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Abstract. Let X be a separated subset in a connected Riemannian manifold M with

bounded geometry such that the ε-neighbourhood of X is recurrent w.r.t. Brownian motion

onM for some ε > 0. The main result of this paper says that the data in the discretization
procedure of Lyons and Sullivan can be chosen such that the Green function of M and the

resulting Markov chain on X coincide up to a constant on pairs (y, z), where y �= z are
points in X .

Résumé. Soit X un sous-ensemble séparé d’une variété riemannienne M à géométrie

bornée tel que le voisinage d’épaisseur ε de X est récurrent pour le mouvement brownien

sur M pour au moins un ε positif. Le principal résultat de cet article dit que les données
du procédé des discrétisations de Lyons et Sullivan peuvent être choisies de telle sorte que

la fonction de Green de M et la châıne de Markov sur X qui s’en déduit cöıncident à une

constante près sur les paires de points (y, z) avec y �= z.
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c© Séminaires & Congrès 1, SMF 1996



TABLE OF CONTENTS

INTRODUCTION 79

1. HARMONIC FUNCTIONS 81

2. MARTIN BOUNDARIES 85

3. EXAMPLES 89

BIBLIOGRAPHY 92
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INTRODUCTION

We are interested in the connection between potential theory of the Laplacian on

Riemannian manifolds and the potential theory of Markov chains on discrete subsets.

Such a connection has been established by Furstenberg [F] in the case of discrete

subgroups of Sl(2, IR) . We investigate the discretization procedure of Lyons and

Sullivan [LS], which associates to a so-called ∗-recurrent (respectively cocompact)

discrete subset X of a connected Riemannian manifold M a family of probability

measures µy, y ∈ M , on X such that

H(y) = µy(H) :=
∑
x∈X

H(x)µy(x)

for any bounded (respectively positive) harmonic function H on M . In particular,

the restriction of H to X is a µ-harmonic function with respect to the Markov chain

on X defined by the measures µx, x ∈ X (that is, µx(H) = H(x) for all x ∈ X).

Under some extra assumptions on the data involved in the construction, one obtains

in this way all bounded (respectively positive) µ-harmonic functions on X (see [A],

[K]) and, if X is cocompact, that Brownian motion on M is transient iff the Markov

chain on X is transient [LS].

A more precise information about behaviour at infinity of harmonic functions

is given by the Martin compactification cl∆M and the Martin boundary ∂∆M of

M . By definition, cl∆M = M ∪̇∂∆M is the closure of M in the space of positive

superharmonic functions via the embedding y �−→ K(., y), where

K(., y) = G(., y)/G(x0, y)

is the Martin kernel, G is the Green function of M and x0 ∈ M is a chosen origin.

For convenience, we choose x0 ∈ X . The Martin compactification clµX and Martin

boundary ∂µX of X with respect to a Markov chain on X are defined in the same

way by using the Martin kernel k and the Green function g of the Markov chain. The

definition of the Martin boundary requires that Brownian motion on M (respectively

the Markov chain on X) has a Green function, i.e., that it is transient.
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80 W. BALLMANN F. LEDRAPPIER

As a consequence of Theorems 1.11, 2.7, 2.8, 3.1 and Corollary 2.9 below we

obtain the theorem

Main theorem. — Assume that the geometry of M is bounded and that X is a

discrete subset of M such that, for some ε > 0,

(i) dist(x, z) ≥ 2ε for all x �= z in X ; (ii) Bε(X) is recurrent.

Then, for some appropriate choice of data, the measures µy, y ∈ M , of Lyons and

Sullivan satisfy

(a) for some positive constant κ we have g(x, z) = κG(x, z) for all x �= z in X . In

particular, the Markov chain on X is transient iff Brownian motion on M is.

If Brownian motion on M is transient, then µx(z) = µz(x) for all x, z in X and

(b) the inclusion X ⊂ M extends to a homeomorphism of clµX and X , where X

is the closure of X in cl∆M ;

(c) restriction defines an isomorphism between the simplex of positive harmonic

functions on M spanned by X ∩ ∂∆M and the space of positive µ-harmonic

functions on X which are 1 at x0.

