TORIC MORI THEORY AND FANO MANIFOLDS

by

Jarosław A. Wiśniewski

Abstract. - The following are the notes to five lectures on toric Mori theory and Fano manifolds given during the school on toric geometry which took place in Grenoble in Summer of 2000.
Contents
0. Short introduction: Minimal Model Program 250

1. Cone Theorem 252
2. Contraction Theorem 256
3. Flip and Flop 262
4. Canonical Divisor 266
5. Fano manifolds 269
References 272

These are the notes to five lectures which I gave during the school on toric geometry in Grenoble in the Summer of 2000. The first week of the three week long school was meant to introduce the basics of toric geometry to the students while the other two weeks were devoted to advanced topics. Therefore the idea of the present notes is to give a brief and self-contained introduction to an advanced and broad topic to students who have just learned the fundamentals of toric language.

I claim no originality on the contents of these notes. Actually, they are primarily based on Miles Reid article [11]. An exposition of Mori theory in general can be found in [5]. Moreover Lecture 3 uses ideas of [12] while Lecture 5 is related to [3].

All varieties are algebraic and defined over \mathbb{C}.

[^0]
0. Short introduction: Minimal Model Program

In the course of the first week's lectures you have learned basics of toric geometry. You must have noticed that the theory is nice, clear and elegant, even too good to be true. And, indeed, that's right: toric varieties are very, very rare among algebraic varieties, so don't be confused: toric geometry is less than tip of the iceberg of algebraic geometry. Nevertheless it is very, very useful. Firstly because you can test your theories and conjectures (wisely posed!) in the toric environment. Secondly, because, as special as it is, toric geometry gives a very close insight in the local structure of varieties, where "local" is in analytic or formal neighborhood sense (not Zariski!). I'll try to illustrate these two principles in the course of my lectures.

We set for the classification of complex projective varieties of given dimension. Our primary examples are complex curves (or Riemann surfaces). The contents of the following table is referred to frequently when it comes to explaining principles of classification theory which includes the apparent trichotomy.

Sphere with g handles:	$g=0$	$g=1$	$g \geqslant 2$
Fundamental group:	trivial	\mathbb{Z}^{2}	$2 g$ generators
Curvature:	positive	zero	negative
Holomorphic forms:	none	non-vanishing	g independent
Holomorphic vector fields:	2 independent	non-vanishing	none
Canonical divisor $K_{X}:$	negative	zero	positive

I shall focus on the canonical divisor. Let me recall the following:
Definition. - Let X be a normal variety of dimension n, with $X_{0} \subset X$ denoting its smooth part. The canonical divisor K_{X} is a Weil divisor obtained by extending the divisor $K_{X_{0}}$ associated to the sheaf of holomorphic n-forms $\Omega_{X_{0}}^{n}=\Lambda^{n}\left(\Omega_{X_{0}}\right)$.

We will need moreover the following.
Definition. - Let L be a \mathbb{Q}-Cartier divisor on a normal variety X, that is, a multiple $m L$, with $m \in \mathbb{Z}$ is a Cartier divisor. We say that L is nef (numerically effective) if the intersection $L \cdot C=(1 / m) \operatorname{deg}_{C}\left(m L_{\mid C}\right)$ is non-negative for any compact curve $C \subset X$.

Apart from the curve case we have the following observation in dimension 2 which is an easy corollary to Enriques-Kodaira classification of smooth complex surfaces: each projective surface can be modified birationally - using blow-ups and blow-downs - either to a \mathbb{P}^{1} bundle over a curve, or to a surface with nef canonical divisor.

Based on this (very roughly presented) evidence one can state
Minimal Model Conjecture - Any projective normal variety X is birationally equivalent to a normal projective variety X^{\prime} which satisfies one of the following:
(i) X^{\prime} admits Fano-Mori fibration $\varphi: X^{\prime} \rightarrow Y$, that is: φ is a projective morphism with connected fibers, $\varphi_{*} \mathcal{O}_{X^{\prime}}=\mathcal{O}_{Y}$, onto a normal variety Y, with $\operatorname{dim} Y<\operatorname{dim} X^{\prime}$, and $-K_{X^{\prime}}$ ample on fibers of φ, or
(ii) X^{\prime} is minimal which means that $K_{X^{\prime}}$ is nef (such X^{\prime} is then called a minimal model of X).

At this point I am rather vague about possible singularities of the involved varieties, however we have to assume that $K_{X^{\prime}}$ is \mathbb{Q}-Cartier at least.

Here is an idea how to approach the Conjecture:
(1) Locate curves which have negative intersection with canonical divisor, understand their position in homology of X : use Cone Theorem [Mori, Kawamata].
(2) Eliminate some of these curves by contracting them to points: use Contraction Theorem [Kawamata, Shokurov]; chances are that we shall get Fano-Mori fibration, or we get a birational morphism to a simpler variety; unfortunately the birational map may also lead to a variety with very bad singularities (case of small contractions), so that the canonical divisor is not \mathbb{Q}-Cartier.
(3) If the contraction leads to bad singularities use birational surgery (flips) to replace curves which have negative intersection with K_{X} by curves which have positive intersection with K_{X} : this should be possible by Flip Conjecture (proved by Mori in dimension 3).

Although the Minimal Model Conjecture is void for toric varieties (they are rational, hence birational to a Fano-Mori fibration), they can be used effectively to test steps of the Program and possibly to describe local (in the analytic, or formal sense) geometry of non-minimal varieties. In the course of the present lectures I will review the main ideas of Minimal Model Program in the situation of toric varieties.
Let me recall toric notation.
$M \simeq \mathbb{Z}^{n} \quad$ lattice of characters of a torus $T \simeq\left(\mathbb{C}^{*}\right)^{n}$
$N=\operatorname{Hom}(M, \mathbb{Z}) \quad$ lattice of 1-dimensional subgroups of T
$M_{\mathbb{R}}$ and $N_{\mathbb{R}} \quad$ vector spaces in which they live
$\left\langle v_{1}, \ldots, v_{k}\right\rangle \quad$ convex cone spanned on vectors v_{1}, \ldots, v_{k}
$\operatorname{conv}\left(v_{1}, \ldots, v_{k}\right) \quad$ (affine) convex hull of points v_{1}, \ldots, v_{k}
$X=X(\Delta) \quad$ toric variety associated to a fan Δ in $N_{\mathbb{R}}$
$\Delta(k) \quad$ the set of k dimensional cones in Δ
$V(\sigma) \subset X(\Delta) \quad$ stratum ($=$ closure of the orbit) associated to a cone $\sigma \in \Delta$
Moreover, I will frequently confuse rays in $\Delta(1)$ with primitive elements from N generating them: for a ray $\rho \in \Delta(1)$ I will always consider the (unique) primitive element $e \in N \cap \rho$.

We usually assume that fans are non-degenerate, that is any cone $\sigma \in \Delta$ is strictly convex: $\sigma \cap-\sigma=0$. Now I shall consider a slightly more general situation. Let
$V \subset N_{R}$ be a rational vector subspace, then I call Δ^{*} a fan with vertex V if it satisfies the usual conditions of a fan with strict convexity of cones replaced by

$$
\forall \sigma \in \Delta^{*}: \sigma \cap-\sigma=V
$$

The star ${ }^{*}$ in Δ^{*} will indicate that the fan Δ^{*} has possibly non-trivial vertex. (The fans in the usual sense have vertices equal to $\{0\}$.)

If Δ^{*} is a fan in $N_{\mathbb{R}}$ with a vertex V then we can define a lattice $N^{\prime}=N /(N \cap V)$, so that $N_{\mathbb{R}}^{\prime}=N_{\mathbb{R}} / V$. Then the fan Δ^{*} descends to a nondegenerate fan Δ^{*} / V in $N_{\mathbb{R}}^{\prime}$ and $X\left(\Delta^{*} / V\right)$ is a toric variety of dimension $n-\operatorname{dim} V$.

Let me recall that Γ is a sub-division of Δ if $|\Delta|=|\Gamma|$ and any cone in Δ is a union of cones from Γ. If both fans are non-degenerate then this defines a birational morphism $X(\Gamma) \rightarrow X(\Delta)$. If a fan Δ^{*} with a vertex V has a sub-division to a nondegenerate fan Γ then we have a morphism $X(\Gamma) \rightarrow X\left(\Delta^{*} / V\right)$, general fiber of which is of dimension $\operatorname{dim} V$.

1. Cone Theorem

First, let me recall basic facts about the intersection on toric varieties. We start with a complete algebraic variety X. Let $N^{1}(X) \subset H^{2}(X, \mathbb{R})$ and $N_{1}(X) \subset H_{2}(X, \mathbb{R})$ be the \mathbb{R}-linear subspaces spanned by, respectively, cohomology and homology classes of, respectively, Cartier divisors and holomorphic curves on X. The class of a curve C in $N_{1}(X)$ will be denoted by $[C]$.

The intersection of cycles and cocycles restricts to $N_{1}(X) \times N^{1}(X)$ and provides a non-degenerate pairing. Thus we can identify any space in question with the dual of its pairing partner.

The following definition describes a convenient class of varieties.
Definition. - A normal variety X is called \mathbb{Q}-factorial if some multiple of any Weil divisor is a Cartier divisor.

For toric varieties we have a clear description of \mathbb{Q} factoriality.
Proposition. - A toric variety $X=X(\Delta)$ is \mathbb{Q}-factorial if and only if the fan Δ is simplicial, that is all the cones in Δ are simplicial.

Note that if $X=X(\Delta)$ is \mathbb{Q}-factorial then for any $\rho_{i} \in \Delta(1)$ the Weil divisor $V\left(\rho_{i}\right)$ is \mathbb{Q}-Cartier. Let $\mathbb{R}^{\Delta(1)}$ be an (abstract) real vector space in which vectors called \widetilde{e}_{i}, with e_{i} primitive in $\rho_{i} \in \Delta(1)$, form an orthonormal basis. We have the following exact sequences of vector spaces, dual each to the other,

$$
\begin{aligned}
& 0 \longrightarrow M_{\mathbb{R}} \longrightarrow \mathbb{R}^{\Delta(1)} \longrightarrow N^{1}(X) \longrightarrow 0 \\
& 0 \longrightarrow N_{1}(X) \longrightarrow \mathbb{R}^{\Delta(1)} \longrightarrow N_{\mathbb{R}} \longrightarrow 0
\end{aligned}
$$

with arrows in the first sequence defined as $M_{\mathbb{R}} \ni m \mapsto \sum e_{i}(m) \cdot \widetilde{e}_{i}$ and $\widetilde{e}_{i} \mapsto V\left(e_{i}\right)$ while the maps in the second sequence are as follows $N_{1}(X) \ni Z \mapsto \sum\left(Z \cdot V\left(\rho_{i}\right)\right) \cdot \widetilde{e}_{i}$ and $\widetilde{e}_{i} \mapsto e_{i}$.

