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SOME LOCAL AND NON-LOCAL VARIATIONAL
PROBLEMS IN RIEMANNIAN GEOMETRY

by

Matthew J. Gursky

Abstract. — In this article we will give a brief summary of some recent work on
two variational problems in Riemannian geometry. Although both involve the study
of elementary symmetric functions of the eigenvalues of the Ricci tensor, as far as
technique and motivation are concerned the problems are actually quite different.

Résumé (Problèmes variationnels locaux et non-locaux en géométrie riemannienne)
Dans cet article nous donnons un aperçu d’un travail récent sur deux problèmes

variationnels en géométrie riemannienne. Bien que les deux problèmes soient basés
sur l’étude des fonctions symétriques élémentaires des valeurs propres du tenseur de
Ricci, les techniques et les motivations sont en réalité différentes.

For since the fabric of the universe is most perfect and the work of a most
wise Creator, nothing at all takes place in the universe in which some rule
of maximum or minimum does not appear. –Leonhard Euler

1. Quadratic Riemannian functionals

The first problem we will discuss represents joint work of the author with Jeff
Viaclovsky ([GV00]). To describe it, let us begin with some general notions.
Let M be a smooth manifold, M the space of smooth Riemannian metrics on

M , and G the diffeomorphism group of M . A functional F : M → R is called
Riemannian if F is invariant under the action of G; i.e., if F (φ∗g) = F (g) for each
φ ∈ G and g ∈ M. If we endow M with a natural L2–Sobolev norm, then we may
speak of differentiable Riemannian functionals. Letting S2(M) denote the bundle of
symmetric two–tensors, we then say that F : M → R has a gradient at g ∈ M if
d

dt
F [g + th]|t=0 =

∫
g(h,∇F ) d volg for some ∇F ∈ Γ(S2(M)) and all h ∈ Γ(S2(M)).
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An important example of a Riemannian functional is of course the total scalar
curvature

(1.1) S[g] =
∫

Rg d volg

where Rg denotes the scalar curvature of g. For Riemannian geometers, the import-
ance of (1.1) lies in the fact that when M is compact, critical points of S|M1 , where

M1 = {g ∈ M| Vol(g) = 1},

are Einstein (see [Bes87]). In the Lorentzian setting, Hilbert showed that the equa-
tions of general relativity can be realized in a similar manner ([Hil72]).
Our interest here is in functionals that are obtained by integrating a polynomial

which is quadratic in the curvature. By Weyl’s invariant theory ([Wey39]), a basis
for these functionals is

R[g] =
∫

|Riemg |2 d volg, ρ[g] =
∫

|Ricg |2 d volg,

τ [g] =
∫

R2
g d volg,

(1.2)

where Riemg and Ricg denote respectively the Riemann curvature tensor and Ricci
curvature tensor of g. Such functionals arise in certain field theories in physics; in
particular R can be viewed as a Riemannian analogue of Yang–Mills (see [Bac21],
[Bou96], [Bes87]).
From the variational point of view, the functionals in (1.2) have the apparent

advantage of being bounded below, and thus more amenable to the direct method.
However, the associated Euler equations are quite complicated (see [And97], [Bes87],
[Lam98]). Indeed, in [Lam98] a critical point of R is constructed on S3 which does
not have constant sectional curvature. Thus, even if successful, it is not clear that such
an approach would yield Einstein metrics (under certain geometric and topological
constraints there are some exceptions; see [Gur98]).
Before we give an exact description of the functional we will be interested in, for

the purpose of motivation it may be helpful to first recall a basic fact about the
decomposition of the curvature tensor (see [Bes87]). Let 
 denote the Kulkarni-
Nomizu product, and define the tensor Cg = Ric− R

2(n−1)g. Then the full curvature
tensor of g can be decomposed as

Riem =W +
1

(n− 2)C 
 g,

where W denotes the Weyl curvature tensor of g. In three dimensions, we have
Cg = Ric−R

4 g, and the Weyl tensor vanishes. Thus, the full curvature tensor is
actually determined by Cg.
Now if σk : R

3 → R denote the elementary symmetric functions, then the scalar
curvature can be expressed as R = 4σ1(C). It follows that the natural quadratic
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LOCAL AND NON-LOCAL VARIATIONAL PROBLEMS 169

counterpart to (1.1) is the functional:

(1.3) F2[g] =
∫

M

σ2 (Cg) d volg .

