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TORIC MORI THEORY AND FANO MANIFOLDS
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Abstract. — The following are the notes to five lectures on toric Mori theory and Fano
manifolds given during the school on toric geometry which took place in Grenoble in
Summer of 2000.
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These are the notes to five lectures which I gave during the school on toric geometry
in Grenoble in the Summer of 2000. The first week of the three week long school was
meant to introduce the basics of toric geometry to the students while the other two
weeks were devoted to advanced topics. Therefore the idea of the present notes is
to give a brief and self-contained introduction to an advanced and broad topic to
students who have just learned the fundamentals of toric language.
I claim no originality on the contents of these notes. Actually, they are primarily

based on Miles Reid article [11]. An exposition of Mori theory in general can be found
in [5]. Moreover Lecture 3 uses ideas of [12] while Lecture 5 is related to [3].

All varieties are algebraic and defined over C.
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250 J.A. WIŚNIEWSKI

0. Short introduction: Minimal Model Program

In the course of the first week’s lectures you have learned basics of toric geometry.
You must have noticed that the theory is nice, clear and elegant, even too good to
be true. And, indeed, that’s right: toric varieties are very, very rare among algebraic
varieties, so don’t be confused: toric geometry is less than tip of the iceberg of alge-
braic geometry. Nevertheless it is very, very useful. Firstly because you can test your
theories and conjectures (wisely posed!) in the toric environment. Secondly, because,
as special as it is, toric geometry gives a very close insight in the local structure of
varieties, where “local” is in analytic or formal neighborhood sense (not Zariski!). I’ll
try to illustrate these two principles in the course of my lectures.
We set for the classification of complex projective varieties of given dimension.

Our primary examples are complex curves (or Riemann surfaces). The contents of
the following table is referred to frequently when it comes to explaining principles of
classification theory which includes the apparent trichotomy.

Sphere with g handles: g = 0 g = 1 g � 2
Fundamental group: trivial Z2 2g generators
Curvature: positive zero negative
Holomorphic forms: none non-vanishing g independent
Holomorphic vector fields: 2 independent non-vanishing none
Canonical divisor KX : negative zero positive

I shall focus on the canonical divisor. Let me recall the following:

Definition. — Let X be a normal variety of dimension n, with X0 ⊂ X denoting its
smooth part. The canonical divisor KX is a Weil divisor obtained by extending the
divisor KX0 associated to the sheaf of holomorphic n-forms ΩnX0

= Λn(ΩX0 ).

We will need moreover the following.

Definition. — Let L be a Q-Cartier divisor on a normal variety X , that is, a multiple
mL, with m ∈ Z is a Cartier divisor. We say that L is nef (numerically effective)
if the intersection L · C = (1/m) degC(mL|C) is non-negative for any compact curve
C ⊂ X .

Apart from the curve case we have the following observation in dimension 2 which
is an easy corollary to Enriques-Kodaira classification of smooth complex surfaces:
each projective surface can be modified birationally – using blow-ups and blow-downs
– either to a P1 bundle over a curve, or to a surface with nef canonical divisor.
Based on this (very roughly presented) evidence one can state

Minimal Model Conjecture. — Any projective normal variety X is birationally equiv-
alent to a normal projective variety X ′ which satisfies one of the following:
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(i) X ′ admits Fano-Mori fibration ϕ : X ′ → Y , that is: ϕ is a projective morphism
with connected fibers, ϕ∗OX′ = OY , onto a normal variety Y , with dimY < dimX ′,
and −KX′ ample on fibers of ϕ, or
(ii) X ′ is minimal which means that KX′ is nef (such X ′ is then called a minimal

model of X).

At this point I am rather vague about possible singularities of the involved varieties,
however we have to assume that KX′ is Q-Cartier at least.

Here is an idea how to approach the Conjecture:

(1) Locate curves which have negative intersection with canonical divisor, under-
stand their position in homology of X : use Cone Theorem [Mori, Kawamata].
(2) Eliminate some of these curves by contracting them to points: use Contraction

Theorem [Kawamata, Shokurov]; chances are that we shall get Fano-Mori fibration, or
we get a birational morphism to a simpler variety; unfortunately the birational map
may also lead to a variety with very bad singularities (case of small contractions), so
that the canonical divisor is not Q-Cartier.
(3) If the contraction leads to bad singularities use birational surgery (flips) to

replace curves which have negative intersection withKX by curves which have positive
intersection with KX : this should be possible by Flip Conjecture (proved by Mori in
dimension 3).

Although the Minimal Model Conjecture is void for toric varieties (they are ratio-
nal, hence birational to a Fano-Mori fibration), they can be used effectively to test
steps of the Program and possibly to describe local (in the analytic, or formal sense)
geometry of non-minimal varieties. In the course of the present lectures I will review
the main ideas of Minimal Model Program in the situation of toric varieties.

Let me recall toric notation.

M � Zn lattice of characters of a torus T � (C∗)n

N = Hom(M,Z) lattice of 1-dimensional subgroups of T
MR and NR vector spaces in which they live
〈v1, . . . , vk〉 convex cone spanned on vectors v1, . . . , vk
conv(v1, . . . , vk) (affine) convex hull of points v1, . . . , vk
X = X(∆) toric variety associated to a fan ∆ in NR

∆(k) the set of k dimensional cones in ∆
V (σ) ⊂ X(∆) stratum (= closure of the orbit) associated to a cone σ ∈ ∆
Moreover, I will frequently confuse rays in ∆(1) with primitive elements from N

generating them: for a ray ρ ∈ ∆(1) I will always consider the (unique) primitive
element e ∈ N ∩ ρ.

We usually assume that fans are non-degenerate, that is any cone σ ∈ ∆ is strictly
convex: σ ∩ −σ = 0. Now I shall consider a slightly more general situation. Let
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252 J.A. WIŚNIEWSKI

V ⊂ NR be a rational vector subspace, then I call ∆∗ a fan with vertex V if it
satisfies the usual conditions of a fan with strict convexity of cones replaced by

∀σ ∈ ∆∗ : σ ∩ −σ = V

The star ∗ in ∆∗ will indicate that the fan ∆∗ has possibly non-trivial vertex. (The
fans in the usual sense have vertices equal to {0}.)
If ∆∗ is a fan in NR with a vertex V then we can define a lattice N ′ = N/(N ∩V ),

so that N ′
R
= NR/V . Then the fan ∆∗ descends to a nondegenerate fan ∆∗/V in N ′

R

and X(∆∗/V ) is a toric variety of dimension n− dimV .
Let me recall that Γ is a sub-division of ∆ if |∆| = |Γ| and any cone in ∆ is a

union of cones from Γ. If both fans are non-degenerate then this defines a birational
morphism X(Γ) → X(∆). If a fan ∆∗ with a vertex V has a sub-division to a non-
degenerate fan Γ then we have a morphism X(Γ)→ X(∆∗/V ), general fiber of which
is of dimension dimV .

1. Cone Theorem

First, let me recall basic facts about the intersection on toric varieties. We start
with a complete algebraic variety X . Let N1(X) ⊂ H2(X,R) and N1(X) ⊂ H2(X,R)
be the R-linear subspaces spanned by, respectively, cohomology and homology classes
of, respectively, Cartier divisors and holomorphic curves on X . The class of a curve
C in N1(X) will be denoted by [C].
The intersection of cycles and cocycles restricts to N1(X)×N1(X) and provides a

non-degenerate pairing. Thus we can identify any space in question with the dual of
its pairing partner.
The following definition describes a convenient class of varieties.

Definition. — A normal variety X is called Q-factorial if some multiple of any Weil
divisor is a Cartier divisor.

