \mathbb{R}^{k} to U by the projection $U \rightarrow \mathbb{R}^{k}$. This works very well for general g_{ε} unrestricted by any ω (see [Gro8]) but as we want g_{ε} adapted to ω, we need the splitting $U=M \times \mathbb{R}^{k}$ to be also adapted to ω as follows. The restrictions of ω to the fibers $M \times x, x \in \mathbb{R}^{k}$ must be singular,
i.e., of rank $<n-k=$ the dimension of the fibers. The simplest splittings of this kind live on neighbourhoods U of Lagrangian tori $M \subset V$ where the corresponding fibers are Lagrangian. Using these, one can easily construct, for instance, a family of quasi-Kähler metrics g_{ε} adapted to ω on every even dimensional torus $V=T^{2 m}$ with a translation invariant ω, such that $\operatorname{syst}_{k} g_{\varepsilon} \rightarrow \infty$ for all $k>m$. But for general symplectic manifolds V constructing such families g_{ε} seems more difficult.
4.A.6. Behaviour of systolic invariants for degenerate metrics. There are some particularly nice ways in which a Riemannian metric g on V may degenerate (or go to infinity), similar to geodesic rays in the space of flat tori. For example, let $\left.A^{t}: T(v) \rightarrow T(V), t \in\right] 0, \infty[$, be a group of linear automorphisms of the tangent bundle of V. Then, the family $g_{t}=A_{g}^{t}$ for a fixed g constitutes such an interesting path of (possibly degenerating) metrics for $t \rightarrow \infty$. (One can generalize by using different t on different parts of V, e.g., by restricting the effect of A^{t} to a certain stratification in V as in the previous section.) For example, one takes two mutually normal subbundles T^{\prime} and $T^{\prime \prime}$ in $T(M)$ and blows up g in the T^{\prime}-direction. This means, g splits as $g=g^{\prime}+g^{\prime \prime}$ where g^{\prime} vanishes on $T^{\prime \prime}$ and $g^{\prime \prime}$ on T^{\prime} and then, g_{t} is defined by $g_{t}=t g^{\prime}+g^{\prime \prime}$. This is equivalent, up to scaling g_{t}, to contracting along $T^{\prime \prime}$ which means taking $g_{t}=g^{\prime}+t^{-1} g^{\prime \prime}$.

General problem (or program). Determine the asymptotic behaviour of metric invariants of $\left(V, g_{t}\right)$ for $t \rightarrow \infty$.

We shall make below a few comments on syst ${ }_{k} g_{t}$ in the special case of $g_{t}=t g^{\prime}+g^{\prime \prime}$ for $t \rightarrow \infty$.

Contact case. Suppose $T^{\prime \prime}$ is a contact structure on V, i.e., the kernel of a differential 1-form η, such that the restriction of $d \eta$ to $T^{\prime \prime}$ is a non-singular 2-form. Then, syst $_{k} g_{t}$ remains bounded for $t \rightarrow \infty$, provided $2 k<\operatorname{dim} V$ and $H_{k}(V) \neq 0$. (Here syst ${ }_{k}$ refers to the homological systole syst $H_{k}(V)$.) In fact, the k-dimensional homology of V (with arbitrary coefficients) for $2 k<\operatorname{dim} V$ (notice that $\operatorname{dim} V$ is odd in the contact case) can be realized by k-cycles in V tangent to $T^{\prime \prime}$ (see [Thom], and p.p. 109 and 339 in [Gro3]).

Now, we take k above the middle dimension, $2 k>\operatorname{dim} V$, and claim that massnorm on $H_{k}(V)$ grows as fast as t for $t \rightarrow \infty\left(\right.$ provided $\left.H_{k}(V ; \mathbb{R}) \neq 0\right)$. In fact, it is
obvious that $\operatorname{Vol}\left(V, g_{t}\right) \approx t$, and one can show that every non-trivial k-cycle also has $\mathrm{Vol} \approx t$ as it is "uniformly non-tangent" to $T^{\prime \prime}$ (see [Gro7] and [Gro9]).

Remark. - The family $g_{t}, t \rightarrow \infty$, converges to a limit (non-Riemannian CarnotCaratheodory) metric g_{∞} for which the Hausdorff dimension of V equals $n+1$ for $n=\operatorname{dim}_{\text {top }} V$ (see [G-L-P]). Every k-dimensional homology class for $2 k<n$ can be realized by a k-cycle of Hausdorff dimension k but if $2 k>n$, then every k-cycle non-homologous to zero necessarily has g_{∞}-Hausdorff dimension $\geq k+1$ (see [Gro9]).

