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Abstract

It turns out that various algebraic computations can be reduced to the same
type of computations: one has to study the series of integrals

∫
K
fn(k)g(k) dk,

where f, g are complex valued K-finite functions on a compact Lie group K.
So it is tempting to state a general conjecture about the behavior of such
integrals, and to investigate the consequences of the conjecture.

Main conjecture: Let K be a compact connected Lie group and let f be
a complex-valued K-finite function on K such that

∫
K
fn(k) dk = 0 for any

n > 0. Then for any K-finite function g, we have
∫
K
fn(k)g(k) dk = 0 for n

large enough.

Especially, we prove that the main conjecture implies the jacobian
conjecture. Another very optimistic conjecture is proposed, and its connection
to isospectrality problems is explained.

Résumé

Il se trouve que divers calculs algébriques se réduisent à un même type
de calcul : il s’agit d’étudier des intégrales

∫
K
fn(k)g(k) dk, où f, g sont des

fonctions K-finies et à valeurs complexes sur un groupe de Lie compact K. Il
est alors tentant de formuler une conjecture générale sur de telles intégrales et
en explorer les conséquences.

Conjecture principale : Soit K un groupe de Lie compact connexe et soit
f une fonction K-finie et à valeurs complexes sur K telle que

∫
K
fn(k) dk = 0

pour tout n > 0. Alors pour toute fonction K-finie g, on a
∫
K
fn(k)g(k) dk = 0

pour n assez grand.

En particulier, nous montrons que la conjecture principale implique la
conjecture jacobienne. Nous proposons une autre conjecture optimiste et
expliquons ses liens avec les problèmes d’isospectralité.
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Introduction

It turns out that various algebraic computations can be reduced to the same type
of computations: one has to study the series of integrals

∫
K
fn(k)g(k) dk, where f, g

are complex valued K-finite function on a compact Lie group K. So it is tempting to
state general conjectures about the behavior of such integrals, and to investigate the
consequences of these conjectures. Here we will state the following two conjectures:

Main Conjecture — Let K be a compact connected Lie group and let f be a complex-
valued K-finite function on K such that

∫
K
fn(k) dk = 0 for any n > 0. Then for

any K-finite function g, we have
∫
K
fn(k)g(k) dk = 0 for n large enough.

Second Conjecture — Let G ⊃ L be a reductive spherical pair, let f ∈ �[G/L], and
let C# be the G-complement of � in �[G/L]. If fn ∈ C# for any n ≥ 1, then 0
belongs to G.f .

These two conjectures are closely related. Indeed the second conjecture implies
the main one. In this paper we show various examples of questions which can be
treated (or partially solved) by the Conjectures above. The main two examples are
as follows:

First example: recall that the Jacobian Conjecture states that a volume-
preserving polynomial map F : �n → �n is invertible. In the paper we show that
the Jacobian Conjecture follows the main conjecture (see Sections 2, 3, 4 and 5).

Second example: recall that two smooth real-valued functions f, g defined on a
compact riemannian manifold are called isospectral if ∆ + f and ∆ + g have the
same spectrum. We will see that some results of isospectral rigidity for ��2 follows
from the second conjecture. It should be noted that the second conjecture and the
section 7 has been motivated by Guillemin’s paper [G].

In order to give some support to the main conjecture, we will see that the
integrals

∫
K
fn(k)g(k) dk are closely related. Indeed we prove that all formal series

χg =
∑
n≥0(
∫
K
fn(k)g(k) dk) zn can be deduced from one of them by applying

a differential operator, see Section 6. To give some motivation for the second
conjecture, we will see that a conjecture about invariant theory due to Guillemin
implies a special case of the second conjecture.

At the end of the paper, we will investigate the conjecture when the group is a
torus. In this case, the integrals considered appear naturally in the computation of
the Hasse invariant and in the computation of number of points modulo p of plane
algebraic curves.
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1 Equivalent forms of the conjecture.

In the section, we use the classical correspondence between compact Lie groups and
algebraic reductive groups to state three equivalent forms of the main conjecture
(see (1.1), (1.3), (1.7)).

Let K be a compact group. A continous complex-valued function defined on
K will be called K-finite if the K-module generated by f is finite dimensional.
Equivalently, f is a matrix coefficient of a finite dimensional representation. Denote
by dk the Haar measure of K. The main conjecture of the paper is as follows:

Main Conjecture 1.1 — Let K be a compact connected Lie group and let f, g be
complex-valued K-finite functions. Assume that

∫
K
fn(k) dk = 0 for any n > 0.

Then
∫
K
fn(k)g(k) dk = 0 for n large.

Let G be a connected reductive algebraic group over an algebraically closed field
F of characteristic zero. Denote by Ĝ the space of isomorphism classes of simple
rational representations of G (for simplicity, the elements in Ĝ will be called the
types of G). For any type τ ∈ Ĝ, denote by τ∗ the dual type. For any G-module
M , set M =

⊕
τ∈ĜMτ , where Mτ is the τ -isotypical component of M . Similarly,

for any m ∈ M , set m =
∑
τ∈Ĝmτ , where mτ is the τ -isotypical component

of m. In particular, denote by Mtriv and mtriv the trivial components. Also set
X(m) = {τ ∈ Ĝ|mτ �= 0}. We have F [G]triv = F , hence we can define a linear form
L : F [G]→ F by L(f) = ftriv.

Lemma 1.2 — (i) Assume F = �. Let K be a maximal compact subgroup of
G. Then we have L(f) =

∫
K
f(k) dk.

(ii) The bilinear form b : F [G]× F [G]→ F, f, g 
→ L(fg) is non degenerate.