For toric varieties we have a clear description of Q factoriality.

Proposition. — A toric variety X = X(∆) is Q-factorial if and only if the fan ∆ is
simplicial, that is all the cones in ∆ are simplicial.

Note that if X = X(∆) is Q-factorial then for any ρi ∈ ∆(1) the Weil divisor V (ρi)
is Q-Cartier. Let R∆(1) be an (abstract) real vector space in which vectors called ẽi,
with ei primitive in ρi ∈ ∆(1), form an orthonormal basis. We have the following
exact sequences of vector spaces, dual each to the other,

0 −→ MR −→ R∆(1) −→ N1(X) −→ 0

0 −→ N1(X) −→ R∆(1) −→ NR −→ 0
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with arrows in the first sequence defined as MR � m �→
∑

ei(m) · ẽi and ẽi �→ V (ei)
while the maps in the second sequence are as follows N1(X) � Z �→

∑
(Z · V (ρi)) · ẽi

and ẽi �→ ei.

Corollary. — If X = X(∆) is a Q-factorial toric variety defined by a fan ∆ then
N1(X) can be interpreted as the space of linear relations between primitive vectors ei
in rays ρi ∈ ∆(1).

Now, for an arbitrary varietyX , we consider the following cones in the linear spaces
defined above: the cone of curves (called also the cone of effective 1-cycles, or Mori
cone) NE(X) ⊂ N1(X) and the cone of nef divisors P = P(X) ⊂ N1(X); they are
R�0-spanned by, respectively, the classes of curves and numerically effective divisors.
Note that P and NE (the closure of NE) are — by their very definition — dual each
to the other in the sense of the intersection pairing of N1(X) and N1(X). If X is
projective then, by Kleiman criterion of ampleness, the cone NE(X) is strictly convex.

Let me explain one of the starting points of the Program: Mori’s move–bend–and–
break argument. In toric case this is particularly explicit: if X is a complete toric
variety then every effective cycle on X is numerically equivalent to a positive linear
combination of some 1-dimensional strata of the big torus action.
Let C ⊂ X(∆) be an irreducible curve. Suppose that C is contained in a stratum

V (σ) which is of the smallest dimension among the strata containing C. If dimV (σ) =
1 then there is nothing to be done, otherwise we want to deform C to a union of curves
belonging to lower-dimensional strata. We may assume — possibly by passing to a
smaller dimensional toric variety — that V (σ) = X(∆) which means that the general
point of C is contained in the open orbit of X(∆). If dimX(∆) = 2 then we note that
fixed points of the action of T on the linear system |C| are associated to combination
of 1-dimensional strata of X(∆), hence we are done in this case.
Now, let dimX(∆) > 2 and C ⊂ X be an irreducible curve. Let λ ∈ N be general

and consider the action C∗×X(∆)→ X(∆) of the 1-parameter group coming from λ,
we denote it (t, x) �→ tλ ·x. We may assume that the action has only a finite number of
fixed points. The action gives a morphism C∗×C → X(∆) and hence a rational map
C × C−→ X(∆). Blowing up the points of indeterminacy we resolve this map, that
is we find a surface S, a regular morphism ψ : S → X(∆) and a projection π : S → C,
such that ψ(π−1(1)) = C. Over C∗×C we have a natural C∗-action which lifts up to S
so that both ψ and π are C∗ equivariant. The (reducible) curve ψ(π−1(0)) is invariant
with respect to the action of λ, thus it is a union of closures of 1-dimensional orbits of
λ. Note that to make it numerically equivalent to the original C the components of
the curve ψ(π−1(0)) may have to be assigned multiplicities depending on the degree
of the map ψ on components of π−1(0); moreover, via the action of the group the
generic point of C is moved toward a fixed point of the action (to so-called sink, or
source, of the action on X(∆)) and thus the strict transform of {0} × C in S gets
contracted to this point.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



254 J.A. WIŚNIEWSKI

Now to conclude the argument we consider the case when C is the closure of an orbit
of λ contained in the open orbit of X(∆). After choosing appropriate identification
of the open orbit with the torus we can assume that C is the image of P1 under the
morphism of toric varieties P1 → X(∆) given by the inclusion of the line R ·λ → NR.
Now let us choose a rational plane Π ⊂ NR which contains R · λ and meets any cone
from ∆ of dimension � n − 2 only at the origin. On the plane Π we consider the
lattice NΠ = Π ∩ N and the fan ∆Π obtained by restricting ∆ to Π. This defines a
toric surfaces X(∆Π) together with a toric morphism X(∆Π)→ X(∆). Moreover, by
our assumptions on Π, 1-dimensional strata of the surface X(∆Π) are mapped to 1-
dimensional strata of X(∆) (that is, images of Π invariant curves are ∆ invariant) and
the morphism P1 → C ⊂ X(∆) factors equivariantly through X(∆Π). We already
have noticed that on a toric surface each curve is linearly equivalent to a sum of
1-dimensional strata so we are done. Thus we have the following result:

Toric Cone Theorem (Reid). — Let X = X(∆) be a complete toric variety. Then

NE(X) =
∑

ω∈∆(n−1)

R�0 · [V (ω)]

In particular NE(X) is a closed rational polyhedral cone and it is strictly convex if
and only if X is projective.

Now if we compare it with the Kleiman criterion for ampleness we get: a Cartier
divisor (line bundle) on a toric variety is ample if and only if its intersection with any
1-dimensional stratum is positive.

There is a special name for the edges of the cone NE(X).

Definition. — 1-dimensional faces (half-lines, rays) of the cone NE(X) are called ex-
tremal rays. More precisely, a ray R ⊂ NE(X) is an extremal ray if given Z1, Z2 ∈
NE(X) such that Z1 + Z2 ∈ R then Z1, Z2 ∈ R. If an extremal ray R satisfies
R ·KX < 0 then it is called Mori extremal ray.

Note that in the toric case the existence of extremal rays of NE(X) implies that the
cone in question is strictly convex (does not contain any non-zero linear subspace),
hence X is projective. Thus, whenever we talk about extremal rays then X is assumed
projective.
The Mori extremal rays are the only ones which appear in the general version of

the cone theorem.

General Cone Theorem (Mori, Kawamata). — Let X be a complex projective variety
with canonical singularities (singularities will be explained later in my 4th lecture).
Then

NE(X) = NE(X) ∩ {Z ∈ N1(X) : Z ·KX � 0}+
∑
ν

Rν

where Rν are Mori extremal rays.
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Note that the above theorem does not give any information on NE(X) ∩
{Z ∈ N1(X) : Z ·KX � 0}. In fact, this part of the cone may be neither polyhedral
nor closed, see examples in [5]. Mori’s proof of the cone theorem for smooth varieties
is based on a version of move–bend–and–break argument which was explained above
in the toric case. The hard part is to make a curve to move – the property which was
given in the toric case for free. For this purpose Mori used deformation of morphisms
and, in addition, positive characteristic arguments, see [5] for an exposition of the
method.

Example. — The case of toric surfaces is elementary but important (it will be used
in the subsequent lecture). Let X = X(∆) be a complete toric surface. Suppose that
b is a positive number and 〈e1, e2〉 and 〈e1, ae1 − be2〉 are in ∆. Assume that V (〈e1〉)
is in an extremal ray. Then:

(i) if a < 0 then ∆(1) = {〈e1〉, 〈e2〉, 〈ae1 − be2〉} and therefore N1(X) is of dimen-
sion 1; such X can be shown to be a quotient of the projective plane,
(ii) if a = 0 thenX is a“generalizedHirzebruch surface”, that is: its fan is generated

by the following rays: 〈e1〉, 〈e2〉, 〈−e2〉, 〈−ce1+ de2〉 and the projection along the line
R · e2 produces a regular map (ruling) onto P1,
(iii) if a > 0 then the fan ∆ is a sub-division of a fan ∆′ which is obtained from ∆

by forgetting the ray 〈e1〉 and replacing two cones 〈e1, e2〉 and 〈e1, ae1 − be2〉 by one
cone 〈e2, ae1−be2〉; the associated birational morphism X(∆)→ X(∆′) is a weighted
blow-down.

