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Abstract. This is a survey article on geometry of total curvature of complete open 2-
dimensional Riemannian manifolds, which was first studied by Cohn-Vossen ([Col, Co2])

and on which after that much progress was made. The article consists of three topics : the

ideal boundary, the mass of rays, and the behaviour of distant maximal geodesics.

Résumé. Cet article présente une synthèse sur la géométrie de la courbure totale des

surfaces riemanniennes ouvertes, qui fut d’abord étudiée par Cohn-Vossen ([Co1, Co2]), et

à propos de laquelle de grands progrès ont été faits ensuite. L’article couvre trois sujets : le

bord idéal, la masse des rayons, et le comportement des géodésiques maximales à l’infini.
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INTRODUCTION

The total curvature of a closed Riemannian 2-manifold is determined only by the

topology of the manifold. On the other hand, that of a complete open Riemannian

2-manifold is not a topological invariant but depends on the metric. The geometric

meaning of the total curvature is an interesting subject. In this article, we survey

some of our own results concerning the relations between the total curvature c(M) of

M and various geometric properties of M when M is a finitely connected, complete,

open and oriented Riemannian 2-manifold.

Gromov [BGS] first defined the ideal boundary and its Tits metric for an n-

dimensional Hadamard manifold as the set of equivalence classes of rays with respect

to the asymptotic relation and investigated its geometric properties. This turns out to

be useful in studying nonpositively curved n-manifolds. Here, the nonpositiveness of

the sectional curvature implies that the asymptotic relation, which is originally due to

Busemann [Bu], becomes an equivalence relation. However this is not true in general.

The emphasis of the present article is that the ideal boundary together with the Tits

metric can be constructed for M by a new equivalence relation between rays by using

the total curvature. In particular, our construction is a natural generalization of that

of Gromov, because both coincide on every Hadamard 2-manifold. It is natural to ask

the influence of our Tits metric on the ideal boundary upon the geometric properties

of M . The Tits metric defined here can be precisely described in terms of the total

curvature of M , which plays an essential role throughout this article.

In Chapter 1, we construct the ideal boundary of M and its generalized Tits

metric. For the Euclidean plane, the Tits distance between two points represented

by two rays emanating from a common point is just the angle between the initial

vectors of these rays. In the general case, we have various geometric properties on

the analogy with the Euclidean case. All these properties are connected with the

asymptotic behaviour. We apply these to the study of the detailed behaviour of
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Busemann functions.

In Chapter 2, we investigate on the mass of rays in M . We view this as the

Lebesgue measure M(Ap) of the set Ap of all unit vectors which are initial vectors

of rays emanating from a point p in M . A pioneering work of Maeda ([Md1], [Md2])

states that the infimum of M(Ap) for all p ∈ M is equal to 2π − c(M) provided M

is a nonnegatively curved Riemannian plane (i.e., a complete nonnegatively curved

manifold homeomorphic to R
2). We investigate the asymptotic behaviour of the

measure M(Ap) for a general M with total curvature as p tends to infinity and the

mean of M(Ap) with respect to the volume of M .

In Chapter 3, we study the behaviour of maximal geodesics close enough to

infinity (i.e., outside a large compact set) in a complete 2-manifold homeomorphic to

R
2 with total curvature less than 2π. Such manifolds will be called strict Riemannian

planes. Any such maximal geodesic becomes proper as a map of R into M and has

almost the same shape as that of a maximal geodesic in a flat cone. Moreover, we

give an estimate for its rotation number and show that it is close to π/(2π − c(M)).

Here, we have extended the notion of the rotation number of a closed curve due to

Whitney [Wh] to that of a proper curve.

Basic concepts

The total curvature c(M) of an oriented Riemannian 2-manifold M is defined

to be the possibly improper integral
∫
M
GdM of the Gaussian curvature G of M

with respect to the volume element dM of M . We define the total positive curvature

c+(M) and the total negative curvature c−(M) by c±(M) :=
∫
M
G± dM , where

G−+(p) := max{G(p), 0} and G−−(p) := max{−G(p), 0} for p ∈ M . Then, the total

curvature c(M) exists if and only if at least one of c+(M) or c−(M) is finite. A well-

known theorem due to Cohn-Vossen [Co1] states that if M is finitely connected and

admits total curvature, then c(M) ≤ 2πχ(M), where χ(M) is the Euler characteristic

of M . When M is infinitely connected and admits total curvature, Huber’s theorem

[Hu] (cf. [Ba1]) states that c(M) = −∞. Therefore, the total curvature exists if and

only if the total positive curvature is finite.

Throughout this article, assume that M is a finitely connected, complete, open

and oriented Riemannian 2-manifold admitting total curvature and that all geodesics

of M are normal. The finite connectivity of M implies that there exists a homeo-

morphism ϕ : M → N − E, where N is a closed and oriented 2-manifold and E is a
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finite subset of N . We call each point in E an endpoint of M . For instance, if M is

a Riemannian plane (i.e., a complete Riemannian 2-manifold homeomorphic to R
2),

then N is homeomorphic to S2 and E consists of a single point in N . A subset U of

M is called a neighbourhood of an endpoint e ∈ E if ϕ(U)∪{e} is a neighbourhood of

e in N . For each endpoint e of M , we denote by U(e) the set of all neighbourhoods of

e which are diffeomorphic to closed half-cylinders with smooth boundary. Following

Busemann [Bu], we call an element of U(e) a tube of M .

For any region D of M with piecewise smooth boundary ∂D parameterized pos-

itively relative to D, we define the total geodesic curvature κ(D) by the sum of the

integrals of the geodesic curvature of ∂D together with the exterior angles of D at

all vertices. Here, we allow κ(D) to be infinite. When ∂D = φ (i.e., D = M), we

set κ(D) := 0. The Gauss-Bonnet theorem states that if a region D has piecewise

smooth boundary and is compact and finitely connected, then

κ(D) + c(D) = 2πχ(D) .

For any region D of M admitting κ(D) + c(D) (i.e., so that κ(D) and c(D) exist and

if both κ(D) and c(D) are infinite, they have the same sign), we define

κ∞(D) := 2πχ(D)− κ(D)− c(D) .

A slight generalization of Cohn-Vossen’s theorem (cf. [Co2], [Sy5]) states that

κ∞(D) ≥ πχ(∂D) ,

where χ(∂D) is the Euler characteristic of ∂D, namely the number of connected

components of ∂D which is homeomorphic to R.

Geometrically, κ∞(D) may be thought of as the total geodesic curvature of the

boundary at infinity of D. This is seen as follows. Let {Dj} be a monotone increasing

sequence of compact regions with piecewise smooth boundary such that ∪Dj = D and

that the inclusion map from each Dj into D is a strong deformation retraction. Since

χ(Dj) = χ(D) for all j and lim
j→∞

c(Dj) = c(D), the Gauss-Bonnet theorem implies

that

κ∞(D) = 2πχ(D)− κ(D)− lim
j→∞

c(Dj) = lim
j→∞

κ(Dj)− κ(D) .
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Assume for convenience that D is closed and κ∞(D) < +∞. Then, the total geodesic

curvature of D supported by ∂D − ∂Dj tends to zero. Thus, κ∞(D) is equal to the

limit of the total geodesic curvature of Dj supported by ∂Dj − ∂D.

We set

κ∞(e) := κ∞(U)

for each endpoint e of M and a tube U ∈ U(e). κ∞(e) is independent of the choice of

U and satisfies ∑
e∈E

κ∞(e) = κ∞(M) .

After Bangert [Ba3], the quantity κ∞(e) is called the curvature deficit for the endpoint

e of M . We call κ∞(M) = 2πχ(M) − c(M) the total deficit of M . Considering an

isometric embedding of a tube U ∈ U(e) into a Riemannian plane MU , we have

κ∞(e) = κ∞(MU ) by the Gauss-Bonnet theorem. Then, Cohn-Vossen’s theorem

implies that 0 ≤ κ∞(M) ≤ +∞ and 0 ≤ κ∞(e) ≤ +∞ for every endpoint e of M .

The curvature deficits play an important role in the geometric characterization of M .