Corollary. - If $X=X(\Delta)$ is a \mathbb{Q}-factorial toric variety defined by a fan Δ then $N_{1}(X)$ can be interpreted as the space of linear relations between primitive vectors e_{i} in rays $\rho_{i} \in \Delta(1)$.

Now, for an arbitrary variety X, we consider the following cones in the linear spaces defined above: the cone of curves (called also the cone of effective 1-cycles, or Mori cone) $N E(X) \subset N_{1}(X)$ and the cone of nef divisors $\mathcal{P}=\mathcal{P}(X) \subset N^{1}(X)$; they are $\mathbb{R}_{\geqslant 0}$-spanned by, respectively, the classes of curves and numerically effective divisors. Note that \mathcal{P} and $\overline{N E}$ (the closure of $N E$) are - by their very definition - dual each to the other in the sense of the intersection pairing of $N^{1}(X)$ and $N_{1}(X)$. If X is projective then, by Kleiman criterion of ampleness, the cone $N E(X)$ is strictly convex.

Let me explain one of the starting points of the Program: Mori's move-bend-andbreak argument. In toric case this is particularly explicit: if X is a complete toric variety then every effective cycle on X is numerically equivalent to a positive linear combination of some 1-dimensional strata of the big torus action.

Let $C \subset X(\Delta)$ be an irreducible curve. Suppose that C is contained in a stratum $V(\sigma)$ which is of the smallest dimension among the strata containing C. If $\operatorname{dim} V(\sigma)=$ 1 then there is nothing to be done, otherwise we want to deform C to a union of curves belonging to lower-dimensional strata. We may assume - possibly by passing to a smaller dimensional toric variety - that $V(\sigma)=X(\Delta)$ which means that the general point of C is contained in the open orbit of $X(\Delta)$. If $\operatorname{dim} X(\Delta)=2$ then we note that fixed points of the action of T on the linear system $|C|$ are associated to combination of 1-dimensional strata of $X(\Delta)$, hence we are done in this case.

Now, let $\operatorname{dim} X(\Delta)>2$ and $C \subset X$ be an irreducible curve. Let $\lambda \in N$ be general and consider the action $\mathbb{C}^{*} \times X(\Delta) \rightarrow X(\Delta)$ of the 1-parameter group coming from λ, we denote it $(t, x) \mapsto t^{\lambda} \cdot x$. We may assume that the action has only a finite number of fixed points. The action gives a morphism $\mathbb{C}^{*} \times C \rightarrow X(\Delta)$ and hence a rational map $\mathbb{C} \times C \rightarrow X(\Delta)$. Blowing up the points of indeterminacy we resolve this map, that is we find a surface S, a regular morphism $\psi: S \rightarrow X(\Delta)$ and a projection $\pi: S \rightarrow \mathbb{C}$, such that $\psi\left(\pi^{-1}(1)\right)=C$. Over $\mathbb{C}^{*} \times C$ we have a natural \mathbb{C}^{*}-action which lifts up to S so that both ψ and π are \mathbb{C}^{*} equivariant. The (reducible) curve $\psi\left(\pi^{-1}(0)\right)$ is invariant with respect to the action of λ, thus it is a union of closures of 1-dimensional orbits of λ. Note that to make it numerically equivalent to the original C the components of the curve $\psi\left(\pi^{-1}(0)\right)$ may have to be assigned multiplicities depending on the degree of the map ψ on components of $\pi^{-1}(0)$; moreover, via the action of the group the generic point of C is moved toward a fixed point of the action (to so-called sink, or source, of the action on $X(\Delta))$ and thus the strict transform of $\{0\} \times C$ in S gets contracted to this point.

Now to conclude the argument we consider the case when C is the closure of an orbit of λ contained in the open orbit of $X(\Delta)$. After choosing appropriate identification of the open orbit with the torus we can assume that C is the image of \mathbb{P}^{1} under the morphism of toric varieties $\mathbb{P}^{1} \rightarrow X(\Delta)$ given by the inclusion of the line $\mathbb{R} \cdot \lambda \rightarrow N_{\mathbb{R}}$. Now let us choose a rational plane $\Pi \subset N_{\mathbb{R}}$ which contains $\mathbb{R} \cdot \lambda$ and meets any cone from Δ of dimension $\leqslant n-2$ only at the origin. On the plane Π we consider the lattice $N_{\Pi}=\Pi \cap N$ and the fan Δ_{Π} obtained by restricting Δ to Π. This defines a toric surfaces $X\left(\Delta_{\Pi}\right)$ together with a toric morphism $X\left(\Delta_{\Pi}\right) \rightarrow X(\Delta)$. Moreover, by our assumptions on Π, 1-dimensional strata of the surface $X\left(\Delta_{\Pi}\right)$ are mapped to 1dimensional strata of $X(\Delta)$ (that is, images of Π invariant curves are Δ invariant) and the morphism $\mathbb{P}^{1} \rightarrow C \subset X(\Delta)$ factors equivariantly through $X\left(\Delta_{\Pi}\right)$. We already have noticed that on a toric surface each curve is linearly equivalent to a sum of 1-dimensional strata so we are done. Thus we have the following result:

Toric Cone Theorem (Reid). - Let $X=X(\Delta)$ be a complete toric variety. Then

$$
N E(X)=\sum_{\omega \in \Delta(n-1)} \mathbb{R}_{\geqslant 0} \cdot[V(\omega)]
$$

In particular $N E(X)$ is a closed rational polyhedral cone and it is strictly convex if and only if X is projective.

Now if we compare it with the Kleiman criterion for ampleness we get: a Cartier divisor (line bundle) on a toric variety is ample if and only if its intersection with any 1-dimensional stratum is positive.

There is a special name for the edges of the cone $N E(X)$.
Definition. - 1-dimensional faces (half-lines, rays) of the cone $N E(X)$ are called extremal rays. More precisely, a ray $R \subset N E(X)$ is an extremal ray if given $Z_{1}, Z_{2} \in$ $N E(X)$ such that $Z_{1}+Z_{2} \in R$ then $Z_{1}, Z_{2} \in R$. If an extremal ray R satisfies $R \cdot K_{X}<0$ then it is called Mori extremal ray.

Note that in the toric case the existence of extremal rays of $N E(X)$ implies that the cone in question is strictly convex (does not contain any non-zero linear subspace), hence X is projective. Thus, whenever we talk about extremal rays then X is assumed projective.

The Mori extremal rays are the only ones which appear in the general version of the cone theorem.

General Cone Theorem (Mori, Kawamata). - Let X be a complex projective variety with canonical singularities (singularities will be explained later in my 4 th lecture). Then

$$
N E(X)=N E(X) \cap\left\{Z \in N_{1}(X): Z \cdot K_{X} \geqslant 0\right\}+\sum_{\nu} R_{\nu}
$$

where R_{ν} are Mori extremal rays.

Note that the above theorem does not give any information on $N E(X) \cap$ $\left\{Z \in N_{1}(X): Z \cdot K_{X} \geqslant 0\right\}$. In fact, this part of the cone may be neither polyhedral nor closed, see examples in [5]. Mori's proof of the cone theorem for smooth varieties is based on a version of move-bend-and-break argument which was explained above in the toric case. The hard part is to make a curve to move - the property which was given in the toric case for free. For this purpose Mori used deformation of morphisms and, in addition, positive characteristic arguments, see [5] for an exposition of the method.

Example. - The case of toric surfaces is elementary but important (it will be used in the subsequent lecture). Let $X=X(\Delta)$ be a complete toric surface. Suppose that b is a positive number and $\left\langle e_{1}, e_{2}\right\rangle$ and $\left\langle e_{1}, a e_{1}-b e_{2}\right\rangle$ are in Δ. Assume that $V\left(\left\langle e_{1}\right\rangle\right)$ is in an extremal ray. Then:
(i) if $a<0$ then $\Delta(1)=\left\{\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle a e_{1}-b e_{2}\right\rangle\right\}$ and therefore $N^{1}(X)$ is of dimension 1 ; such X can be shown to be a quotient of the projective plane,
(ii) if $a=0$ then X is a "generalized Hirzebruch surface", that is: its fan is generated by the following rays: $\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle-e_{2}\right\rangle,\left\langle-c e_{1}+d e_{2}\right\rangle$ and the projection along the line $\mathbb{R} \cdot e_{2}$ produces a regular map (ruling) onto \mathbb{P}^{1},
(iii) if $a>0$ then the fan Δ is a sub-division of a fan Δ^{\prime} which is obtained from Δ by forgetting the ray $\left\langle e_{1}\right\rangle$ and replacing two cones $\left\langle e_{1}, e_{2}\right\rangle$ and $\left\langle e_{1}, a e_{1}-b e_{2}\right\rangle$ by one cone $\left\langle e_{2}, a e_{1}-b e_{2}\right\rangle$; the associated birational morphism $X(\Delta) \rightarrow X\left(\Delta^{\prime}\right)$ is a weighted blow-down.

The knowledge of the cone $N E(X)$ is valuable because it gives information on morphisms of X. That is, a morphism of projective normal varieties $\varphi: X \rightarrow Y$ determines a face $N E(X / Y)$ of the cone $N E(X)$ which consists of 1-cycles contracted by φ or, equivalently $N E(X / Y)=N E(X) \cap\left\{Z: \varphi^{*} L \cdot Z=0\right\}$ for any ample L over Y. If in addition φ has connected fibers then it is called a contraction of the face $N E(X / Y)$ and its target Y is determined uniquely by $\varphi^{*} L$. Namely, in this case the variety Y can be recovered by the formula $Y=\operatorname{Proj}\left(\bigoplus_{m \geqslant 0} H^{0}\left(X, m \varphi^{*} L\right)\right)$. This property, called sometimes "fundamental triviality of Mori's program", occasionally can be inverted, that is: given a face we can produce its contraction. We will discuss it in the next lecture.

