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CONTINUOUS DIVISION OF LINEAR DIFFERENTIAL
OPERATORS AND FAITHFUL FLATNESS OF D∞X OVER DX

by

Luis Narváez Macarro & Antonio Rojas León

Abstract. — In these notes we prove the faithful flatness of the sheaf of infinite order
linear differential operators over the sheaf of finite order linear differential operators
on a complex analytic manifold. We give the Mebkhout-Narváez’s proof based on the

continuity of the division of finite order differential operators with respect to a natural
topology. We reproduce the proof of the continuity theorem given by Hauser-Narváez,
which is simpler than the original proof.

Résumé(Continuité de la division des opérateurs différentiels et fidèle platitude deD∞X sur
DX )

Dans ce cours on démontre la fidèle platitude du faisceau d’opérateurs différentiels
linéaires d’ordre infini sur le faisceau d’opérateurs différentiels linéaires d’ordre fini
d’une variéte analytique complexe lisse. La preuve que nous donnons est celle de

Mebkhout-Narváez, qui utilise la continuité de la division d’opérateurs différentiels
d’ordre fini par rapport à une topologie naturelle. Nous réproduisons la preuve de
Hauser-Narváez du théorème de continuité, qui est plus simple que la preuve originale.

Introduction

The sheaf OX of holomorphic functions on a complex analytic manifold X is the
first natural example of left module over the sheaf of linear differential operators DX

on X. Here, as usual, differential operators have (locally) finite order. In fact, there
is another natural sheaf of noncommutative rings extending DX , called the sheaf of
linear differential operators of infinite order, D∞

X , introduced by Sato. The left DX -
module structure on OX extends to a left D∞

X -module structure in such a way that
D∞

X ⊗DX
OX = OX .

For any holonomic left DX -module M, we know by the constructibility theorem of
Kashiwara [9] (see also [12], [13]) that the complex of holomorphic solutions of M,
R HomDX

(M,OX), is constructible. The canonical DX -linear biduality morphism

M −→ R HomCX
(R HomDX

(M,OX),OX)

2000Mathematics Subject Classification. — 32C38, 32S60.
Key words and phrases. — Infinite order differential operator, division theorem.

Both authors were partially supported by BFM2001-3207 and FEDER.
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induces a D∞
X -linear morphism

(*) D∞
X ⊗DX

M −→ R HomCX
(R HomDX

(M,OX),OX).

The local biduality theorem of Mebkhout asserts that (*) is an isomorphism for any
holonomic module M (see [11, 11.3] in this volume). This theorem is an essential
ingredient for the “full” Riemann-Hilbert correspondence, which establishes an equiv-
alence between three categories: the bounded derived category of regular holonomic
complexes of DX -modules, the bounded derived category of holonomic complexes of
D∞

X -modules and the bounded derived category of analytic constructible complexes
(see 11.4 in loc. cit.). The sheaf D∞

X does not have any known finiteness properties like
DX , but to prove the full Riemann-Hilbert correspondence one needs to know that the
extension DX ⊂ D∞

X is faithfully flat. This result has been stated and proved for the
first time in [17] (see also [1]), and its proof depended on the microlocal machinery.

The aim of these notes is to give an elementary self-contained proof of the faithful
flatness of the sheaf of differential operators of infinite order over the sheaf of dif-
ferential operators of finite order. The method we follow is that of [14], whose first
step consists in considering the ring of differential operators of infinite order as the
completion of the corresponding ring of finite order for a natural topology, and then
mimic Serre’s proof of the faithful flatness of the completion of a noetherian local
ring over the ring itself [18]. The essential technical tool is the continuity of the
Weierstrass-Grauert-Hironaka division of differential operators [2, 3]. We reproduce
with detail the proof given in [8], which simplifies the original proof in [14]. As a
complement we sketch the results of [15] for the case of differential operators with
polynomial coefficients (Weyl algebra).

We would like to thank Herwig Hauser for a careful reading of these notes and for
helpful suggestions.