The knowledge of the cone NE(X) is valuable because it gives information on
morphisms of X . That is, a morphism of projective normal varieties ϕ : X → Y

determines a face NE(X/Y ) of the cone NE(X) which consists of 1-cycles contracted
by ϕ or, equivalently NE(X/Y ) = NE(X) ∩ {Z : ϕ∗L · Z = 0} for any ample L
over Y . If in addition ϕ has connected fibers then it is called a contraction of the
face NE(X/Y ) and its target Y is determined uniquely by ϕ∗L. Namely, in this case
the variety Y can be recovered by the formula Y = Proj(

⊕
m�0 H

0(X,mϕ∗L)). This
property, called sometimes “fundamental triviality of Mori’s program”, occasionally
can be inverted, that is: given a face we can produce its contraction. We will discuss
it in the next lecture.

Let me finish this lecture with a series of exercises related to ampleness of line
bundles over toric varieties. Let ∆ be a simplicial complete fan in NR with the set
of rays ∆(1) = {ρ1, . . . , ρk}, each ray ρi generated by a primitive ei ∈ ρi ∩ N . Let
L = OX(

∑
biV (ρi)) be a line bundle on X = X(∆). Recall that the total space of

the bundle L is defined as the relative spectrum V(L) = SpecX(
⊕

m�0 L
⊗−m).

(1) Prove that the total space of the line bundle L is a toric variety whose fan ∆′

in N ′
R
, with N ′ = N ⊕ Z · e0, is constructed as follows:
(i) its rays are generated by e′0 = e0 and e′i = ei − bie0, for i = 1, . . . , k,
(ii) if 〈ei1 , . . . , eir 〉 ∈ ∆ then 〈e′i1 , . . . , e

′
ir
〉 ∈ ∆′ and 〈e′0, e′i1 , . . . , e

′
ir
〉 ∈ ∆′
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Let us set γ = γ(L) = |∆′|, where ∆′ is the fan defined above.
(2) Let ψL : NR → R be a continuous function which is linear on any cone σ ∈ ∆

and such that ψL(ei) = −bi. Prove that
(i) The graph of ψL in NR × R coincides with the boundary of γ(L).
(ii) The line bundle L is spanned by global sections if and only if the function

ψL is convex, that is ψL(u+ v) � ψL(u) + ψL(v).

(3) Prove that if γ(L) is a strictly convex cone then the affine toric variety Uγ(L)

is isomorphic to Spec(
⊕

m�0 H
0(X,L−m)).

(4) Prove that L−1 is ample if and only if γ(L) is a strictly convex cone whose
1-dimensional faces are spanned by e′i, where i = 1, . . . , k, (equivalently, 〈e′i1 , . . . e′ir〉
is a proper face of γ(L) if and only if 〈ei1 , . . . , eir〉 ∈ ∆).
(5) Prove Grauert criterion for toric varieties: A line bundle L−1 is ample

if and only if the morphism of the total space of the dual bundle V(L) →
Spec(

⊕
mH0(X,L−m)), defined by the evaluation of sections, is an isomorphism

outside of the zero section in V(L) and contracts the zero section to the vertex of the
cone.

2. Contraction Theorem

From now on I will always assume that X = X(∆) is a Q-factorial complete toric
variety, that is: the fan ∆ is simplicial and |∆| = NR. I will also frequently refer to
the following

Set-up. — We consider 1-stratum V (ω) ⊂ X(∆) associated to a cone ω =
〈e1, e2, . . . en−1〉 where ei are primitive lattice elements on rays spanning ω. The cone
ω separates two n-dimensional cones from ∆

δn+1 = 〈e1, e2, . . . , en〉, δn = 〈e1, e2, . . . , en−1, en+1〉
where en and en+1 are primitive on rays on opposite sides of ω. We write ρi for the
ray generated by ei. We have a relation

n+1∑
i=1

aiei = 0

with an+1 = 1, ai ∈ Q and indexes ordered so that

ai < 0 for 1 � i � α

ai = 0 for α+ 1 � i � β

ai > 0 for β + 1 � i � n+ 1

If X(∆) is smooth along V (ω), or equivalently if {e1, . . . , en} and {e1, . . . , en−1, en+1}
are bases for N then V (ω) is the complete intersection

⋂n−1
i=1 V (ρi) and the numbers

ai form the splitting type of the normal bundle of V (ω) in X , that is NV (ω)/X �
O(a1)⊕· · ·⊕O(an−1). If X(∆) is only Q-factorial then for a cone σ ∈ ∆ we define the
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number mult(σ) as the index of the sub-lattice generated by the primitive generators
of rays of σ inside the lattice N ∩ (σ − σ). Then we have the following fact about
intersection numbers.

Proposition. — Let V (ρ) ⊂ X(∆) be a divisor corresponding to a ray ρ = R�0 · e ∈
∆(1), with e ∈ N primitive in ρ. Then

(i) V (ρ) · V (ω) = 0 if e �∈ {e1, e2, . . . , en, en+1},
(ii) V (ρn+1) · V (ω) = mult(ω)/mult(δn) > 0,
(iii) V (ρi) · V (ω) = aiV (ρn+1) · V (ω) for i = 1, . . . , n.

As an immediate consequence we get

Corollary. — Suppose that R = R�0 · [V (ω)] is an extremal ray. Then the numbers
α and β, as well as the primitive vectors e1, . . . , eα, eβ+1, . . . en+1 (and the rays ρi
spanned on them) defined above depend on the ray R only. Moreover, if we choose a
cone ω′ ∈ ∆(n − 1) such that [V (ω′)] ∈ R then ρ1, . . . ρα are among the edges of ω′

and for k � β + 1 the ray ρk is either an edge of ω′ or of one of the two adjacent
n-dimensional cones.

Proof. — If we choose ω′ such that the curve V (ω′) is numerically proportional to
V (ω) then the divisors which have negative or, respectively, positive intersection with
them are the same — hence the result.

We have an explicit description of the Mori cone in terms of the linear spaces which
we have introduced in the previous lecture.

Proposition. — If N1(X) ↪→ R∆(1) is identified with the subspace of linear relations
between primitive generators of rays in ∆(1) then

N1(X) ⊃ NE(X) =
∑

ω∈∆(n−1)

R�0 · [a1ẽ1 + · · ·+ aαẽα + aβ+1ẽβ+1 + · · ·+ an+1ẽn+1]

with ei and ai defined for ω as in our set-up.

Proof. — We can evaluate the product

(a1ẽ1 + · · ·+ aαẽα + aβ+1ẽβ+1 + · · ·+ an+1ẽn+1, ẽj) = c · V (ω) · V (ρj)
where c is a positive constant which depends on ω and the choice of en+1. Thus the
class of V (ω) lies in the ray spanned by the vector a1ẽ1 + · · · + aαẽα + aβ+1ẽβ+1 +
· · ·+ an+1ẽn+1.