A simple calculation gives

(1.4) F2[g] =
∫

M

(
−1
2
|Ric |2 + 3

16
R2

)
d volg .

F2 is therefore quadratic in the curvature of g, and is a non–convex linear combination
of the functionals in (1.2).
There are interesting parallels between the functionals S and F2. Like the total

scalar curvature, F2 is neither bounded above nor below on M1. Further, one can
consider a constrained version of F2 by restricting to a fixed conformal class; see
[Viaa], [Viab]. In these works, the Euler equation for F2|[g]1 , where

[g]1 = {g̃ = e2wg, w ∈ C∞(M,R)| Vol(g̃) = 1},

is shown to be σ2(Ric− 1
4Rg) ≡ λ = constant. Remarkably, this scalar equation

encodes information about the sectional curvatures of g, provided λ > 0:

Proposition 1.1. — Let M be three-dimensional. If σ2(Ric− 1
4Rg)x > 0 then the sec-

tional curvatures of g at x are either all positive or all negative. In particular, critical
points of F2|[g]1 with F2[g] > 0 have either strictly positive or strictly negative sec-
tional curvature.

Moreover, we have the following new characterization of (compact) Einstein three-
manifolds:

Theorem 1.1([GV00]). — Let M be compact and three–dimensional. Then a metric g

with F2[g] ≥ 0 is critical for F2|M1 if and only if g has constant sectional curvature.

Remark

1. The condition F2[g] ≥ 0 in Theorem 1.1 is necessary: if E = Ric− 1
3Rg denotes

the trace–free Ricci tensor, then

σ2(C) = σ2

(
Ric−1

4
Rg

)
= −1

2
|E|2 + 1

48
R2.(1.5)

Thus, if g has constant curvature, σ2 = 1
48R

2 ≥ 0.
2. The condition F2[g] > 0 may be thought of as an ellipticity assumption. To
our knowledge, this is the first example of a quadratic Riemannian functional
in three dimensions whose elliptic critical points are necessarily of constant
curvature.

3. The case F2[g] = 0 is the case of degenerate ellipticity, and the proof in this
case is much more delicate, as the curvature may change sign.
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4. When F2[g] < 0, we have left the region of ellipticity, and we do not expect a
simple classification of these critical points. Indeed, the construction of [Lam98]
provides an example of a critical metric on S3 with F2[g] < 0.

In [GV00] we also considered a constrained version of the problem: F2|Ξ , where

Ξ =
{
g ∈ M1

∣∣∣ σ2(Cg) =
∫

M

σ2(Cg) d volg > 0, and Rg < 0
}
.

In analogy with the work of Koiso for the scalar curvature (see [Koi79]), one can
show that Ξ is in fact a submanifold of M1. Restricting to Ξ introduces a Lagrange
multiplier term into the Euler equation, and like the corresponding problem for the
scalar curvature we can show that this term vanishes:

Theorem 1.2([GV00]). — Let M be compact and three–dimensional. If g is a critical
point of F2|Ξ , then g is hyperbolic.

The proof of Theorem 1.1 naturally divides into two cases: first, assuming the
critical metric g has σ2(C) > 0, then the more difficult case of σ2(C) = 0. The
former case further divides into two parts, according to whether the scalar curvature
is strictly positive or strictly negative.
The Euler equation for F2 is quite complicated; see [GV00] for a detailed account

of the first variation. The precise formula is:

(∇F2)ij =
1
2
∆Eij +

1
24
∆Rgij −

1
8
∇i∇jR

− 2EimEmj −
5
24

REij +
1
36

R2gij −
3
2
σ2(C)gij .

(1.6)

For the proof of the case when σ2(C) > 0 and R > 0 it will be helpful to introduce
the tensor T = −Ric+ 1

2Rg. The significance of T is the following: suppose Π is a
non-degenerate tangent plane in TpM for some p ∈ M . If u ∈ TpM is a unit normal
to Π, then the sectional curvature of Π is T (u, u). In particular, if σ2(C) > 0 and
R > 0 then by Proposition 1.1 the tensor T is positive definite. In fact, the same
argument shows that when R > 0 but σ2(C) ≥ 0, then T is positive semi-definite.
Now suppose that g is critical for F2|M1 . Taking the inner product with E on both

sides of (1.6) we get

(1.7)
1
4
T ij∇i∇jR = ∆σ2(C) + |∇E|2 − 1

24
|∇R|2

+ 4 trE3 +
5
12

R|E|2 + 2g(∇F2, E),

where trE3 = Ej
i E

k
j E

i
k. Since g is critical, ∇F2 = 0 and ∆σ2(C) = 0, so

1
4
T ij∇i∇jR = |∇E|2 − 1

24
|∇R|2 + 4 trE3 +

5
12

R|E|2.(1.8)
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To show that E = 0 when σ2(C) > 0 and R > 0 we use the maximum principle,
which requires the following lemma:

Lemma 1.1. — Suppose g is critical for F2|M1 and σ2(C) ≥ 0. Let U ⊂ M be an
open set on which R > 0. Then in U ,

1
4
T ij∇i∇jR ≥ 1√

6
|E|3.(1.9)

Proof. — Since σ2(C) is a non-negative constant, it is easy to see that

|∇E|2 ≥ 1
24

|∇R|2.(1.10)

If we substitute this into (1.8) we obtain
1
4
T ij∇i∇jR ≥ 4 trE3 +

5
12

R|E|2.(1.11)

Using the sharp inequality

trE3 ≥ − 1√
6
|E|3,(1.12)

we conclude
1
4
T ij∇i∇jR ≥ − 4√

6
|E|3 + 5

12
R|E|2.(1.13)

Since σ2(C) ≥ 0, we have R ≥ 2
√
6|E|, thus

1
4
T ij∇i∇jR ≥ − 4√

6
|E|3 + 5

12
2
√
6|E|3 = 1√

6
|E|3.(1.14)

Now if σ2(C) > 0 and R > 0 on M , then we can apply Lemma 1.1 on U =M . Since
T > 0, we conclude by the maximum principle that E ≡ 0 on M .
The case where σ2(C) > 0 and R < 0 requires a different idea. The argument

in ([GV00]) is very much inspired by the work of Koiso ([Koi78]) and Bourguignon
([Bou81]). Here we will offer a different (but equivalent) argument which seems more
natural, in part because it sheds some light on the rather roccoco expression for the
gradient in (1.6).
Note that the tensor C, being a section of S2(M), can alternatively be viewed as

a one-form with values in the cotangent bundle T ∗M . We will write this as C ∈
Ω1(T ∗M). Now consider the complex

Ω0(T ∗M)→ Ω1(T ∗M)→ Ω2(T ∗M)→ · · ·(1.15)

The Riemannian connection ∇ : Ω0(T ∗M)→ Ω1(T ∗M), and induces the exterior de-
rivative d∇ : Ω1(T ∗M)→ Ω2(T ∗M). We also have the adjoint maps δ∇ : Ω2(T ∗M)→
Ω1(T ∗M) and ∇∗ : Ω1(T ∗M)→ Ω0(T ∗M). Note that ∇∗ is just the usual divergence
operator on symmetric two-tensors. Moreover, a manifold is locally conformally flat
if and only if the tensor C satisfies d∇C ≡ 0.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000



172 M.J. GURSKY

Using these operators, we can now give an alternative description of the Euler
equation for F2:

Lemma 1.2. — The gradient of F2 is given by

∇F2 = −1
4
δ∇d∇C + ΛC ,(1.16)

where ΛC is a tensor which is given in local coordinates by

(ΛC)ij = −1
2
CikCjk +

1
4
|C|2gij +

1
8
RCij −

1
64

R2gij .(1.17)

Aside from aesthetic considerations, the advantage of writing the gradient of F2 in
this form is two-fold: first, it shows that the highest order terms in (1.6) are collectively
a Hodge-laplacian defined on the appropriate bundle. The second advantage can been
seen from the following lemma:

Lemma 1.3. — If the scalar curvature R ≤ 0, then there is a positive constant a such
that the following inequality holds:

g(ΛC , C) ≤ −a|E|σ2(C).(1.18)

Moreover, if equality holds in (1.18), then the trace-free Ricci tensor E of g must have
eigenvalues λ, λ,−2λ for some λ.

