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Abstract
Let O be a nilpotent orbit in the Lie algebra ��n(�) and let V be an orbital

variety contained in O. Let P be the largest parabolic subgroup of SL(n,�)
stabilizing V. We describe nilpotent orbits such that all the orbital varieties
in them have a dense P orbit and show that for n big enough the majority of
nilpotent orbits do not fulfill this.

Résumé
Soit O une orbite nilpotente dans l’algèbre de Lie ��n(�) et soit V une

variété orbitale contenue dans O. Soit P le plus grand sous-groupe parabolique
de SL(n,�) stabilisant V. Nous décrivons les orbites nilpotentes dont toutes
les variétés orbitales contiennent une P-orbite dense et montrons que pour n
assez grand la majorité des orbites nilpotentes n’ont pas cette propriété.

1 Introduction

1.1 Let G be a connected semisimple finite dimensional complex algebraic group.
Let � be its Lie algebra and U(�) be the enveloping algebra of �. Consider the
adjoint action of G on �. A G orbit � in � is called nilpotent if it consists of
nilpotent elements.

Fix some triangular decomposition � = �
⊕

�
⊕

�−. An irreducible component
of � ∩ � is called an orbital variety contained in �. Orbital varieties play a key role
in Springer’s Weyl group representations and in the primitive ideal theory of U(�).

The last can be detailed as follows. Since � is semisimple we can identify � with
�∗ through the Killing form. This identification gives an adjoint orbit a symplectic
structure. Let � be an orbital variety contained in �. After N. Spaltenstein [Sp] and
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R. Steinberg [St] one has

dim� = 1/2 dim�.(∗)

Moreover it was pointed out by A. Joseph [J] that this implies that an orbital
variety is a Lagrangian subvariety of its nilpotent orbit. According to the orbit
method philosophy one would like to attach an irreducible representation of U(�)

to �. This can be naturally implemented in the case of � = ��n where there exists
a one to one correspondence between the set of primitive ideals of U(�) containing
the augmentation ideal of its centre and the set of orbital varieties in �. Moreover as
it is shown in [M2] in this case � is the associated variety of the corresponding
simple highest weight module so that orbital varieties give a natural geometric
understanding of the classification of primitive ideals. Hence the study of orbital
varieties in ��n is especially interesting.

1.2 Orbital varieties remain rather mysterious objects. The only general description
was given by R. Steinberg [St] and is as follows. Let R ⊂ �∗ be the set of roots, R+ be
the choice of positive roots defining � and Π ⊂ R+ be the corresponding set of simple
roots. Let W be the Weyl group of (�, �) acting on R. Let B be the Borel subgroup
of G corresponding to the Borel subalgebra � = �

⊕
�. Recall that � =

⊕
α∈R+ Xα

(resp.�− =
⊕
α∈−R+ Xα) where Xα is the root subspace corresponding to α. For

w ∈W set �∩w� :=
⊕
α∈R+∩w(R+)Xα. For each subgroupH ofG let H(�∩w�) be

the set ofH conjugates of �∩w�. One easily sees that there exists a unique nilpotent
orbit � such that G(� ∩w �) = �. Then �w = B(� ∩w �) ∩ � is an orbital variety
and the map φ : w �→ �w is a surjection of W onto the set of orbital varieties.

This description is not very satisfactory from the geometric point of view since a
B invariant subvariety generated by a linear space is a very complex object. One of
the attempts to give a reasonable description of an orbital variety is the following
conjecture proposed by S. P. Smith.

Given an orbital variety � let P� be its stabilizer. This is a standard parabolic
subgroup of G. We say that an orbital variety � is of S type if there exists a dense
P� orbit in it. We say that a nilpotent orbit � is of S type if all its orbital varieties
are of S type.

Conjecture 1.1 (S. P. Smith) — In ��n all orbital varieties are of S type.

The truth of this conjecture would give a more elegant and simple description
of orbital varieties. For a given orbital variety closure it would provide a way to
construct a resolution of its singularities and be the first step towards a description
of its ideal of definition. It could also provide a natural way to define orbital varieties
in the case of quantum groups. These implications made the conjecture (suggested
by S.P. Smith some ten years ago) quite attractive.
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1.3 The conjecture is true for ��n when n ≤ 8 as shown by E. Benlolo in [B]. Yet
here we show that the conjecture is false in general.