We need to introduce more notation:

δi = 〈e1, e2, . . . ̂ i . . . en, en+1〉,
ω′
i = δi ∩ δn+1 = 〈e1, e2, . . . ̂ i . . . , en−1, en〉,
ω′′
i = δi ∩ δn = 〈e1, e2, . . . ̂ i . . . , en−1, en+1〉,

σi = ω′
i ∩ ω′′

i = 〈e1, e2, . . . ̂ i . . . , en−1〉
Note that δi does not have to belong to the fan ∆.
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Now we assume that [V (ω)] ∈ R, where R ⊂ NE(X) is an extremal ray, and
thereforeX is projective. The following crucial result is proved by reducing to surfaces
strata V (σi), which is then essentially the example from the previous lecture.

Proposition. — In the above situation if ai > 0 then δi ∈ ∆ and the 1-dimensional
strata associated to w′

i and w′′
i are in R. If ai = 0 then there exists e′i ∈ ∆(1) such

that the star of σi in ∆ consists of four n-dimensional cones: the two which we already
have δn, δn+1 and in addition

δ′n = 〈e1, . . . ei−1, e
′
i, ei+1, . . . , en−1, en+1〉,

δ′n+1 = 〈e1, . . . , ei−1, e
′
i, ei+1, . . . , en−1, en〉,

and their faces. Moreover the 1-stratum V (ω′) := V (δ′n ∩ δ′n+1) is in R.

We have just noted that if in our set-up the number ai is positive then, from the
point of view of the extremal rayR, the roles of indexes i, n and n+1 can be exchanged.
On the other hand the numbers ai have appeared in measuring the intersection of 1-
dimensional strata with divisors. Thus we can choose a curve in the ray which is
minimal in this respect. That is, we can renumber ei for i = β + 1, . . . , n+ 1 in such
a way that V (ρn+1) · V (ω) � V (ρi) · V (ω) for all i. Then the curve C = V (ω) will
have its class in the same ray as before and in addition ai � 1, for i = 1, . . . , n + 1.
(We call such a curve extremal.)

For an extremal ray R ⊂ NE(X) we define

Locus(R) =
⋃
{C ⊂ X : [C] ∈ R}

Proposition. — In the above set-up suppose that V (ω) is in an extremal ray R, then

Locus(R) = V (〈e1, . . . , eα〉)

Proof. — Locus(R) is a closed subset of X , and it is invariant with respect to the
action of TN , hence it is of the form V (σ) for some σ ∈ ∆. Since V (ρi) · R < 0, for
i = 1, . . . α, it follows that V (ρi) ⊃ Locus(R) hence V (〈e1, . . . eα〉) ⊃ Locus(R) and
σ ⊃ 〈e1, . . . eα〉. On the other hand Locus(R) = V (σ) ⊃ V (ω), hence σ is a face of
〈e1, . . . , en−1〉. However, from the previous proposition it follows that, switching from
ω to another ω′, whose class is in R, we can replace each of vertices eβ+1, . . . , en−1 by
en, while each of vertices ei, with i = α+ 1, . . . β can be replaced by e′i which is not
in the original collection. Thus σ is contained in 〈e1, . . . , eα〉 and we are done.

Corollary. — In the previous set-up, V (ω) has non-negative intersection with any
effective divisor if and only if Locus(R) = X (in this case we call R a nef extremal
ray). If α = 1 then Locus(R) = V (ρ1) is the only effective divisor whose intersection
with R is negative.
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In the non-toric case the locus of a ray may be not as nice as the toric case would
suggest: for example it can be disconnected.

Again, we need more notation:

δ(ω) = δn + δn+1 = 〈e1, e2, . . . , en, en+1〉
µ(ω) = 〈e1, . . . , eα, eβ+1, . . . , en+1〉

Since we already have noticed that the set of rays spanning µ(ω) is common for all
ω ∈ ∆(n− 1), such that [V (ω)] ∈ R, we can actually write µ(R) instead of µ(ω). We
note moreover that if α = 0 then µ(R) is a vector space.

Lemma. — There are the following two simplicial subdivisions

δ(w) =
n+1⋃
i=β+1

δi =
α⋃
i=1

δi

where the second equality makes sense if α > 0.

Proof. — Take x =
∑

i tiei ∈ ∆(ω). Choose j � β + 1 (or j � α) for which tj/aj is
minimum (maximum, respectively). Then we can write x =

∑
i[ti − (tj/aj)ai]ei and

all coefficients of ei are non-negative, and zero if i = j. So x ∈ δj and this proves the
simplicial sub-division.

Now let me note that NR � Rn can be written as the Cartesian product of
two linear spaces Rn = Rβ−α × Rn+α−β , where the first factor is spanned on the
(linearly independent) vectors eα+1, . . . , eβ and the second factor is spanned on
e1, . . . , eα, eβ+1, . . . en+1. Subsequently, δ(ω) can be written as the product of the
respective two cones, δ(ω) = 〈eα+1, . . . , eβ〉 × µ(R). In particular µ(R) can be
seen as the face of δ(ω) cut by the linear subspace {0} × Rn+α−β . If α = 0 then
−en+1 ∈ 〈eβ+1, . . . , en〉 hence 〈eβ+1, . . . en+1〉 = {0} × Rn−β.
In the proposition at the beginning of the lecture we have noticed that for i =

α+ 1, . . . β each ei has a twin e′i on the other side of the hyperplane spanned by the
remaining rays. Then ω′ = 〈e1, . . . , e′i, . . . , en−1〉 defines another curve in the ray R
and δ(ω′) = 〈e1, . . . , e′i, . . . , en+1〉, is a cone which has µ(R) as a face and lies on the
other side of the hyperplane spanned by ej , with j �= i. Now let me set V(R) =

⋃
δ(ω),

where the sum is taken over ω ∈ ∆(n − 1) such that [V (ω)] ∈ R. Then V(R) is a
convex neighborhood of µ(R) in NR.
The above discussion is needed for the proof of the following

Toric Contraction Theorem I (Reid). — Let ∆ be a complete simplicial fan, X = X(∆)
its toric variety, and suppose that R is an extremal ray of X. Let us remove from
∆(n − 1) all (n − 1)-dimensional cones ω associated to curves from R and for each
such ω replace the two adjacent cones δn and δn+1 from ∆(n) by the cone δ(w). Then,
taking respectively their faces in ∆(i), where i � n − 2, we get a complete fan ∆∗

R,
degenerate with vertex µ(R) if α = 0, nondegenerate if α �= 0. Moreover, if α = 0 then
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∆R := ∆∗
R/µ(R) is a complete simplicial fan. If α = 1 then ∆R := ∆∗

R is simplicial
as well.

The result follows from the above discussion and lemma we already proved: our
construction leaves the fan ∆ unchanged outside V(R), while V(R) itself is divided
into cones of the type δ(ω), each of them containing the cone µ(R). The induced
morphism ϕR : X(∆) → X(∆R) is what we have called the contraction of the ray
R and it has all the features listed in the following theorem (the projectivity will be
apparent later).

Contraction Theorem (Kawamata, Shokurov). — Let X be a projective variety with
terminal singularities. Then for any Mori ray R of X there exists a morphism (the
contraction of R) ϕR : X → XR such that:

(i) XR is a normal projective variety;
(ii) ϕR is a morphism with connected fibers: (ϕR)∗OX = OXR ;
(iii) a curve C ⊂ X is contracted to a point by ϕR if and only if [C] ∈ R.

Remark (notation as before). — Let ϕR : X = X(∆) → XR = X(∆R) be the toric
contraction coming from the above theorem. Then the exceptional set of ϕR is
V (〈e1, . . . , eα〉) and ϕR contracts it to V (µ(R)) ⊂ X(∆R) (if α = 0 then both are
equal to V (0)). Moreover,

(i) if α = 0 then dimXR = β and ϕR is a bundle whose fiber is a quotient of a
projective space.
(ii) if α = 1 then ϕR contracts the exceptional divisor V (ρ1) to a set in XR of

dimension β − 1.
(iii) if α > 1 then ϕR is birational and it is an isomorphism in codimension 1. The

ray R is then called small.