1. Topological structure on rings of linear differential operators with
analytic coefficients

Let X be a complex analytic manifold of pure dimension n, countable at infinity.
Let us denote by OX the sheaf of holomorphic functions and by DX the sheaf of linear
differential operators (cf. [6]). For each open set U ⊂ X, the space OX(U) endowed
with the topology of uniform convergence on compact sets is a Fréchet space, i.e. a
complete metrizable locally convex space (it is also a nuclear space, cf. [5] for details).
The Banach open mapping theorem shows that the property of being continuous for
a C-linear endomorphism P : OX → OX is a local property. For that, let {Ui}
be an open covering of X, that we can take as countable, such that each restriction
P |Ui

: OX |Ui
→ OX |Ui

is continuous. For any open set U ⊂ X, the canonical injection
OX(U) ↪→

∏
OX(U ∩ Ui) is a closed inmersion by the open mapping theorem (its

image is the kernel of the Čech map
∏

OX(U ∩ Ui) →
∏

OX(U ∩ Ui ∩ Uj) by the
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CONTINUOUS DIVISION OF LINEAR DIFFERENTIAL OPERATORS 131

sheaf condition). Hence, the continuity of P (U) : OX(U) → OX(U) comes from the
continuity of

∏
P (U ∩ Ui) :

∏
OX(U ∩ Ui) →

∏
OX(U ∩ Ui). As a consequence, the

pre-sheaf of C-linear continuous endomorphisms of OX , Homtop(OX ,OX), is actually
a sheaf.

The following proposition is well-known (cf. [14], prop. 2.1.4):

Proposition 1.1. — For any continuous C-linear endomorphism P : OX → OX and
for any system (U ;x1, . . . , xn) of local coordinates of X, there are unique holomorphic
functions aα ∈ OX(U), α ∈ Nn, such that

P |U =
∑

α∈Nn

aα
1
α!

∂α,

with ∂ = (∂/∂x1, . . . , ∂/∂xn) and lim|α|→∞ |aα|1/|α| = 0 uniformly on any compact
set of U . Equivalently, the function

(p, ξ) ∈ U × Cn 7−→
∑

α∈Nn

aα(p)ξα ∈ C

is holomorphic.

From now on, we will denote D∞
X = Homtop(OX ,OX) and call it sheaf of infinite

order linear differential operators. From the above proposition we deduce that it
coincides with the sheaf of infinite order linear differential operators defined in [16,
17].

The following proposition is proved in [14], prop. 2.1.3.

Proposition 1.2. — Let P : OX → OX be a C-linear endomorphism. The following
properties are equivalent:

a) P is continuous.

b) For any pair K, K ′ ⊆ X of compact sets with K ⊂
◦

K ′, there is a constant
CK,K′ > 0 such that |P (f)|K 6 CK,K′ |f |K′ for any holomorphic function f defined
on a neighborhood of K ′.

Corollary 1.3. — The sheaf DX of (finite order) linear differential operators is a sub-
sheaf (of rings) of Homtop(OX ,OX).

Proof. — Let P be a section of DX over an open set U ⊂ X. Since continuity is a
local property, we can suppose that U is a connected open set of Cn. Then P admits
a unique expression

P =
∑

α∈Nn,|α|6d

aα
1
α!

∂α,

where d is the order of P and the aα are holomorphic functions on U . Let K, K ′ ⊆ U

be a pair of compact sets as in proposition 1.2, b) and let f be a holomorphic function
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132 L. NARVÁEZ MACARRO & A. ROJAS LEÓN

on a neighborhood of K ′. From Cauchy inequalities we deduce that

|P (f)|K =
∣∣∣∣ ∑
|α|6d

aα
1
α!

∂α(f)
∣∣∣∣
K

6
∑
|α|6d

|aα|Kr−|α||f |K′

where r is the distance between K and U−
◦

K ′. By proposition 1.2, we conclude that
P is continuous.

Definition 1.4 ([14], déf. 2.1.6). — For any open set U ⊆ X, the canonical topology of
D∞

X (U) or DX(U) is defined as the locally convex topology given by the semi-norms

p(K,K′) : P ∈ D∞
X (U) 7−→ p(K,K′)(P ) := sup {|P (f)|K/|f |K′ | f ∈ OX(K ′), f 6= 0} ,

indexed by pairs (K, K ′) of compact sets in U with K ⊂
◦

K ′.

For any coordinate system (U ;x1, . . . , xn) in X, we can use Cauchy inequalities as
in corollary 1.3 and proposition 1.1 to prove that the map∑

α∈Nn

aα(x)
1
α!