In 2.5 we give the first counter-example to the Smith conjecture which appears in
��9 and is the only counter-example for n ≤ 9. We give some other counter-examples
which we use in what follows.

Further we investigate the situation for n� 0. In § 3 we give sufficient conditions
for an orbit to be not of S type. This can be explained as follows.

Take � = ��n. Consider ��i for i < n as a Levi subalgebra �1,i of � (cf. 3.2). Set
�1,i = � ∩ �1,i and define the projection π1,i : �→ �1,i. A result of [M1] is that π1,i
takes an orbital variety closure in ��n to an orbital variety closure in ��i.

Given an orbital variety � let τ(�) be its τ -invariant (cf. 2.4). As we explain in 3.2
if � is of S type and αi 	∈ τ(�) then π1,i(�) must be of S type. From this given an
orbital variety not of S type in ��i we show how to construct orbital varieties not
of S type in ��n for n > i.

1.4 In § 4 we give sufficient conditions for an orbit to be of S type. This can be
explained as follows.

Orbital varieties are irreducible components of �∩�. Yet they are as far as possible
of being disjoint. Indeed after N. Spaltenstein [Sp] for any two orbital varieties
�,�′ ⊂ � there exist a chain of orbital varieties � = �1, · · · ,�k = �′ ⊂ � with
codim(�i ∩�i+1) = 1 for all i ∈ {1, 2, · · · , k − 1}.

In ��n if a nilpotent orbit is neither regular nor minimal it contains more than one
orbital variety. Following A. Joseph we apply Vogan’s analysis [V] to orbital varieties.
For a given orbital variety � this defines the orbital variety 	αβ(�) (cf. 4.2). One
has codim(	αβ(�)∩�) = 1 and for any given pair of orbital varieties �,�′ ⊂ � one
may pass from � to �′ by a sequence of 	αβ operations. This refines Spaltenstein’s
result.

In each nilpotent orbit there exists a Bala-Carter component (cf. 4.3). As shown
by R. Carter in [C] a Bala-Carter component contains a dense B orbit. One can use
such orbital varieties and Vogan’s analysis to construct other orbital varieties of S
type; but this does not lead to all orbital varieties of S type. The problem is that
the dimension of P	αβ(�) can differ by more than one from the dimension of P�

and then we cannot conclude that � of S type implies 	αβ(�) of S type. Generally
speaking this is the reason that the orbital varieties not of S type appear. However
the algorithm we obtain is not decisive; but it helps to construct orbital varieties of
S type and to give counter-examples to conjecture 1.1.

To show that a specific nilpotent orbit is of S type we find in it enough orbital
varieties with a dense B orbit so that applying Vogan’s analysis we get all the orbital
varieties in the given orbit. These computations compose the main part of § 4 and
are technically the most difficult part of the work. A few orbits described at the end
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of § 4 stay unclassified. These cases apparently require more subtle computations.

2 Counter-examples

Lemma 2.1 — Fix w ∈W. If the orbital variety �w has a dense P�w orbit 
 then


 ∩ (� ∩w �) 	= ∅.

It is convenient to replace ��n by � = ��n. This obviously makes no difference.
Note that the adjoint action of G = GLn on � is just a conjugation.

Let � be the subalgebra of strictly upper-triangular matrices in � and B be the
(Borel) subgroup of upper-triangular matrices in G. All parabolic subgroups we
consider further are standard, that is contain B.

Let eij be the matrix having 1 in the ij entry and 0 elsewhere. Set Π := {αi}
n−1
i=1 .

Take i ≤ j. Then for α =
∑j
k=i αk, the root space Xα = �ei,j+1 and the root space

X−α = �ej+1,i.

We identify W with the permutation subgroup Sn of GLn. For α ∈ Π let sα be
the corresponding fundamental reflection and set si = sαi .