Let ϕR : X(∆)→ X(∆R) be a contraction of a ray R.
The construction of the toric contraction was pretty explicit and involved under-

standing the local structure of the variety. In general however one gets the contraction
as the result of the following theorem.

Base Point Free Theorem (Kawamata, Shokurov). — Let X be a projective variety with
terminal singularities and L a nef Cartier divisor such that tL−KX is ample for t � 0.
Then the linear system |mL| has no base points for sufficiently large m.

The contraction theorem follows from the base point freeness quite easily: given a
Mori rayR we have to choose a good supporting line bundle L such that the hyperplane
{Z ∈ N1(X) : Z · L = 0} meets NE(X) along R and NE(X)� R is in the half-space
which has positive intersection with L. Now we can take the morphism defined by
the linear system |mL|, call it ψ : X → Pr. It is clear that ψ contracts (only!)
curves from R, so if we take its connected part coming from the Stein factorization
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X → XR → ψ(X) ⊂ Pr then we get the contraction of the ray R. Equivalently, we
can define XR as the projective spectrum Proj(

⊕
M�0 H

0(X,mL)) and the morphism
X → XR is then defined by the evaluation of sections H0(X,mL)⊗O′

X → mL. Let
me note that the target of the contraction is projective since by the construction it
comes with an ample line bundle whose pull-back to X is the original bundle L.
The toric case has very nice base-point-free properties which is one of the main

reasons why our construction works that well. Namely, combining the results of
exercises which were at the end of the previous lecture with the numerical properties
of the intersection which has been discussed today we get.

Lemma. — Let X = X(∆) be a Q-factorial complete toric variety and let consider a
line bundle L = OX(

∑
i biV (ei)) over X. Then L is nef if and only if it is spanned

by global sections.

Proof. — In the situation of our set-up we have L · V (ω) = b1a1 + · · · + bαaα +
bβ+1aβ+1 + · · ·+ bn+1an+1. On the other hand the function ψL : NR → R defined at
the end of the previous lecture is convex on δn ∪ δn+1 if and only if

ψL(anen + an+1en+1) = −ψL(a1e1 + · · ·+ an−1en−1) = a1b1 + · · ·+ an−1bn−1

� ψL(anen) + ψL(an+1en+1) = −anbn − an+1bn+1

and this is equivalent to L ·V (ω) � 0. Thus our lemma follows by the characterization
of the spanned bundles which was discussed in the previous lecture.

Now, let me sketch an argument which shows the equivalence of these two con-
structions (the set-up is as usual).
First we choose a line bundle L = O(

∑
i biV (ρi)) which is good supporting for R,

that is the sum
∑

i aibi is non-negative for ai arising — as in the set-up — for any
ω ∈ ∆(n − 1) and it is zero only if [V (w)] ∈ R. Now, as in the exercises finishing
the previous lecture we consider the support γ(L−1) of the fan ∆′ defining the total
space of the dual L−1. When L was ample then the n-dimensional faces of γ(L−1)
were in 1− 1 correspondence with n-dimensional cones of ∆. Now this is not the case
because the vectors e′1, . . . , e′n+1 (notation as in the construction of the fan ∆′) are
on a hyperplane if the relation

∑
i aiẽi is in R. Indeed,

n+1∑
i=1

aie
′
i =

n+1∑
i=1

(aiei − aibie0)

and therefore the left hand side vanishes if and only if both
∑

aiei and
∑

aibi are
zero.

Exercise. — Prove that the fan in NR obtained by projecting along R · e0 the faces of
the cone γ(L−1) is equal to ∆∗

R and therefore XR constructed in the first part of the
lecture is equal to Proj(

⊕
M�0 H

0(X,mL)).
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An advantage of the arguments using general base-point-freeness is that— although
being less constructive than in the case of a ray — it works for an arbitrary face of the
cone NE(X). Thus we have the result which we predicted at the end of the previous
lecture.

Toric Contraction Theorem II. — Let X = X(∆) be a projective Q-factorial toric va-
riety. Then any face F ⊂ NE(X) can be contracted. That is, there exits a morphism
ϕF : X → XF such that:

(i) XF is a toric projective variety;
(ii) ϕF has connected fibers;
(iii) a curve C ⊂ X is contracted to a point by ϕF if and only if [C] ∈ F .

The construction of XF and ϕF is obtained as it was explained above: we choose
a good supporting line bundle LF for the face F . We know that LF is spanned
and therefore we can set XF := Proj(

⊕
m�0 H

0(X,mLF )), and we define ϕF via
evaluation. Finally, the resulting variety XF is toric because the action of T on X

gives an action on H0(X,mLF ), for each m, and thus an action on the projective
spectrum Proj(

⊕
m�0 H

0(X,mLF )) so that ϕF : X → XF is T -equivariant. The
action of T on XF has an open orbit, thus if we divide T by the isotropy group of a
general point of XF then the resulting torus TF acts on XF with an open orbit and
therefore XF is toric, see e.g. [10], 1.5. In the conclusion let us note that if F ′ is a
sub-face of F then the contraction of F factors through the contraction of F ′.

3. Flip and Flop

We deal with a situation as before, that is: X = X(∆) is a complete Q-factorial
toric variety, R is an extremal ray of X . Assume that R is a small ray, that is, as
in our set-up: α � 2. Let ϕR : X → XR = X(∆R) be the extremal ray contraction.
Every δ ∈ ∆R(n) � ∆(n) is of the form δ = 〈e1, . . . , en+1〉, where e1, . . . , eα and
eβ+1, . . . , en+1 are fixed and satisfy the relation:

α∑
i=1

(−ai)ei =
n+1∑
i=β+1

aiei

and we have proved during the previous lecture that

δ =
n+1⋃
i=β+1

δi =
α⋃
i=1

δi

are simplicial sub-divisions and the first one of them leads to the birational morphism
ϕR.
Before presenting the main result of the lecture let us formulate a general observa-

tion concerning birational maps which are isomorphisms in codimension 1.
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Lemma. — If ψ : X−→ Y is a birational map of Q-factorial varieties which is an
isomorphism in codimension 1 then the strict transform of Weil divisors provides
a natural identification N1(X) = N1(Y ) and hence a dual isomorphism N1(X) �
N1(Y ).

Toric Flip Theorem. — Let X = X(∆) be as in our set-up with R = R�0V (ω) an
extremal ray and ϕR : X → XR = X(∆R) its contraction. Assume moreover that ϕR
is small. Let ∆1 be a simplicial subdivision of ∆R such that

∆1(n) = ∆R(n)� {δ(ω) : [V (ω)] ∈ R} ∪ {δi(ω) : [V (ω)] ∈ R, i = 1 . . . α}

then X1 = X(∆1) is a Q factorial projective variety and the resulting birational
morphism ϕ1 : X1 → XR = X(∆R) is isomorphism in codimension 1. If, using the
resulting birational map ψ : X−→ X1, we identify N1(X) � N1(X1) then R1 = −R
is an extremal ray of X1 and ϕ1 is its contraction.

Proof. — All features ofX1 and ϕ1 follow by the symmetry of the above construction.
In particular, all n−1 dimensional cones introduced in subdividing ∆ into ∆1 lead to
1-dimensional strata which are numerically proportional and they have opposite sign
intersection numbers with respect to the 1-dimensional strata which we contracted
by ϕR. Thus, if we take an ample divisor H on X and a good supporting divisor LR
for R then, by toric Kleiman criterion of ampleness, mLR −H is ample on X1 for m
sufficiently large; hence X1 is projective. Other features are immediate.