Let us now look at two typical examples.

Examples. (1) A complete open oriented Riemannian 2-manifold is said to be con-

ical if it is flat outside some compact set. Every conical M is a finitely connected

surface with finite total curvature, and for each endpoint e of M there is a flat tube

U ∈ U(e) which is embedded isometrically into the Euclidean 3-space R
3. If moreover

0 < κ∞(M) < 2π, then U is isometrically embedded in a standard cone in R
3 with

vertex angle κ∞(M).

(2) Consider a surface of revolution S embedded in R
3 with rotation axis y with

respect to the (x, y, z)-coordinates. Assume that S is a Riemannian plane and is

generated by a unit speed smooth (x, y)-plane curve α : [0,+∞) → R
2. Then, the

total curvature of S exists and is finite if and only if α̇(t) converges as t → +∞. If the

limit α̇(+∞) exists, we have c(S) = 2πb, where (a, b) := α̇(+∞). Here, a2 + b2 = 1

from the assumption that α̇(t) is a unit vector for all t.
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GEOMETRY OF TOTAL CURVATURE 567

1. THE IDEAL BOUNDARY WITH GENERALIZED TITS METRIC

1.1. The construction and basic properties.

To construct the ideal boundary of M , we need some notations and definitions.

For each proper curve α : [0,+∞) → M (i.e., for any monotone and divergent se-

quence {ti}, {α(ti)} has no accumulation points) an endpoint e(α) of M is uniquely

determined by lim
t→+∞

ϕ ◦ α(t) = e(α). Then, for any tube U ∈ U(e(a)), there is a

number t such that α|[t,+∞) is contained in U . A ray is defined to be a half geodesic

any subarc of which is a minimizing segment. Clearly, any ray is a proper curve. For

any endpoint e of M and for any finitely many rays σ1, . . . , σm in M with e(σi) = e,

we denote by U(e; σ1, . . . , σm) the set of all tubes U ∈ U(e) having the following three

properties :

(1) each σi intersects ∂U ;

(2) each σ̇i(tσi
) is perpendicular to ∂U , where tσi

:= sup{t ≥ 0; σi(t) ∈ ∂U} ;

(3) for i 
= j in 1, . . . , m, either σi([tσi
,+∞)) does not intersect σj([tσj

,+∞)),

or else coincides with σj([tσj
,+∞)).

Then, U(e; σ1, . . . , σm) is nonempty. Fix an endpoint e of M and take a tube

U ∈ U(e; σ, γ) for given rays σ and γ in M with e(σ) = e(γ) = e. Assume that the

boundary ∂U of U , which is a simple closed smooth curve, is parameterized positively

relative to U . Let κ be the geodesic curvature of ∂U relative to U . Let I(σ, γ)

be the closed subarc of ∂U from σ(tσ) to γ(tγ) and D(σ, γ) the closed region in U

bounded by σ([tσ,+∞)) ∪ I(σ, γ) ∪ γ([tγ,+∞)) (see Figure 1.1.f1). In the special

case where σ([tσ,+∞)) = γ([tγ,+∞)), we set I(σ, γ) := {σ(tσ)} = {γ(tγ)} and

D(σ, γ) := σ([tσ,+∞)) = γ([tγ,+∞)). The arc I(σ, γ) is often identified by the
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interval of R corresponding to the parameters of ∂U .

σ γ

I(σ, γ)

D(σ, γ)

∂U

Figure 1.1.f1

We set

L(σ, γ) := κ∞(D(σ, γ))− π = −c(D(σ, γ))−
∫
I(σ,γ)

κ ds ,

which is independent of U by the Gauss-Bonnet theorem. Note that L(σ, γ) = 0 if

σ(tσ) = γ(tγ) . L(σ, γ) satisfies the following

1.1.1. Proposition ([Sy4, Proposition 1.1]). — For any rays σ, τ and γ such that

e(σ) = e(τ) = e(γ) = e and for any tube U ∈ U(e; σ, θ, γ), we have the following three

properties :

(1) L(σ, γ) ≥ 0 ;

(2) if σ(tσ) 
= γ(tγ), then L(σ, γ) + L(γ, σ) = κ∞(e) ;

(3) if σ(tσ), τ(tτ ) and γ(tγ) lie on ∂U in that order, then L(σ, τ)+L(τ, γ) = L(σ, γ).

We define

d∞(σ, γ) :=
{

min{L(σ, γ), L(γ, σ)} if e(σ) = e(γ)
+∞ if e(σ) 
= e(γ) ,

for two rays σ and γ in M . Then, by Proposition 1.1.1 this becomes a pseudo-distance

on the set of rays in M (cf. [Sy2, §1]). The ideal boundary of M is defined to be the

quotient metric space (M(∞), d∞) modulo the equivalence relation d∞(·, ·) = 0. We
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denote by γ(∞) the equivalence class of a ray γ in M . Note that for an Hadamard 2-

manifold (i.e., a nonpositively curved Riemannian plane) our ideal boundary coincides

with that defined by Gromov in [BGS]. Setting

Me(∞) := {γ(∞) ∈ M(∞); γ is a ray in M with e(γ) = e}

for each endpoint e of M , we have that d∞(Me(∞),Me′(∞)) = +∞ for any different

endpoints e and e′ and the decomposition

M(∞) =
⋃
e∈E

Me(∞) .

For any point x in M(∞), we denote by e(x) the endpoint of M so that

x ∈ Me(x)(∞).

A ray s inM is said to be asymptotic to a ray γ inM if there exist a monotone and

divergent sequence {tj} and a sequence {σj : [0, lj] → M} of minimizing segments in

M converging to σ such that σj(lj) = γ(tj) for all j. We have the following theorem.

1.1.2. Theorem ([Sy2, Theorem 5.1]). — If a ray σ in M is asymptotic to a ray

γ, then σ(∞) = γ(∞).

Let K be any compact subset of M . A ray γ is called a ray fromK if d(γ(t), K) =

t for all t ≥ 0, where d is the distance function of M induced from the

Riemannian metric. By Theorem 1.1.2, for any x ∈ M(∞) there exists a ray from K

such that γ(∞) = x.

To describe the metric structure of the ideal boundary we need some more def-

initions. We define the interior distance di : X × X → [0,+∞] of a metric space

(X, d) (cf. [G], [BGS]) as follows. For any two points p and q in X , if these points

are contained in a common arcwise connected component of X , then

di(p, q) :=inf
c
L(c) ,

otherwise

di(p, q) := +∞ ,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



570 T. SHIOYA

where c : [a, b] → X is any continuous curve joining p and q and the length L(c) of c

is defined by

L(c) := sup
a=s0<...<sk=b

k−1∑
i=0

d(c(si), c(si+1)) .

Then, di is a new distance function for X and satisfies di ≥ d and (di)i = di. Note

that the identity map from (X, d) to (X, di) is not necessarily a homeomorphism. A

metric space (X, d) is called a length space if d = di.

1.1.3. Theorem ([Sy2, Theorem 2.4], [Sy3, Theorem A]). — The ideal boundary

(M(∞), d∞) of M is a length space satisfying the following (1), (2) and (3) for each

endpoint e of M :

(1) if κ∞(e) = 0, then (Me(∞), d∞) consists of a single point ;

(2) if 0 < κ∞(e) < +∞ , then (Me(∞), d∞) is isometric to a circle with total length

κ∞(e) ;

(3) if κ∞(e) = +∞, then each connected component of (Me(∞), d∞) is isometric to

a closed interval of R, which may be a single point or an unbounded interval. There

are at most a continuum of connected components in Me(∞).

Note that the case where κ∞(e) = +∞ is quite different from the case where

κ∞(e) < +∞. Indeed, if a sequence {σi} of rays in M tends to a ray σ, then {σi(∞)}
tends to σ(∞) provided κ∞(e(σ)) < +∞. However, when κ∞(e(σ)) = +∞, there

is always a sequence {σi} of rays which tends to a ray σ and still {σi(∞)} does not

tend to σ(∞). This phenomenon yields the noncompactness of the ideal boundary.

Theorem 1.1.3 implies the completeness of the ideal boundary.