The Harnack inequality implies that X ∩ ∂∆M contains all extremal positive

harmonic functions of M which are 1 at x0 if X is a net, that is, if BR(X) = M

for some R > 0. Thus (c) implies in this case that the space of positive harmonic

functions on M and the space of positive µ-harmonic functions on X are isomorphic,

a result due to Ancona [A].

If Γ is a discrete group of isometries of M and X is the orbit of a point x0 on

which Γ acts freely, then X satisfies (i). Property (ii) holds if vol(M/Γ) < ∞ or ,

more generally, if the Brownian motion on M/Γ is recurrent. If this is the case, then

the Markov chain on X corresponds to a (left-invariant) symmetric random walk on

Γ (via the natural identification of Γ and X = Γ(x0)).

Corollary. — There exists a symmetric random walk on the free group Fq with q ≥ 2
generators with Martin boundary equal to a circle.

As for the proof, recall that the Martin boundary of the hyperbolic plane H2 is

the circle (at infinity) and that Fq acts as a discrete group of isometries on H2 with

vol(H2/Fq) < ∞.

SÉMINAIRES & CONGRÈS 1



DISCRETIZATION OF POSITIVE HARMONIC FUNCTIONS 81

It follows from Theorem 3.2 below that the measure defining the random walk

on Fq has finite logarithmic moment with respect to the word norm on Fq and finite

entropy. This has to be contrasted with the case of probabilities on Fq with finite

support, for which the Martin boundary is known to be a Cantor set [D].

We would like to thank Martine Babillot to whom we owe the assertion and the

proof of the symmetry of the measures µx in the above theorem. The second author

gratefully acknowledges the support by the SFB 256 at the University of Bonn.

1. HARMONIC FUNCTIONS

Let M denote a connected Riemannian manifold. A Brownian path on M is a

continuous curve

ω : [0, ζ(ω))→ M, where ζ(ω) ∈ (0,∞] .

For x in M , let Px denote the measure on the space of Brownian paths on M with

ω(0) = x defining the Brownian motion onM starting from x. For a Borel measure λ

on M let Pλ be defined by Pλ =
∫
Pxλ(dx). The measure Pλ describes the Brownian

motion on M with initial distribution λ.

For a closed subset F of M and a Brownian path ω set

RF (ω) = inf{t ≥ 0 ω(t) ∈ F} .

The balayage βF
λ = β(λ, F ) of a measure λ onto F is the distribution of Pλ at the

time RF , i.e., for A a Borel subset of M ,

βF
λ (A) = Pλ{ω RF (ω) < ζ(ω) and ω(RF (ω)) ∈ A} .

For short we set βF
x = β(x, F ) = β(δx, F ); then β(λ, F ) =

∫
β(x, F )λ(dx). For x in

F , we have β(x, F ) = δx. We say that F is recurrent if βF
x (F ) = 1 for all x in M .

For an open subset V of M and a Brownian path ω set

SV (ω) = inf{t ≥ 0 ω(t) ∈ M\V } .
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We call SV (ω) the exit time from V of the path ω. The distribution of Pλ at the

time SV will be denoted εV
λ = ε(λ, V ) and we set εV

x = ε(x, V ) = ε(δx, V ). For x in

M\V , we have ε(x, V ) = δx. For x in V, ε(x, V ) is supported on ∂V and is called the

harmonic measure of x. By construction ε(λ, V ) = β(λ,M\V ).

Now let X be a discrete subset of M . A family of closed sets (Fx)x∈X and

relatively compact open sets (Vx)x∈X will be called Lyons-Sullivan data or LS-data if

(D1) x ∈
◦
F x and Fx ⊂ Vx fo x ∈ X ,

(D2) Fx ∩ Vz = ∅ for all x �= z in X ,

(D3) F = ∪x∈XFx is recurrent;

(D4) there is a constant C > 1 such that

1
C

<
dε(z, Vx)
dε(x, Vx)

< C

for all x in X and z in Fx.

We say that X is ∗-recurrent if X admits LS-data. Note that our notion is more

restrictive than the one of Lyons and Sullivan.

Let X be ∗-recurrent and let (Fx, Vx)x∈X be a choice of LS-data. Consider the

following modification, applied to a finite measure µ on M ,

(1.1) µ′ =
∑
x∈X

(
∫

Fx

(ε(z, Vx)−
1
C

ε(x, Vx))βF
µ (dz)) and µ′′ =

1
C

∑
x∈X

βF
µ (Fx)δx .