Let me finish this lecture with a series of exercises related to ampleness of line bundles over toric varieties. Let Δ be a simplicial complete fan in $N_{\mathbb{R}}$ with the set of rays $\Delta(1)=\left\{\rho_{1}, \ldots, \rho_{k}\right\}$, each ray ρ_{i} generated by a primitive $e_{i} \in \rho_{i} \cap N$. Let $L=\mathcal{O}_{X}\left(\sum b_{i} V\left(\rho_{i}\right)\right)$ be a line bundle on $X=X(\Delta)$. Recall that the total space of the bundle L is defined as the relative spectrum $\mathbf{V}(L)=\operatorname{Spec}_{X}\left(\bigoplus_{m \geqslant 0} L^{\otimes-m}\right)$.
(1) Prove that the total space of the line bundle L is a toric variety whose fan Δ^{\prime} in $N_{\mathbb{R}}^{\prime}$, with $N^{\prime}=N \oplus \mathbb{Z} \cdot e_{0}$, is constructed as follows:
(i) its rays are generated by $e_{0}^{\prime}=e_{0}$ and $e_{i}^{\prime}=e_{i}-b_{i} e_{0}$, for $i=1, \ldots, k$,
(ii) if $\left\langle e_{i_{1}}, \ldots, e_{i_{r}}\right\rangle \in \Delta$ then $\left\langle e_{i_{1}}^{\prime}, \ldots, e_{i_{r}}^{\prime}\right\rangle \in \Delta^{\prime}$ and $\left\langle e_{0}^{\prime}, e_{i_{1}}^{\prime}, \ldots, e_{i_{r}}^{\prime}\right\rangle \in \Delta^{\prime}$

Let us set $\gamma=\gamma(L)=\left|\Delta^{\prime}\right|$, where Δ^{\prime} is the fan defined above.
(2) Let $\psi_{L}: N_{\mathbb{R}} \rightarrow \mathbb{R}$ be a continuous function which is linear on any cone $\sigma \in \Delta$ and such that $\psi_{L}\left(e_{i}\right)=-b_{i}$. Prove that
(i) The graph of ψ_{L} in $N_{\mathbb{R}} \times \mathbb{R}$ coincides with the boundary of $\gamma(L)$.
(ii) The line bundle L is spanned by global sections if and only if the function ψ_{L} is convex, that is $\psi_{L}(u+v) \geqslant \psi_{L}(u)+\psi_{L}(v)$.
(3) Prove that if $\gamma(L)$ is a strictly convex cone then the affine toric variety $U_{\gamma(L)}$ is isomorphic to $\operatorname{Spec}\left(\bigoplus_{m \geqslant 0} H^{0}\left(X, L^{-m}\right)\right)$.
(4) Prove that L^{-1} is ample if and only if $\gamma(L)$ is a strictly convex cone whose 1 -dimensional faces are spanned by e_{i}^{\prime}, where $i=1, \ldots, k$, (equivalently, $\left\langle e_{i_{1}}^{\prime}, \ldots e_{i_{r}}^{\prime}\right\rangle$ is a proper face of $\gamma(L)$ if and only if $\left\langle e_{i_{1}}, \ldots, e_{i_{r}}\right\rangle \in \Delta$).
(5) Prove Grauert criterion for toric varieties: A line bundle L^{-1} is ample if and only if the morphism of the total space of the dual bundle $\mathbf{V}(L) \rightarrow$ $\operatorname{Spec}\left(\bigoplus_{m} H^{0}\left(X, L^{-m}\right)\right)$, defined by the evaluation of sections, is an isomorphism outside of the zero section in $\mathbf{V}(L)$ and contracts the zero section to the vertex of the cone.

2. Contraction Theorem

From now on I will always assume that $X=X(\Delta)$ is a \mathbb{Q}-factorial complete toric variety, that is: the fan Δ is simplicial and $|\Delta|=N_{\mathbb{R}}$. I will also frequently refer to the following

Set-up. - We consider 1-stratum $V(\omega) \subset X(\Delta)$ associated to a cone $\omega=$ $\left\langle e_{1}, e_{2}, \ldots e_{n-1}\right\rangle$ where e_{i} are primitive lattice elements on rays spanning ω. The cone ω separates two n-dimensional cones from Δ

$$
\delta_{n+1}=\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle, \quad \delta_{n}=\left\langle e_{1}, e_{2}, \ldots, e_{n-1}, e_{n+1}\right\rangle
$$

where e_{n} and e_{n+1} are primitive on rays on opposite sides of ω. We write ρ_{i} for the ray generated by e_{i}. We have a relation

$$
\sum_{i=1}^{n+1} a_{i} e_{i}=0
$$

with $a_{n+1}=1, a_{i} \in \mathbb{Q}$ and indexes ordered so that

$$
\begin{array}{ccc}
a_{i}<0 & \text { for } & 1 \leqslant i \leqslant \alpha \\
a_{i}=0 & \text { for } & \alpha+1 \leqslant i \leqslant \beta \\
a_{i}>0 & \text { for } & \beta+1 \leqslant i \leqslant n+1
\end{array}
$$

If $X(\Delta)$ is smooth along $V(\omega)$, or equivalently if $\left\{e_{1}, \ldots, e_{n}\right\}$ and $\left\{e_{1}, \ldots, e_{n-1}, e_{n+1}\right\}$ are bases for N then $V(\omega)$ is the complete intersection $\bigcap_{i=1}^{n-1} V\left(\rho_{i}\right)$ and the numbers a_{i} form the splitting type of the normal bundle of $V(\omega)$ in X, that is $N_{V(\omega) / X} \simeq$ $\mathcal{O}\left(a_{1}\right) \oplus \cdots \oplus \mathcal{O}\left(a_{n-1}\right)$. If $X(\Delta)$ is only \mathbb{Q}-factorial then for a cone $\sigma \in \Delta$ we define the
number $\operatorname{mult}(\sigma)$ as the index of the sub-lattice generated by the primitive generators of rays of σ inside the lattice $N \cap(\sigma-\sigma)$. Then we have the following fact about intersection numbers.

Proposition. - Let $V(\rho) \subset X(\Delta)$ be a divisor corresponding to a ray $\rho=\mathbb{R}_{\geqslant 0} \cdot e \in$ $\Delta(1)$, with $e \in N$ primitive in ρ. Then
(i) $V(\rho) \cdot V(\omega)=0$ if $e \notin\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}\right\}$,
(ii) $V\left(\rho_{n+1}\right) \cdot V(\omega)=\operatorname{mult}(\omega) / \operatorname{mult}\left(\delta_{n}\right)>0$,
(iii) $V\left(\rho_{i}\right) \cdot V(\omega)=a_{i} V\left(\rho_{n+1}\right) \cdot V(\omega)$ for $i=1, \ldots, n$.

As an immediate consequence we get
Corollary. - Suppose that $R=\mathbb{R}_{\geqslant 0} \cdot[V(\omega)]$ is an extremal ray. Then the numbers α and β, as well as the primitive vectors $e_{1}, \ldots, e_{\alpha}, e_{\beta+1}, \ldots e_{n+1}$ (and the rays ρ_{i} spanned on them) defined above depend on the ray R only. Moreover, if we choose a cone $\omega^{\prime} \in \Delta(n-1)$ such that $\left[V\left(\omega^{\prime}\right)\right] \in R$ then $\rho_{1}, \ldots \rho_{\alpha}$ are among the edges of ω^{\prime} and for $k \geqslant \beta+1$ the ray ρ_{k} is either an edge of ω^{\prime} or of one of the two adjacent n-dimensional cones.

Proof. - If we choose ω^{\prime} such that the curve $V\left(\omega^{\prime}\right)$ is numerically proportional to $V(\omega)$ then the divisors which have negative or, respectively, positive intersection with them are the same - hence the result.

We have an explicit description of the Mori cone in terms of the linear spaces which we have introduced in the previous lecture.

Proposition. - If $N_{1}(X) \hookrightarrow \mathbb{R}^{\Delta(1)}$ is identified with the subspace of linear relations between primitive generators of rays in $\Delta(1)$ then
$N_{1}(X) \supset N E(X)=\sum_{\omega \in \Delta(n-1)} \mathbb{R}_{\geqslant 0} \cdot\left[a_{1} \tilde{e}_{1}+\cdots+a_{\alpha} \widetilde{e}_{\alpha}+a_{\beta+1} \widetilde{e}_{\beta+1}+\cdots+a_{n+1} \widetilde{e}_{n+1}\right]$
with e_{i} and a_{i} defined for ω as in our set-up.
Proof. - We can evaluate the product

$$
\left(a_{1} \widetilde{e}_{1}+\cdots+a_{\alpha} \widetilde{e}_{\alpha}+a_{\beta+1} \widetilde{e}_{\beta+1}+\cdots+a_{n+1} \widetilde{e}_{n+1}, \widetilde{e}_{j}\right)=c \cdot V(\omega) \cdot V\left(\rho_{j}\right)
$$

where c is a positive constant which depends on ω and the choice of e_{n+1}. Thus the class of $V(\omega)$ lies in the ray spanned by the vector $a_{1} \widetilde{e}_{1}+\cdots+a_{\alpha} \widetilde{e}_{\alpha}+a_{\beta+1} \widetilde{e}_{\beta+1}+$ $\cdots+a_{n+1} \widetilde{e}_{n+1}$.

We need to introduce more notation:

$$
\begin{aligned}
\delta_{i} & =\left\langle e_{1}, e_{2}, \ldots{ }^{\wedge} \ldots e_{n}, e_{n+1}\right\rangle, \\
\omega_{i}^{\prime}=\delta_{i} \cap \delta_{n+1} & =\left\langle e_{1}, e_{2}, \ldots{ }^{i} \ldots, e_{n-1}, e_{n}\right\rangle, \\
\omega_{i}^{\prime \prime}=\delta_{i} \cap \delta_{n} & =\left\langle e_{1}, e_{2}, \ldots \wedge^{i} \ldots, e_{n-1}, e_{n+1}\right\rangle, \\
\sigma_{i}=\omega_{i}^{\prime} \cap \omega_{i}^{\prime \prime} & =\left\langle e_{1}, e_{2}, \ldots{ }^{\wedge i} \ldots, e_{n-1}\right\rangle
\end{aligned}
$$

Note that δ_{i} does not have to belong to the fan Δ.

Now we assume that $[V(\omega)] \in R$, where $R \subset N E(X)$ is an extremal ray, and therefore X is projective. The following crucial result is proved by reducing to surfaces strata $V\left(\sigma_{i}\right)$, which is then essentially the example from the previous lecture.