Combining (1.16) and (1.18), we can now complete the proof of the case when
σ2(C) > 0 and R < 0. Taking the inner product of both sides of (1.16) with C and
integrating over M , then appealing to (1.18), we conclude

0 ≤
∫

M

(
−1
4
|d∇C|2 − a|E|σ2(C)

)
d vol .(1.19)

Therefore, E ≡ 0.
When σ2(C) ≡ 0, then the above argument does not quite work. The first (and

most serious) obstacle is that we have no a priori knowledge of the sign of R. However,
appealing to Lemma 1.1, we can actually argue that R ≤ 0 on M . For, suppose
U = {p ∈ M : R(p) > 0} is non-empty. Let p ∈ U be a point at which R attains its
maximum. At p the Hessian of R is negative semi-definite, while T is positive semi-
definite. It follows from (1.9) that |E| = 0 at p. Since σ2(C) = − 1

2 |E|2 + 1
48R

2 = 0,
we conclude that R(p) = 0.
This fact allows us to appeal to (1.18), and repeat the argument for the case when

R < 0. Since σ2(C) ≡ 0, though, we can’t conclude that |E| ≡ 0. But we can conclude
two things: first, (1.19) tells us that d∇C = 0; i.e., (M, g) is locally conformally flat.
Second, equality must hold in (1.18) at each point of M . These observations give us
the following characterization of critical metrics with σ2(C) ≡ 0:

Theorem 1.3. — Let M be compact and three-dimensional. Then g is critical for
F2|M1 with F2[g] = 0 if and only if R ≤ 0, g is locally conformally flat, and the
eigenvalues of the tensor Cg are {0, 0, R/4}.
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Using (1.3), we can provide a local classification of such critical metrics:

Theorem 1.4. — Let M be compact and three-dimensional. If g is critical for F2|M1

with F2[g] = 0 then for p ∈ M , either
(i) the sectional curvature vanishes at p, or
(ii) there exists a local coordinate system {x, y, t} around p mapping a neighborhood
of p to a cube in R3 in which the metric g takes the form

g = dx2 + dy2 + f(x, y, t)2dt2,(1.20)

where
f(x, y, t) = a(t)(x2 + y2)− 2b(t)x− 2c(t)y + d(t).

with a(t), b(t), c(t), d(t) some functions of t.

We are now in a position to at least sketch the proof of the final case of the main
theorem. The actual arguments are fairly delicate, so we can only provide an overview.
But hopefully some flavor of the complexities will be preserved in this necessarily brief
recounting.
We begin by assuming that our critical metric is not flat. It then follows that the

scalar curvature attains a global negative minimum at some point p ∈ M . Near p, we
can refine the local expression (1.20) somewhat; in particular, f takes the form

f(x, y, t) = (x− b(t))2 + (y − c(t))2 + d(t),(1.21)

with d(t) > 0, and b(0) = c(0) = 0. We now argue that the coordinates {x, y, t}
can be extended locally in t, but globally in {x, y}. The point is the following: at
each point of M where the scalar curvature is negative, the tensor C has precisely
two eigenvalues, 0 (multiplicity 2) and R/4 (multiplicity 1). Thus, the tangent space
splits into two subspaces; this gives rise to two distributions which we call V0 and
VR/4. Note that these distributions are well-defined away from the zero set of R.
Now, since C is a Codazzi tensor, both V0 and VR/4 are integrable. In particular, the
integral manifolds of V0 induce a foliation by flat, totally geodesic leaves. Using the
exponential map, we show that the {x, y} coordinates are globally defined on a leaf
through a minimum point of R.
Indeed, near such a minimum point, the leaves of the foliation can be parametrized

in a natural way. This allows us to define a diffeomorphism between Euclidean three-
space and an open union of leaves. Using the {x, y, t} coordinates to compute the
pull-back of the volume form under this diffeomorphism, we see that the induced
volume is infinite. Since M is compact, it must be flat.

Remarks

1. The local formula for the metric in (1.4) can be used to give many examples
of complete, non-compact manifolds which are critical for F2 in the sense that
they are stationary over all compactly supported variations.
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2. The constrained problem of restricting to the space of metrics with σ2(C) ≡
const. > 0 and R < 0 requires some technical background. For this reason we
will not provide the details here. But the essential point, as we observed above,
is that the Lagrange multiplier term vanishes, reducing the analysis to one of
the cases above.