Now start with the measure

(1.2) µ0 = δy for y /∈ X, µ0 = ε(y, Vy) for y ∈ X ,

and define recursively, for n ≥ 1,

(1.3) µn = (µn−1)′ and τn = (µn−1)′′.

Then the LS-measure µy, y ∈ M is the probability measure on X given by

(1.4) µy =
∑
n≥1

τn .
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Note that µy depend on the LS-data. The family of LS-measures has the following

properties:

(1.5) µy(x) > 0 for all x in X and y in M ;

(1.6) for any isometry γ of M leaving X and the LS-data invariant we have

µγy(γx) = µy(x) for all y in M and x in X ;

(1.7) for all x in X, µx =
∫

∂Vx
µuε(x, Vx)(du);

(1.8) for all x in X and y in Fx, y �= x,

µy =
1
C

δx +
∫

∂Vx

(
dε(y, Vx)
dε(x, Vx)

− 1
C
)µu ε(x, Vx)(du) ;

(1.9) for any y in M\F and any stopping time T ≤ RF ,

µy =
∫

µu πT
y (du) ,

where πT
y is the distribution of Py at time T .

These properties readily follow from the definition. Use the strong Markov prop-

erty for (1.9).

Let H be a positive harmonic function on M . Then βF
y (H) ≤ H(y) for all y in

M . We say that F sweeps H if βF
y (H) = H(y) for all y in M . Since F is recurrent, if

H is bounded, then F sweeps H by the martingale convergence theorem. With these

notations the discussion in [LS], page 317, gives the following.

1.10. Theorem. — For any positive harmonic function H on M , we have µy(H) ≤
βF

y (H) for all y in M ; if βF
y (H) < H(y) for some y in M , then µy(H) < H(y) for all

y in M ; if F sweeps H, then µy(H) = H(y) for all y in M .

We say that a function h on X is µ-harmonic if µx(h) = h(x) for all x in X .

Theorem 1.10 implies that the restriction of a positive harmonic function H on M to

X is µ-harmonic if and only if H is swept by F . Now denote by H+
F (M) the space

of positive harmonic functions swept by F and by H+(X, µ) the space of positive

µ-harmonic functions on X .
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1.11. Theorem. — The restriction map H+
F (M)→ H+(X, µ) is an isomorphism.

Proof. By Theorem 1.10 it remains to show that a µ-harmonic function on X is the

restriction of a positive harmonic function H on M . We define H(y) = µy(h) and

then need to show that H is harmonic. On M\F this is immediate since there

µy(h) =
∫

µu(h)βF
y (du) .

Let x be in X . We shall establish that for y in Vx

(∗) µy(h) =
∫

µu(h)ε(y, Vx)(du)

and this implies that H is harmonic on M . First for x itself (∗) is (1.7). Then from
(1.8) we get for y in Fx, y �= x.

µy(h) =
1
C

h(x) +
∫

∂Vx

µu(h)ε(y, Vx)(du)−
1
C

∫
∂Vx

µu(h)ε(x, ∂Vx)(du)

which is (∗) again by (1.7). Now let y be in Vx\Fx and let T be the exit time from

Vx\Fx. By (D2), T ≤ RF for Brownian paths starting from y and hence by (1.9)

µy(h) =
∫

µu(h)πT
y (du) .

Decompose πT
y = ε1 + ε2, where ε1 is supported on ∂Vx and ε2 on Fx. Using (∗) on

Fx we have

µy(h) =
∫

∂Vx

µu(h)[ε1 +
∫

Fx

ε(z, Vx)ε2(dz)](du) .

Relation (∗) follows since by the strong Markov property of the Brownian motion

ε(y, Vx) = ε1 +
∫

Fx

ε(z, Vx)ε2(dz) .
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1.12. Remark. — By analogous arguments we can prove Theorem 1.11 also

under the more general uniform core condition of Kaimanovich [K].

2. MARTIN BOUNDARIES

Throughout this section, X is a ∗-recurrent subset of M and (Fx, Vx)x∈X is a

fixed choice of LS-data. We now give a more detailed description of the construction

of the measures µy, y ∈ M .