Thus, in case of toric geometry we have an affirmative answer to the following

Flip Conjecture. — Let ϕR : X → XR be a small contraction of a Mori ray R of a
variety X with terminal singularities. Then there exists a variety X+ with terminal
singularities, together with a birational morphism ϕ+ : X+ → XR which is isomor-
phism in codimension 1. Moreover the induced birational map (ϕ+)−1◦ϕR : X−→ X+

is an isomorphism outside Locus(R) and KX+ is ϕ+-ample.

As explained in the introduction, a proof of Flip Conjecture, together with Con-
traction and Cone theorems would complete the Minimal Model Program. This was
successfully done in dimension 3 by Mori.

Complements: flips as Mumford’s quotients, Morelli-W1lodarczyk cobor-
disms. — Consider an action of C∗ on B := Cn+1:

C∗ × Cn+1 � (t, z) = (t, (z1, . . . , zn+1)) �−→ t · z := (ta1 · z1, . . . , tan+1 · zn+1) ∈ Cn+1

where (a1, . . . an+1) is a sequence of non-zero (for simplicity) coprime integers and

ai < 0 for 1 � i � α

ai > 0 for α+ 1 � i � n+ 1
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We moreover assume that 2 � α � n − 1. A monomial zm = zm1
1 . . . z

mn+1
n+1 is C∗

invariant if

a1m1 + · · ·+ an+1mn+1 = 0

Thus we have an immediate result.

Lemma. — In the above situation the variety Z = Spec(C[z1, . . . zn+1])C
∗
is an affine

toric variety Uδ whose cone δ, as well as the lattice N , is spanned in NR � Rn by
vectors e1, . . . , en, en+1 satisfying the relation a1e1 + · · ·+ an+1en+1 = 0.

We consider B = Cn as a toric affine variety U
bδ associated to a cone δ̂ =

〈ê1, . . . , ên+1〉 spanned by generators of the lattice N̂ � Zn+1 in N̂R. Then the in-
clusion of the C∗-invariant polynomials, C[z1, . . . , zn+1]C

∗ ⊂ C[z1, . . . , zn+1], and the
related inclusion in the set of characters M̂ = Hom(N̂ ,Z), can be dually interpreted
as the projection N̂R → NR along the line R · (

∑
i aiêi). Thus we have a natural toric

morphism B = Cn+1 → Z which in terms of [9] GIT theory is called good quotient
or categorical quotient and denoted Cn+1//C∗. Note that the fiber of the morphism
B → Z over the special point (the image of the origin) contains several (geometric)
orbits of the C∗ action: apart of the origin 0 it includes orbits which converge to (or
diverge from) 0.
Now I introduce three types of objects related to the situation we consider:

(I) First define C∗-invariant open subsets of B: inside B = Cn+1 we consider two
subsets:

B+ = {z ∈ Cn+1 such that lim
t→∞

t · z does not exist},

B− = {z ∈ Cn+1 such that lim
t→0

t · z does not exist}

we see that

B+ = Cn+1 � {(z1, . . . , zα, 0, . . . , 0)},
B− = Cn+1 � {(0, . . . , 0, zα+1, . . . , zn+1)}

(II) Next define graded algebras: on the polynomial algebra C[z1, . . . , zn+1] we
introduce a non-standard grading:

grad(zm1
1 . . . z

mn+1
n+1 ) = a1m1 + · · ·+ an+1mn+1

We can write A = C[z1, . . . , zn+1] as a graded algebra A =
⊕

m∈Z
Am, where Am

is a C-linear space spanned on monomials of grade m. We easily note that A0 =
C[z1, . . . , zn+1]C

∗
, so that Z = Spec(A0). If we denote A+ =

⊕
m�0 Am and A− =⊕

m�0 Am then both of them are graded finitely generated A0-algebras and they
define naturally sheaves of graded O-algebras over Z.
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(III) Finally define toric varieties. Let ∆+ and ∆− be two fans coming from two
subdivisions of the cone δ (notation as usual, that is δi = 〈e1, e2 . . . ̂ i, . . . , en, en+1〉)

δ =
n+1⋃

i=α+1

δi =
α⋃
i=1

δi

and by X± = X(∆±) denote their toric varieties.

Now we can compare the introduced objects.

Lemma. — The toric varieties X+ and X− are isomorphic to projective relative spec-
tra ProjZ A+ and ProjZ A−, respectively. Moreover, there exist morphisms B± → X±
which make X± = B±/C

∗, geometric quotients in the sense of Mumford; that is, the
(closed) points of X± parametrize (closed) orbits of the C∗ action on B±.

The above result can be interpreted as follows. Suppose that you have a contraction
of a Mori ray ϕR : X → XR and you want to construct a flip of ϕR. Then, since
−KX is ϕR ample, we have X = ProjXR

⊕
m�0(ϕR)∗O(−mKX) and you want to get

X1 = ProjXR

⊕
m�0(ϕR)∗O(mKX) as the result of your flip. So the issue is to prove

that the OXR -algebra
⊕

m�0(ϕR)∗O(mKX) is finitely generated. On the other hand,
chances are that, like in the toric case, the flip can be constructed as the result of
some geometric quotient. This line of argument is discussed in [12] and it is related
to the notion of cobordism which I want to discuss now.
Namely, the triple (B,B+,B−) introduced above, together with the C∗ action, is

an example of Morelli—W�lodarczyk cobordism of varieties X+ and X− (see [8] and
[13]). Note that although the above structure does not admit anything like a Morse
function, some of its properties are similar to the Morse theory features: in particular
the vector field coming from the C∗ action can be compared with the gradient field
of a Morse function. The quotients X+ and X− can be compared to upper/lower
boundaries of a Morse cobordism: one can imagine them being glued at ∞ or 0 to
orbits t · z which don’t have limits at t → ∞ or t → 0, respectively. In fact, in the
present example the quotients can be glued together so that the picture is even more
convincing (I don’t claim however that this can be done as nicely in general).
Let ê1, . . . , ên+1 be a standard basis of Rn+1. Define ê− = −ê+ = a1ê1 + · · · +

an+1ên+1, where ai, i = 1, . . . , n+ 1, are as above. Consider a fan ∆̂ which contains
the following (n+ 1)-dimensional cones:

〈ê1, . . . , ên+1〉
〈ê−, ê1, . . .̂i, . . . , ên+1〉 for i = 1, . . . , α
〈ê+, ê1, . . .̂i, . . . , ên+1〉 for i = α+ 1, . . . , n+ 1

We note that ∆̂ is a simplicial subdivision of the cone δ∗, non-strictly convex, with
vertex along the line the line L = R · ê±, and δ∗/L = δ, where δ is as above. Thus we
have a morphism Φ : X(∆̂)→ Uδ. On the other hand we have a decomposition

X(∆̂) = V (e+) ∪ V (e−) ∪ U〈be1,...,ben+1〉 � X+ ∪X− ∪ Cn+1

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



266 J.A. WIŚNIEWSKI

and the map Φ over Cn+1 is the good quotient of the C∗ action described above, while
over the divisor strata Φ is a small contraction of a ray and its opposite.
More information on extensions and applications of the above construction can be

found in [1] and in an expository paper [4].

4. Canonical Divisor

As before, also in this lecture, we assume that X = X(∆) is a complete Q-factorial
toric variety, although this is not needed for the first observation which is obtained
by simple verification.

Lemma. — Let m1, . . . ,mn be a basis of M and x1, . . . , xn the respective functions
TN → C∗. Then

dx1

x1
∧ · · · ∧ dxn

xn
is a unique (up to a constant) TN -invariant holomorphic n-form on TN . As a rational
n-form on X(∆) it has a simple pole along (the generic point of) any V (ρ), with
ρ ∈ ∆(1).