Let [ , ] denote the Lie product on � given here by commutation in EndV. For a
standard parabolic subgroup P ofG we set � := LieP which is a standard parabolic
subalgebra of �, that is contains �.

Lemma 2.2 — Take M ∈ � and a parabolic subgroup P of G. One has

dimPM = dim[�,M ].

Combining these two lemmas we obtain

Corollary 2.3 — Fix w ∈ W. The orbital variety �w is of S type if and only if for
some M ∈ � ∩w � one has

dim[�,M ] = dim�w.

2.2 Nilpotent orbits in ��n are parameterized by Young diagrams. Orbital
varieties are parameterized by standard Young tableaux. Let us explain these
parameterizations.

In ��n or ��n each nilpotent orbit � is described by its Jordan form. A Jordan
form in turn is parameterized by a partition λ = (λ1 ≥ λ2 · · ·λk > 0) of n giving
the length of Jordan blocks. We denote by �λ the nilpotent orbit determined by λ.

It is convenient to represent a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) of n

as a Young diagram Dλ, that is an array of k rows of boxes starting on the left
with the i-th row containing λi boxes. The dual partition λ̂ = (λ̂1, λ̂2 · · · ) is defined
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by setting λ̂i equal to the length of the i−th column of the diagram Dλ that is
λ̂i = �{j : λj ≥ i}.

One has (cf. [H] § 3.8)

dim�λ = n2 −
k∑
i=1

λ̂2i .(∗∗)

Define a partial order on partitions as follows. Given two partitions λ = (λ1 ≥

λ2 ≥ · · ·λk) and µ = (µ1 ≥ µ2 ≥ · · ·µj) of n we set λ ≥ µ if

i∑
l=1

λ� ≥
i∑
�=1

µ�, for all i = 1, 2, · · · , k.

The following result of M. Gerstenhaber (cf. [H] § 3.10) shows that this order
corresponds to inclusion of nilpotent orbit closures:

Theorem 2.4 — Given two partitions λ and µ of n one has λ ≥ µ if and only if
�λ ⊃ �µ.

2.3 Given a partition λ of n fill the boxes of Dλ with n distinct positive integers.
If the entries increases in rows from left to right and in columns from top to bottom
we call such an array a Young tableau. If the numbers in Young tableau form a set
of integers from 1 to n we call it standard. Let Tn be the set of standard Young
tableaux of size n.

The shape of a Young tableau T is defined to be a Young diagram from which T

was built. It defines a partition of n which we denote shT.

The Robinson - Schensted correspondence w �→ (Q(w), R(w)) gives a bijection
(see, for example [Kn]) from the symmetric group Sn onto the pairs of standard
Young tableaux of the same shape. By R. Steinberg [St1] for all w, y ∈ Sn one has
�w = �y iff Q(w) = Q(y). This parameterizes the set of orbital varieties by Tn.
Moreover shQ(w) = λ if and only if �w is contained in �λ.

We set �T := �w if Q(w) = T, PT := P�T and �T := ��T
.

Let T be some Young tableaux with shT = λ = (λ1, · · · ). Denote by T ij its ij-th
entry. If k is the entry T ij of T, set rT (k) = i and cT (k) = j.

For i : 1 ≤ i ≤ λ̂1 set T i := (T i1, · · · , T
i
λi
). This is the ordered set of entries of the

i-th row. For each T ∈ Tn we define wr(T ) ∈ Sn through

wr(T ) :=

(
1 · · · · · · · · ·n

T λ̂1 · · · T 1

)
.

By [M3], § 3.2.2 Q(wr(T )) = T.
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2.4 Let Pαi be the standard parabolic subgroup with Lie algebra �αi := �⊕X−αi .

Take w ∈ W,T ∈ Tn, an orbital variety � and a standard parabolic subgroup P.
Define their τ -invariants to be

τ(w) := Π ∩ w(−R+),

τ(T ) := {αi : rT (i+ 1) > rT (i)},

τ(P) := {αi : Pαi ⊂ P},

τ(�) := {αi : Pαi(�) = �}.

Note that P is uniquely determined by its τ -invariant.