Examples. (1) The ideal boundary of the paraboloid of revolution consists of a single

point.

(2) The ideal boundary of the Poincaré 2-disk has discrete topology.

(3) We take a nonpositively curved surface of revolution M with exactly two

endpoints in such a way that there exists a closed geodesic γ inM dividingM into two

open half-cylinders only one of which is flat (see Figure 1.1.f2). The ideal boundary
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M̃(∞) of the universal covering space M̃ of M is isometric to the disjoint union of

the interval [0, π] of R and a discrete continuum.

M

G < 0 G = 0

M̃

the lift of γ

γ

G < 0 G = 0

Figure 1.1.f2

A geodesic γ : R → M is called a straight line if any subarc of γ is minimizing.

We have

1.1.4. Proposition ([Sy4, Proposition 1.3]). — Any straight line γ in M satisfies

d∞(γ(−∞), γ(∞)) ≥ π, where γ(−∞) ∈ M(∞) is the class containing the ray op-

posite to γ, namely t �→ γ(−t). In particular, if M contains a straight line γ with

e(γ(−∞)) = e(γ(∞)), then κ∞(e(γ)) ≥ 2π.

By this proposition, if M has a unique endpoint, then the existence of a straight

line in M restricts the curvature deficit of M . Conversely, Ohtsuka proved in [Ot1]

that, if M has a unique endpoint and if κ∞(M) > 2π, then M contains at least one

straight line. More generally, we have

1.1.5. Proposition. — For any x, y ∈ M(∞) with d∞(x, y) > π, there exists a

straight line γ such that γ(∞) = x and γ(∞) = y. In particular, if κ∞(M) > 2π,

then M contains infinitely many straight lines.

We consider the case where M has a unique endpoint and κ∞(M) = 2π. Clearly,

the Euclidean 2-space R
2 contains straight lines and satisfies κ∞(R2) = 2π. On the

other hand, as we shall show in the following example, there is a Riemannian plane

M with κ∞(M) = 2π and yet M contains no straight lines.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



572 T. SHIOYA

Example (cf. [Ot1]). For two fixed positive numbers y0 and y1 with y0 + π/2 < y1,

let f : (0, y1) → (0,+∞) be a smooth function such that

f(0+) = +∞ ,

f > 1, f ′ < 0, f ′′ > 0 on (0, y0) ,

f = 1 on [y0, y0 + π/2] ,

f(y1−) = 0, f ′(y1−) = −∞, f (n)(y1−) = 0 for any n ≥ 2 ,

where a+ (resp. a−) means y < a (resp. > a) tending to a. Considering the (x, y, z)-

coordinates of R
3, the subset {(f(y), y, 0); y ∈ (0, y1)} ∪ {(0, y1, 0)} is the image of a

smooth (x, y)-plane curve, which generates a surface of revolution M with rotation

axis y (see Figure 1.1.f3). Then, M satisfies κ∞(M) = 2π. We divide M into the

following three regions :

M1 := M ∩ {(x, y, z) ∈ R
3; y0 + π/2 ≤ y ≤ y1}, which is an open disk domain of

G > 0,

M2 := M ∩ {(x, y, z) ∈ R
3; y0 ≤ y ≤ y0 + π/2}, which is a flat cylinder,

M3 := M ∩ {(x, y, z) ∈ R
3; 0 < y < y0}, which is a tube of G < 0.

x

y

z

y0

y1

y0 + π/2M1

M2

M3

Figure 1.1.f3

Suppose that there is a straight line γ in M . If γ passes through a point in M1 ∪M2,

then γ intersects M1 and M3, so that there are numbers t1 < t2 < t3 such that
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γ(t1), γ(t3) ∈ ∂M3 and γ(t2) ∈ M1. Hence L(γ|[t1, t3]) > 2d(M1,M3) = π and

d(σ(t1), σ(t3)) ≤ π, which contradicts the minimizing properties of γ. Therefore, γ

must be contained in M3. Moreover, Proposition 1.1.4 and κ∞(M) = 2π imply that

d∞(γ(−∞), γ(∞)) = π (see Theorem 1.1.3) and therefore, by the definition of d∞,

both of the two half planes bounded by γ have total curvature 0. This contradicts the

fact that one of the two half planes is contained in M3. Thus M contains no straight

lines.

We outline the proof of Proposition 1.1.5 because it has never been published.

The proof in the case where e(x) 
= e(y) is obvious by Theorem 1.1.2. Assume that

e(x) = e(y) =: e. We take a tube U ∈ U(e) and rays σ, τ from ∂U such that

σ(∞) = x and τ(∞) = y. If minimizing segments αt joining σ(t) and τ(t) for t ≥ 0

have an accumulation straight line as t → +∞, Theorem 1.1.2 completes the proof.

Otherwise, we may assume that there is a subsequence {αti} of {αt} such that each

αti is contained in D(σ, τ). Denote by Di the disk domain bounded by σ, τ, I(σ, τ)

and αti . The sequence {Di} is monotone increasing and covers D(σ, τ), which implies

that c(Di) tends to c(D(σ, τ)) as i → +∞. By applying the Gauss-Bonnet theorem

to the domains Di, we deduce that L(σ, τ) ≤ π which is a contradiction.

1.2. Relation between geodesic circles and the Tits metric.

We consider the geodesic parallel circles Sc(t) := {x ∈ M ; d(x, c) = t} for a fixed

simple closed curve c in M and for all t > 0. A minimizing segment α is called a

minimizing segment from c if d(α(t), c) = t for all t > 0. A number t > 0 is said to

be exceptional if there exists a cut point p ∈ Sc(t) from c having one of the following

three properties :

(1) p is the first focal point along some minimizing segment from c,

(2) there exist more than two minimizing segments from c to p, or

(3) there exist exactly two minimizing segments from c to p such that the angle

between the two vectors at p tangent to these minimizing segments is equal to π.

Hartman [Ha] proved that the set of exceptional t-values is a closed subset of R

of measure zero and that for any non-exceptional t > 0 Sc(t) consists of simple closed

piecewise smooth curves with only finitely many break points at the cut points from
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c. Note that Hartman deals only with Riemannian planes. However, his argument is

independent of the topology of M (cf. [ST]). Moreover, Shiohama [Sh4] proved that

there exists an R > 0 such that, for any t ≥ R, Sc(t) is homeomorphic to a disjoint

union of k circles, denoted by Sc,e(t) for each endpoint e, where k is the number of

endpoints, and ϕ(Sc,e(t)) tends to the endpoint e as t → +∞. Denote by dt the

interior distance of Sc(t). Then, we have

1.2.1. Theorem ([Sy3, Theorem 5.3]). — Any rays σ and γ from c satisfy

lim
t→+∞

dt(σ(t), γ(t))
t

= d∞(σ(∞), γ(∞)) ,

where the limit is taken by evaluating the expression for t non-exceptional.

Kasue [Ks1] constructed the ideal boundary of an asymptotically nonnegatively

curved manifold of any dimension. Any 2-dimensional asymptotically nonnegatively

curved manifold has a total curvature and its ideal boundary coincides with ours by

Theorem 1.2.1.

The following theorem is a generalization of [Sy3, Theorem A]. The basic idea of

the proof is contained in the proof of [Sy3, Theorem A]. The precise proof of a more

generalized version will be given in [SST2].

1.2.2. Theorem ([Sy3, Theorem A1]). — For any a, b > 0 and rays σ and γ we

have

lim
t→+∞

dt(σ(at), γ(bt))
t

=
√
a2 + b2 − 2abmin{d∞(σ(∞), γ(∞)), π} .

Note that for any Hadamard manifold, Theorem 1.2.2 holds. On an Hadamard

manifold, the function f(t) := d(σ(t), γ(t))/t is monotone nondecreasing and hence

(see [BGS, 4.4])

lim
t→+∞

f(t) ≥ 2 sin
min{d∞(σ(∞), γ(∞)), π }

2
.