Corollary. — For any toric variety X = X(∆) we have the following linear equivalence

KX = −
∑

ρ∈∆(1)

V (ρ)

In particular, if ω ∈ ∆(n − 1) is a common border of δn+1 = 〈e1, . . . , en〉 and δn =
〈e1, . . . , en−1, en+1〉, where ei satisfy the set-up condition, then

−KX · V (ω) = mult(ω)
mult(δn)

[a1 + · · ·+ aα + aβ+1 + · · ·+ an+1].

Definition. — For any Mori extremal ray R of a variety X we define

length(R) = min{−KX · C : [C] ∈ R and C is rational}.

We note that if X(∆) is smooth and V (ω) is an extremal rational curve spanning
a ray R, and ω ∈ ∆(n − 1) is as in our set-up then aβ+1 = · · · = an+1 = 1 and
length(R) = n+ 1− β + a1 + · · ·+ aα.

Exercise. — Prove the following statements for smooth toric varieties: (1). Length of
any extremal ray is � n+ 1. (2). If there exists a ray of length n+ 1 then X � Pn.
(3). Classify smooth varieties which have a long ray; that is, first consider varieties
with a ray of length � n, next these with a ray of length � n− 1, etc.

Definition. — Let X = X(∆) be a Q-factorial toric variety. We say that X has
terminal singularities if any closed n-dimensional simplex conv(0, e1, . . . , en), spanned
on the origin and primitive vectors ei ∈ N such that 〈e1, . . . , en〉 ∈ ∆, does not
contain any point of N except its vertices. We say that X has canonical singularities
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if conv(0, e1 . . . en) � conv(e1, . . . , en) does not contain any point from N except the
origin.

A general definition of terminal and canonical singularities is as follows.

Definition. — Let X be a normal variety such that its canonical divisor KX is Q-
Cartier. Suppose that π : Y → X is a resolution of singularities of X such that the
exceptional set π is a divisor

⋃
Ei which has only simple normal crossings. We can

write

KY = π∗KX +
∑
i

diEi

(where the number di is called discrepancy of Ei). Then X has terminal (respectively,
canonical) singularities if all di are positive (respectively, non-negative).

We note that the first of the two definitions above does not depend on the resolution
that we choose because, roughly speaking, any two resolutions can be dominated by
another one on which we can compare their discrepancies. It is not hard to show
that for toric varieties these two definitions are equivalent. Namely, let us consider
a cone δ = 〈e2, . . . , en+1〉 ∈ ∆(n) and a point e1 ∈ δ ∩ N . Take a blow-up of X
which is associated to adding a ray ρ1 = 〈e1〉 to ∆ and sub-dividing δ (and possibly
some adjacent cones) accordingly (we may assume that e1 is primitive on ρ1); call the
resulting fan ∆′ and let X ′ = X(∆′). Then π : X ′ → X is a divisorial contraction
which we already discussed, so let us use the notation from our set-up, in particular
we may write −a1e1 = aβ+1eβ+1+ · · ·+an+1en+1 with a1 negative and the remaining
ai positive. The pull-back of a Cartier divisor preserves the associated piecewise linear
function ψ : NR → R (defined as in the first lecture), so in particular ψKX = ψπ∗(KX ).
Thus ψπ∗(KX)(e1) = −(aβ+1 + · · · + an+1)/a1 and the discrepancy of E1 is d1 =
−1 − (aβ+1 + · · · + an+1)/a1. Now d1 > 0 if and only if −a1 < aβ+1 + · · · + an+1

which is equivalent to e1 being outside 〈eβ+1, . . . , en+1〉 (similarly for d1 � 0). Now,
as explained above, any resolution of singularities of X can be compared with such a
blow-up and thus we have the equivalence of the two definitions.

The role of the canonical divisor in toric versions of the main results of Mori theory
is not apparent but it becomes crucial in the non-toric case. In particular it appears
in the class of singularities which are admissible on varieties for which we formulate
main theorems of the program. The following two results indicate that varieties with
terminal singularities form a convenient class of varieties for which one may run the
Minimal Model Program.

Addition to Toric Contraction Theorem. — Assumptions as in the contraction theorem.
If α = 1, and R is a Mori ray, and moreover X has terminal singularities, then XR

has terminal singularities as well.
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Addition to Toric Flip Theorem. — Assumptions as in the flip theorem. If R is a Mori
ray and X has terminal singularities then X1 has terminal singularities as well.

Proof. — I do only the first case: the second case is somewhat more complicated but
similar, see [11]. Thus we take ϕR : X → XR, a divisorial contraction. We write
−a1e1 = a2e2 + · · · + an+1en+1 and if we divide this equality by a2 + · · · + an+1

then we see that the ray ρ1 meets the affine hyperplane spanned on e2, . . . , en+1

at (−a1/(a2 + · · ·+ an+1)) · e1. Because −KX · V (ω) > 0, which means a1 + · · · +
an+1 > 0, it follows that −a1/(a2 + · · · + an+1) < 1 hence e1 is outside the simplex
conv(0, e2, . . . , en+1). Moreover we have an inclusion

conv(0, e2, . . . , en+1) ⊂
⋃
i>1

conv(0, e1, . . .̂i . . . en+1)

and since none of the simplices on the right hand side contains any lattice point apart
of ej , the same holds for the simplex on the left hand side.

The numerical properties of the (anti)canonical divisor of a toric variety can be
described by using an associated polytope.

Definition. — Let ∆ be a simplicial fan. We define a polytope in NR

P (∆) =
⋃

〈e1,...,ek〉∈∆

conv(0, e1, . . . , ek)

where, as usually, ei denote primitive elements spanning rays in ∆.

In view of exercises characterizing ampleness and nefness we get

Lemma. — The divisor −KX(∆) is nef and, respectively, ample if and only if P (∆)
is convex and, respectively, strictly convex, where the latter means that each face of
P (∆) is of the form conv(eii , . . . , eir ) where 〈ei1 , . . . eir 〉 ∈ ∆.

Complements: Euler sequence. — For any complete non-singular variety X we
consider a vector space H := H1(X,ΩX) and the related trivial sheaf HX := H⊗OX .
Let us note that

Ext1(HX ,ΩX) = Hom(H,H)

Definition. — The extension sequence

0 −→ ΩX −→ L∨
X −→ HX −→ 0

associated, under the above identification, to the identity in Hom(H,H) is called the
Euler sequence of X and the (locally free) sheaf LX is called the potential sheaf.

Theorem (Batyrev-Mel’nikov, Jaczewski). — A complete non-singular variety X is
isomorphic to a toric variety if and only if there exists a simple normal cross-
ings divisor D =

⋃
iDi, with Di denoting its irreducible components, such that

LX �
⊕

iOX(Di).
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Actually, ifX = X(∆) then LX �
⊕

ρ∈∆(1) OX(V (ρ)) and the toric Euler sequence
can be related to a sequence of vector spaces which we discussed already. Namely,
PicX ⊗ C = H0(X,ΩX) and therefore we can identify N1(X) ⊗ OX with the dual
sheaf H∨

X . We have a commuting diagram

0 −→ H∨
X −→

⊕
ρ∈∆(1) OX · ẽρ −→ N ⊗OX −→ 0

‖ ↓ ↓
0 −→ H∨

X −→
⊕

ρ∈∆(1) OX(V (ρ)) −→ TX −→ 0

in which the first row is coming from an exact sequence of vector spaces which we
discussed in the first lecture and the second row is the dual of the Euler sequence.
The vertical arrow in the middle evaluates the section of OX(V (ρ)) which vanishes
exactly at V (ρ) while the right hand arrow associates to any 1-parameter subgroup
in the torus TN its tangent vector field, see [7] for details.