One has (cf.[J],§ 9)

Lemma 2.5 — τ(w) = τ(�w) = τ(Q(w)) = τ(P�w ).

2.5 Our first counter-example to conjecture 1.1 is constructed in ��n where n = 9.

By [B] this is the smallest possible value of n. Set

Q =

1 2 3 6 9

4 5 8

7

.

Using (∗) and (∗∗) we get dim�Q = 31. On the other hand one can show (using
“Mathematica”) that dim[�Q,M ] ≤ 30 for all M ∈ �∩wr(Q) �. By corollary 2.3 this
means that �Q is not of S type.

We show in 4.4 that �λ for λ ≥ (n − 3, 3) is of S type for all n. We show in 3.3
that �λ for λ = (n− 4, 4) is not of S type for all n sufficiently large. The first case
of the latter occurs when n = 10. Take

R =
1 2 3 6 7 10

4 5 8 9
.

Again using (∗) and (∗∗) we get dim�R = 41 and again we get that dim[�R,M ] ≤ 40

for all M ∈ � ∩wr(R) �. Thus the orbital variety �R is not of S type.

In what follows we use one more example of orbital variety not of S type. This
is �U where

U =

1 2 3 6 9

4 5 8

7 10

.
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3 Orbits not of S type in ��n for n ≥ 13.

3.1 In this section we show that in ��n for n ≥ 13 one has

Proposition 3.1 — For each λ = (λ1, λ2, · · · ) such that (5, 3, 1, · · · ) ≤ λ ≤ (n−4, 4)

and λ2 > 2 the corresponding �λ is not of S type.

To show this we need a few facts about projections on Levi factors.
3.2 Take J ⊂ Π and let WJ be the subgroup of W generated by {sα : α ∈ J}. Let
wOJ be the longest element of WJ .

Let DJ be the set of minimal length representatives of right cosets of WJ . Each
w ∈W has a unique expression of the form w = wJdJ where wJ ∈ WJ and dJ ∈ DJ .

We define the projection πJ : W →WJ by πJ(w) = wJ .

Set PJ := BWJB. This is the standard parabolic subgroup ofG with τ(PJ ) = J.

It has the Levi decomposition PJ = LJ×MJ where LJ is its Levi factor and MJ is
its unipotent radical. Let �J be the corresponding standard parabolic subalgebra of
� with Levi decomposition �J = �J ⊕�J where �J is the Levi subalgebra of �J and
�J is its nilpotent radical.

Define the projection πJ : PJ → LJ by Levi decomposition. Given P ⊂ PJ a
parabolic subgroup of G then πJ(P) is a parabolic subgroup of LJ .

Set BJ := LJ ∩B and �J := �J ∩�. One has B = BJ×MJ and � = �J ⊕�J. Let
πJ : B→ BJ and πJ : �→ �J be the projections onto the first factor.

Note that these projections are compatible in the sense that for any M ∈ � and
any parabolic subgroup P ⊂ PJ

πJ(PM) = πJ(P)πJ(M).

Proposition 3.2 ([M3, 4.1.2]) — For every w ∈ W one has

(i) πJ(� ∩w �) = �J ∩πJ (w) �J.

(ii) πJ(�w) = �πJ (w).

Given J = {αk}
j−1
k=i we set πi,j := πJ , Li,j := LJ etc. Set

L′i,j = {M : M ∈ Li,j , (M)kk = 1 if k < i or k > j}.

Then L′i,j is a general linear subgroup of Li,j . For T ∈ Tn let T1,i := π1,i(T ) be
a tableau obtained from T by successive elimination of boxes containing n, n − 1,

· · · , i+ 1 As it is shown in [M3], 4.6.3

Q(π1,i(w)) = Q1,i(w).

Take J = Π \ {αi}. In that case PJ = (L′
1,i × L

′
i+1,n)×MJ . Let π1,i : PJ → L′1,i

be the projection onto the first factor.
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Lemma 3.3 — Take J = Π \ {αi}

(i) Let P be a standard parabolic subgroup contained in PJ . For every M ∈ �

one has π1,i(PM) = π1,i(P) π1,i(M).