Proof. (i) Since K is Zariski dense in G, the map L′ : f ∈ F [G] 
→
∫
K
f(k) dk is

G-invariant. Since F [G]triv = F and L′(1) = L(1) = 1, L′ and L are equal.
(ii) Clearly, the kernel of b is a G-invariant ideal of F [G]. Hence its zero set in G

is G-stable and so the kernel of b is zero.

Let us call G-algebra any commutative algebra endowed with a rational action of
G by algebra automorphisms. For a G-algebra A, denote by C(A) the conjecture:

C(A): Let f ∈ A and τ ∈ Ĝ. Assume that (fn)triv = 0 for all n > 0.
Then (fn)τ = 0 for n large.
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Corollary 1.3 — Assume that the main conjecture holds. Then the conjecture
C(F [G]) holds.

Proof. Let f ∈ F [G]. Note that f is defined over a finitely generated subfield E

of F and such a field can be embeded in �. Hence we can assume that F = �.
Let τ ∈ Ĝ. The τ∗-component of �[G] is finite dimensional. Let K be a maximal
compact subgroup of G. By hypothesis, we have

∫
K
fn(k) dk = 0 for any n > 0. By

the main conjecture 1.1, there exist N = N(τ) such that
∫
K
fn(k)g(k)dk = 0 for all

g ∈ �[G]τ∗ and n ≥ N(τ). By Lemma 1.2, we have (fn)τ = 0 for any n ≥ N(τ).

For X,Y two subsets of Ĝ, denote by X.Y the set of all types occuring in the
tensor product x⊗ y for some x ∈ X and some y ∈ Y .

Lemma 1.4 — Let A be a G-algebra, let I be a G-invariant nilpotent ideal, let f ∈ A
and let f ∈ A/I be its residue modulo I. There exists an integer d ≥ 0 and some

finite subsets X0, X1, ..., Xd in Ĝ such that X(fn) ⊂ ∪0≤i≤dXi.X(f
n−i
), for any

n ≥ d.

Proof. Denote by A0 the algebra A with a trivial action of G. The structure map
∆: A → F [G] ⊗ A0 is an injective morphism of G-algebras. Hence we can assume
that A is of the form F [G] ⊗ R for some algebra R, and I is of the form F [G] ⊗ J

for some ideal J of R. Witout loss of generality, we can assume that R is finitely
generated and J is the radical of R.

It follows from the existence of a primary decomposition for R that R embeds
in a finite sum of primary algebras (apply Theorem 11 of [Ms] to the R-module
R). Hence we can assume that A � F [G]⊗ R, where R is primary and noetherian,
and I � F [G] ⊗ J , where J is the radical of R. As R embeds in its quotient field,
we can assume that R is already a quotient field. By Cohen’s structure theorem
(Theorem 60 of [Ms]), we have R � L ⊕ J , where L � R/J is a field. Thus we
have R⊗ F [G] � L ⊗ F [G] ⊕ J ⊗ F [G] and accordingly, we have f = f + h, where
h ∈ F [G]⊗ J .

Let d such that Jd+1 = 0, and set Xi = X(hi). We have fn =
∑
0≤i≤d(

n
i )h

i.f
n−i

.
Hence we have X(fn) ⊂ ∪0≤i≤dXi.X(gn−i), for any n ≥ d.

For any X ⊂ Ĝ, denote by X∗ the set of all types dual to those of X . For any
X,Y ⊂ Ĝ, denote by X : Y the set of all types µ ∈ Ĝ such that τ occurs in µ ⊗ σ

for some τ ∈ X and σ ∈ Y . For a sequence of subsets Xn in Ĝ, we denote by limXn
the set of all τ ∈ Ĝ which belongs to infinitely many Xn. With these notations, the
conclusion of conjecture C(A) can be written as limX(fn) = ∅.

Lemma 1.5 — (i) Let X,Y ⊂ Ĝ. We have X : Y = X.Y ∗.

(ii) Let Xn be a sequence of subsets in Ĝ and let X ⊂ Ĝ be finite. Then
lim(Xn.X) = (limXn).X.
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Proof. (i) We have HomG(σ ⊗ µ, τ) � HomG(µ, τ ⊗ σ∗). Hence X : Y = X.Y ∗.
(ii) Let τ ∈ lim(Xn.X). Hence we have Xn ∩ ({τ} : X) �= ∅ for infinitely many

n. As X is finite, {τ} : X is finite. Hence there exists some µ ∈ {τ} : X such that
µ belongs to infinitely many Xn. Hence τ belongs to (limXn).X , and we have
lim(Xn.X) ⊂ (limXn).X . As the opposite inclusion is obvious, (ii) follows.

Lemma 1.6 — Let A be a commutative G-algebra and let I be a G-invariant
nilpotent ideal. Then conjecture C(A/I) implies conjecture C(A).

Proof. Assume C(A/I). Let f ∈ A, let f ∈ A/I be its residue modulo I and let
d ≥ 0, X0, ..., Xd ⊂ Ĝ as in lemma 1.4. Assume that (fn)triv = 0 for any n > 0.

We have X(fn) ⊂ ∪0≤i≤dXi.X(f
n−i
), for any n ≥ d. Hence by lemma 1.5, we have

limX(fn) = ∅. So conjecture C(A) holds.

Corollary 1.7 — Assume the main conjecture. Then for any G-algebra A, the
conjecture C(A) holds.

Proof. Using lemma 1.6, we reduce the conjecture C(A) for a general G-algebra
A to the case where A is prime. So we will assume that A is prime. Let Φ be its
fraction field. The structure map ∆: A → F [G] ⊗ A0 (where A0 is the algebra A

with a trivial action of G) induces a G-equivariant embeding A→ Φ[G]. Hence the
conjecture C(A) follows from corollary 1.3.