5. Fano manifolds

I start by recalling the following

Definition. — A normal variety X is Fano if and only if some multiple of the anti-
canonical divisor −KX is an ample Cartier divisor.

As explained in the introduction, Fano varieties play a special role in the Minimal
Model Program: they form a class opposite to varieties with nef canonical divisor and
they are fibers of Fano-Mori fibrations.
In the present lecture I will deal with the smooth case only.

Definition. — A convex polytope P ⊂ NR whose vertices are in N is called Fano if
each (n − 1)-dimensional face of P is spanned by vectors which form a basis of the
lattice N and moreover the origin 0 is the only point of N in the interior of P .

To any Fano polytope P we can associate a simplicial fan ∆(P ), rays of which are
generated by the vertices of P . If we take now P (∆(P )), where P (∆) is the polytope
defined in my previous lecture, then the result is P again. Now it is clear that the
associated toric variety X(∆(P )) is a Fano manifold and this construction defines
a bijective relation between Fano polytopes and Fano manifolds. Thus, in order to
study Fano manifolds one should understand Fano polytopes. We have the following
observation.

Lemma. — The number of vertices of n-dimensional Fano polytope is bounded by
n2 + 1.
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Proof. — See Voskresenskii-Klyachko [3].

The following result is more complicated

Proposition ([3] and references therein). — The number of n-dimensional toric Fano
manifolds is bounded.

In fact we have a more general result.

Theorem (Kollár-Miyaoka-Mori, Campana). — The number of deformation types of
n-dimensional Fano manifolds is bounded.

This may encourage us to classify Fano n-folds. The case n = 1 is trivial. The
case n = 2 is a bit harder but classical. Fano manifolds in dimension 2 are called del
Pezzo surfaces. We have the following classical

Theorem. — There are 10 deformation types of del Pezzo surfaces: P1 × P1 and P2

blown-up in 0, . . . , 8 “sufficiently general” points.

The following observation is easier and just requires analysing Fano polygons (do
it as an exercise).

Proposition. — There are 5 Fano polygons and they correspond to P1 × P1 and P2

blown-up at 0, . . . , 3 fixed points of the torus action.

Now let me explain the ideas related to the classification of higher dimensional
Fano manifolds. In toric case we have an easy.

Proposition. — Pn is the only toric (Fano) n-fold with b2 = 1.

The corresponding non-toric version of this result is incomparably harder and, in
fact, the main obstacle to the classification of Fano n-folds. Actually, the story of the
subsequent classification result (which I present in a very vague form) goes back to
early ’30 while its rigorous proof was completed in mid ’80 (in between there were
several false claims and omissions).

Theorem (Fano, Roth, Iskovskih, Shokurov). — There exists a classification of Fano
3-folds with b2 = 1: there are 17 deformation types of them.

Now let me explain an approach leading to the classification of toric 3-folds. I will
not deal with a combinatorial approach, due to Batyrev, Oda, Watanabe-Watanabe
and Sato — which works in dimension 4 too — instead I will explain a method of
Mori-Mukai which led to the following

Theorem (Mori-Mukai). — There exists a classification of Fano 3-folds with b2 � 2:
there are 89 deformation types of them.

Actually, the enumeration of all possible Fano polytopes and associated toric Fano
3-folds becomes rather easy once we prove the following
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Theorem. — Any toric Fano 3-folds is either isomorphic to P3 or to a P1-bundle over
a del Pezzo surface, or is obtained by blowing them up along 1-strata of the torus
action.

I begin the proof of the theorem by recalling possible types of contractions ϕR :
X → XR of Mori extremal rays of smooth toric 3-folds (proving this is an exercise):

(1) contraction of P3 to a point,
(2) ϕR : X → P1 is a P2 bundle,
(3) XR is a smooth toric surface and ϕR : X → XR is a P1-bundle,
(4) ϕR : X → XR is a simple blow-down of an invariant divisor ER to a 1-strata

in smooth XR,
(5) ϕR : X → XR is a blow-down of an invariant divisor ER � P2 to a fixed point

in XR, which may be non-smooth.

We will say that two rays R1 and R2 are twins if their contractions are of type
(4) and moreover ER1 = ER2 . Let us note that ERi = P1 × P1 and twin rays span a
2-dimensional face in NE(X) supported by −KX + ERi .

Now we assume that X is a Fano 3-fold. Let me go through the steps of the proof
of the theorem. We are supposed to prove that, except the case (1), X admits a
contraction of type (3) or (4) and the target XR is a Fano manifold.

(a) If X is a P2-bundle over P1 (contraction of type (2)) then it is either P1 × P2

or the blow up of P3 along a line (easy verification).
(b) If X admits a contraction of type (5) then it admits also a contraction of type

(3) or (4). Indeed, take a ray R′ such that ER · R′ > 0 then the contraction of R′

can not have fiber of dimension 2 because, taking the intersection of the loci of these
rays, we would get a curve in both R and R′.
(c) If X admits a P1 bundle structure over a surface XR (contraction of type (3))

then XR is a del Pezzo surface. This follows from a more general

Lemma (Szurek-Wiśniewski, Kollár-Miyaoka-Mori). — Let ϕ : X → Y be a projective
bundle (or, more generally, a smooth map). If X is a Fano manifold then Y is a Fano
manifold too.

(d) If X admits a contraction ϕR of type (4) then the target XR is Fano unless
the ray R has a twin ray R′. Indeed, by adjunction formula ϕR(C) · (−KXR) �
(C · (−KX)), unless C ⊂ ER.
(e) If X has twin rays R1 and R2 then it has also a ray R whose contraction is of

type (3) or (4), and in the latter case R has no twin. The proof of this statement is
similar to the one of (b): this time we consider the contraction of the face spanned
by R1 and R2, whose exceptional divisor is E = ER1 = ER2 , then we choose a ray R′

such that R ·E > 0.
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This concludes the proof of the theorem. Now you can do the classification of Fano
3-folds along the following lines. (0) Blow-up 1-dimensional strata of P3 as long as
you still get Fano manifolds. (1) Prove that any toric P1 bundle is decomposable
hence of type P(L⊕O) and its fan can be obtained from the fan of V(L) (constructed
as in the exercise to Lecture 1) by adding a ray opposite to 〈e0〉 (notation as in the
exercise). (2) Find Fano polytopes associated to possible P1 bundles over toric del
Pezzo. (3) Find out which edges of the obtained polytopes can be blown up to obtain
other Fano polytopes. The result should be as follows:

Theorem. — There are 18 toric Fano 3-folds.

The following list contains mostly papers to which I refer directly in my lectures;
additionally, references to the sources of Mori Theory you can find in [5] while refer-
ences to articles on general Fano manifolds can be found in [3].
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vol. 166, Société Mathématique de France, Paris, 1988.

[6] W. Fulton, Introduction to toric varieties, Ann. of Math. Studies, vol. 131, Princeton
University Press, 1993.

[7] K. Jaczewski, Generalised Euler sequence and toric varieties, Contemp. Math. 162
(1994), 227–247.

[8] R. Morelli, The birational geometry of toric varieties, J. Algebraic Geom. 5 (1996),
751–782.

[9] D. Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Gren-
zgebiete, vol. 34, Springer-Verlag, 1996.

[10] T. Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer
Grenzgebiete, vol. 15, Springer-Verlag, 1988.

[11] M. Reid, Decomposition of toric morphisms, Arithmetic and Geometry (Shafarevich )
volume II, Progress in Math., vol. 36, Birhäuser, 1983, pp. 395–418.
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