∂α 7−→
∑

α∈Nn

aα(x)yα

is an isomorphism of locally convex vector spaces between D∞
X (U) endowed with the

canonical topology and the space of holomorphic functions on U × Cn endowed with
the topology of uniform convergence on compact sets. This isomorphism depends on
local coordinates and carries the space DX(U) into the space of holomorphic functions
on U × Cn which are polynomials with respect to the second factor. Consequently,
D∞

X (U) is a Fréchet (and nuclear) space and DX(U) is dense in D∞
X (U). We can write

then D∞
X (U) = D̂X(U).

In fact, in [14, §2] it is proved that D∞
X endowed with the canonical topology is a

sheaf with values in the category of Fréchet C-algebras.
Let us denote by On,Dn,D∞

n the stalk at the origin of the sheaves OCn ,DCn ,D∞
Cn

respectively. For ρ = (ρ1, . . . , ρn), L = (L1, . . . , Ln) in (R∗
+)n let us consider the

pseudo-norm |−|Lρ : D∞
n → R+∪{+∞} whose value at P =

∑
aβ∂β =

∑
αβ aαβxα∂β

is

(1) |P |Lρ =
∑

β

|aβ |ρ|β|!Lβ =
∑
αβ

|aαβ | · |β|!ραLβ ∈ R+ ∪ {+∞}.

Since β! 6 |β|! 6 n|β|β!, we could also use β! instead |β|! in (1) to obtain an
equivalent system of pseudo-norms. Nevertheless, the choice of |β|! is forced by the
proofs of the majorations needed to obtain the norm estimates of theorem 2.11 (see
[14, 2.2.4] and [8]).

Let us denote by D∞
n (ρ) the subspace of D∞

n where |−|Lρ takes finite values for any
L ∈ (R∗

+)n and let us write Dn(ρ) := Dn∩D∞
n (ρ). The semi-norms |−|Lρ , L ∈ (R∗

+)n,
define a Fréchet topology on D∞

n (ρ).
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CONTINUOUS DIVISION OF LINEAR DIFFERENTIAL OPERATORS 133

Following [8], we consider weights λ, µ ∈ (N∗)n and, for real numbers s, t > 0,
ρ = sλ = (sλ1 , . . . , sλn), L = t−µ = (t−µ1 , . . . , t−µn). When λ is fixed, we denote
| − |µ,t

s := | − |Lρ , D∞
n (s) := D∞

n (ρ) and Dn(s) := Dn(ρ).

In the case where U is an open polycylinder of Cn centered at 0 of polyradius
σ = sλ

0 , 0 < s0 6 +∞, we have

D∞
Cn(U) =

⋂
0<s<s0

D∞
n (s), DCn(U) =

⋂
0<s<s0

Dn(s),

and the canonical topology of D∞
Cn(U) (resp. DCn(U)) is the (topological) inverse limit

of the D∞
n (s) (resp. Dn(s)), for 0 < s < s0. In other words, the canonical topologies

of D∞
Cn(U) and DCn(U) are given by the semi-norms | − |µ,t

s , 0 < s < s0, t−µ � 0
[14], 2.2.3. The last condition can be obtained with µ fixed and t → 0, or taking
t = t(s) < 1 and µ � 0.

For vectors P = (P1, . . . , Pq) ∈ (D∞
n )q, following [7] we also define

|P |µ,t
s :=

q∑
i=1

|Pi|µ,t
s s−(i−1),

where λ ∈ (N∗)n is fixed.
In the above situation, the product topology on D∞

Cn(U)q and DCn(U)q is also
given by the semi-norms | − |µ,t

s , 0 < s < s0, t−µ � 0.