(ii) Let T ∈ Tn be such that αi 	∈ τ(T ) then π1,i(PT ) = PT1,i .

Combining proposition 3.2 and lemma 3.3 we obtain

Corollary 3.4 — Fix T ∈ Tn such that αi 	∈ τ(T ). If the orbital variety �T is of S
type then the orbital variety �T1,i is of S type.

3.3 Now we can show proposition 3.1. Suppose n ≥ 13. If λ is such that
(5, 3, 1, · · · ) ≤ λ ≤ (n− 4, 4) and λ2 > 2 then it must satisfy one of the following

(i) λ̂1 = 2.

(ii) λ1 ≥ 6 and λ̂1 ≥ 3

(iii) λ1 = 5 and λ̂1 = 3 (this occurs only if 13 ≤ n ≤ 15).

(iv) λ1 = 5, λ̂1 > 3 and λ2 + λ3 ≥ 5.

(v) λ1 = 5, λ2 = 3 and λ̂1 = n− 6.

Further we consider each case separately using one of the examples from 2.5. and
corollary 3.4. Since all the proofs are similar let us show only the proof of (i).

Note that if λ̂1 = 2 then λ1 ≥ [n+12 ] ≥ 7. Consider T with shT = λ such that
π1,10(T ) is R from 2.5 and T 17 = 11. By lemma 2.5 one has α10 	∈ τ(�T ) and by 2.5,
�π1,10(T ) is not of S type. Hence by corollary 3.4, �T is not of S type.

4 Orbits of S type in ��n

4.1 Now let us consider the cases λ 	∈ {µ : (n − 4, 4) ≤ µ ≤ (5, 3, 1, · · · ), µ2 > 2}.

The main purpose of this section is to show the

Proposition 4.1 — �λ is of S type if λ is one of the following

(i) λ > (n− 4, 4).

(ii) λ = (λ1, λ2, 1, · · · , 1) where λ2 ≤ 2.

(iii) λ = (λ1, · · · ) where λ1 = 2 and λi ≤ 2 for all i : 2 ≤ i ≤ λ̂1.

In each case there are specific reasons for �λ to be of S type. Our strategy is
as follows. First we consider some special orbital varieties � in � for which we are
constructing M ∈ � such that BM is dense in �. Then we use a technique related
to Vogan’s 	αβ operation [V] to construct M ∈ � for an arbitrary � in � such that
P�M is dense in �.

Here we will only underline the general ideas and describe M ∈ � without
proofs since they involve heavy (although straightforward) computations. The full
description can be found in [M4].
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4.2 Let us first develop a technique related to 	αβ .

Let α, β ∈ Π be the adjacent roots in the Dynkin diagram, that is such that
sαsβsα = sβsαsβ . Set

D(	αβ) = {w ∈ W : α 	∈ τ(w), β ∈ τ(w)}.

and define a map 	αβ : D(	αβ)→ D(	βα) by

	αβ(w) =

{
sαw if β 	∈ τ(sαw)

sβw otherwise

Let l(w) denote the length of a minimal decomposition of w into fundamental
reflections. Note that for w ∈ D(	αβ) one has l(sαw) = l(w) + 1 and l(sβw) =

l(w)− 1.

Set

D�(Tαβ) = {�− orbital varieties : α 	∈ τ(�), β ∈ τ(�)};

DT (Tαβ) = {T ∈ Tn : α 	∈ τ(T ), β ∈ τ(T )};

DP(Tαβ) = {P− parabolic : α 	∈ τ(P), β ∈ τ(P)};

D�(Tαβ) = {�− parabolic : α 	∈ τ(�), β ∈ τ(�)}.

In what follows we will omit the subscript since it is obvious which set among those
mentioned above we are considering. By [V, 3.7], [J, 9.11] one has �	αβ(w) = �	αβ(y)

iff �w = �y hence

	αβ(�w) := �	αβ(w) and 	αβ(Q(w)) = Q(	αβ(w)).

Given PJ ∈ D(	αβ), �J ∈ D(	αβ) set

	αβ(PJ ) = P{J\β,α} and 	αβ(�J) = �{J\β,α}.