However, f is not necessarily monotone in our case, and this makes the proof of

Theorem 1.2.2 harder.
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Theorem 1.2.2 leads us to the following

Corollary to Theorem 1.2.2. — Assume that κ∞(M) < +∞. Then, for any fixed

point p ∈ M we have that the pointed space ((M, d/t), p) tends to the cone over

the ideal boundary (M(∞), d∞) as t → +∞ in the sense of the pointed Hausdorff

distance.

As for the definition of the pointed Hausdorff distance, see [Gr] and [BGS].

Denoting the diameter of a metric space by Diam, we have the following theorem

as a consequence of Theorem 1.2.2.

1.2.3. Theorem ([Sy4, Theorem A2]). — For each endpoint e of M, we have

lim
t→+∞

Diam(Sc,e(t), d)
t

= 2 sin
min{Diam(Me(∞), d∞), π}

2
.

Note that Diam(Me(∞), d∞) = κ∞(e)/2 by Theorem 1.2.2.

1.3. Global and asymptotic behaviour of Busemann functions.

Busemann functions are first defined by Busemann in [Bu] and are very useful

for the study of Riemannian manifolds (cf. [CG], [BGS]). In this section, we study

the relation between Busemann functions and the distance d∞.

The Busemann function Fγ : M → R for a ray γ in M is defined by

Fγ(x) := lim
t→+∞

(t− d(x, γ(t)) ) .

First, we note

1.3.1. Theorem ([Sy3, Theorem 5.5]). — Any rays σ and γ in M satisfy

lim
t→+∞

Fγ ◦ σ(t)
t

= cosmin{d∞(σ(∞), γ(∞)), π} .

If M is a Hadamard manifold, this theorem is proved as follows. Since any

Busemann function is of class C2 (see [HI]), we can apply L’Hospital’s theorem. Then

the left-hand side of the equality in Theorem 1.3.1 is equal to the limit of the angle

between σ and the ray from σ(t) asymptotic to γ, which tends to the right-hand side

because of an easy discussion using Toponogov’s triangle comparison theorem (see also

Theorem 1.4.2). However, since a Busemann function is in general not differentiable,

we need some delicate arguments. A function f : M → R is called an exhaustion

if f−1((−∞, a]) is compact for any a ∈ f(M). We have Corollary 1.3.2, which was

proved earlier by Shiohama [Sh2], as a consequence of Theorem 1.3.1.
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1.3.2. Corollary ([Sh2]). — Assume that M has a unique endpoint.

(1) If κ∞(M) < π, then all Busemann functions are exhaustions.

(2) If κ∞(M) > π, then all Busemann functions are nonexhaustions.

Note that, if M has more than one endpoint, none of the Busemann functions

is an exhaustion. Note also that there is a surface M with κ∞(M) = π such that

some of the Busemann functions are exhaustions while others are not (see [Sh2]).

Nevertheless, when the Gaussian curvature of M is nonnegative outside a compact

subset of M , the behaviour of the values of a Busemann function along a ray is

described as follows.

1.3.3. Theorem ([Sy2, Theorem 4.9]). — Assume that M has a unique endpoint,

satisfies κ∞(M) = π, and has nonnegative Gaussian curvature outside some compact

subset. If d∞(σ(∞), γ(∞)) = π/2 holds for the rays σ and γ in M , there exists a

positive number t0 such that Fγ ◦σ|[t0,+∞) is monotone nonincreasing. In particular,

all Busemann functions are nonexhaustions.

Theorems 1.3.2 and 1.3.3 imply the following corollary, which was proved by

Shiohama [Sh1] when the Gaussian curvature of M is nonnegative everywhere.

1.3.4. Corollary ([Sy2, Corollary 4.10]). — Assume thatM has a unique endpoint

and the Gaussian curvature is nonnegative outside some compact subset of M . Then,

we have :

(1) κ∞(M) < π if and only if all Busemann functions are exhaustions ;

(2) κ∞(M) ≥ π if and only if all Busemann functions are nonexhaustions.
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1.4. Angle metric and Tits metric.

On a Hadamard manifold X , the Tits distance d∞ on the ideal boundary is

obtained as the interior distance of the angle distance <) defined by

<) (x, y) =sup
p∈X

<)p(x, y)

for x, y ∈ X(∞), where <)p(x, y) is the angle at p between the rays emanating from p to

x and y. The angle distance satisfies <)(x, y) = min{d∞(x, y), π} for all x, y ∈ X(∞).

In our case, we observe that this does not necessarily hold. Nevertheless, we can see

the asymptotic behaviour of the angles as follows.

1.4.1. Theorem ([Sy4, Theorem B1]). — Assume that κ∞(e) ≥ 2π for all end-

points e of M . For any x, y ∈ M(∞) and for any sequence {pj} of points in M

which has no accumulation points, let σj and γj be rays emanating from pj such that

σj(∞) = x and γj(∞) = y for every j. Then, we have

lim sup
j→∞

<)(σ̇j(0), γ̇j(0)) ≤ d∞(x, y) .

1.4.2. Remark. — The assumption that κ∞(e) ≥ 2π for all e is indispensable to

Theorem 1.4.1. Indeed, consider a conical surface M such that 0 < κ∞(e) < 2π for

some endpoint e of M . We can choose a pair of rays α and β in a flat tube U ∈ U(e)

such that for any s, t ≥ 0 there are exactly two minimizing segment joining α(s) and

β(t) contained in U . For any s ≥ 0, there are two different rays σs and γs emanating

from α(s) which are asymptotic to β (see Figure 1.4.f).

α β

α(0)
α(s)

β(0)

γs

σs

Ds

∂U
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Figure 1.4.f

We have σs(∞) = γs(∞) = β(∞) for each s ≥ 0 by Theorem 1.1.2. Let Ds for s ≥ 0

be the region in U bounded by σs ∪ γs and containing β. Then, {Ds} is a monotone

increasing sequence with ∪Ds = U . Denoting the inner angle of Ds at α(s) by θs, we

have

0 = d∞(σs(∞), γs(∞)) = −2π − κ(U) + θs

for each s ≥ 0, and hence

θs = 2π − κ∞(e) ,

because c(U) = 0. Since 0 < κ∞(e) < 2π, we have

<)(σ̇s(0), γ̇s(0)) = min{κ∞(e), 2π − κ∞(e)} > 0

for all s ≥ 0, which is contrary to the inequality in Theorem 1.4.1.

1.4.3. Theorem ([Sy4, Theorem B2]). — For any rays σ and γ in M , let γt be a

ray emanating from σ(t) which is asymptotic to γ. Then, we have

lim
t→+∞

<)(σ̇(t), γ̇t(0)) = min{d∞(σ(∞), γ(∞)), π} .

Theorem 1.4.3 for a Hadamard manifold is easily proved (see [BGS]) by Topono-

gov’s comparison theorem. On the other hand, to prove Theorem 1.4.3 in our case

we need the techniques of §1.3.

For any x, y ∈ M(∞) and for any subset B of M , we set

<)(x, y;B) :=Sup{<)(σ̇(0), γ̇(0)); σ and γ are rays emanating from

a common point in M −B such that σ(∞) = x and γ(∞) = y} .

Then, Theorems 1.4.1 and 1.4.3 imply the following

1.4.4. Corollary ([Sy4, Corollary B3]). — Assume that κ∞(e) ≥ 2π for all end-

points e of M . For any x, y ∈ M(∞) and for any p ∈ M , we have

lim
t→+∞

<)(x, y;Bp(t)) = min{d∞(x, y), π} ,

where Bp(t) := {q ∈ M ; d(p, q) < t}.
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1.5. The control of critical points of Busemann functions.

In this section we consider the distribution of the critical points of Busemann

functions. For a Lipschitz function f : M → R with Lipschitz constant 1, we denote

by V (f) the closure in the tangent bundle TM of the set of gradient vectors of f at

all points of differentiability. Note that for any ray γ in M and for any unit tangent

vector ν ∈ TpM we have that ν ∈ V (Fγ) if and only if the geodesic t �→ expp tν is a

ray asymptotic to γ (see for instance [Sh6]). A point p in M is said to be a critical

point of f if, for any unit tangent vector u ∈ TpM , there exists a vector ν ∈ V (f) at

p such that < u, ν >≥ 0. We set

Crit(M) := {p ∈ M ; p is a critical point of some Busemann function on M} .