It is possible to prove a very special case of the main conjecture, namely:

Proposition 1.8 — Let V be a G-module, let f ∈ V and let τ ∈ Ĝ. Consider f as
an element of the G-algebra SV and assume that (fn)triv = 0 for any n > 0. Then
(fn)τ = 0 for n large.

Proof. There is a natural comultiplication map ∆: SV → SV ⊗SV which is dual of
the algebra structure on SV ∗. For n ≥ 0, let Bn ⊂ SnV be the G-module generated
by fn. We have∆(fn) = n!

∑
p+q=n f

p/p!⊗f q/q!. Thus
⊕
n≥0Bn is a sub-coalgebra

of SV . Hence R =
⊕
n≥0B

∗
n is a quotient algebra of SV ∗. Let τ ∈ Ĝ. By Hilbert’s

Theorem, Rτ∗ is finitely generated as a Rtriv-module. As Rtriv = �, Rτ∗ is finite
dimensional, i.e. (fn)τ = 0 for n large.

Remark. Let f ∈ V as in Proposition 1.8. Indeed we have (fn)triv = 0 for any n > 0

if and only if f is in the nilcone of V , i.e. 0 is belongs to the closure of the G-orbit
of f .

2 A technical version of the main conjecture

In order to show that the Jacobian conjecture follows from the main conjecture
(Section 5), we state another version of the main conjecture (Proposition 2.2).
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Let F be an algebraically closed field of characteristic zero, and let G be a
connected reductive group over F . Choose a Borel subgroup B ∈ G and let P

the group of characters of B. We identify Ĝ with the subset P+ ⊂ P of dominant
weights, by using the map which associates to each simple representation its highest
weight. For τ ∈ P , we define the τ -isotypical component of a G-module (or of an
element in a G-module) as previously if τ is dominant and as zero otherwise. For
τ ∈ P+, we will denote by L(τ) one simple module with highest weight τ . Moreover
τ∗ denotes the highest weight of L(τ)∗.

Lemma 2.1 — Let λ1, λ2, µ1µ2 be in P+. Assume λ1 − µ∗1 = λ2 − µ∗2 If λ1 − λ2 is
dominant, then there is a surjective morphism L(λ1)⊗ L(µ1)→ L(λ2)⊗ L(µ2).

Proof. Let � (resp. �) be the Lie algebra of G (resp. B). Choose a Cartan subalgebra
� in �. Let l be the rank of G, let (αi)1≤i≤l be the simple roots of G and let (hi)1≤i≤l
be the simple coroots of G. For 1 ≤ i ≤ l, denote by ei, fi the root vectors of weight
±αi. Let λ, µ ∈ P+ and let �− be the opposite Borel algebra.

As a �−-module, L(λ) is the cyclic �−-module generated by its highest weight
vector v+λ and defined by the following relations: h.v+λ = λ(h).v+λ for all h ∈�

and f
λ(hi)+1
i .v+λ = 0 for all i, 1 ≤ i ≤ l (this follows easily from Theorem ?? of

[Hu]). Similarly, L(µ) is the cyclic �-module generated by its lowest weight vector
v−µ and defined by the following relations: h.v−µ = −µ

∗(h).v−µ for all h ∈ � and

e
µ∗(hi)+1
i .v−µ = 0 for all i, 1 ≤ i ≤ l.

It follows that L(λ)⊗L(µ) is the cyclic �-module generated by the vector vλ,µ =
v+λ ⊗ v−µ and defined by the relations h.vλ,µ = (λ − µ∗)(h).vλ,µ, fλ(hi+1)i .vλ,µ = 0

and e
µ∗(hi+1)
i .vλ,µ = 0, for all h ∈ � and for all i, 1 ≤ i ≤ l.

Note that λ1(hi) ≥ λ2(hi) and µ∗1(hi) ≥ µ∗2(hi) for all i. Hence, there is a
surjective morphism φ : L(λ1) ⊗ L(µ1) → L(λ2) ⊗ L(µ2) such that φ(vλ1,µ1) =

vλ2,µ2 .

Let λ ∈ P , let D be the unique B-invariant line in L(λ). Set Σ = G.D ∪ {0} and
A(λ) = k[Σ]. Recall that Σ is a closed cone of L(λ) and by Borel-Weil Theorem, the
degree n component of A(λ) is the simple module isomorphic to L(n.λ∗). Hence the
nth-power map ξ ∈ L(λ∗) 
→ ξn ∈ L(n.λ∗) is well defined up to multiplication by a
scalar. The algebra A(λ) is sometimes called the Cartan algebra.

For two graded algebras A,A′, set A ∗A′ =
∑
n≥0An ⊗A′n.

Proposition 2.2 — Let τ ∈ Ĝ. Assume that F is not countable.

(i) Let A be a G-algebra and assume that the conjecture C(A ⊗ A(τ)) holds.
Let f ∈ A and let µ ∈ P . Assume that (fn)nτ = 0 for all n > 0. Then
(fn)µ+nτ = 0 for n large.

(ii) Let A be a graded G-algebra and assume that the conjecture C(A ∗ A(τ))
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holds. Let f ∈ A1 and let µ ∈ P . Assume that (fn)nτ = 0 for all n > 0. Then
(fn)µ+nτ = 0 for n large.

Proof. We prove together (i) and (ii). Let f ∈ A with (fn)nτ = 0 for all n > 0.
For the proof of (ii), we assume in addition that A is graded and f belongs to A1.
Without loss of generality, we can assume that µ+ n.τ is dominant for n large, say
n ≥ N . Let Z be the set of n ≥ N such that (fn)µ+nτ is non zero.