Let W be the space of all Brownian paths on M . For ω in W starting from a

point y in F , define S(ω) to be the exit time from Vϕ(y), where ϕ(y) is the unique

point in X such that y ∈ Fϕ(y). Recursively we define the stopping times Rn, n ≥ 1,

and Sn, n ≥ 0, by

S0(ω) =
{
0 if ω(0) /∈ X
S(ω) if ω(0) ∈ X ,

Rn(ω) = inf{t ≥ Sn−1(ω) | ω(t) ∈ F} ,

Sn(ω) = inf{t ≥ Rn(ω) | ω(t) /∈ VX(n,ω)} ,

where X(n, ω) = ϕ(ω(Rn(ω))). On W̃ =W × [0, 1]IN we define recursively for k ≥ 0
N0(ω, α) = 0 ,

Nk(ω, α) = inf{n > Nk−1(ω, α) | αn < κn(ω)} ,

where

(2.1) κn(ω) =
1
C

dε(X(n, ω), VX(n,ω))
dε(ω(Rn(ω)), VX(n,ω))

(ω(Sn(ω))) .

For y in M we denote by P̃y the product measure Py ⊗ λIN on W̃ , where λ is the

Lebesgue measure on [0, 1]. Since F = ∪x∈XFx is recurrent, the stopping times Rn, Sn

and Nk are finite almost surely. Now the LS-measures µy, y ∈ M , are by definition

given by

(2.2) µy(x) = P̃y[XN1 = x], x ∈ X .

The second main result of Lyons and Sullivan about the measures µy is as follows.
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2.3. Theorem (see [LS], p 321). — The process (XNk
)k≥1 is a Markov process with

time homogeneous transition probabilities p(x, z) = µx(z) for x, z in X . In fact, for y

in M and x1, x2, . . . xk in X we have

P̃y(XN1 = x1, · · · , XNk
= xk) = µy(x1)µx1(x2) · · ·µxk−1(xk) .

Remark. — In [LS] this result is only stated in the so-called cocompact case. It is

observed in [K] that it is also valid in this general set-up. Observe that here, by (D2),

∂Vx is assumed to be disjoint from X .

Fix y in M and define the Green function g of the Markov chain on X by

(2.4) g(y, x) = δy(x) +
∞∑

k=1

P̃y(XNk
= x), x ∈ X .

We want to compare the Green function G of the manifold M with g. We have

(2.5) g(y, x) =
1
C

∑
n≥1

νn(Fx) for y �= x ,

where νn denotes the distribution of ω(Rn) that is, for A a Borel subset of M ,

νn(A) = Py(ω(Rn(ω)) ∈ A) .

Proof of (2.5). Since y �= x, we have

g(y, x) =
∑
k≥1

P̃y(XNk
= x)

=
∑
k≥1

∞∑
n=k

P̃y(ω(Rn) ∈ Fx andNk(ω, α) = n)

=
∑
n≥1

n∑
k=1

P̃y(ω(Rn) ∈ Fx andNk(ω, α) = n)

=
∑
n≥1

P̃y(ω(Rn) ∈ Fx andαn < κn(ω))

=
1
C

∑
n≥1

∫
Fx

(
∫

∂Vx

dε(x, Vx)
dε(z, Vx)

(ζ)ε(z)(dζ))νn(dz)

=
1
C

∑
n≥1

νn(Fx) ,
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where we use the strong Markov property of the Brownian motion to express P̃y by

an integral on M .

For an open subset V of M denote by GV the Green function of V . For y not in

Vx we have

(2.6) G(y, x) =
∑
n≥1

∫
Fx

GVx
(z, x)νn(dz) .

Proof of (2.6). Let B ⊂ Fx be a neighbourhood of x. Then

∫
B

G(y, u)du = Ey(
∫ ∞

0

χB(ω(t))dt) .

Since ω(t) is not in F for Sn(ω) < t < Rn+1(ω) and since B ⊂ F , the right hand side

is equal to
∞∑

n=1

Ey(
∫ Sn(ω)

Rn(ω)

χB(ω(t))dt) .

Now Sn(ω) = Rn(ω)+S(ω(Rn(ω))) and hence we get from the strong Markov property

of Brownian motion that the above expression is equal to

∞∑
n=1

∫
Fx

Ez(
∫ S(ω)

0

χB(ω(t))dt)νn(dz) .