Proposition. - In the above situation if $a_{i}>0$ then $\delta_{i} \in \Delta$ and the 1-dimensional strata associated to w_{i}^{\prime} and $w_{i}^{\prime \prime}$ are in R. If $a_{i}=0$ then there exists $e_{i}^{\prime} \in \Delta(1)$ such that the star of σ_{i} in Δ consists of four n-dimensional cones: the two which we already have δ_{n}, δ_{n+1} and in addition

$$
\begin{aligned}
\delta_{n}^{\prime} & =\left\langle e_{1}, \ldots e_{i-1}, e_{i}^{\prime}, e_{i+1}, \ldots, e_{n-1}, e_{n+1}\right\rangle, \\
\delta_{n+1}^{\prime} & =\left\langle e_{1}, \ldots, e_{i-1}, e_{i}^{\prime}, e_{i+1}, \ldots, e_{n-1}, e_{n}\right\rangle,
\end{aligned}
$$

and their faces. Moreover the 1-stratum $V\left(\omega^{\prime}\right):=V\left(\delta_{n}^{\prime} \cap \delta_{n+1}^{\prime}\right)$ is in R.
We have just noted that if in our set-up the number a_{i} is positive then, from the point of view of the extremal ray R, the roles of indexes i, n and $n+1$ can be exchanged. On the other hand the numbers a_{i} have appeared in measuring the intersection of 1dimensional strata with divisors. Thus we can choose a curve in the ray which is minimal in this respect. That is, we can renumber e_{i} for $i=\beta+1, \ldots, n+1$ in such a way that $V\left(\rho_{n+1}\right) \cdot V(\omega) \geqslant V\left(\rho_{i}\right) \cdot V(\omega)$ for all i. Then the curve $C=V(\omega)$ will have its class in the same ray as before and in addition $a_{i} \leqslant 1$, for $i=1, \ldots, n+1$. (We call such a curve extremal.)

For an extremal ray $R \subset N E(X)$ we define

$$
\operatorname{Locus}(R)=\bigcup\{C \subset X:[C] \in R\}
$$

Proposition. - In the above set-up suppose that $V(\omega)$ is in an extremal ray R, then

$$
\operatorname{Locus}(R)=V\left(\left\langle e_{1}, \ldots, e_{\alpha}\right\rangle\right)
$$

Proof. - Locus (R) is a closed subset of X, and it is invariant with respect to the action of T_{N}, hence it is of the form $V(\sigma)$ for some $\sigma \in \Delta$. Since $V\left(\rho_{i}\right) \cdot R<0$, for $i=1, \ldots \alpha$, it follows that $V\left(\rho_{i}\right) \supset \operatorname{Locus}(R)$ hence $V\left(\left\langle e_{1}, \ldots e_{\alpha}\right\rangle\right) \supset \operatorname{Locus}(R)$ and $\sigma \supset\left\langle e_{1}, \ldots e_{\alpha}\right\rangle$. On the other hand $\operatorname{Locus}(R)=V(\sigma) \supset V(\omega)$, hence σ is a face of $\left\langle e_{1}, \ldots, e_{n-1}\right\rangle$. However, from the previous proposition it follows that, switching from ω to another ω^{\prime}, whose class is in R, we can replace each of vertices $e_{\beta+1}, \ldots, e_{n-1}$ by e_{n}, while each of vertices e_{i}, with $i=\alpha+1, \ldots \beta$ can be replaced by e_{i}^{\prime} which is not in the original collection. Thus σ is contained in $\left\langle e_{1}, \ldots, e_{\alpha}\right\rangle$ and we are done.

Corollary. - In the previous set-up, $V(\omega)$ has non-negative intersection with any effective divisor if and only if $\operatorname{Locus}(R)=X$ (in this case we call R a nef extremal ray). If $\alpha=1$ then $\operatorname{Locus}(R)=V\left(\rho_{1}\right)$ is the only effective divisor whose intersection with R is negative.

In the non-toric case the locus of a ray may be not as nice as the toric case would suggest: for example it can be disconnected.

Again, we need more notation:

$$
\begin{aligned}
\delta(\omega) & =\delta_{n}+\delta_{n+1}=\left\langle e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}\right\rangle \\
\mu(\omega) & =\left\langle e_{1}, \ldots, e_{\alpha}, e_{\beta+1}, \ldots, e_{n+1}\right\rangle
\end{aligned}
$$

Since we already have noticed that the set of rays spanning $\mu(\omega)$ is common for all $\omega \in \Delta(n-1)$, such that $[V(\omega)] \in R$, we can actually write $\mu(R)$ instead of $\mu(\omega)$. We note moreover that if $\alpha=0$ then $\mu(R)$ is a vector space.

Lemma. - There are the following two simplicial subdivisions

$$
\delta(w)=\bigcup_{i=\beta+1}^{n+1} \delta_{i}=\bigcup_{i=1}^{\alpha} \delta_{i}
$$

where the second equality makes sense if $\alpha>0$.
Proof. - Take $x=\sum_{i} t_{i} e_{i} \in \Delta(\omega)$. Choose $j \geqslant \beta+1$ (or $j \leqslant \alpha$) for which t_{j} / a_{j} is minimum (maximum, respectively). Then we can write $x=\sum_{i}\left[t_{i}-\left(t_{j} / a_{j}\right) a_{i}\right] e_{i}$ and all coefficients of e_{i} are non-negative, and zero if $i=j$. So $x \in \delta_{j}$ and this proves the simplicial sub-division.

Now let me note that $N_{\mathbb{R}} \simeq \mathbb{R}^{n}$ can be written as the Cartesian product of two linear spaces $\mathbb{R}^{n}=\mathbb{R}^{\beta-\alpha} \times \mathbb{R}^{n+\alpha-\beta}$, where the first factor is spanned on the (linearly independent) vectors $e_{\alpha+1}, \ldots, e_{\beta}$ and the second factor is spanned on $e_{1}, \ldots, e_{\alpha}, e_{\beta+1}, \ldots e_{n+1}$. Subsequently, $\delta(\omega)$ can be written as the product of the respective two cones, $\delta(\omega)=\left\langle e_{\alpha+1}, \ldots, e_{\beta}\right\rangle \times \mu(R)$. In particular $\mu(R)$ can be seen as the face of $\delta(\omega)$ cut by the linear subspace $\{0\} \times \mathbb{R}^{n+\alpha-\beta}$. If $\alpha=0$ then $-e_{n+1} \in\left\langle e_{\beta+1}, \ldots, e_{n}\right\rangle$ hence $\left\langle e_{\beta+1}, \ldots e_{n+1}\right\rangle=\{0\} \times \mathbb{R}^{n-\beta}$.

In the proposition at the beginning of the lecture we have noticed that for $i=$ $\alpha+1, \ldots \beta$ each e_{i} has a twin e_{i}^{\prime} on the other side of the hyperplane spanned by the remaining rays. Then $\omega^{\prime}=\left\langle e_{1}, \ldots, e_{i}^{\prime}, \ldots, e_{n-1}\right\rangle$ defines another curve in the ray R and $\delta\left(\omega^{\prime}\right)=\left\langle e_{1}, \ldots, e_{i}^{\prime}, \ldots, e_{n+1}\right\rangle$, is a cone which has $\mu(R)$ as a face and lies on the other side of the hyperplane spanned by e_{j}, with $j \neq i$. Now let me set $\mathcal{V}(R)=\bigcup \delta(\omega)$, where the sum is taken over $\omega \in \Delta(n-1)$ such that $[V(\omega)] \in R$. Then $\mathcal{V}(R)$ is a convex neighborhood of $\mu(R)$ in $N_{\mathbb{R}}$.

The above discussion is needed for the proof of the following
Toric Contraction Theorem I (Reid). - Let Δ be a complete simplicial fan, $X=X(\Delta)$ its toric variety, and suppose that R is an extremal ray of X. Let us remove from $\Delta(n-1)$ all $(n-1)$-dimensional cones ω associated to curves from R and for each such ω replace the two adjacent cones δ_{n} and δ_{n+1} from $\Delta(n)$ by the cone $\delta(w)$. Then, taking respectively their faces in $\Delta(i)$, where $i \leqslant n-2$, we get a complete fan Δ_{R}^{*}, degenerate with vertex $\mu(R)$ if $\alpha=0$, nondegenerate if $\alpha \neq 0$. Moreover, if $\alpha=0$ then
$\Delta_{R}:=\Delta_{R}^{*} / \mu(R)$ is a complete simplicial fan. If $\alpha=1$ then $\Delta_{R}:=\Delta_{R}^{*}$ is simplicial as well.

The result follows from the above discussion and lemma we already proved: our construction leaves the fan Δ unchanged outside $\mathcal{V}(R)$, while $\mathcal{V}(R)$ itself is divided into cones of the type $\delta(\omega)$, each of them containing the cone $\mu(R)$. The induced morphism $\varphi_{R}: X(\Delta) \rightarrow X\left(\Delta_{R}\right)$ is what we have called the contraction of the ray R and it has all the features listed in the following theorem (the projectivity will be apparent later).

Contraction Theorem (Kawamata, Shokurov). - Let X be a projective variety with terminal singularities. Then for any Mori ray R of X there exists a morphism (the contraction of R) $\varphi_{R}: X \rightarrow X_{R}$ such that:
(i) X_{R} is a normal projective variety;
(ii) φ_{R} is a morphism with connected fibers: $\left(\varphi_{R}\right)_{*} \mathcal{O}_{X}=\mathcal{O}_{X_{R}}$;
(iii) a curve $C \subset X$ is contracted to a point by φ_{R} if and only if $[C] \in R$.

Remark (notation as before). - Let $\varphi_{R}: X=X(\Delta) \rightarrow X_{R}=X\left(\Delta_{R}\right)$ be the toric contraction coming from the above theorem. Then the exceptional set of φ_{R} is $V\left(\left\langle e_{1}, \ldots, e_{\alpha}\right\rangle\right)$ and φ_{R} contracts it to $V(\mu(R)) \subset X\left(\Delta_{R}\right)$ (if $\alpha=0$ then both are equal to $V(0))$. Moreover,
(i) if $\alpha=0$ then $\operatorname{dim} X_{R}=\beta$ and φ_{R} is a bundle whose fiber is a quotient of a projective space.
(ii) if $\alpha=1$ then φ_{R} contracts the exceptional divisor $V\left(\rho_{1}\right)$ to a set in X_{R} of dimension $\beta-1$.
(iii) if $\alpha>1$ then φ_{R} is birational and it is an isomorphism in codimension 1. The ray R is then called small.

Let $\varphi_{R}: X(\Delta) \rightarrow X\left(\Delta_{R}\right)$ be a contraction of a ray R .
The construction of the toric contraction was pretty explicit and involved understanding the local structure of the variety. In general however one gets the contraction as the result of the following theorem.

Base Point Free Theorem (Kawamata, Shokurov). - Let X be a projective variety with terminal singularities and L a nef Cartier divisor such that $t L-K_{X}$ is ample for $t \gg 0$. Then the linear system $|m L|$ has no base points for sufficiently large m.