By Lemma 2.1, there exists ν ∈ P+ and N ≥ 0 such that L(ν) occurs in
L(µ + nτ) ⊗ L(n.τ∗) for any n ≥ N . Let Un be the set of elements ξ ∈ L(τ∗)

such that the ν-component of ξn ⊗ fn is non zero. Let n ∈ Z. Since L(n.τ∗) is
spanned by the elements ξn for ξ ∈ L(τ∗), Un is a dense open subset of L(τ∗). As
F is not countable, ∩n∈ZUn is non empty (because Baire’s Theorem holds for the
Zariski topology over non countable fields).

Consider the element L = f ⊗ ξ ∈ A⊗A(τ∗), with ξ ∈ ∩n∈ZUn. For the proof of
(ii), note that L belongs to A ∗ A(τ). By our hypothesis, the trivial component of
Ln is zero for any n ≥ 0. However the ν component of Fn is non zero for any n ∈ Z.
Thus conjecture C(A ⊗ A(τ)) (for the proof of (i)) or the conjecture C(A ∗ A(τ))

(for the proof of (ii)) implies that Z is finite.

3 A few computations about tensor product decomposi-
tions

In this section, we will make explicit computations about the decomposition of
SmV ⊗ SlV ∗. Let G be a connected reductive group over an algebraically closed
field F of characteristic zero.

Lemma 3.1 — Let λ, µ ∈ P+.

(i) The module L(λ+ µ) occurs with multiplicity one in L(λ)⊗ L(µ).

(ii) Assume that λ− µ∗ is dominant. Then L(λ− µ∗) occurs with multiplicity
one in L(λ)⊗ L(µ).

Proof. Point (i) is obvious. Assume that λ− µ∗ is dominant. Then we have:

[L(λ) ⊗ L(µ) : L(λ− µ∗)]

= dim HomG(L(λ)⊗ L(µ), L(λ− µ∗))

= dim HomG(L(λ), L(µ
∗)⊗ L(λ− µ∗))

= 1.
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Often the component L(λ+µ) in L(λ)⊗L(µ) is called the Cartan component, and
the component L(λ− µ∗) in L(λ)⊗ L(µ) is called the component of Parthasaraty,
Ranga-Rao and Varadarajan (or PRV component).

A simple G-module is called weight multiplicity free if all non-zero weight
multiplicities are 1. The tensor product of two modules is called multiplicity free
if each component has multiplicity one. A dominant weight µ is called minuscule if
µ is the unique dominant weight of L(µ). For µ minuscule, L(µ) is weight multiplicity
free.

Lemma 3.2 — Let λ, µ, ν ∈ P+.

(i) Assume that L(µ) is weight multiplicity free. Then L(λ)⊗L(µ) is multiplicity
free. Moreover, if L(ν) occurs in L(λ)⊗L(µ), then ν − λ is a weight of L(µ).

(ii) Assume that µ is minuscule. Then L(ν) occurs in L(λ)⊗ L(µ) if and only
if ν − λ is a weight of L(µ).

Proof. Let us prove point (i). We have [L(λ) ⊗ L(µ) : L(ν)] =dim HomG(L(λ) ⊗

L(ν∗), L(µ∗)). The G-module L(λ) ⊗ L(ν∗) is genereated by a weight vector of
weight λ−ν (see the proof of Lemma 2.1). Hence [L(λ)⊗L(µ) : L(ν)] is less than or
equal to the multiplicity of the weight λ − ν in L(ν∗). This proves point (i). Point
(ii) is well-known: see e.g. [Mh] (Lemma 11).

Let V be a vector space of dimension n ≥ 2 and let G = SL(V ). For any
i, 1 ≤ i ≤ n, ∧i(V ) is a simple G-module, and denote by ωi the corresponding
highest weight. We will recall a few facts about the decomposition of the G-modules
SmV ⊗ SlV ∗

3.1 Symmetric powers of V and V ∗.

For any m, the G-module SmV is simple, and it is isomorphic to L(m.ω1). Similarly,
SmV ∗ is isomorphic to L(m.ωn−1). In what follows we will identify SV with
the algebra of polynomial functions on V ∗, and SV ∗ with the space of invariant
differential operators. A basis of V will be denoted by x1, ..., xn and the dual
basis will be denoted by (∂/∂xi)1≤i≤n. For any n-tuple α = (α1, ..., αn), we set
xα = xα11 ...xαnn and ∂(α) =

∏
1≤i≤n(1/αi!)(∂/∂xi)

αi .

3.2 Decomposition of the Lie algebra of vector fields.

Set � = SV ⊗ V ∗ and �m = Sm+1V ⊗ V ∗. Apply Lemma 3.2 to the minuscule
representation V ∗. We get �m � L(m.ω1) ⊕ L(m.ω1 + θ), where θ = ω1 + ωn−1
is the highest root. In order to make this decomposition more explicit, identify �

with the Lie algebra of vector fields on V ∗. The divergence div :
∑
1≤i≤n Pi∂/∂xi 
→

Séminaires et Congrès 2



Some Conjectures About Invariant Theory 271

∑
1≤i≤n ∂/∂xi.Pi defines a map from �→ SV . The component of type L(mω1+ θ)

in �m is the subspace of divergence-free vector fields. The other component, which
is of type L(mω1), is the subspace of vector fields of the form f.E, where f ∈ SmV
and where E =

∑
1≤i≤m+1 xi∂/∂xi is the Euler vector field.

3.3 The PRV component of SmV ⊗ SlV ∗.

By identifying SV ∗ with the space of invariant differential operators on V ∗, we see
that SV is a right SV ∗-module. The module structure map SV ⊗ SV ∗ → SV will
be called the divergence and denoted by div. Note that the restriction of this map
to the subspace SV ⊗ V ∗ � � is the usual divergence map defined in the previous
section. We have div(

∑
α pα ⊗ ∂(α)) =

∑
α ∂
(α)pα.