Generic subbundles of middle dimension. Let $n=\operatorname{dim} V$ be even and $\operatorname{rank} T^{\prime \prime}=$ $m=\frac{1}{2} n$. We assume that $T^{\prime \prime}$ is generic and $m \geq 3$ and then, the limit (CarnotCaratheodory) metric g_{∞} gives to V Hausdorff dimension $n+m$. Next we try to make a k-cycle C in $V \ell$-tangent to $T^{\prime \prime}$ which means $\operatorname{dim} T_{c}(C) \cap T_{c}^{\prime \prime} \geq \ell$ for the regular points $c \in C$. We think locally of our C at a regular point c as a graph of a map $\mathbb{R}^{k} \rightarrow \mathbb{R}^{n-k}$ and then, the ℓ-tangency condition is expressed in terms of the homomorphism $\delta: T(C) \rightarrow T^{\prime}=T(V) / T^{\prime \prime}$ by $\operatorname{rank} \delta \leq k-\ell$ which amounts to $(m-i+\ell)(k-i+\ell)$ equations for $i=\min (k, m)$. Therefore, if

$$
\begin{equation*}
n-k>(m-i+\ell)(k-i+\ell) \tag{*}
\end{equation*}
$$

the system of P.D.E. expressing the relation $\operatorname{rank} \delta \leq k-\ell$ is undetermined and it is, probably, not hard to prove that every homology class can be realized by a k-cycle ℓ-tangent to $T^{\prime \prime}$ (compare 2.3.8 in [Gro3]). In such a case one bounds the growth syst $_{k} g_{t}$ by const $t^{k-\ell}$. For example, if $k=m$, then $(*)$ reduces to $k>\ell^{2}$ and the expected growth of $\operatorname{syst}_{k} g_{t}$ is at most $t^{k-\sqrt{k}}$. (The expected Hausdorff dimension of minimal k-cycles is $\leq 2 k-\sqrt{k}$.) On the other hand, if $n-k>(m-i+\ell)(k-$ $i+\ell$), then our P.D.E. system is overdetermined. We may think that the k-cycles are "uniformly non- ℓ-tangent" to $T^{\prime \prime}$ in the overdetermined case and, consequently, syst $_{k} \gtrsim t^{k-\ell}$. In particular, for $k=m$, the systole should grow at least as $t^{k-\sqrt{k}}$ (and every non-trivial k-cycle would have Hausdorff dimension $\gtrsim 2 k-\sqrt{k}$). This would make $\left(\operatorname{syst}_{k}\right)^{2} / \mathrm{Vol} \rightarrow \infty$ for $t \rightarrow \infty$, and would settle (in the negative) the basic systolic problem. Unfortunately, present day techniques give no better than
syst $_{k} g_{t} \gtrsim t^{\sqrt{k}}$ as these techniques apply via mass estimates. A related open problem is that of finding the minimal g_{∞}-Hausdorff dimension of non-trivial k-cycles in V and/or of general topologically k-dimensional subsets. In fact, one does not know if every (Carnot-Caratheodory) metric space of Hausdorff dimension N contains a subset of middle topological dimension and of Hausdorff dimension $\leq N / 2$. Similarly, one asks about the minimal Hausdorff dimensions of non-trivial k-cycles in C_{k} in V with $\operatorname{dim}_{\text {top }} V=n$ and $\operatorname{dim}_{\text {Hau }} V=N$ if these (ever) satisfy inequalities of the form $\operatorname{dim}_{\text {Hau }} C_{k}+\operatorname{dim}_{\text {Hau }} C_{\ell} \leq N$ for $k+\ell=n$.

Finally, we indicate another interesting class of families of metrics where the above problems are also essentially open. These come with a dynamical system on V, say, the iterates f^{i} of a single diffeomorphism f, and g_{j} are defined as the pullbacks of a fixed metric g by

$$
g_{j}=\sum_{i=1}^{j}\left(f^{i}\right)^{*} g
$$

or by

$$
g_{j}=\max _{0 \leq i \leq j}\left(f^{i}\right)^{*}(g)
$$

Notice that such g_{i} are similar to the above g_{t} (defined with an operator A^{t} on $T(V)$) for hyperbolic (Anosov) diffeomorphisms f.
4.A.7. Families of cycles and isosystolic manifolds. One may generalize the notion of syst ${ }_{k}$ by considering families of k-cycles with prescribed topological properties and minimizing the maximum of the volumes of cycles in such families. In fact, cycles come in families for many natural manifolds, such as the family of projective subspaces in a projective space, or the family of algebraic subvarieties of given dimension and degree in $\mathbb{C} P^{n}$. Unfortunately, the known results are limited to examples (e.g., see [Fra-Ka]) and 2-cycles in some quasi-Kähler manifolds (see [Gro4], [Ruan]).