Shiohama proved that, if M has a unique endpoint and if κ∞(M) < π, then Crit(M)

is bounded. We have extended this to the following results as an application of the

arguments in the proof of Theorem 1.4.1.

1.5.1. Theorem ([Sy4, Theorem C1]). — If κ∞(e) 
= π for all endpoints e, then

Crit(M) is bounded.

Remark. — When κ∞(e) = π for some endpoint e, Crit(M) is not necessarily

bounded. Indeed, we consider a conical surface M such that κ∞(e) = π for some end-

point e. Let α, β, σs and γs be rays inM as in Remark 1.4.2. Since<)(σ̇s(0), γ̇s(0)) = π,

the points α(s) for all s ≥ 0 are critical points of Fβ . This means that Crit(M) is

unbounded. Moreover, we observe that Crit(M) becomes a neighbourhood of e.

Nevertheless, we have the following

1.5.2. Theorem ([Sy4, Theorem C2]). — If the set {p ∈ M ;G(p) = 0} is compact,

then Crit(M) is bounded.
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1.6. Generalized visibility surfaces.

Once we have established the notion of the ideal boundary M(∞) of a complete

open surface M with total curvature, we can define the notion of a visibility surface in

a way analogous to [BGS]. A finitely connected oriented complete open 2-manifold M

admitting total curvature is called a visibility surface if, for any two different points

x, y ∈ M(∞), there exists a straight line γ : R → M with γ(−∞) = x and γ(∞) = y.

Note that the total curvature of any visibility surface is −∞. We have the following

result.

1.6.1. Theorem ([Sy3]). — Assume that M is finitely connected and admits total

curvature. Then, the following statements are equivalent :

(1) M is a visibility surface ;

(2) there exists a positive ε such that d∞(x, y) ≥ ε for any different points x, y ∈
M(∞) ;

(3) if x, y ∈ M(∞) are different points, then d∞(x, y) = +∞ ;

(4) if σ and γ are rays with σ(∞) 
= γ(∞), then lim
t→+∞

Fy ◦ σ(t) = −∞ ;

(5) for any rays σ and γ with σ(∞) 
= γ(∞), F−1
σ ([a,+∞)) ∩ F−1

γ ([b,+∞)) is

bounded for all a, b ∈ R ;

(6) for any rays σ and γ with σ(∞) 
= γ(∞), F−1
σ ([a,+∞)) ∩ F−1

g ([b,+∞)) = φ for

some a, b ∈ R.

Note that for any Hadamard 2-manifold, the conclusion of Theorem 1.6.1 holds

(see [BGS, 4.14]). By definition, a Hadamard manifold X satisfies the visibility axiom

if and only if, for any p ∈ X and for any ε > 0, there exists a number r(p, ε) with

the property that if σ : [a, b] → X is a geodesic segment with d(p, σ) ≥ r(p, ε), then

<)p(σ(a), σ(b)) ≤ ε , where <)p(x, y) is an angle at p between geodesics joining p to x, y

(see [EO]). Note also that a Hadamard 2-manifold satisfies the visibility axiom if and

only if it is a visibility surface. However, a visibility surface does not necessarily satisfy

the visibility axiom as follows. Suppose that a visibility surface M is a Riemannian

plane containing a point p such that M contains a cut point to p. Then, there are a
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sequence {qi} of cut points to p tending to the endpoint of M and two sequences {αi}
and {βi} of minimizing segments tending to distinct rays α and β such that both αi

and βi join p and qi for any i. Since the angle between αi and βi at p tends to the

angle between α and β at p, such an M does not satisfy the visibility axiom.

2. THE MASS OF RAYS

2.1. Basics.

For any point p inM , let Ap be the set of unit vectors at p which are initial vectors

of rays emanating from p. To measure the mass of rays emanating from a point p in

M , we consider the Lebesgue measure M on the unit tangent sphere SpM induced

from the Riemannian metric of M , which satisfies M(SpM) = 2π. Since the limit

of rays in M is a ray, Ap is a closed subset of SpM and hence it is measurable with

respect to M. Moreover, the function M(A.) : p �→ M(Ap) is upper-semicontinuous

and so locally integrable in the sense of Lebesgue. We call M(Ap) the measure of

rays at p.

As an example, let us consider the case where M is a conical Riemannian plane.

If κ∞(M) = 0, since M contains a flat half-cylinder, for any point p inM close enough

to the endpoint of M (i.e. ϕ(p) close enough to the endpoint), Ap consists of only

one vector and hence M(Ap) = 0. If 0 < κ∞(M) < 2π, then with the notations of

Remark 1.4.2 we have for p = α(s)

Ap = {ν ∈ SpM ; expp tν ∈ M −Ds for any t > 0} ,

which is a subarc of SpM with length 2π − θs, and thus

M(Ap) = κ∞(M) .
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Moreover, the above holds for any point p in some neighbourhood of the endpoint of

M .

The first instance in which an estimate for the measure of rays was given is due

to Maeda and is the following

2.1.1. Theorem ([Md2], [Md3]). — If M is a nonnegatively curved Riemannian

plane, then

inf
p∈M

M(Ap) = κ∞(M) .

Shiga extended this to the case where the sign of the Gaussian curvature changes.

2.1.2. Theorem ([Sg2]). — If M is a Riemannian plane with a total curvature,

then

2π − c+(M) ≤ inf
p∈M

M(Ap) ≤ κ∞(M) .

Note that Theorem 2.1.2 implies Theorem 2.1.1. For the proof of Theorem 2.1.2,

the following lemma is essential.

Let M be a finitely connected surface with a total curvature and p a point in M .

Let α be a subarc of SpM the endpoints u and ν of which are contained in Ap. Denote

by γu and γv the two rays from p whose initial vectors are u and v respectively, and

assume that γu and γv together bound a closed region Dα in M of side α, i.e.,

α = {w ∈ SpM ; expp tw ∈ Dα for any small t > 0} .

Obviously, the length M(α) of α is equal to the inner angle of Dα. Cohn-Vossen’s

theorem implies that κ∞(Dα) ≥ π. Moreover, we have

2.1.3. Lemma (cf. [Md3], [Sg2]). — If α ∩ Ap = {u, v}, then

κ∞(Dα) = π .

In particular, if Dα is homeomorphic to the half plane, then

c(Dα) = M(α) .
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GEOMETRY OF TOTAL CURVATURE 583

Maeda and Shiga treated only the case of Riemannian planes. However, the proof

is essentially independent of the topology of M .

The proof of the right-hand side of the inequality in Theorem 2.1.2 is sketched

as follows. Under the assumption of Lemma 2.1.3 for a Riemannian plane M , since

SpM − Int(α) ⊃ Ap (where Int denotes the interior), we have

2π − c(Dα) = 2π − M(α) ≥ M(Ap) .

Now, we may consider only the case where κ∞(M) < 2π. In this case, by Proposition

1.1.4, M contains no straight lines, which shows that for any compact subset K of M

and for any point p ∈ M close enough to the endpoint of M , any ray from p does not

intersect K. This proves that, for any point p ∈ M close enough to the endpoint of

M , there exists a subarc αp satisfying the assumption of Lemma 2.1.3 such that

lim
p→e

c(Dαp
) = c(M) ,

so that

κ∞(M) = 2π− lim
p→e

c(Dαp
) ≥ lim sup

p→e
M(Ap) . (∗)

Shiga also gave the following estimate from above.

2.1.4. Theorem ([Sg1]). — If M is a nonpositively curved and finitely connected

surface, then

M(Ap) ≤ κ∞(M)

for any point p in M .
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2.2. The asymptotic behaviour and the mean measure of rays.

In this section, let M be a finitely connected surface with a total curvature. We

consider the asymptotic behaviour of the measure of rays at p when p tends to an

endpoint e of M (i.e. ϕ(p) tends to e).

2.2.1. Theorem ([Sh5], [Sy1]). — For each endpoint e of M , we have

lim
p→e

M(Ap) = min{κ∞(e), 2π} .