Let m ≥ l. Then the PRV component of SmV ⊗ SlV ∗ is isomorphic to
L((m − l)ω1) � S(m−l)V . Hence div is precisely the projection on the PRV factor
of SmV ⊗ SlV ∗.

3.4 The map Euler : SV → V ∗ ⊗ SV .

The Euler vector field E ∈ V ⊗ V ∗ � V ∗ ⊗ V is G-invariant. Hence the
multiplication by E in the commutative algebra SV ∗ ⊗ SV defines a G-equivariant
map Euler: SmV → V ∗ ⊗ Sm+1V , for any m ≥ 0.

3.5 The L((m− 1)ω1 + θ)-component of SmV ⊗ SlV ∗.

Let m ≥ l.

Consider the maps (defined in subsections 3.3 and 3.4):

Euler⊗ 1: SmV ⊗ SlV ∗ → (V ∗ ⊗ Sm+1V )⊗ SlV ∗, and

1⊗ div : V ∗ ⊗ (Sm+1V ⊗ SlV ∗)→ V ∗ ⊗ Sm+1−lV .

By composing these maps with the natural isomorphism V ∗⊗Sm+1−lV � �m−l,
one gets a map Φ : SmV ⊗ SlV ∗ → �m−l.

Let X ⊂ Ĝ, and let f : M → N be a surjective morphism of G-modules. We say
that f is a projection along the types in X if f gives rise to an isomorphism along
each type τ ∈ X and if f is zero along the other types.

Proposition 3.3 — Let m ≥ l. The simple modules L((m−1)ω1) and L((m−1)ω1+

θ) occur with multiplicity one in SmV ⊗SlV ∗, and Φ is the corresponding projection
along these two types.

Proof. It follows from Lemma 3.2 that SmV ⊗ SlV ∗ is multiplicity free. Hence it
suffices to show that Φ is onto. Let f ∈ SmV and set D = f(∂/∂x1)

(l). One gets

Φ(D) =
∑
1≤i≤n(∂/∂x1)

(l)(xi.f).∂/∂xi
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= ((∂/∂x1)
(l)f).E + ((∂/∂x1)

(l−1)f).∂/∂x1.
For a good choice of f , e.g. f = xm1 , the vector field Φ(D) is not proportional to E,

and its divergence is non-zero. It follows from subsection 3.2 that the L((m− 1)ω1-
isotypical and L((m− 1)ω1+ θ)-isotypical components of Φ(D) are non zero. Hence
Φ(D) generates the G-module �m−l. Therefore Φ is surjective.

Let Tl be the the set of all tuples (α1, ..., αn) with
∑
1≤i≤n αi = l. An explicit

form of the previous proposition is the following:

Proposition 3.4 — Let m ≥ l and let D =
∑
α∈Tl

fα ⊗ ∂(α) be an element in
SmV ⊗ SlV ∗, where fα ∈ SmV .

(i) The L((m− l).ω1)-component of D is div(F ) =
∑
α∈Tl

∂(α)fα.

(ii) We have Φ(D) =
∑
1≤i≤n

∑
α∈Tl
(∂(α)xifα)∂/∂xi.

(iii) If the L((m − l).ω1)-component of D is zero, then its L((m − 1)ω1 + θ)-
component is the divergence-free vector field

∑
1≤i≤n

∑
α∈Tl
(∂(α)xifα)∂/∂xi.

Proof. Point (i) follows from subsection 3.3. Point (ii) follows from the definition of
Φ. Point (iii) follows from Proposition 3.3 and Point (ii).

Remark. Assume m ≥ l. In what follows we will only use the L((m − l).ω1)-
component and the L((m − 1)ω1 + θ)-component of SmV ⊗ SlV ∗. However it is
well-known and easy to prove:

SmV ⊗ SlV ∗ �
∑
0≤i≤l L((m− l)ω1 + iθ).

4 Review of results about the Jacobian conjecture

Let F be an algebraically closed field of characteristic zero.
For any polynomial map f : Fn → Fn, denote by j(f) its jacobian. Let us recall

the Jacobian Conjecture.

Jacobian Conjecture 4.1 — Let n ≥ 1 and let f : Fn → Fn be a polynomial map
with j(f) = 1. Then f is invertible.

Let d ≥ 2. Consider also the following conjecture (implicitely stated in the
introduction of [BCW]):

d-Restricted Jacobian Conjecture 4.2 — Let n ≥ 1 and let f = (f1, ..., fn) : Fn →
Fn be a polynomial map with j(f) = 1. Assume that fi = xi − hi, where hi is a
homogenous polynomial of degree d. Then f is invertible.

Of course, the restricted Jacobian Conjecture seems a mere particular case of
the Jacobian Conjecture. However, they are equivalent, as proved in [BCW], see
Theorem 2.1 and Corollary 2.2.
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Theorem 4.3 (Bass, Connell, Wright) — The 3-restricted Jacobian implies the Jaco-
bian conjecture.

Let f = (f1, ..., fn) be a formal automorphism of Fn, where fi ∈ F [[x1, ..., xn]],
and assume that fi = xi − hi, where the hi have no constant or linear terms.
Let T the set of all n-tuples. For any α = (α1, ..., αn) ∈ T , set hα = hα11 ...hαnn .
Let L = (L1, ..., Ln) be its formal inverse. From [A], we have (see also [BCW],
Theorem 2.1).

Inversion Formula 4.4 ([A], [BCW]) — Let f : Fn → Fn such that j(f) = 1.