BIBLIOGRAPHY

[Acc] R.D.M. Accola, Differential and extremal lengths on Riemannian surfaces, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 540-543.
[Bab1] I.K. Babenko, Closed geodesics, asymptotic volume and characterization of group growth, Math. USSR Izvestija 33 (1989).
[Bab2] I.K. Babenko, Asymptotic invariants of smooth manifolds and their applications, Proc. Int. Conf. on Differential Geom. and Global Anal., Münster (1992), p. 10 .
[Bab3] I.K. Babenko, Asymptotic invariants of smooth manifolds, Izvestia Russian Acad. Sci. 4 (1992), 707-752 (in Russian).
[Bav1] C. Bavard, Inégalité isosystolique pour la bouteille de Klein, Math. Ann. 274 (1986), 439-441.
[Bav2] C. Bavard, Inégalités isosystoliques conformes pour la bouteille de Klein, Geometriae Dedicata 27 (1988), 349-355.
[Bav3] C. Bavard, Inégalités isosystoliques conformes, Comment. Math. Helv. 67 (1992), 146-166.
[Bav4] C. Bavard, La systole des surfaces hyperelliptiques, Prépubl. Ecole Norm. Sup. Lyon 71 (1992).
[Bav5] C. Bavard, L'aire systolique conforme des groupes cristallographiques du plan, Prépubl. Ecole Norm. Sup. Lyon 65 (1992).
[Be-Ka] L. Bérard Bergery, M. Katz, On intersystolic inequalities in dimension 3, Geom. Anal. Functional 4 (1994), 621-632.
[Ber1] M. Berger, Du côté de chez Pu, Ann. Sci. Ecole Norm. Sup. Paris 5 (1972), 1-44.
[Ber2] M. Berger, A l'ombre de Loewner, Ann. Sci. Ecole Norm. Sup. Paris 5 (1972), 241-260.
[Ber3] M. Berger, Some relations between volume, injectivity radius, and convexity radius in Riemannian manifolds, M. Cahen, M. Flato ed., in Differential