This theorem was first proved by Shiohama [Sh5] in the case where M contains

no straight lines, and later by the author [Sy1] in the case where M contains a straight

line. The methods of proofs for the two cases are quite different.

The proof of Theorem 2.1.2 (sketched in the previous section) means a part of

Theorem 2.2.1 (see (*)). For the complete proof of Theorem 2.2.1, we need more

delicate arguments.

Shiohama proved the following

2.2.2. Theorem ([Sh5]). — Let e be an endpoint of M . If the volume of a tube

U ∈ U(e) is finite, then there exists a subset Z of M of measure zero such that

emanating from each point in M − Z, there is a unique ray γ with e(γ) = e.

If a tube U ∈ U(e) has finite volume, all rays relative to the endpoint e are

asymptotic to each other and determine the same Busemann function F of M . The

set Z in Theorem 2.2.2 is defined to be the set of all non-differentiable points of F .

The mean of an integrable function f : K → R for a compact subset K of M is

defined as

mean(f,K) :=

∫
K
f dM

vol(K)
,

where vol(K) denotes the volume of K. As a consequence of Theorems 2.2.1 and

2.2.2, we have the asymptotic behaviour of the mean of the measure of rays.

2.2.3. Theorem ([Sh5], [Sy1]). — If {Kj} is a monotone increasing sequence of

compact subset of M such that ∪Kj is a neighbourhood of an endpoint e, then

lim
j→+∞

mean(M(A.), Kj) = min{κ∞(e), π} .
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2.2.4. Theorem ([SST], [Sy1]). — For any monotone increasing sequence {Kj} of

compact subsets of M with ∪Kj = M , we have

min
e∈E

{κ∞(e), 2π} ≤ lim inf
j→+∞

mean(M(A.), Kj)

≤ lim sup
j→+∞

mean(M(A.), Kj) ≤max
e∈E

min{κ∞(e), 2π} .

Note that this theorem is best possible, i.e., we have the following

2.2.5. Theorem (cf. [SST, Remark 2]). — For any λ ∈ R such that

min
e∈E

{κ∞(e), 2π} ≤ λ ≤max
e∈E

min{κ∞(e), 2π} ,

there exists a monotone increasing sequence {Kj} of compact subsets of M such that

∪Kj = M and

lim
j→+∞

mean(M(A.), Kj) = λ .

Proof. For simplicity, we set a(e) := min{κ∞(e), 2π}. For any endpoint e of M there

exists λe ∈ [0, 1] such that

(2.2.5.1) λ =
∑
e∈E

λea(e) and
∑
e∈E

λe = 1 .

We may assume that λe := 0 for each endpoint e with κ∞(e) = 0. Fix any number

ε > 0. By Theorem 2.2.1, there exist disjoint tubes Ue ∈ U(e) for all endpoints e of

M such that

(2.2.5.2) |M(Ap)− a(e)| < ε

for all p ∈ Ue. Note that, for any number µ ≥ 0, there exists a tube Ve ∈ U(e) such that

Ve ⊂ Ue and vol(Ue − Ve) = µ provided vol(Ue) = +∞ , and that if vol(Ue) < +∞,

then κ∞(e) = 0 (see [Sh5]) and hence λe = 0. Therefore, for each endpoint e of M ,

there exists a monotone decreasing sequence {Ve,j}j≥1 ⊂ U(e) such that

(1)
⋂∞
j=1 Ve,j = φ,

(2) Ve,j ⊂ Ue for all j ≥ 1,
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(3) if vol(Ue) = +∞, then ve,j = jλe for all j ≥ 1,

where ve,j := vol(Ue − Ve,j). Then, for any endpoint e of M , we have

(2.2.5.3) lim
j→∞

νe,j
j

= λe .

Let Kj := M −
⋃
e∈E Ve,j for j ≥ 1. Clearly, {Kj} is a monotone increasing sequence

of compact sets with ∪Kj = M . Since each Kj is the union of the disjoint sets K

and Ue − Ve,j for all e ∈ E, by (2.2.5.2), we have

mean(M(A.), Kj) =

∫
K

M(A.) dM +
∑
e∈E

∫
Ue−Vej

M(A.) dM

vol(K) +
∑
e∈E

νe,j

≤

∫
K

M(A.) dM +
∑
e∈E

νe,j(a(e) + ε)

vol(K) +
∑
e∈E

νe,j
,

which tends to λ+ ε as j → +∞ by (2.2.5.3) and (2.2.5.1). Therefore we obtain

lim sup
j→+∞

mean(M(A.), Kj) ≤ λ+ ε

as well as

lim inf
j→+∞

mean(M(A.), Kj) ≥ λ+ ε

This completes the proof.

Nevertheless, if the exhaustion is by geodesic balls {Bp(t)}t>0, then we have the

following stronger result.

2.2.6. Theorem ([SST], [Sy1]). — For any point p in M , we have

lim
t→+∞

mean(M(A.), Bp(t)) =




∑
e∈E

κ∞(e)min{κ∞(e), 2π}

κ∞(M) if κ∞(M) > 0 ,

0 if κ∞(M) = 0 .

For the proof of this theorem, we need Theorem 2.2.3 as well as the isoperimetric

theorem due to [Sh4] (cf. [Fi], [Ha], [Sh3]).

SÉMINAIRES & CONGRÈS 1
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2.2.7. Remark. — We can generalize Theorems 2.2.1 and 2.2.6 to the case where M

is any nonnegatively curved open manifold of dimension greater than 2, which will be

written in [Sy6]. In [Sy6], we generalized Theorems 2.2.1 and 2.2.6 to the case where

M is any nonnegatively curved complete open manifold of dimension greater than

2, or more generally any nonnegatively curved noncompact Alexandrov space. The

situation in that case is more delicate because the asymptotic behaviour of the mass

of rays at point p depends on the limit point of p in the ideal boundary. In the two-

dimensional case, the ideal boundary is isometric to a circle and then homogeneous

(when the total curvature is finite), which is the reason why the two-dimensional case

is simpler than the higher-dimensional case.

3. THE BEHAVIOUR OF DISTANT MAXIMAL GEODESICS

The aim of this chapter is to describe our work in [Sy5] and [Sy7] about the

behaviour of maximal geodesics close enough to infinity in a finitely connected surface

M . For the results in this chapter, we need to introduce a new condition. A finitely

connected, complete, open and oriented 2-manifold is said to be strict if it has a total

curvature and the curvature deficit κ∞(e) for every endpoint e is positive.

3.1. Visual diameter of any compact set looked at from a distant point.

Let us define

Γp(K) := {v ∈ SpM ; expptν ∈ K for some t ≥ 0}

for a subset K of M and a point p in M . Trivially if p ∈ K, then Γp(K) = SpM . The

visual diameter of a subset K of M at a point p in M is defined to be the diameter

DiamΓp(K) of Γp(K) with respect to the angle distance <) on SpM . Then, the func-

tion M � p �→ DiamΓp(K) ∈ [0, π] for any fixed subset K is upper-semicontinuous.

We have
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3.1.1. Theorem [Sy5]). — For any compact subset K of a strict surface M and

for any endpoint e of M , we have

lim
p→e

DiamΓp(K) = 0 .

Note that we proved earlier in [SST] that

lim
p→e

DiamΓp(K) ∩Ap = 0 ,

in the proof of which the minimizing properties of geodesics tangent to vectors in

Γp(K) ∩Ap simplifies the proving process. On the other hand, the proof of Theorem

3.1.1 needs to study the behaviour of non necessarily minimizing geodesics.

Remark. — The strictness ofM is indispensable in Theorem 3.1.1. Indeed, a conical

Riemannian plane M with c(M) = 2π does not satisfy the conclusion of Theorem

3.1.1. Since a flat half-cylinder is embedded isometrically in the complement of a

compact subset K of M , for a point p of M close enough to infinity, there is a simple

closed geodesic passing through p which bounds a disk Dp containing K (see Figure

3.1.f). All half-geodesics emanating from p and facing to the interior of Dp intersect

K. Thus we have DiamΓp(K) = π.

p

M
Dp

K

Figure 3.1.f

As a direct consequence of Theorem 3.1.1, we have the following corollary, which

means the existence of many maximal geodesics close enough to infinity.
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3.1.2. Corollary ([Sy5]). — For any compact subset K of a strict surface M and

for any number ε > 0 there exists a number r(K, ε) > 0 such that for any point p with

d(p,K) > r(K, ε) there exists a unit tangent vector u at p such that if a unit vector

ν satisfies <)(u, v) < π − ε, then γv does not intersect K, where γv is the maximal

geodesic tangent to v at p.