(i) We have 1 =
∑
α∈T ∂

(α)hα

(ii) We have Li =
∑
α∈T ∂

(α)(hα.xi).

5 The main conjecture implies the Jacobian Conjecture

Let F be an algebraically closed field of characteristic zero.

Lemma 5.1 — Let A be a finitely generated G-algebra and let J be the radical of
AG.

(i) There exists a maximal G-invariant ideal I with IG = J , and I is the kernel
of the bilinear form b : A×A→ AG/J defined by b(f, g) = (fg)triv modulo J .

(ii) If the conjecture C(A/I) holds, then the conjecture C(A) holds.

Proof. Assertion (i) is obvious. Let us prove (ii). Let f ∈ A with (fn)triv = 0
and let τ ∈ Ĝ. Set A′n = In/In+1 and A′ =

⊕
n≥0A

′
n. Note that A′ is a finitely

generated and graded G-algebra. As J is nilpotent, there exists some d ≥ 0 such that
A′G =

⊕
0≤n≤dA

G
n . As A′τ is a finitely generated A′G-module, we have (A′n)τ = {0}

for any n ≥ d′ for some integer d′. Set I ′ = Id
′

.
Assume C(A/I). Denote by f the residue modulo I ′ of f . By Lemma 1.6, the

conjecture C(A/I ′) holds. Hence we have (f
n
)τ = {0} for n ≥ N(τ) for some integer

N(τ). However, by definition of d′, the projection Atau → (A/I ′)τ is an isomorphism.
Hence we have (fn)τ = {0} for n ≥ N(τ).

A G-algebra A is called non degenerate if AG = F and if the bilinear form
f, g ∈ A 
→ (f.g)triv is non degenerate. It is easy to prove that the non degenerate
algebras are the algebras F [G/L], where L is a reductive subgroup of G.

Lemma 5.2 — Assume that F is not countable. Let A be a finitely generated G-
algebra. If the conjecture C(R) holds for any non degenerate G-quotient R of A,
then the conjecture C(A) holds.

Proof. Using Lemma 1.6, one can assume that A is prime. Let I be the maximal
ideal with IG = {0}. Any non degenerate quotient of A is a quotient of A/I. Hence
by Lemma 5.1, we can assume that I = {0}.
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Let f ∈ A with (fn)triv = 0 and let τ ∈ Ĝ. There exists a countable
algebraically closed field E ⊂ F such that the group G, the G-algebra A and
f are defined over E. Let GE , AE and fE such E-forms and identify AE to a
subalgebra of A. By countabilities hypotheses, there is an F -algebra morphism
µ : AG → F whose restriction to AGEE is one to one. Let J the kernel of the map
b : f, g ∈ A 
→ µ((fg)triv).

By assumption the bilinear f, g 
→ (fg)triv has no kernel. Hence the restriction
ob b to AE is injective. Hence AE embeds in the non-degenerate F -algebra A/J . As
C(A/J) holds, we have (fn)τ = 0 for n large.

Let n ≥ 1, d ≥ 2 be two integers. Denote by A(n, d) the GL(n)-algebra
⊕
d≥0 S

dlV ⊗ SlV ∗ ⊗ S(d−1)lV ∗.

Proposition 5.3 — Let d ≥ 2 be an integer. Assume that F is not countable and the
conjecture C(A(n, d) holds for any n ≥ 1. Then the d-restricted jacobian conjecture
holds.

Proof. Let f = (f1, ..., fn) : Fn → Fn be a polynomial map with j(f) = 1. Moreover
assume that fi = xi − hi, where hi is homogenous of degree d for some d ≥ 2.

Set V = �.x1 ⊕ ... ⊕ �.xn. Let L = (L1, ..., Ln) be the formal inverse of F . Set
Li =

∑
l≥0 L

[l]
i , where L

[l]
i is homogenous of degree l. Set D =

∑
i hi ⊗ ∂/∂xi and

ξl =
∑
1≤i≤n L

[l]
i .∂/∂xi for l ≥ 0. In what follows, we consider D as a degree one

element of the commutative algebra A′ =
⊕
l≥0 S

ldV ⊗ SlV ∗.

Let m ≥ 1. Take the homogenous component of degree m(d − 1) in the
identity: 1 =

∑
α∈T ∂

(α)Hα (Formula 4.4 (i)). One obtains
∑
α∈Tm

∂(α)Hα = 0.
Since Dm = m!

∑
α∈Tm

Hα∂(α), we have div(Dm) = 0. Hence it follows from
Proposition 3.4 that the L(m(d− 1).ω1)-component of Dm is zero for any m ≥ 1.

We have A(n, d) = A′∗A((d−1)ω1). Assume that the conjecture C(A(n, d) holds.
By Proposition 2.2 (ii), the L(m(d−1).ω1+θ)-component of Dm is zero for m >> 0.
Hence we have Φ(Dm) = 0 for m large (Proposition 3.4).

By taking each homogenous component in Formula 4.4 (ii), one obtains:
L
[l]
i =

∑
α∈Um

∂(α)(Hα.xi), if l = 1 +m(d− 1) for some m ≥ 0,

L
[l]
i = 0 otherwise.

By Proposition 3.4 (iii), we have ξ1+m(d−1) = Φ(D
m/m!), hence ξ1+m(d−1) = 0

for m >> 0, i.e. L[l]i = 0 for l >> 0. Therefore the formal inverse L is a polynomial
and f is invertible.

Lemma 5.4 — Beside F , the non degenerate G-quotient of the G-algebra A(n, d)

are isomorphic to F [SL(n)/GL(n− 1)].