3. It is natural to ask under what conditions a three-manifold M admits a metric
with σ2(C) ≥ 0. First, note that if M admits a metric g with σ2(C) ≡ 0 but no
metric with σ2(C) > 0, then g is necessarily critical for F2. It follows that g is
flat. IfM admits a metric g with σ2(C) > 0, then g has either strictly positive or
strictly negative sectional curvature. In the positive case, in view of Hamilton’s
work ([Ham82]), M must also admit a metric of constant positive sectional
curvature. So it remains to characterize three-manifolds which admit a metric
with σ2(C) > 0 and R < 0. This is potentially a very important question: it has
been conjectured for some time that a negatively curved three-manifold admits
a hyperbolic metric. The following conjecture therefore seems reasonable:

Conjecture. — A compact three-manifold M admits a metric g with σ2(Cg) > 0
if and only if M admits a metric with constant sectional curvature.

2. Four-manifolds with positively pinched Ricci curvature

In four dimensions, the tensor C appearing in the decomposition of the curvature
tensor described above is given by C = Ric− 1

6Rg. Moreover, the integral

(2.1)
∫

M

σ2(C) d vol

is conformally invariant. This just follows from the Chern-Gauss-Bonnet formula for
four-manifolds:

8π2χ(M) =
∫

M

(
|W |2 + σ2(C)

)
d vol .(2.2)

While the positivity of σ2(C) no longer imposes a sign condition on the sectional
curvature (as it did in three dimensions), it does impose a sign on the Ricci curvature:

Lemma 2.1. — Suppose σ2(C) > 0. Then either R > 0 or R < 0. Moreover, Ric > 0
(resp. Ric < 0) and S = −Ric+ 1

2Rg > 0 (resp. S < 0) assuming R > 0 (resp.
R < 0).

Note that the positivity of the tensor S implies that each eigenvalue of Ric is
positive, but less than the sum of the other three.
In joint work with S.Y.A. Chang and P. Yang ([CGY00]), we have proved an

existence result for metrics with σ(C) > 0, only assuming a sign on the integral in
(2.1) and the positivity of the scalar curvature:
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Theorem 2.1. — Assume that (M, g0) is a compact four-manifold of positive scalar
curvature with ∫

M

σ2(Cg0 ) d volg0 > 0.(2.3)

Then there is a conformal metric g = e2wg0 with σ2(Cg) > 0.

In particular, this result gives a method for constructing a large class of conformal
four-manifolds with positively pinched Ricci curvature.
The proof of Theorem 2.1 is quite involved, but some essential features are worth

noting here. The basic idea is to introduce a regularized problem, then show that one
can take the appropriate limit to construct a metric with σ2 > 0.
More precisely, we actually consider two additional variational problems, one local

and one non-local. The first is the (local) functional

g �−→
∫

R2
g d volg .(2.4)

If we restrict this functional to a fixed conformal class of metrics, then the gradient
is given by −6∆R.
The second functional is non-local, and arises in spectral theory. If we let L =

−6∆+R denote the conformal Laplacian, then one can introduce a regularized notion
of the determinant of L (see [BO91]). Fixing a metric g0, for any conformal metric
g we consider the functional

g �−→ log
det(Lg)
det(Lg0)

.(2.5)

The gradient for this functional is |W |2 + 1
3∆R − 2σ2(C), where W is the Weyl

curvature tensor (see [CY95]). Therefore, by taking an appropriate linear combina-
tion of these two actions, one arrives at our regularized equation:

σ2(C) = δ∆R + c0|W |2(2.6)

where c0 is a positive constant.
The idea, if not the details, should now be clear: first, we need to show that (2.6)

admits a solution for any δ > 0. Second, we need to study what happens as δ → 0.
For the existence part, we rely on the work of Chang and Yang ([CY95]), which

gives sufficient conditions for the existence of extremals for (2.5). This corresponds to
establishing the existence of solutions to (2.6) with δ � 0. For small values of δ > 0
we use the continuity method, and this requires us to first understand the linearized
problem.
The linearized operator is fourth order, and the principal symbol depends on δ.

Thus, as δ → 0, invertibility becomes a delicate issue. Moreover, when δ is small, the
lower order terms in the regularized equation become important. If we take δ = 0 in
(2.6) then the resulting equation is of Monge-Ampere type; thus, our estimates for
the regularized equation are very much inspired by the methods developed for real
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Monge-Ampere equations. However, our analysis uses integral, and not pointwise,
estimates: (2.6) is fourth order, so the maximum principle is not available. In any
case, we are eventually able to obtain strong enough Sobolev estimates to allow us to
take δ → 0.
It will be interesting to see whether the methods developed in ([CGY00]) an be

applied to other geometric variational problems.
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