If l(w) > l(	αβ(w)) then P	αβ(�w) ⊇ 	αβ(P�w ).

Let T be a tableau satisfying one of the following conditions

(I) rT (i) ≤ rT (i− 1) < rT (i+ 1)

(II) rT (i) < rT (i+ 2) ≤ rT (i+ 1)

By lemma 2.5 these conditions imply T ∈ D(	αβ) where β = αi and α = αi−1 in
case (I) or α = αi+1 in case (II). If T satisfy both (I), (II) fix α either αi−1 or αi+1.

Set U = 	αβ(T ). In both cases

U jm =



i+ 1 if T jm = i

i if T jm = i+ 1

T jm otherwise
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Recall the definition of wr(T ) from 2.3. Note that

wr(U) = 	αβ(wr(T )) = siwr(T ).

Let si : ��n → ��n be the transformation changing the i-th row with the i + 1-th
row and the i-th column with i+ 1-th column.

Proposition 4.2 — Let T ∈ Tn satisfy one of conditions (I), (II). Let β = αi and
α = αi−1 (or αi+1). Let M ∈ � ∩wr(T ) � be such that (M)α 	= 0. Let P ⊂ PT be a
parabolic subgroup such that both Pαi−1 ,Pαi+1 	⊂ P.

(i) If M ∈ �T then si(M) ∈ �T ∩	αβ(�T )

(ii) If PM is dense in �T then 	αβ(P)si(M) is dense in 	αβ(�T ). In
particular, in that case, 	αβ(�T ) is of S type.

We also need the following observation

Lemma 4.3 — Let �w have a dense P�w orbit 
. Let M ∈ � ∩w � ∩ 
 and let
Xij ⊂ � ∩w �. Set M ij(a) = M + aeij . Then P�wM

ij(a) is dense in �w for all but
finite number of a ∈ �. In particular if αi 	∈ τ(w) and (M)ii+1 = 0 then the P�w

orbit of M + aeii+1 is dense in � for all but finite number of a ∈ �.

4.3 We call an orbital variety � a Richardson component if � = �w0J for some
J ⊂ Π. By the Richardson theorem [R] Richardson components are of S type.

Let w0 be the longest element of W. We call an orbital variety � a Bala-Carter
component if � = �w0Jw0 . By § 5.9 of [C] every Bala-Carter component has a dense
B orbit. Moreover let � be Bala-Carter then

(M�)ij =

{
1 if j = i+ 1, αi 	∈ τ(�),

0 otherwise.

is an element of � whose B orbit is dense in �.

One can verify using proposition 4.2 that if � ∈ D(	αβ) is Bala-Carter then
	αβ(�) is of S type. Moreover using lemma 4.3 we can continue this process.
Unfortunately this algorithm is not decisive, that is we cannot claim that an orbital
variety which is not obtained in such a manner from the known orbital varieties of
S type is not of S type. Yet this algorithm gives orbital varieties of S type which
are neither Bala-Carter nor Richardson.

4.4 To show (i) of proposition 4.1 we first show

Proposition 4.4 — Let λ = (m, k) and let �T be an orbital variety contained in �λ
such that

T =
1 ... ... i-1 i+k ... n

i ... i+k-1
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Define MT by

(MT )jl =



1 if j 	= i− 1, l = j + 1

1 if j = i− 1, l = i+ k

0 otherwise.

Then MT ∈ � ∩wr(T ) � ∩�T and BMT is dense in �T .

Now if λ = (n−1, 1) then every orbital variety is of form described in proposition
14, hence it has a dense B orbit.

Let λ = (n−2, 2). Let T be a tableau of shape λ. Set T = T (i, j) if T 21 = i, T 22 = j.

If j 	= i+ 1 let us define M(i, j) by

(M(i, j))lm =




1 if m = l + 1 and l 	= i− 1, i, j − 1

1 if l = i− 1,m = i+ 1

1 if l = i,m = j

1 if l = j − 1,m = j + 1

0 otherwise.