The contraction theorem follows from the base point freeness quite easily: given a Mori ray R we have to choose a good supporting line bundle L such that the hyperplane $\left\{Z \in N_{1}(X): Z \cdot L=0\right\}$ meets $N E(X)$ along R and $N E(X) \backslash R$ is in the half-space which has positive intersection with L. Now we can take the morphism defined by the linear system $|m L|$, call it $\psi: X \rightarrow \mathbb{P}^{r}$. It is clear that ψ contracts (only!) curves from R, so if we take its connected part coming from the Stein factorization
$X \rightarrow X_{R} \rightarrow \psi(X) \subset \mathbb{P}^{r}$ then we get the contraction of the ray R. Equivalently, we can define X_{R} as the projective spectrum $\operatorname{Proj}\left(\bigoplus_{M \geqslant 0} H^{0}(X, m L)\right)$ and the morphism $X \rightarrow X_{R}$ is then defined by the evaluation of sections $H^{0}(X, m L) \otimes \mathcal{O}_{X}^{\prime} \rightarrow m L$. Let me note that the target of the contraction is projective since by the construction it comes with an ample line bundle whose pull-back to X is the original bundle L.

The toric case has very nice base-point-free properties which is one of the main reasons why our construction works that well. Namely, combining the results of exercises which were at the end of the previous lecture with the numerical properties of the intersection which has been discussed today we get.

Lemma. - Let $X=X(\Delta)$ be a \mathbb{Q}-factorial complete toric variety and let consider a line bundle $L=\mathcal{O}_{X}\left(\sum_{i} b_{i} V\left(e_{i}\right)\right)$ over X. Then L is nef if and only if it spanned by global sections.

Proof. - In the situation of our set-up we have $L \cdot V(\omega)=b_{1} a_{1}+\cdots+b_{\alpha} a_{\alpha}+$ $b_{\beta+1} a_{\beta+1}+\cdots+b_{n+1} a_{n+1}$. On the other hand the function $\psi_{L}: N_{\mathbb{R}} \rightarrow \mathbb{R}$ defined at the end of the previous lecture is convex on $\delta_{n} \cup \delta_{n+1}$ if and only if

$$
\begin{aligned}
\psi_{L}\left(a_{n} e_{n}+a_{n+1} e_{n+1}\right) & =-\psi_{L}\left(a_{1} e_{1}+\cdots+a_{n-1} e_{n-1}\right)=a_{1} b_{1}+\cdots+a_{n-1} b_{n-1} \\
& \geqslant \psi_{L}\left(a_{n} e_{n}\right)+\psi_{L}\left(a_{n+1} e_{n+1}\right)=-a_{n} b_{n}-a_{n+1} b_{n+1}
\end{aligned}
$$

and this is equivalent to $L \cdot V(\omega) \geqslant 0$. Thus our lemma follows by the characterization of the spanned bundles which was discussed in the previous lecture.

Now, let me sketch an argument which shows the equivalence of these two constructions (the set-up is as usual).

First we choose a line bundle $L=\mathcal{O}\left(\sum_{i} b_{i} V\left(\rho_{i}\right)\right)$ which is good supporting for R, that is the sum $\sum_{i} a_{i} b_{i}$ is non-negative for a_{i} arising - as in the set-up - for any $\omega \in \Delta(n-1)$ and it is zero only if $[V(w)] \in R$. Now, as in the exercises finishing the previous lecture we consider the support $\gamma\left(L^{-1}\right)$ of the fan Δ^{\prime} defining the total space of the dual L^{-1}. When L was ample then the n-dimensional faces of $\gamma\left(L^{-1}\right)$ were in $1-1$ correspondence with n-dimensional cones of Δ. Now this is not the case because the vectors $e_{1}^{\prime}, \ldots, e_{n+1}^{\prime}$ (notation as in the construction of the fan Δ^{\prime}) are on a hyperplane if the relation $\sum_{i} a_{i} \widetilde{e}_{i}$ is in R. Indeed,

$$
\sum_{i=1}^{n+1} a_{i} e_{i}^{\prime}=\sum_{i=1}^{n+1}\left(a_{i} e_{i}-a_{i} b_{i} e_{0}\right)
$$

and therefore the left hand side vanishes if and only if both $\sum a_{i} e_{i}$ and $\sum a_{i} b_{i}$ are zero.

Exercise. - Prove that the fan in $N_{\mathbb{R}}$ obtained by projecting along $\mathbb{R} \cdot e_{0}$ the faces of the cone $\gamma\left(L^{-1}\right)$ is equal to Δ_{R}^{*} and therefore X_{R} constructed in the first part of the lecture is equal to $\operatorname{Proj}\left(\bigoplus_{M \geqslant 0} H^{0}(X, m L)\right)$.

An advantage of the arguments using general base-point-freeness is that - although being less constructive than in the case of a ray - it works for an arbitrary face of the cone $N E(X)$. Thus we have the result which we predicted at the end of the previous lecture.

Toric Contraction Theorem II. - Let $X=X(\Delta)$ be a projective \mathbb{Q}-factorial toric variety. Then any face $F \subset N E(X)$ can be contracted. That is, there exits a morphism $\varphi_{F}: X \rightarrow X_{F}$ such that:
(i) X_{F} is a toric projective variety;
(ii) φ_{F} has connected fibers;
(iii) a curve $C \subset X$ is contracted to a point by φ_{F} if and only if $[C] \in F$.

The construction of X_{F} and φ_{F} is obtained as it was explained above: we choose a good supporting line bundle L_{F} for the face F. We know that L_{F} is spanned and therefore we can set $X_{F}:=\operatorname{Proj}\left(\bigoplus_{m \geqslant 0} H^{0}\left(X, m L_{F}\right)\right)$, and we define φ_{F} via evaluation. Finally, the resulting variety X_{F} is toric because the action of T on X gives an action on $H^{0}\left(X, m L_{F}\right)$, for each m, and thus an action on the projective spectrum $\operatorname{Proj}\left(\bigoplus_{m \geqslant 0} H^{0}\left(X, m L_{F}\right)\right)$ so that $\varphi_{F}: X \rightarrow X_{F}$ is T-equivariant. The action of T on X_{F} has an open orbit, thus if we divide T by the isotropy group of a general point of X_{F} then the resulting torus T_{F} acts on X_{F} with an open orbit and therefore X_{F} is toric, see e.g. [10], 1.5. In the conclusion let us note that if F^{\prime} is a sub-face of F then the contraction of F factors through the contraction of F^{\prime}.

3. Flip and Flop

We deal with a situation as before, that is: $X=X(\Delta)$ is a complete \mathbb{Q}-factorial toric variety, R is an extremal ray of X. Assume that R is a small ray, that is, as in our set-up: $\alpha \geqslant 2$. Let $\varphi_{R}: X \rightarrow X_{R}=X\left(\Delta_{R}\right)$ be the extremal ray contraction. Every $\delta \in \Delta_{R}(n) \backslash \Delta(n)$ is of the form $\delta=\left\langle e_{1}, \ldots, e_{n+1}\right\rangle$, where $e_{1}, \ldots, e_{\alpha}$ and $e_{\beta+1}, \ldots, e_{n+1}$ are fixed and satisfy the relation:

$$
\sum_{i=1}^{\alpha}\left(-a_{i}\right) e_{i}=\sum_{i=\beta+1}^{n+1} a_{i} e_{i}
$$

and we have proved during the previous lecture that

$$
\delta=\bigcup_{i=\beta+1}^{n+1} \delta_{i}=\bigcup_{i=1}^{\alpha} \delta_{i}
$$

are simplicial sub-divisions and the first one of them leads to the birational morphism φ_{R}.

Before presenting the main result of the lecture let us formulate a general observation concerning birational maps which are isomorphisms in codimension 1.

Lemma. - If $\psi: X-\rightarrow Y$ is a birational map of \mathbb{Q}-factorial varieties which is an isomorphism in codimension 1 then the strict transform of Weil divisors provides a natural identification $N^{1}(X)=N^{1}(Y)$ and hence a dual isomorphism $N_{1}(X) \simeq$ $N_{1}(Y)$.

Toric Flip Theorem. - Let $X=X(\Delta)$ be as in our set-up with $R=\mathbb{R}_{\geqslant 0} V(\omega)$ an extremal ray and $\varphi_{R}: X \rightarrow X_{R}=X\left(\Delta_{R}\right)$ its contraction. Assume moreover that φ_{R} is small. Let Δ_{1} be a simplicial subdivision of Δ_{R} such that

$$
\Delta_{1}(n)=\Delta_{R}(n) \backslash\{\delta(\omega):[V(\omega)] \in R\} \cup\left\{\delta_{i}(\omega):[V(\omega)] \in R, i=1 \ldots \alpha\right\}
$$

then $X_{1}=X\left(\Delta_{1}\right)$ is a \mathbb{Q} factorial projective variety and the resulting birational morphism $\varphi_{1}: X_{1} \rightarrow X_{R}=X\left(\Delta_{R}\right)$ is isomorphism in codimension 1. If, using the resulting birational map $\psi: X \rightarrow X_{1}$, we identify $N_{1}(X) \simeq N_{1}\left(X_{1}\right)$ then $R_{1}=-R$ is an extremal ray of X_{1} and φ_{1} is its contraction.

Proof. - All features of X_{1} and φ_{1} follow by the symmetry of the above construction. In particular, all $n-1$ dimensional cones introduced in subdividing Δ into Δ_{1} lead to 1-dimensional strata which are numerically proportional and they have opposite sign intersection numbers with respect to the 1-dimensional strata which we contracted by φ_{R}. Thus, if we take an ample divisor H on X and a good supporting divisor L_{R} for R then, by toric Kleiman criterion of ampleness, $m L_{R}-H$ is ample on X_{1} for m sufficiently large; hence X_{1} is projective. Other features are immediate.

Thus, in case of toric geometry we have an affirmative answer to the following
Flip Conjecture. - Let $\varphi_{R}: X \rightarrow X_{R}$ be a small contraction of a Mori ray R of a variety X with terminal singularities. Then there exists a variety X_{+}with terminal singularities, together with a birational morphism $\varphi_{+}: X_{+} \rightarrow X_{R}$ which is isomorphism in codimension 1. Moreover the induced birational map $\left(\varphi_{+}\right)^{-1} \circ \varphi_{R}: X \rightarrow X_{+}$ is an isomorphism outside $\operatorname{Locus}(R)$ and $K_{X_{+}}$is φ_{+-}ample.

As explained in the introduction, a proof of Flip Conjecture, together with Contraction and Cone theorems would complete the Minimal Model Program. This was successfully done in dimension 3 by Mori.