3.2. The shapes of plane curves.

In this section, we establish some definitions for the shapes of curves in order to

state the main results. Let V be a surface diffeomorphic to R
2. A proper (differen-

tiable) immersion α : R → V is said to be transversal if the inverse image of every

point in α(R) contains at most two points, and for a and b two distinct real numbers

with α(a) = α(b), α̇(a) and α̇(b) are linearly independent. Note that the set of double

points of such an α is a discrete subset of V .

3.2.1. Definition. — Let α : R → V be a proper transversal immersion. A double

point α(a) = α(b) such that a < b is said to be positive if (α̇(a), α̇(b)) is compati-

ble with a fixed orientation of V and negative otherwise. Denote by n+(s, t) (resp.

n−(s, t)) the numbers of positive (resp. negative) double points of the open arc α|(s, t).
The rotation number rot(α) of α is defined by

rot(α) :=lim sup
s→−∞
t→+∞

|n+(s, t)− n−(s, t)| .

Note that rot(α) does not depend on the parameterization of α and is an invariant

of the compactly supported regular homotopy class of α in the following sense. Let α

and β be two proper transversal immersions. We say α is compactly supported regular

homotopic to β if α(t) = β(t) for all t outside some bounded open interval (a, b) and

if there exists a regular homotopy between α|[a, b] and β|[a, b] fixing α̇(a) and α̇(b).

3.2.2. Definition. — A proper transversal immersion α is called a semi-regular

curve if there exists a nested sequence of intervals [a1, b1] ⊂ [a2, b2] ⊂ . . . ⊂ [an, bn]

with finite or infinite length 0 ≤ n ≤ +∞ such that {α(ai) = α(bi)}i=1,...,n is the set

of double points of α.

Let α be a semi-regular curve. For each i ≥ 1, let Bi be the compact disk

bounded by α([ai, ai−1] ∪ [bi−1, bi]), where a0 = b0 is some number in (a1, b1). Then,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1996



590 T. SHIOYA

B1 is bounded by a simple loop and is called the teardrop of α. For each i ≥ 2, one

of the following two cases occurs (see Figure 3.2.f).

(1) The signs of the double points α(ai−1) and α(ai) are distinct and

IntBi ∩
i−1⋃
j=1

IntBj = φ ,

in which case Bi is called a lemon.

(2) The signs of the double points α(ai−1) and α(ai) are equal and

Bi ⊃
i−1⋃
j=1

IntBj ,

in which case Bi is called a heart.

Bi−1

Bi: a lemon
Bi: a heart

Bi−1

Figure 3.2.f

3.2.3. Definition. — The index ind(α) of a semi-regular curve α is defined to be

the number of all Bi which are not lemons.

Note that a semi-regular curve α is simple if and only if ind(α) = 0. For any

semi-regular curve α, we have rot(α) ≤ ind(α) ≤ n, where n is the number of double

points of α.

3.2.4. Definition. — A semi-regular curve α is said to be regular if α has no lemons.

A semi-regular curve α is said to be almost regular if the largest heart contains no

lemons.

For any semi-regular curve α we have the following properties. If α is regular, then

rot(α) = ind(α) = n. Conversely, if ind(α) = n, then α is regular. However, rot(α) =
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ind(α) does not imply α to be regular or almost regular. An almost regular curve

may have infinitely many double points even when its index is finite. Nevertheless,

for any almost regular curve α, we have rot(α) = ind(α) or ind(α)− 1.

3.3. Maximal geodesics in strict Riemannian planes.

The aim of this section is to investigate the behaviour of maximal geodesics in

strict Riemannian planes. First, we consider the following easy case.

In a flat cone F in R
3 any geodesic γ (not passing through the vertex) is regular.

We will show that ind(γ) = n(θ), where n(t) for t > 0 denotes the maximal integer k

such that k < π/t and θ the vertex angle of F . Let F̃ be the universal covering space

of F −{the vertex} and γ̃ a lift in F̃ of γ. There is a ray σ in F from the vertex such

that a lift in F̃ of σ is parallel to γ̃ (see Figure 3.3.f). The index of γ coincides with

the number of all lifts of σ intersecting γ, which is equal to n(θ).

a lift of σ

γ̃

Figure 3.3.f

Let M be a conical Riemannian plane with 0 < κ∞(M) < 2π and e the endpoint

of M . Since there is a tube U ∈ U(e) isometrically embedded into a flat cone in R
3

with vertex angle κ∞(M), any geodesic γ in M close enough to infinity is regular and

ind(γ) = n(κ∞(M)) .

Cohn-Vossen proved in [Co2] that if M is a positively curved Riemannian plane, then

any maximal geodesic in M has at most one simple loop γ|[a, b], and moreover both
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γ|(−∞, a] and γ|[b,+∞) are simple and do not intersect γ|[a, b]. This follows from

the non-existence of locally concave subsets of M . Moreover, this property shows

the semi-regularity of any maximal geodesic. In the more general case where M is

a strict Riemannian plane, there exists a compact contractible subset K of M such

that the boundary of any concave subset of M intersect K. Therefore, in the same

way as above, we have the semi-regularity of any maximal geodesic outside K. Recall

that such a maximal geodesic exists by Corollary 3.1.2. Using much more delicate

arguments we have the following

3.3.1. Theorem ([Sy5]). — Let M be a strict Riemannian plane such that either

κ∞(M) = +∞, or π/κ∞(M) is not an integer. Then, there exists a compact subset

K of M such that any maximal geodesic outside K is regular of index [π/κ∞(M)],

where [.] denotes the integral part of a real number.

In the case where c(M) < π, Theorems 3.3.1 means that any geodesic close

enough to infinity is proper and simple.

As is seen in Theorem 3.3.1, when π/κ∞(M) is not an integer, the topological

shapes of all maximal geodesics close enough to infinity are completely controlled. On

the other hand, when π/κ∞(M) is an integer, the topological shapes of such geodesics

are almost completely controlled as follows. Denoting by M+ (resp. M−) the positive

(resp. negative) curvature locus of M , we have

3.3.2. Theorem ([Sy5]). — Let M be a strict Riemannian plane such that

π/κ∞(M) is an integer. For a geodesic γ in M , consider the following three con-

ditions :

(i) γ is regular and

ind(γ) = π/κ∞(M)− 1 ;

(ii) γ is regular and

ind(γ) =
{
π/κ∞(M) if c(M) 
= π
0 or 1 if c(M) = π ;

(iii) γ is not regular but almost regular (with possibly infinitely many double points)

and

ind(γ) = π/κ∞(M) .
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Then, there exists a compact subset K of M such that for a maximal geodesic γ

outside K, we have :

(a) if M− is bounded, all γ satisfy Condition (i) ;

(b) if M− is unbounded and M+ is bounded, then all γ satisfy Condition (ii) ;

(c) if both M+ and M− are unbounded, then all γ may satisfy either (i), (ii) or

(iii).

Example. Concerning Theorem 3.3.2 (b), we can construct an example of a

Riemannian plane M with c(M) = π containing two geodesics γ0 and γ1 such that

ind(γi) = i for i = 0, 1. Take a smooth bijective function f : [0, 1) → [0,+∞) such

that f(0) = 0, f ′′ > 0 and set

F := {(x, y, 0) ∈ [0,+∞)× [0,+∞)× R; y ≤ f(x) if x < 1} .