Since S is the exit time from Vx we get

∫
B

G(y, u)du =
∑
n≥1

∫
Fx

(
∫

B

GVx
(z, u)du)νn(dz) .

The measures νn are supported on ∂F (and y if y ∈ X), and G(y, .) and GV x(z, .), z ∈
∂Fx, are uniformly bounded and continuous on a small neighbourhood B(x, δ) ⊂

◦
F x

of x. Taking B = B(x, ε) in the above formula, dividing by vol(B) and letting ε tend

to 0, we obtain formula (2.6) as the limit.

Say that LS-data (Fx, Vx)x∈X are balanced if

(D5) there is a constant D such that GVx
(z, x) = D for all x ∈ X and z ∈ ∂Fx .

From (2.5) and (2.6) we get the first part of our main theorem.
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2.7. Theorem. — If (Fx, Vx)x∈X are balanced LS-data for X , then

G(y, x) = CDg(y, x)

for all x in X and all y not in Vx. In particular, the Brownian motion on M is

transient if and only if the Markov process on X is transient. In the transient case

we have µx(z) = µz(x) for all x, z in X .

Proof. Except for the last assertion, all claims follow immediately from what is said

above. As for the last claim, recall that

g(y, x) =
∑
k≥0

µ(n)
y (x) .

For a positive function f on X we set

Pf(x) =
∑

z

µx(z)f(z), Uf(x) =
∑

z

g(x, z)f(z) .

If f has finite support we obtain

U(I − P )f = f .

Now U is symmetric with respect to

< f, h >=
∑
x∈X

< f(x), h(x) >

and hence

< (I − P )f, h > =< (I − P )f, U(I − P )h >

=< U(I − P )f, (I − P )h >=< f, (I − P )h >

for all positive functions f, h on X with finite support. The assertion follows.

2.8. Theorem. — Assume the Brownian motion on M is transient. If (Fx, Vx)x∈X

are balanced LS-data for a ∗-recurrent set X , then the inclusion X ↪→ M extends to

a convex homeomorphism between ∂µX and ∂∆M ∩X, where X is the closure of X

in the Martin compactification cl∆M of M .
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Proof. Choose an origin x0 in X and define for x �= x0 in X, y in M

k(y, x) =
g(y, x)
g(x0, x)

and K(y, x) =
G(y, x)
G(x0, x)

.

From (2.7) we have k(y, x) = K(y, x) for all x �= x0 in X and y in M not in Vx.

Consider a convergent sequence (xn)n≥1 in the Martin compactification of (X, µ).

Then for any fixed y, k(y, xn) = K(y, xn) for n large enough and any Martin limit

point H of the sequence (K(·, xn))n≥1 satisfies H|X = h. By Theorem 1.11 we have

H(y) = µy(h) and H is unique. This shows that the sequence (xn)n≥1 converges

in cl∆M and that the correspondence is convex and continuous. The converse is

clear.

It follows from Theorem 2.8 and its proof that the restriction map defines an

isomorphism between the linear cone generated by X in H+(M) and H+(X, µ). Com-

paring with Theorem 1.11 we get the following

2.9. Corollary. — Let X be a discrete subset of M admitting balanced LS-data

(Fx, Vx)x∈X . Then a positive harmonic function H is swept by F = ∪x∈XFx if and

only if it can be written as an average of minimal harmonic functions in X.

Proof. We identified the cone generated by X with H+
F (M) . But by definition

extremal directions in H+
F (M) correspond to minimal harmonic functions. The same

is therefore true for the cone generated by X in H+(M).

Corollary 2.9 can also be read the other way around : a family of neighbourhoods

(Fx)x∈X has the same potential theory as X if F = ∪x∈XFx is recurrent and if one

can find open relatively compact (Vx)x∈X , Vx ⊃ Fx, satisfying (D2), (D4) and (D5).

3. EXAMPLES

We say that the geometry of M is bounded in the ε-neighbourhood Bε(X) of

a subset X of M if the injectivity radius in Bε(X) is positive and if the sectional
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curvature is bounded in Bε(X). For example, if X is the orbit of a point x0 under a

group of isometries, then the geometry of M is bounded in the ε-neighbourhood of

X for any ε > 0 such that Bε(x0) is relatively compact.