Geometry and Relativity, D. Reidel Publishing Company, Dordrecht-Holland, MPAM 3 (1976), 33-42.
[Ber4] M. Berger, Volume et rayon d'injectivité dans les variétés riemanniennes de dimension 3, Osaka J. Math. 14 (1977), 191-200.
[Ber5] M. Berger, Une inégalité universelle pour la première valeur propre du laplacien, Bull. Soc. Math. France 107 (1979), 3-9.
[Ber6] M. Berger, Une borne inférieure pour le volume d'une variété riemannienne en fonction du rayon d'injectivité, Ann. Inst. Fourier 30 (1980), 259-265.
[Ber6 1/2] M. Berger, Aire des disques et rayon d'injectivité dans les variétés riemanniennes, C.R. Acad. Sci. Paris 292 (1981), 291-293.
[Ber7] M. Berger, Isosystolic and Isoembolic inequalities, Rademacher lectures, Univ. Pennsylvania, (1981).
[Ber8] M. Berger, Filling Riemannian manifolds or Isosystolic inequalities, in Global Riemannian Geometry, chap. 3, Curvature and topology, Willmore \& Hitchin ed., Ellis Horwood Ltd, Chichester (1984), 75-84.
[Ber9] M. Berger, Systoles et applications selon Gromov, Séminaire Bourbaki, Vol. 1992/93, Astérisque 216 (1993), 279-310.
[Ber-Ka] M. Berger, J.L. Kazdan, A Sturm-Liouville inequality with applications to an isoperimetric inequality for volume in terms of injectivity radius and to Wiedersehen manifolds, in General Inequalities 2, Beckenbach ed., Birkhäuser, INSM 47 (1980), 367-377.
[Bla0] C. Blatter, Zur Riemannscher Geometrie im Großen auf dem Möbiusband, Compositio Math. 15 (1961), 88-107.
[Bla] C. Blatter, Über Extremallängen auf geschlossenen Flächen, Comment. Math. Helv. 35 (1961), 153-168.
[Bu-Sa] P. Buser, P. Sarnak, On the Period Matrix of a Riemann surface of large genus, preprint 1992.
[Cal] E. Calabi, these proceedings.
[Cas] J.W.S. Cassels, An introduction to the geometry of numbers, Springer-Verlag (1959).
[C-G-M] A. Connes, M. Gromov, H. Moscovici, Group cohomology with Lipschitz control and higher signatures, in Geom. Funct. Analysis 3 (1993), 1-78.
[Chan] Sh. Chang, Two dimensional area minimizing integral currents are closed minimal surfaces, J. Amer. Math. Soc. 4 (1988), 699-778.
[Fed] H. Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974), 35-407.
[Fra-Ka] S. Frankel, M. Katz, The Morse landscape of a Riemannian disk, these proceedings.
[G-L-P] M. Gromov, J. Lafontaine, P. Pansu, Structures métriques pour les variétés riemanniennes, Cedic-Fernand Nathan, Paris (1981).
[Gre-Pe] R. Greene, P. Peterson, Little topology, big volume, Duke Math. J. 67 (1992), 273-291.
[Gro1] M. Gromov, Volume and bounded cohomology, Publ. Math. Inst. Hautes Études Sci. Bures-sur-Yvette 56 (1982), 5-100.
[Gro2] M. Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), 1-147.
[Gro3] M. Gromov, Partial differential relations, Springer-Verlag (1986).
[Gro4] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Inventiones Math. 82 (1985), 307-347.
[Gro5] M. Gromov, Large Riemannian manifolds, Lect. Notes in Math., SpringerVerlag 1201 (1986), 108-122.
[Gro6] M. Gromov, Width and related invariants of Riemannian manifolds, Astérisque 163-164 (1988), 93-109.
[Gro7] M. Gromov, Asymptotic invariants of infinite groups, in Proc. Geometric group theory, G. Nibbs and M. Roller ed., Lond. Math. Soc. Lect. Notes 182, Cambridge University Press, 1993.
[Gro8] M. Gromov, Metric invariants of Kähler manifolds, in Proc. Differential Geometry and Topology, R. Caddeo, F. Tricerri ed., World Sci., 1993.
[Gro9] M. Gromov, Carnot-Caratheodory spaces seen from within, preprint Inst. Hautes Études Sci., Bures-sur-Yvette (1994).
[Gro10] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, preprint Inst. Hautes Études Sci. Bures-sur-Yvette (1995).
[Gr-Th] M. Gromov, W.P. Thurston, Pinching constants for hyperbolic manifolds, Inventiones Math. (1986).
[Gu-St] V. Guillemin, S. Sternberg, Geometric Asymptotics, Math. Surveys, Amer. Math. Soc., Providence 14 (1977).
[Heb1] J. Hebda, Some lower bounds for the area of surfaces, Inventiones Math. 65 (1982), 485-491.
[Heb2] J. Hebda, The collars of a Riemannian manifold and stable isosystolic inequalities, Pacific J. Math. 121 (1986), 339-356.
[Hel] S. Helgason, A duality in integral geometry; some generalization of Radon transform, Bull. Amer. Math. Soc. 70 (1964), 435-446.
[Jen] F. Jenni, Über den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher Flächen, Comment. Math. Helv. 59 (1984), 193-203.
[Katz1] M.G. Katz, The filling radius of two-point homogeneous spaces, J. Differential Geom. 18 (1983), 505-511.
[Katz2] M.G. Katz, A note on hyperspherical manifolds of positive curvature and geometric contractibility, Duke Math. J. 55 (1987), 839-841.
[Katz3] M.G. Katz, The first diameter of 3-manifolds of positive scalar curvature, Proc. Amer. Math. Soc. 104 (1988), 591-595.
[Katz4] M.G. Katz, The rational filling radius of complex projective space, preprint Univ. Nancy.
[Law] B.H. Lawson Jr, The stable homology of a flat torus, Math. Scand. 36 (1975), 49-73.
[Mat] T. Matsusaka, On a characterization of a Jacobian variety, Mem. Coll. Sci. Kyoto, Series A, 32 (1959), 1-19.
[Per] G. Perelman, Widths of non-negatively curved spaces, preprint Univ. Berkeley
[Pit] C. Pittet, Systoles on the circle cross a sphere, preprint 1994.
[Pu] P.M. Pu, Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math. 2 (1952), 55-71.
[Ruan] Y. Ruan, Symplectic Topology and Extremal Rays, Geom. Anal. Functional Analysis 4 (1993), 395-430.
[Sav] R. Savage, The space of positive definite matrices and Gromov's invariant, Trans. Amer. Math. Soc. 274 (1982), 239-263.
[Thom] R. Thom, Remarques sur les problèmes comportant des inéquations différentielles globales, Bull. Soc. Math. France 87 (1959), 455-461.
[Thu] W.P. Thurston, Geometry and topology of 3-manifolds, preprint, Univ. Princeton (1978).