Proof. Let I be the kernel of the natural morphism A(n, d)→
⊕
l≥0 S

dlV ⊗ SdlV ∗.
As SlV ∗ ⊗ S(d−1)l contains the Cartan component SdlV ∗ with multiplicity one,
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each homogenous components of A(n, d) contains the trivial representation with
multiplicity one. Hence I contains no invariants, and the non degenerate quotients
of A(n, d) are those of A(n, d)/I = A′. Let � be the set of rank one endomorphisms
of V . Note that the group µd of d-roots of 1 acts on � by multiplication. It is clear
that the spectrum of A′ equals �/µd. Clearly the non degenerate quotients of A(n, d)
correspond with the closed orbits of the spectrum. Beside {0}, the closed orbits are
the orbits of non nilpotent endomorphisms of rank 1. There are all isomorphic to
SL(n)/GL(n− 1).

Theorem 5.5 — Assume that the conjectures C(�[SL(n)/GL(n−1)]) holds for any
n ≥ 1 (this follows from the main conjecture). Then the Jacobian conjecture holds
for any algebraically field of characteristic zero.

Proof. To prove the jacobian conjecture, we can assume that F = �. By Lemmas 5.2
and 5.4, the conjecture C(�[SL(n)/GL(n− 1)]) implies the conjectures C(A(n, 3).
By Proposition 5.3, the conjectures C(n, 3) for any n ≥ 1 imply the 3-restricted
jacobian conjecture. By Theorem 4.3, the later conjecture implies the jacobian
conjecture.

6 Dependance of the integrals
∫
K
fn(k)g(k) dk

In this section we will see that the series of integrals
∫
K
fn(k)g(k) dk for

different g are closely related each other, what supports the main conjecture (see
Proposition 6.2 (ii)).

Let K be a connected compact Lie group, let G be its complexification and let
� be the Lie algebra of G. Fix f ∈ C[G]. For any g ∈ �[G], denote by χg(z) the
formal series

∑
n≥0(
∫
K
fn(k)g(k) dk).zn. Let A1 = C < z, d/dz > be the Weyl

algebra. Denote by M(f) the A1-submodule of �[[z]] generated by χg(z), when g

runs over �[G].

Lemma 6.1 — The A1-module M(f) is holonomic.

Proof. Let Ω be the complement in �1� × G of the hypersurface zf = 1 and let
p : Ω→ �1� be the projection on the first factor. Let A∗

Ω/�1
�

be the de Rham complex

relative to p, and let H∗(Ω/�1�) be its cohomology. Define a map T : �[Ω])→ �[[z]]

as follows. Any φ ∈ �[Ω] admits an expansion at z = 0 as φ =
∑
n≥0 φnz

n, where
φn ∈ �[G]. Then, set T (φ) =

∑
n≥0(
∫
K
φn(k) dk).z

n.

Set N = dim G. We have AN+1
Ω/�1

�

= 0, AN
Ω/�1

�

= C[Ω].v and AN−1
Ω/�1

�

= i(�).C[Ω].v,

where v is an invariant volume form on G. Thus we have d.AN−1
Ω/�1

�

=�.C[Ω].v. So we

get HN (Ω/�) � H0(�;�[Ω]). Hence H0(�;�[Ω]) is holonomic as a A1-module. Note
that T factorizes through H0(�;�[Ω]). Hence ImT is holonomic as a A1-module (see
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e.g. [B], ch. 5). Moreover, we have χg(z) = T (g/(1− zf)). Therefore, M(f) ⊂ ImT

is holonomic.

Proposition 6.2 — (i) For any g ∈ �[G], the formal series χg(z) is the solution
of a differential equation with polynomial coefficients.

(ii) There exists g0 ∈ �[G] such that for any g ∈ �[G], we have χg(z) =

P.χg0(z), for some differential operator P ∈ A1.

Proof. Point (i) follows from the holonomicity of M(f). Point (ii) follows from the
fact that any holonomic module is cyclic (see [B], ch. 1).

It is natural to ask when we can choose g0 = 1 in Proposition 6.2. For example,
the main conjecture can be stated as follows:

If
∫
K
fn(k)dk = 0 for any n ≥ 0, then χ1 generates M(f).

7 The second Conjecture

In this section, we will state another conjecture. This second conjecture implies the
main conjecture. Beside this, it is also connected with a conjecture of Guillemin [G].
Let G be a connected reductive algebraic group. A subgroup L is called spherical if
the algebra of regular functions over G/L is multiplicity free.

Second Conjecture 7.1 — Let L be a reductive spherical subgroup of G, and let
f ∈ F [G/L]. If (fn)triv = 0 for any n > 0, then 0 belongs to G.f .

Let � be the Lie algebra of G. By Hilbert-Mumford stability criterion [MFK],
the condition 0 ∈ G.f is equivalent to the existence of an element h ∈� and a finite
decomposition f =

∑
i≥1 fi such that h.fi = i.fi. If M ⊂ F [G/L] is the G-module

generated by f , this condition also means that f is in the nilcone of M , i.e. the set
of all m ∈M such that φ(m) = φ(0) for all φ ∈ (SM∗)G.

Proposition 7.2 — Under the second conjecture 7.1, the main conjecture holds.

Proof. Let K be a connected compact Lie group, and let f be a K-finite function
over K such that

∫
K
fn(k) dk = 0 for any n > 0. Let G be the complexification

of K. Denote again by f its extension to G. Define φ : G × G → � by φ(g1, g2) =

f(g1g
−1
2 ) and let M ⊂ �[G × G] be the G × G-module generated by φ. Note that

φ ∈ C[(G×G)/G] where G ⊂ G×G is the diagonal. One obtains that 0 ∈ G×G.f

by applying Conjecture 7.1 to the reductive spherical pair G×G ⊃ G. Let τ ∈ Ĝ. By
Proposition 1.8, one obtains that, viewed as elements of SM , we have (φn)τ⊗τ∗ = 0
for n large. It follows that

∫
K
fn(k)g(k) dk = 0 for all g ∈ �[G] of type τ and n

large enough.