Then, for a fixed small 0 < ε << 1, the boundary of the ε-neighbourhood of F in R
3

is a Riemannian plane with C1-metric which we denote by M ′. Let S be the set of

points at which the metric of M ′ is not C∞. Then S is contained in the boundary of

the ε-neighbourhood of {(x, f(x)), 0) ∈ R
3; 0 ≤ x < 1}. By smoothing M ′ in the δ-

neighbourhood of S in R
3 for some small 0 < δ << ε, we obtain a smooth Riemannian

plane M in R
3 with c(M) = π such that M+ is bounded and M− is unbounded. Since

the plane {(x, y, z) ∈ R
3; x = t} for any t > 1 does not intersect S, the intersection

of this plane for t > 1 + δ and M consists of a simple maximal geodesic γ0 of M .

Moreover, we will show that any geodesic γ1 intersecting M− and not intersecting

M+ is not simple. Suppose that such a γ1 is simple. Then, γ1 divides M into two

half planes, one of which contains M+. If we denote this by H, then

c(H) = c(M)− c(M −H) < π ,

which contradicts Cohn-Vossen’s theorem for H.

Considering the attachment of M(∞) to M , we obtain the compactification of M

of M equipped with a natural topology (cf. [Ks1], [Sy5]). For the Riemannian plane

M as in the previous example, the closure of M− in M intersects M(∞) at only one

point. In general, under the assumption of Theorem 3.3.2 (b) with c(M) = π, if the

closure of M− in M contains more than one point in M(∞), then we have ind(γ) = 1.
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3.3.3. Remark. — To obtain the conclusions of Theorems 3.3.1 and 3.3.2, the com-

pact set K is taken to be contractible and to satisfy the following conditions. If

−∞ ≤ c(M) < π, then

(∗) c+(M −K) < π and c+(M −K) + c(K) < π .

In this case, we have that any geodesic outside K is proper and simple, whereby the

theorems follow. If c(M) ≥ π, then

(∗∗) c+(M −K) < ε+(κ∞(M)) and c−(M −K) < ε−(κ∞(M)) ,

where we set, for t > 0,

n(t) := max{k ∈ Z; kt < π}, n′(t) := [π/t] ,

ε+(t) :=
π − n(t)t
n′(t) + 1

and ε−(t) :=
(n′(t) + 1)t− π

n′(t) + 1
.

Note that

π − n(t)κ∞(t) = dR(π, tZ ∩ [0, π))

and

(n′(t) + 1)t− π = dR(π, tZ ∩ (π,+∞)) ,

where dR is the canonical distance of R, and in particular ε±(t) are positive for

all t > 0. Note also that when −∞ < c(M) < π, since ε+(κ∞(M)) = π and

ε−(κ∞(M)) = π − c(M), the two conditions (*) and (**) are equivalent.

Next, we consider all geodesics in a Riemannian plane M under the stronger

assumption that c+(M) < 2π.

3.3.4. Theorem ([Sy5]). — In a Riemannian planeM with c+(M) < 2π, any max-

imal geodesic γ is semi-regular and satisfies

ind(γ) <
π

2π − c+(M)
.

Assume that M contains a pole p, i.e., expp : TpM → M is a local diffeomor-

phism. Now, by the simply connectivity of M , expp : TpM → M is a diffeomorphism.

Let (θ, r) be the geodesic polar coordinate centered at p, where θ : M → R is the

angle at p and r : M → [0,+∞) the distance from p. For any maximal geodesic γ

not passing through p, θ ◦ γ is a strictly monotone function. Therefore, we have the

following
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3.3.5. Corollary ([Sy5]). — If a Riemannian plane M with c+(M) < 2π contains

a pole, any maximal geodesic in M is regular.

Corollary 3.1.2 and Theorems 3.3.1, 3.3.2 and 3.3.4 prove the following

3.3.6. Corollary ([Sy5]). — In a nonnegatively curved strict Riemannian planeM ,

any maximal geodesic γ is semi-regular and

rot(γ) ≤ n(κ∞(M)) ,

where n(·) is as above. Moreover, if γ is close enough to infinity, then it is regular of

index n(κ∞(M)). In particular, we have

max
γ

rot(γ) = n(κ∞(M)) .

For behaviour of geodesics in non-strict Riemannian planes, we have the following

3.3.7. Theorem ([Sy6]). — Any Riemannian plane M with c(M) = 2π satisfies at

least one of the following (1) and (2) :

(1) M contains a sequence of closed geodesics tending to the endpoint of M :

(2) for any n ≥ 1 there exists a compact subset Kn of M such that any maximal

geodesic γ outsdide Kn is semi-regular and contains a subarc whose rotation

number is not less than n ; in particular, ind(γ) ≥ n.

Remark. — In the above theorem, we cannot say whether a maximal geodesic out-

side Kn exists or not. More precisely, all Riemannian planes M with c(M) = 2π are

classified into the following three cases :

(1) M contains a sequence of closed geodesics tending to the endpoint of M , in which

case M is called a building Riemannian plane ;

(2) M does not satisfy (1) and contains a compact subset which any maximal geodesic

intersects, in which case M is called a contracting Riemannian plane ;

(3) M does not satisfy (1) and for any compact subset K ofM there exists a maximal

geodesic outside K, in which case M is called an expanding Riemannian

plane.
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For instance, if a Riemannian plane M with c(M) = 2π satisfies that G = 0

(resp. < 0, > 0) outside a compact set, then M is a building (resp. contracting,

expanding) Riemannian plane. Note that, if M is a strict Riemannian plane, then M

satisfies (3).

3.4. Generalization to finitely connected surfaces.

Let M be a finitely connected complete open surface. A compact region C of

M is called a core of M if M − C is the union of disjoint tubes Ue ∈ U(e) for all

endpoints e of M . Note that, for any compact subset C′ of M , there exists a core C

of M containing C′. Hence, there exists a core C of M such that all the associated

tubes Ue satisfy the following two conditions :

(1) if κ∞(e) > π, then

(#) c+(Ue) < π and c+(Ue) + κ(Ue) + π < 0 ,

where we recall that κ(Ue) can be close enough to κ∞(e) by taking Ue to be small

enough ;

(2) if 0 < κ∞(e) ≤ π, then

(##) c+(Ue) < ε+(κ∞(e)) and c−(Ue) < ε−(κ∞(e)) .

For any such tube Ue, there exists an isometric embedding ιe : Ue → Me of Ue

into a Riemannian plane Me. Then, for each endpoint e of M , the compact disk

K := Me − ιe(Ue) has the properties made in Remark 3.3.3. In fact, (#) and (##)

are respectively corresponding to (*) and (**) in Remark 3.3.3 independently of the

choice of ιe and Me. Thus, with these notations we have the following

3.4.1. Theorem. — LetM be a finitely connected complete open surface for which

the total curvature exists and assume thatM contains no sequence of closed geodesics

tending to infinity. Then, there exists a core C of M such that any maximal geodesic

γ outside C satisfies the following (1), (2), and (3) :

(1) the geodesic ιe ◦ γ in Me is semi-regular, where e is the endpoint of M such that

γ ⊂ Ue ;
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(2) if κ∞(e) > 0, then ιe ◦ γ satisfies the conclusions of Theorems 3.3.1 and 3.3.2

with κ∞(Me) = κ∞(e) ;

(3) if κ∞(e) = 0 and if the core C is taken to be large enough against a given number

n ≥ 1, then a subarc of ιe ◦ γ has rotation number not less than n.

Note that any strict surface satisfies the condition of Theorem 3.4.1. For more

study on behaviour of geodesics, see [Sy5].
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par J. Lafontaine et P. Pansu, Textes Math. 1, Cedic/Fernand Nathan Paris,
(1981).

[Ha] P. Hartman, Geodesic parallel coordinates in the large, Amer. J. Math. 86
(1964), 705–727.

[HI] E. Heintze, H.C. Im Hof, Geometry of horospheres, J. Differential Geom.
12 (1977), 481–491.

[Hu] A. Huber, On subharmonic functions and differential geometry in the large,
Comment. Math. Helv. 32 (1957), 13–72.

[In] N. Innami, Differentiability of Busemann functions and total excess, Math. Z.
180 (1982), 235–247.

[Ks1] A. Kasue, A compactification of a manifold with asymptotically nonnegative
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