3.1. Theorem. — If X ⊂ M satisfies for some ε > 0

(C1) the geometry of M is bounded in Bε(X) ;

(C2) dist(x, z) ≥ 2ε for all x �= z in X ;

(C3) Bε(X) = ∪x∈XBε(x) is recurrent,

then X admits a choice of balanced LS-data (Fx, Vx)x∈X such that any isometry of

M , which leaves X invariant, permutes the sets (Fx, Vx)x∈X .

Remark. — If N is a recurrent Riemannian manifold, M → N a Riemannian

covering and X the preimage in M of a point in N , then X satisfies the assumptions

of Theorem 3.1. Note that N is recurrent if N is complete, of finite volume and with

Ricci curvature bounded from below.

Proof. For x in X let Vx = B(x, ε). Since the geometry of Vx is uniformly bounded,

∪x∈XBδ(x) is recurrent for any δ > 0 and the Green functions GVx
admit uniform

estimates. In particular, if D > 0 is any given constant, there is a δ ∈ (0, ε) such that
GVx

(., x) ≥ D on Bδ(x). Hence

Fx = {z ∈ Vx GVx
(z, x) ≥ D}

is a closed neighbourhood of x such that GVx
(z, x) = D on ∂Fx. Moreover, F =

∪x∈XFx is recurrent since Bδ(x) ⊂ Fx for all x in X . There is also a positive ε′ < ε

such that Fx ⊂ B(x, ε′) for all x in X , hence (D4) is satisfied.

3.2. Theorem. — If M is simply connected, complete and with sectional curvature

satisfying −b2 ≤ K ≤ −a2 < 0, and if Γ is a discrete group of isometries such that

vol(M/Γ) < ∞, then Γ admits a symmetric probability µ such that

(a) the Martin boundary of the random walk directed by µ is equal to the

geometric boundary of M ;

(b) µ has a finite moment with respect to the geometric norm on Γ and finite

entropy.
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Proof. The Martin compactification cl∆M of M is equal to the geometric compactifi-

cation, see [AS]. Now choose x0 ∈ M such that Γ acts freely on x0 and identify Γ with

Γ(x0). Then Γ is ∗-recurrent in M since vol(M/Γ) < ∞. Hence X = Γ(x0) satisfies

the assumptions of Theorem 3.1. Choose balanced LS-data (Fx, Vx)x∈X and let

µ(γ) = µx0(γx0) .

Now Assertion (a) follows from Theorem 2.8 since the limit set of Γ is equal to the

geometric boundary of M .

As for the proof of (b), we follow the construction of Lyons and Sullivan as

described in section 2. We need that the functions

A1(z) = Ez[S(ω)], z ∈ Fx

A2(y) = Ey[R1(ω)], y ∈ ∂Vx

are uniformly bounded. We will show this for A2, the proof for A1 is similar. If

π : M → M/Γ is the projection, then π(F ) = π(Fx) =: C for any x ∈ X and π|Fx
is

a homeomorphism. We have for y in ∂Vx

A2(y) = T (π(y)) ,

where T (z) is the average of the hitting time of C for Brownian motion starting in z.

Since T is either identically +∞ on (M/Γ)\C or smooth and solving ∆T = −1 , it
suffices to show that T is finite on (M/Γ)\C. Observe that

T (z) ≤ R(z)

where R(z) is the average of the first time in IN when Brownian motion starting in z

hits C. By Kač formula [Ka] we have

|M/Γ|
|C| =

∫
C

R(z)dz ≥
∫

C

∫
(M/Γ)\C

p1(x, y)T (y) dy dx .

Hence T is finite and A2 is uniformly bounded on ∂Vx. Let A be a common bound

for A1 and A2. We have for all x in M

Ex(Rn(ω)) ≤ 2nA

Ẽx(RN1(ω)) ≤ 2AE(N1) ≤ 2AC2 .
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Since the average distance of the Brownian path to x0 grows at most linearly with

speed (dimM − 1)b, cf. for example [P ], we get that the first moment is finite,

∑
Γ

dist(x0, γx0)µ(γ) = Ẽx0(dist(x0, XN1(ω))) < +∞ .

The estimate on the entropy follows (see e.g. [BL], Lemma 2.1).
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