Complements: flips as Mumford's quotients, Morelli-Włodarczyk cobordisms. - Consider an action of \mathbb{C}^{*} on $\mathcal{B}:=\mathbb{C}^{n+1}$:
$\mathbb{C}^{*} \times \mathbb{C}^{n+1} \ni(t, z)=\left(t,\left(z_{1}, \ldots, z_{n+1}\right)\right) \longmapsto t \cdot z:=\left(t^{a_{1}} \cdot z_{1}, \ldots, t^{a_{n+1}} \cdot z_{n+1}\right) \in \mathbb{C}^{n+1}$
where $\left(a_{1}, \ldots a_{n+1}\right)$ is a sequence of non-zero (for simplicity) coprime integers and

$$
\begin{array}{ccc}
a_{i}<0 & \text { for } & 1 \leqslant i \leqslant \alpha \\
a_{i}>0 & \text { for } & \alpha+1 \leqslant i \leqslant n+1
\end{array}
$$

We moreover assume that $2 \leqslant \alpha \leqslant n-1$. A monomial $z^{m}=z_{1}^{m_{1}} \ldots z_{n+1}^{m_{n+1}}$ is \mathbb{C}^{*} invariant if

$$
a_{1} m_{1}+\cdots+a_{n+1} m_{n+1}=0
$$

Thus we have an immediate result.
Lemma. - In the above situation the variety $Z=\operatorname{Spec}\left(\mathbb{C}\left[z_{1}, \ldots z_{n+1}\right]\right)^{\mathbb{C}^{*}}$ is an affine toric variety U_{δ} whose cone δ, as well as the lattice N, is spanned in $N_{\mathbb{R}} \simeq \mathbb{R}^{n}$ by vectors $e_{1}, \ldots, e_{n}, e_{n+1}$ satisfying the relation $a_{1} e_{1}+\cdots+a_{n+1} e_{n+1}=0$.

We consider $\mathcal{B}=\mathbb{C}^{n}$ as a toric affine variety $U_{\widehat{\delta}}$ associated to a cone $\widehat{\delta}=$ $\left\langle\widehat{e}_{1}, \ldots, \widehat{e}_{n+1}\right\rangle$ spanned by generators of the lattice $\widehat{N} \simeq \mathbb{Z}^{n+1}$ in $\widehat{N}_{\mathbb{R}}$. Then the inclusion of the \mathbb{C}^{*}-invariant polynomials, $\mathbb{C}\left[z_{1}, \ldots, z_{n+1}\right]^{\mathbb{C}^{*}} \subset \mathbb{C}\left[z_{1}, \ldots, z_{n+1}\right]$, and the related inclusion in the set of characters $\widehat{M}=\operatorname{Hom}(\widehat{N}, \mathbb{Z})$, can be dually interpreted as the projection $\widehat{N}_{\mathbb{R}} \rightarrow N_{\mathbb{R}}$ along the line $\mathbb{R} \cdot\left(\sum_{i} a_{i} \widehat{e}_{i}\right)$. Thus we have a natural toric morphism $\mathcal{B}=\mathbb{C}^{n+1} \rightarrow Z$ which in terms of $[\mathbf{9}]$ GIT theory is called good quotient or categorical quotient and denoted $\mathbb{C}^{n+1} / / \mathbb{C}^{*}$. Note that the fiber of the morphism $\mathcal{B} \rightarrow Z$ over the special point (the image of the origin) contains several (geometric) orbits of the \mathbb{C}^{*} action: apart of the origin 0 it includes orbits which converge to (or diverge from) 0 .

Now I introduce three types of objects related to the situation we consider:
(I) First define \mathbb{C}^{*}-invariant open subsets of \mathcal{B} : inside $\mathcal{B}=\mathbb{C}^{n+1}$ we consider two subsets:

$$
\begin{aligned}
& \mathcal{B}_{+}=\left\{z \in \mathbb{C}^{n+1} \text { such that } \lim _{t \rightarrow \infty} t \cdot z \text { does not exist }\right\}, \\
& \mathcal{B}_{-}=\left\{z \in \mathbb{C}^{n+1} \text { such that } \lim _{t \rightarrow 0} t \cdot z \text { does not exist }\right\}
\end{aligned}
$$

we see that

$$
\begin{aligned}
& \mathcal{B}_{+}=\mathbb{C}^{n+1} \backslash\left\{\left(z_{1}, \ldots, z_{\alpha}, 0, \ldots, 0\right)\right\} \\
& \mathcal{B}_{-}=\mathbb{C}^{n+1} \backslash\left\{\left(0, \ldots, 0, z_{\alpha+1}, \ldots, z_{n+1}\right)\right\}
\end{aligned}
$$

(II) Next define graded algebras: on the polynomial algebra $\mathbb{C}\left[z_{1}, \ldots, z_{n+1}\right]$ we introduce a non-standard grading:

$$
\operatorname{grad}\left(z_{1}^{m_{1}} \ldots z_{n+1}^{m_{n+1}}\right)=a_{1} m_{1}+\cdots+a_{n+1} m_{n+1}
$$

We can write $A=\mathbb{C}\left[z_{1}, \ldots, z_{n+1}\right]$ as a graded algebra $A=\bigoplus_{m \in \mathbb{Z}} A_{m}$, where A_{m} is a \mathbb{C}-linear space spanned on monomials of grade m. We easily note that $A_{0}=$ $\mathbb{C}\left[z_{1}, \ldots, z_{n+1}\right]^{\mathbb{C}^{*}}$, so that $Z=\operatorname{Spec}\left(A_{0}\right)$. If we denote $A^{+}=\bigoplus_{m \geqslant 0} A_{m}$ and $A^{-}=$ $\bigoplus_{m \leqslant 0} A_{m}$ then both of them are graded finitely generated A_{0}-algebras and they define naturally sheaves of graded \mathcal{O}-algebras over Z.
(III) Finally define toric varieties. Let Δ_{+}and Δ_{-}be two fans coming from two subdivisions of the cone δ (notation as usual, that is $\left.\delta_{i}=\left\langle e_{1}, e_{2} \ldots{ }^{\wedge}, \ldots, e_{n}, e_{n+1}\right\rangle\right)$

$$
\delta=\bigcup_{i=\alpha+1}^{n+1} \delta_{i}=\bigcup_{i=1}^{\alpha} \delta_{i}
$$

and by $X_{ \pm}=X\left(\Delta_{ \pm}\right)$denote their toric varieties.
Now we can compare the introduced objects.
Lemma. - The toric varieties X_{+}and X_{-}are isomorphic to projective relative spectra $\operatorname{Proj}_{Z} A^{+}$and $\operatorname{Proj}_{Z} A^{-}$, respectively. Moreover, there exist morphisms $\mathcal{B}_{ \pm} \rightarrow X_{ \pm}$ which make $X_{ \pm}=\mathcal{B}_{ \pm} / \mathbb{C}^{*}$, geometric quotients in the sense of Mumford; that is, the (closed) points of $X_{ \pm}$parametrize (closed) orbits of the \mathbb{C}^{*} action on $\mathcal{B}_{ \pm}$.

The above result can be interpreted as follows. Suppose that you have a contraction of a Mori ray $\varphi_{R}: X \rightarrow X_{R}$ and you want to construct a flip of φ_{R}. Then, since $-K_{X}$ is φ_{R} ample, we have $X=\operatorname{Proj}_{X_{R}} \bigoplus_{m \geqslant 0}\left(\varphi_{R}\right)_{*} \mathcal{O}\left(-m K_{X}\right)$ and you want to get $X_{1}=\operatorname{Proj}_{X_{R}} \bigoplus_{m \geqslant 0}\left(\varphi_{R}\right)_{*} \mathcal{O}\left(m K_{X}\right)$ as the result of your flip. So the issue is to prove that the $\mathcal{O}_{X_{R}}$-algebra $\bigoplus_{m \geqslant 0}\left(\varphi_{R}\right)_{*} \mathcal{O}\left(m K_{X}\right)$ is finitely generated. On the other hand, chances are that, like in the toric case, the flip can be constructed as the result of some geometric quotient. This line of argument is discussed in [12] and it is related to the notion of cobordism which I want to discuss now.

Namely, the triple ($\mathcal{B}, \mathcal{B}_{+}, \mathcal{B}_{-}$) introduced above, together with the \mathbb{C}^{*} action, is an example of Morelli-Włodarczyk cobordism of varieties X_{+}and X_{-}(see [8] and [13]). Note that although the above structure does not admit anything like a Morse function, some of its properties are similar to the Morse theory features: in particular the vector field coming from the \mathbb{C}^{*} action can be compared with the gradient field of a Morse function. The quotients X_{+}and X_{-}can be compared to upper/lower boundaries of a Morse cobordism: one can imagine them being glued at ∞ or 0 to orbits $t \cdot z$ which don't have limits at $t \rightarrow \infty$ or $t \rightarrow 0$, respectively. In fact, in the present example the quotients can be glued together so that the picture is even more convincing (I don't claim however that this can be done as nicely in general).

Let $\widehat{e}_{1}, \ldots, \widehat{e}_{n+1}$ be a standard basis of \mathbb{R}^{n+1}. Define $\widehat{e}_{-}=-\widehat{e}_{+}=a_{1} \widehat{e}_{1}+\cdots+$ $a_{n+1} \widehat{e}_{n+1}$, where $a_{i}, i=1, \ldots, n+1$, are as above. Consider a fan $\widehat{\Delta}$ which contains the following $(n+1)$-dimensional cones:

$$
\begin{aligned}
& \left\langle\widehat{e}_{1}, \ldots, \widehat{e}_{n+1}\right\rangle \\
& \left\langle\widehat{e}_{-}, \widehat{e}_{1}, \ldots{ }^{\wedge i}, \ldots, \widehat{e}_{n+1}\right\rangle \quad \text { for } i=1, \ldots, \alpha \\
& \left\langle\widehat{e}_{+}, \widehat{e}_{1}, \ldots{ }^{\wedge i}, \ldots, \widehat{e}_{n+1}\right\rangle \quad \text { for } \quad i=\alpha+1, \ldots, n+1
\end{aligned}
$$

We note that $\widehat{\Delta}$ is a simplicial subdivision of the cone δ^{*}, non-strictly convex, with vertex along the line the line $L=\mathbb{R} \cdot \widehat{e}_{ \pm}$, and $\delta^{*} / L=\delta$, where δ is as above. Thus we have a morphism $\Phi: X(\widehat{\Delta}) \rightarrow U_{\delta}$. On the other hand we have a decomposition

$$
X(\widehat{\Delta})=V\left(e_{+}\right) \cup V\left(e_{-}\right) \cup U_{\left\langle\widehat{e}_{1}, \ldots, \widehat{e}_{n+1}\right\rangle} \simeq X_{+} \cup X_{-} \cup \mathbb{C}^{n+1}
$$

and the map Φ over \mathbb{C}^{n+1} is the good quotient of the \mathbb{C}^{*} action described above, while over the divisor strata Φ is a small contraction of a ray and its opposite.