Proposition 7.3 — Assume that F is non countable. If Conjecture 7.1 holds for the
spherical pairs SL(n) ⊃ GL(n− 1), then the Jacobian Conjecture holds.

Séminaires et Congrès 2



Some Conjectures About Invariant Theory 277

Proof. This is a reformulation of Theorem 5.5.

Let X be a compact riemanian manifold. Two smooth functions f, g ∈ C∞(X)

are called isospectral if ∆ + f and ∆ + g have the same spectrum. Endow
��2 � SO(3,�)/O(2,�) with the standard SO(3,�)-invariant metric. Each simple
SO(3,�)-module of dimension 4n+1 occurs with multiplicity one in C∞(��2). The
corresponding subspace �n ⊂ C∞(��

2) is called the space of nth-order harmonic
functions on ��

2. Let N be the normalizer of the subgroup of diagonal matrices in
SL(2), and set N = N/± 1.

Proposition 7.4 — Assume Conjecture 7.1 holds for the spherical pair PSL(2) ⊃ N .
Let M be a finite dimensional SO(3,�)-submodule of C∞(��

2). For f ∈M denote
by I(f) be the set of all g ∈ M which are isospectral to f . Then I(f) contains only
finitely many SO(3,�)-orbits.

Proof. Set � =
⊕
n≥0�n, �� = �⊗� and M� = �⊗M . Let � be the nil-cone of

M�. For f ∈M� and r ≥ 0, set pr(f) =
∫

��2
f r. We have �� � �[PSL(2)/N ].

Set A = (SM∗
�)
PSL(2), let A′ be the subalgebra of A generated by p1, p2, ... and

let A+, A′+ be the unique maximal homogenous ideals of A,A′. By definition, the
nilcone is (set theorytically) defined as the set of f ∈ M� such that φ(f) = 0 for
any f ∈ A+. By Conjecture 7.1, the set of equations pr(f) = 0 is enough to define
�. Hence the radical of the ideal A′+.A in A is A+. Hence A is finitely generated as
a A′-module, and Spec(A)→ Spec(A′) is finite.

Let φ ∈ M . Because the SO(3,�)-orbits in M are closed in the real Zariski
topology (see [S]), the set J(φ) = {ψ ∈ M |pr(ψ) = pr(φ) for all r ≥ 1} contains
only finitely many SO(3,�)-orbits.

For each x ∈ ��
2 denote by γx the set of all lines of �3 which are orthogonal

to x. It is clear that γx is a closed geodesic. For f ∈ C∞(��
2), set f̂(x) =

∫
γx
f

(see [G]). The map f 
→ f̂ , called the Radon transform, is an SO(3,�)-invariant
injective map. Thus the Radon transform induces a linear isomorphism from M

to itself. By Weinstein’s Theorem ([W]; see also [G], Proposition 2.3),
∫

��2
φ̂n are

spectral invariants of φ. Therefore, we have ˆI(f) ⊂ J(f̂). Hence I(f) contains only
finitely many SO(3,�)-orbits.

Recall Guillemin’s Conjecture [G]. Set K = SO(3,�) and denote by H(4n) the
real irreducible K-representation of dimension 4n+1. Identify H(4n) with the space
�n of all nth-order harmonic on ��2. For f ∈ H(4n), set pr(f) =

∫
��2

f r, where
the integral is relative to the standard K-invariant measure of ��2.

Guillemin’s Conjecture 7.5 — The polynomials pr, r = 1, 2, .., separate the K-orbits
in H(4n).
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An element of a rational PSL(2)-module is called isotypical if all its types but
one are zero.

Proposition 7.6 — Guillemin’s Conjecture implies Conjecture 7.1 for the spherical
pair PSL(2) ⊃ N and for any isotypical function f ∈ �[PSL(2)/N ], where
N = N/{±1}.

Proof. The proof of Proposition 7.6 is similar to those of Proposition 7.4. However,
one should use Conjecture 7.5 instead of Conjecture 7.1.

8 The torus case

The computation of the series of integrals
∫
K
fn(k) dk are connected to difficult

questions even for the group K = S1. For example let us consider the elliptic curve
C given by the equation y2z = x(x + z)(x + λz), where λ is an integer. For any
prime number p, denote by Cp the reduction of C modulo p. One says that the Hasse
invariant of Cp is zero if C has good reduction at p and Cp has no p-torsion points.

It turns out that for odd p the Hasse invariant is zero exactly if we have (see
[Ha]):
∑
1≤i≤(p−1)/2(

(p−1)/2
i )2λi = 0 modulo p.

Set f = (x+1)(x+λ)/x. It is clear that
∑
1≤i≤(p−1)/2(

(p−1)/2
i )2λi =

∫
S1
f (p−1)/2.

Hence the Hasse invariant can be expressed in terms of reduction modulo p of
integrals as considered before. Similar integrals occur when one computes the
number of points of a plane algebraic curve. One gets these integrals by using the
Chevalley-Warning Lemma. Let us mention the version of the main conjecture(∗)

for the S1-case.

Let f ∈ �[t, t−1]. If Resfn dt/t = 0 for all n ≥ 1, then f is a polynomial in t or
a polynomial in t−1.

(∗) Note added on proofs: W. van der Kallen and J. J. Duistermaat proved
our conjecture for S1; see their preprint: Constant Terms of Powers of a Laurent
Polynomial.
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