For example

T (3, 6) =
1 2 4 5 7 8

3 6
M(3, 6) =




0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0




We define M(i, i+1) as in proposition 14. It is immediate that M(i, j) ∈ �∩w(i,j)�.

One can show using proposition 4.2 that Pαi−1M(i, j) is dense in �T (i,j).

Set λ = (n − 3, 3). Let T be a tableau of shape λ. Set T = T (i, j, k) if
T 21 = i, T 22 = j, T 23 = k. Set w(i, j, k) = wr(T (i, j, k)). Here we distinguish 2 cases

(a) k = j + 1;

(b) k > j + 1.
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In case (a) if j 	= i+ 1 we define M(i, j, j + 1) by

(M(i, j, j + 1))lm =




1 if m = l + 1 and l 	= i− 1, i, j − 1

1 if l = i− 1,m = i+ 1

1 if l = i,m = j

1 if l = j − 1,m = j + 2

0 otherwise

We define M(i, i + 1, i + 2) as in proposition 4.4. Again using proposition 4.2 one
can show that M(i, j, j + 1) ∈ � ∩w(i,j,j+1) � and Pαi−1M(i, j, j + 1) is dense in
�T (i,j,j+1).

In case (b) if j 	= i+ 1 we define M(i, j, k) by

(M(i, j, k))lm =




1 if m = l + 1 and l 	= i− 1, i, j − 1, k − 1, k

1 if l = i− 1,m = i+ 1

1 if l = i,m = j

1 if l = j − 1,m = j + 1

1 if l = j,m = k

1 if l = k − 1,m = k + 1

0 otherwise

Define M(i, i+ 1, k) by

(M(i, i+ 1, k))lm =




1 if m = l + 1 and l 	= i− 1, k − 1, k

1 if l = i− 1,m = i+ 2

1 if l = i+ 1,m = k

1 if l = k − 1,m = k + 1

0 otherwise

Again one can show that M(i, j, k) ∈ � ∩wr(i,j,k) � and that Pαi−1,αk−1M(i, j, k) is
dense in �T (i,j,k).

4.5 To show (ii) of proposition 4.1 we first show

Proposition 4.5 — Let λ = (λ1, 1, · · · ). Let T be a Young tableau of shape λ. Set

(MT )ij =



1 if j = T 1k , i = T 1k−1, k > 2

1 if j = T 1k , i = j − 1, k > 1

0 otherwise

Then BMT is dense in �T .
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Then once more for each T of shape (i, 2, 1, · · · ) we construct MT ∈ � ∩wr(T ) �

and show using propositions 4.2, 4.5 and lemma 4.3 that PTMT is dense in �T .

4.6 Now we show (iii) of proposition 4.1. Recall notation cT (k) from 2.3. Let
λ = (2, 2, · · · ). Let T be a Young tableau of shape λ. Let T ′ = π1,n−1(T ). We
define MT inductively as follows

(i) If cT (n) = 1 set

(MT )ij =

{
(MT ′)ij if i, j < n

0 otherwise

(ii) If cT (n) = 2 set m = max{i = T ′
k
1 : (MT ′)ij = 0 for all j} and set

(MT )ij =



(MT ′)ij if i, j < n

1 if i = m, j = n

0 otherwise

For example

T =

1 2

3 6

4 7

5

MT =




0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




One can show

Proposition 4.6 — Let λ = (2, 2, · · · ). Let T be a Young tableau of shape λ and MT
defined as above. Then MT ∈ �T and BMT is dense in �T .

4.7 We finish the discussion on orbits of S type with two general comments:

(i) If λ = (n−1, 1) then all the orbital varieties contained in �λ are Richardson. If
λ = (2, 1, 1, · · · ) then all the orbital varieties contained in �λ are Bala-Carter.
So the results were known in these cases.

(ii) The orbits �λ with λ = (λ1, λ2, · · · ) satisfying one of the following conditions

a. λ1 = 4, λ2 + λ3 ≥ 4;

b. λ1 = 3, λ2 + λ3 ≥ 4;

c. λ1 > 2, l2 = l3 = 2;

are still unclassified. Perhaps they are of S type but the proof requires more
subtle computations.
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