More information on extensions and applications of the above construction can be found in $[\mathbf{1}]$ and in an expository paper [4].

4. Canonical Divisor

As before, also in this lecture, we assume that $X=X(\Delta)$ is a complete \mathbb{Q}-factorial toric variety, although this is not needed for the first observation which is obtained by simple verification.

Lemma. - Let m_{1}, \ldots, m_{n} be a basis of M and x_{1}, \ldots, x_{n} the respective functions $T_{N} \rightarrow \mathbb{C}^{*}$. Then

$$
\frac{d x_{1}}{x_{1}} \wedge \cdots \wedge \frac{d x_{n}}{x_{n}}
$$

is a unique (up to a constant) T_{N}-invariant holomorphic n-form on T_{N}. As a rational n-form on $X(\Delta)$ it has a simple pole along (the generic point of) any $V(\rho)$, with $\rho \in \Delta(1)$.

Corollary. - For any toric variety $X=X(\Delta)$ we have the following linear equivalence

$$
K_{X}=-\sum_{\rho \in \Delta(1)} V(\rho)
$$

In particular, if $\omega \in \Delta(n-1)$ is a common border of $\delta_{n+1}=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ and $\delta_{n}=$ $\left\langle e_{1}, \ldots, e_{n-1}, e_{n+1}\right\rangle$, where e_{i} satisfy the set-up condition, then

$$
-K_{X} \cdot V(\omega)=\frac{\operatorname{mult}(\omega)}{\operatorname{mult}\left(\delta_{n}\right)}\left[a_{1}+\cdots+a_{\alpha}+a_{\beta+1}+\cdots+a_{n+1}\right] .
$$

Definition. - For any Mori extremal ray R of a variety X we define

$$
\text { length }(R)=\min \left\{-K_{X} \cdot C:[C] \in R \text { and } C \text { is rational }\right\}
$$

We note that if $X(\Delta)$ is smooth and $V(\omega)$ is an extremal rational curve spanning a ray R, and $\omega \in \Delta(n-1)$ is as in our set-up then $a_{\beta+1}=\cdots=a_{n+1}=1$ and $\operatorname{length}(R)=n+1-\beta+a_{1}+\cdots+a_{\alpha}$.

Exercise. - Prove the following statements for smooth toric varieties: (1). Length of any extremal ray is $\leqslant n+1$. (2). If there exists a ray of length $n+1$ then $X \simeq \mathbb{P}^{n}$. (3). Classify smooth varieties which have a long ray; that is, first consider varieties with a ray of length $\geqslant n$, next these with a ray of length $\geqslant n-1$, etc.

Definition. - Let $X=X(\Delta)$ be a \mathbb{Q}-factorial toric variety. We say that X has terminal singularities if any closed n-dimensional simplex conv $\left(0, e_{1}, \ldots, e_{n}\right)$, spanned on the origin and primitive vectors $e_{i} \in N$ such that $\left\langle e_{1}, \ldots, e_{n}\right\rangle \in \Delta$, does not contain any point of N except its vertices. We say that X has canonical singularities
if $\operatorname{conv}\left(0, e_{1} \ldots e_{n}\right) \backslash \operatorname{conv}\left(e_{1}, \ldots, e_{n}\right)$ does not contain any point from N except the origin.

A general definition of terminal and canonical singularities is as follows.
Definition. - Let X be a normal variety such that its canonical divisor K_{X} is \mathbb{Q} Cartier. Suppose that $\pi: Y \rightarrow X$ is a resolution of singularities of X such that the exceptional set π is a divisor $\bigcup E_{i}$ which has only simple normal crossings. We can write

$$
K_{Y}=\pi^{*} K_{X}+\sum_{i} d_{i} E_{i}
$$

(where the number d_{i} is called discrepancy of E_{i}). Then X has terminal (respectively, canonical) singularities if all d_{i} are positive (respectively, non-negative).

We note that the first of the two definitions above does not depend on the resolution that we choose because, roughly speaking, any two resolutions can be dominated by another one on which we can compare their discrepancies. It is not hard to show that for toric varieties these two definitions are equivalent. Namely, let us consider a cone $\delta=\left\langle e_{2}, \ldots, e_{n+1}\right\rangle \in \Delta(n)$ and a point $e_{1} \in \delta \cap N$. Take a blow-up of X which is associated to adding a ray $\rho_{1}=\left\langle e_{1}\right\rangle$ to Δ and sub-dividing δ (and possibly some adjacent cones) accordingly (we may assume that e_{1} is primitive on ρ_{1}); call the resulting fan Δ^{\prime} and let $X^{\prime}=X\left(\Delta^{\prime}\right)$. Then $\pi: X^{\prime} \rightarrow X$ is a divisorial contraction which we already discussed, so let us use the notation from our set-up, in particular we may write $-a_{1} e_{1}=a_{\beta+1} e_{\beta+1}+\cdots+a_{n+1} e_{n+1}$ with a_{1} negative and the remaining a_{i} positive. The pull-back of a Cartier divisor preserves the associated piecewise linear function $\psi: N_{\mathbb{R}} \rightarrow \mathbb{R}$ (defined as in the first lecture), so in particular $\psi_{K_{X}}=\psi_{\pi^{*}\left(K_{X}\right)}$. Thus $\psi_{\pi^{*}\left(K_{X}\right)}\left(e_{1}\right)=-\left(a_{\beta+1}+\cdots+a_{n+1}\right) / a_{1}$ and the discrepancy of E_{1} is $d_{1}=$ $-1-\left(a_{\beta+1}+\cdots+a_{n+1}\right) / a_{1}$. Now $d_{1}>0$ if and only if $-a_{1}<a_{\beta+1}+\cdots+a_{n+1}$ which is equivalent to e_{1} being outside $\left\langle e_{\beta+1}, \ldots, e_{n+1}\right\rangle$ (similarly for $d_{1} \geqslant 0$). Now, as explained above, any resolution of singularities of X can be compared with such a blow-up and thus we have the equivalence of the two definitions.

The role of the canonical divisor in toric versions of the main results of Mori theory is not apparent but it becomes crucial in the non-toric case. In particular it appears in the class of singularities which are admissible on varieties for which we formulate main theorems of the program. The following two results indicate that varieties with terminal singularities form a convenient class of varieties for which one may run the Minimal Model Program.

Addition to Toric Contraction Theorem. - Assumptions as in the contraction theorem. If $\alpha=1$, and R is a Mori ray, and moreover X has terminal singularities, then X_{R} has terminal singularities as well.

Addition to Toric Flip Theorem. - Assumptions as in the flip theorem. If R is a Mori ray and X has terminal singularities then X_{1} has terminal singularities as well.

Proof. - I do only the first case: the second case is somewhat more complicated but similar, see [11]. Thus we take $\varphi_{R}: X \rightarrow X_{R}$, a divisorial contraction. We write $-a_{1} e_{1}=a_{2} e_{2}+\cdots+a_{n+1} e_{n+1}$ and if we divide this equality by $a_{2}+\cdots+a_{n+1}$ then we see that the ray ρ_{1} meets the affine hyperplane spanned on e_{2}, \ldots, e_{n+1} at $\left(-a_{1} /\left(a_{2}+\cdots+a_{n+1}\right)\right) \cdot e_{1}$. Because $-K_{X} \cdot V(\omega)>0$, which means $a_{1}+\cdots+$ $a_{n+1}>0$, it follows that $-a_{1} /\left(a_{2}+\cdots+a_{n+1}\right)<1$ hence e_{1} is outside the simplex $\operatorname{conv}\left(0, e_{2}, \ldots, e_{n+1}\right)$. Moreover we have an inclusion

$$
\operatorname{conv}\left(0, e_{2}, \ldots, e_{n+1}\right) \subset \bigcup_{i>1} \operatorname{conv}\left(0, e_{1}, \ldots{ }^{i} \ldots e_{n+1}\right)
$$

and since none of the simplices on the right hand side contains any lattice point apart of e_{j}, the same holds for the simplex on the left hand side.

The numerical properties of the (anti)canonical divisor of a toric variety can be described by using an associated polytope.

Definition. - Let Δ be a simplicial fan. We define a polytope in $N_{\mathbb{R}}$

$$
P(\Delta)=\bigcup_{\left\langle e_{1}, \ldots, e_{k}\right\rangle \in \Delta} \operatorname{conv}\left(0, e_{1}, \ldots, e_{k}\right)
$$

where, as usually, e_{i} denote primitive elements spanning rays in Δ.
In view of exercises characterizing ampleness and nefness we get
Lemma. - The divisor $-K_{X(\Delta)}$ is nef and, respectively, ample if and only if $P(\Delta)$ is convex and, respectively, strictly convex, where the latter means that each face of $P(\Delta)$ is of the form $\operatorname{conv}\left(e_{i_{i}}, \ldots, e_{i_{r}}\right)$ where $\left\langle e_{i_{1}}, \ldots e_{i_{r}}\right\rangle \in \Delta$.

Complements: Euler sequence. - For any complete non-singular variety X we consider a vector space $\mathcal{H}:=H^{1}\left(X, \Omega_{X}\right)$ and the related trivial sheaf $\mathcal{H}_{X}:=\mathcal{H} \otimes \mathcal{O}_{X}$. Let us note that

$$
\operatorname{Ext}^{1}\left(\mathcal{H}_{X}, \Omega_{X}\right)=\operatorname{Hom}(\mathcal{H}, \mathcal{H})
$$

Definition. - The extension sequence

$$
0 \longrightarrow \Omega_{X} \longrightarrow \mathcal{L}_{X}^{\vee} \longrightarrow \mathcal{H}_{X} \longrightarrow 0
$$

associated, under the above identification, to the identity in $\operatorname{Hom}(\mathcal{H}, \mathcal{H})$ is called the Euler sequence of X and the (locally free) sheaf \mathcal{L}_{X} is called the potential sheaf.

Theorem (Batyrev-Mel'nikov, Jaczewski). - A complete non-singular variety X is isomorphic to a toric variety if and only if there exists a simple normal crossings divisor $D=\bigcup_{i} D_{i}$, with D_{i} denoting its irreducible components, such that $\mathcal{L}_{X} \simeq \bigoplus_{i} \mathcal{O}_{X}\left(D_{i}\right)$.

Actually, if $X=X(\Delta)$ then $\mathcal{L}_{X} \simeq \bigoplus_{\rho \in \Delta(1)} \mathcal{O}_{X}(V(\rho))$ and the toric Euler sequence can be related to a sequence of vector spaces which we discussed already. Namely, $\operatorname{Pic} X \otimes \mathbb{C}=H^{0}\left(X, \Omega_{X}\right)$ and therefore we can identify $N_{1}(X) \otimes \mathcal{O}_{X}$ with the dual sheaf \mathcal{H}_{X}^{\vee}. We have a commuting diagram

in which the first row is coming from an exact sequence of vector spaces which we discussed in the first lecture and the second row is the dual of the Euler sequence. The vertical arrow in the middle evaluates the section of $\mathcal{O}_{X}(V(\rho))$ which vanishes exactly at $V(\rho)$ while the right hand arrow associates to any 1-parameter subgroup in the torus T_{N} its tangent vector field, see $[\mathbf{7}]$ for details.

5. Fano manifolds

I start by recalling the following
Definition. - A normal variety X is Fano if and only if some multiple of the anticanonical divisor $-K_{X}$ is an ample Cartier divisor.

As explained in the introduction, Fano varieties play a special role in the Minimal Model Program: they form a class opposite to varieties with nef canonical divisor and they are fibers of Fano-Mori fibrations.

In the present lecture I will deal with the smooth case only.
Definition. - A convex polytope $P \subset N_{\mathbb{R}}$ whose vertices are in N is called Fano if each $(n-1)$-dimensional face of P is spanned by vectors which form a basis of the lattice N and moreover the origin 0 is the only point of N in the interior of P.

To any Fano polytope P we can associate a simplicial fan $\Delta(P)$, rays of which are generated by the vertices of P. If we take now $P(\Delta(P))$, where $P(\Delta)$ is the polytope defined in my previous lecture, then the result is P again. Now it is clear that the associated toric variety $X(\Delta(P))$ is a Fano manifold and this construction defines a bijective relation between Fano polytopes and Fano manifolds. Thus, in order to study Fano manifolds one should understand Fano polytopes. We have the following observation.

Lemma. - The number of vertices of n-dimensional Fano polytope is bounded by $n^{2}+1$.

Proof. - See Voskresenskii-Klyachko [3].
The following result is more complicated
Proposition ([3] and references therein). - The number of n-dimensional toric Fano manifolds is bounded.

In fact we have a more general result.
Theorem (Kollár-Miyaoka-Mori, Campana). - The number of deformation types of n-dimensional Fano manifolds is bounded.

This may encourage us to classify Fano n-folds. The case $n=1$ is trivial. The case $n=2$ is a bit harder but classical. Fano manifolds in dimension 2 are called del Pezzo surfaces. We have the following classical

Theorem. - There are 10 deformation types of del Pezzo surfaces: $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and \mathbb{P}^{2} blown-up in $0, \ldots, 8$ "sufficiently general" points.

The following observation is easier and just requires analysing Fano polygons (do it as an exercise).
Proposition. - There are 5 Fano polygons and they correspond to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and \mathbb{P}^{2} blown-up at $0, \ldots, 3$ fixed points of the torus action.

Now let me explain the ideas related to the classification of higher dimensional Fano manifolds. In toric case we have an easy.

Proposition. - \mathbb{P}^{n} is the only toric (Fano) n-fold with $b_{2}=1$.
The corresponding non-toric version of this result is incomparably harder and, in fact, the main obstacle to the classification of Fano n-folds. Actually, the story of the subsequent classification result (which I present in a very vague form) goes back to early ' 30 while its rigorous proof was completed in mid ' 80 (in between there were several false claims and omissions).
Theorem (Fano, Roth, Iskovskih, Shokurov). - There exists a classification of Fano 3 -folds with $b_{2}=1$: there are 17 deformation types of them.

Now let me explain an approach leading to the classification of toric 3 -folds. I will not deal with a combinatorial approach, due to Batyrev, Oda, Watanabe-Watanabe and Sato - which works in dimension 4 too - instead I will explain a method of Mori-Mukai which led to the following

Theorem (Mori-Mukai). - There exists a classification of Fano 3 -folds with $b_{2} \geqslant 2$: there are 89 deformation types of them.

Actually, the enumeration of all possible Fano polytopes and associated toric Fano 3 -folds becomes rather easy once we prove the following

Theorem. - Any toric Fano 3 -folds is either isomorphic to \mathbb{P}^{3} or to a \mathbb{P}^{1}-bundle over a del Pezzo surface, or is obtained by blowing them up along 1-strata of the torus action.

I begin the proof of the theorem by recalling possible types of contractions φ_{R} : $X \rightarrow X_{R}$ of Mori extremal rays of smooth toric 3-folds (proving this is an exercise):
(1) contraction of \mathbb{P}^{3} to a point,
(2) $\varphi_{R}: X \rightarrow \mathbb{P}^{1}$ is a \mathbb{P}^{2} bundle,
(3) X_{R} is a smooth toric surface and $\varphi_{R}: X \rightarrow X_{R}$ is a \mathbb{P}^{1}-bundle,
(4) $\varphi_{R}: X \rightarrow X_{R}$ is a simple blow-down of an invariant divisor E_{R} to a 1-strata in smooth X_{R},
(5) $\varphi_{R}: X \rightarrow X_{R}$ is a blow-down of an invariant divisor $E_{R} \simeq \mathbb{P}^{2}$ to a fixed point in X_{R}, which may be non-smooth.

We will say that two rays R_{1} and R_{2} are twins if their contractions are of type (4) and moreover $E_{R_{1}}=E_{R_{2}}$. Let us note that $E_{R_{i}}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and twin rays span a 2-dimensional face in $N E(X)$ supported by $-K_{X}+E_{R_{i}}$.

Now we assume that X is a Fano 3 -fold. Let me go through the steps of the proof of the theorem. We are supposed to prove that, except the case (1), X admits a contraction of type (3) or (4) and the target X_{R} is a Fano manifold.
(a) If X is a \mathbb{P}^{2}-bundle over \mathbb{P}^{1} (contraction of type (2)) then it is either $\mathbb{P}^{1} \times \mathbb{P}^{2}$ or the blow up of \mathbb{P}^{3} along a line (easy verification).
(b) If X admits a contraction of type (5) then it admits also a contraction of type (3) or (4). Indeed, take a ray R^{\prime} such that $E_{R} \cdot R^{\prime}>0$ then the contraction of R^{\prime} can not have fiber of dimension 2 because, taking the intersection of the loci of these rays, we would get a curve in both R and R^{\prime}.
(c) If X admits a \mathbb{P}^{1} bundle structure over a surface X_{R} (contraction of type (3)) then X_{R} is a del Pezzo surface. This follows from a more general

Lemma (Szurek-Wiśniewski, Kollár-Miyaoka-Mori). - Let $\varphi: X \rightarrow Y$ be a projective bundle (or, more generally, a smooth map). If X is a Fano manifold then Y is a Fano manifold too.
(d) If X admits a contraction φ_{R} of type (4) then the target X_{R} is Fano unless the ray R has a twin ray R^{\prime}. Indeed, by adjunction formula $\varphi_{R}(C) \cdot\left(-K_{X_{R}}\right) \geqslant$ $\left(C \cdot\left(-K_{X}\right)\right)$, unless $C \subset E_{R}$.
(e) If X has twin rays R_{1} and R_{2} then it has also a ray R whose contraction is of type (3) or (4), and in the latter case R has no twin. The proof of this statement is similar to the one of (b): this time we consider the contraction of the face spanned by R_{1} and R_{2}, whose exceptional divisor is $E=E_{R_{1}}=E_{R_{2}}$, then we choose a ray R^{\prime} such that $R \cdot E>0$.

This concludes the proof of the theorem. Now you can do the classification of Fano 3 -folds along the following lines. (0) Blow-up 1-dimensional strata of \mathbb{P}^{3} as long as you still get Fano manifolds. (1) Prove that any toric \mathbb{P}^{1} bundle is decomposable hence of type $\mathbb{P}(L \oplus \mathcal{O})$ and its fan can be obtained from the fan of $\mathbf{V}(L)$ (constructed as in the exercise to Lecture 1) by adding a ray opposite to $\left\langle e_{0}\right\rangle$ (notation as in the exercise). (2) Find Fano polytopes associated to possible \mathbb{P}^{1} bundles over toric del Pezzo. (3) Find out which edges of the obtained polytopes can be blown up to obtain other Fano polytopes. The result should be as follows:

Theorem. - There are 18 toric Fano 3-folds.
The following list contains mostly papers to which I refer directly in my lectures; additionally, references to the sources of Mori Theory you can find in [5] while references to articles on general Fano manifolds can be found in [3].

References

[1] D. Abramovich, K. Karu, K. Matsuki, and J. Włodarczyk, Torification and factorization of birational maps, math.AG/9904135, 1999.
[2] V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. 43 (1991), 569-585.
[3] _, On the classification of toric Fano 4-folds, J. Math. Sciences 94 (1999), 10211050.
[4] L. Bonavero, Factorisation faible des applications birationnelles, Séminaire Bourbaki, 2000, exposé 880 .
[5] H. Clemens, J. Kollár, and S. Mori, Higher dimensional complex geometry, Astérisque, vol. 166, Société Mathématique de France, Paris, 1988.
[6] W. Fulton, Introduction to toric varieties, Ann. of Math. Studies, vol. 131, Princeton University Press, 1993.
[7] K. Jaczewski, Generalised Euler sequence and toric varieties, Contemp. Math. 162 (1994), 227-247.
[8] R. Morelli, The birational geometry of toric varieties, J. Algebraic Geom. 5 (1996), 751-782.
[9] D. Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34, Springer-Verlag, 1996.
[10] T. Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 15, Springer-Verlag, 1988.
[11] M. Reid, Decomposition of toric morphisms, Arithmetic and Geometry (Shafarevich) volume II, Progress in Math., vol. 36, Birhäuser, 1983, pp. 395-418.
[12] _, What is a flip?, notes of colloquim talk, Univ. Utah, 1992.
[13] J. Włodarczyk, Birational cobordism and factorisation of birational maps, J. Algebraic Geom. 9 (2000), 425-449.

[^1]
[^0]: 2000 Mathematics Subject Classification. - 14M25, 14E30, 14J45.
 Key words and phrases. - Toric variety, Mori theory, Fano manifold.

[^1]: J.A. WiŚniewski, Instytut Matematyki, Warsaw University Banacha 2, PL-02-097 Warszawa E-mail : jarekw@mimuw.edu.pl • Url:http://www.mimuw.edu.pl/~jarekw