2. The continuity theorem

In this section, we fix M1, . . . ,Mr ∈ Dq
n and a total well ordering < in N2n

compatible with sums (cf. [4, 1.3]). Whenever we speak about the ordering < in
N2n × {1, . . . , q} we mean the ordering induced by < in the following way:

(α, β, i) < (α′, β′, j) ⇐⇒


(α, β) < (α′, β′)
or
(α, β) = (α′, β′) and i > j

Given

N = (N1, . . . , Nq) =
q∑

i=1

Niei =
q∑

i=1

∑
α,β

aαβix
α∂βei ∈ Dq

n, aαβi ∈ C,

where {ei}i=1...q stands for the canonical basis of Dq
n as a free Dn-module, we denote

by N (N), the Newton diagram of N , the set of (α, β, i) in N2n×{1, . . . , q} such that
aαβi 6= 0 and by σ(N) its symbol, i.e. the homogeneous component of N of maximal
degree with respect to the grading given by the total degree in ∂:

σ(N) =
q∑

i=1

∑
|β|=d

∑
α

aαβix
α∂βei, d = degT(N) = max deg(Ni).
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134 L. NARVÁEZ MACARRO & A. ROJAS LEÓN

The exponent of N is exp(N) := min{(α, β, i)|aαβi 6= 0, |β| = d}, and the correspond-
ing monomial of σ(N) (and therefore of N) is, by definition, the initial monomial
of N .

Let (αj , βj , ij) be the exponent of Mj with respect to the given ordering (we can
assume without loss of generality that its coefficient is 1). Also let M ′

j = Mj −
xαj ∂βj eij

. We will denote by F the r-tuple (M1, . . . ,Mr).

The following notion is needed in the continuity theorem 2.6:

Definition 2.1. — We say that a given weight λ ∈ (N∗)n is adapted to F if for every
positive constant K there exists µ ∈ Nn with µi > K, λi for every i = 1, . . . , n such
that

λαj − µβj − ij < λα− µβ − i

for every j = 1, . . . , r and every (α, β, i) ∈ N (M ′
j). We say that such a µ is K-

admissible, or simply admissible, for (F , λ).

Lemma 2.2. — For any F = (M1, . . . ,Mr) as above, there exists a weight λ adapted
to F .

Proof. — Consider first the case q = 1. Let π1, π2 : N2n = Nn × Nn → Nn be the
canonical projections. For every j = 1, . . . , r and every β ∈ π2(N (Mj)) let M j

β be
the set of (α, β) in N (Mj) such that α is minimal in A = {α : (α, β) ∈ N (Mj)}
with respect to the componentwise order. The set M j

β is finite, in fact it consists of
the elements (α1, β), . . . , (αs, β), where {α1, . . . , αs} is the minimal set of generators
of the ideal A + Nn of Nn. Therefore, the set M =

⋃
j

⋃
β(M j

β ∪ {(0, β)}) is also
finite.

Let (σ, ρ) ∈ Nn × Nn = N2n be a vector defining the given ordering restricted to
the finite set M . We claim that λ = σ is adapted to F . Fix a positive constant
K, and let p be an integer such that p > max{K + |ρ|, σα + ρβ : (α, β) ∈ M }. Set
µ = (p, . . . , p)− ρ. We have then

λα− µβ = σα + ρβ − p|β|.

We will show that the minimum of λα − µβ for (α, β) ∈ N (Mj) is attained in
the exponent of Mj . First, we see that if λα − µβ is minimal, then (α, β) ∈ M .
Otherwise, there would be (α′, β) ∈ N (Mj), γ ∈ Nn\{0} such that α = α′ + γ, so
λα− µβ = σγ + (λα′ − µβ) > λα′ − µβ.

Furthermore, (α, β) must be in N (σ(Mj)). Otherwise, there would be (α′, β′) ∈
N (Mj)∩M with |β′| > |β|. Then λα−µβ = σα+ρβ−p|β| > σα+ρβ−p(|β′|−1) >

p−p|β′| > σα′+ρβ′−p|β′| = λα′−µβ′. Therefore, min{λα−µβ : (α, β) ∈ N (Mj)} =
min{σα + ρβ − p|β| : (α, β) ∈ N (σ(Mj)) ∩M }. In this set, |β| is constant and the
ordering is defined by (σ, ρ), so the minimum is attained in the smallest element of
N (σ(Mj)) with respect to the ordering, i.e the initial monomial of Mj .
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CONTINUOUS DIVISION OF LINEAR DIFFERENTIAL OPERATORS 135

Now assume q 6= 1. Let Mj =
∑

iαβ aj
iαβxα∂βei, and define M j =

∑
iαβ |a

j
iαβ |xα∂β ∈

Dn. Let (αj , βj) be the exponent of M j with respect to the given ordering in N2n.
Let (αj , βj , ij) be the exponent of Mj . We have αj = αj and βj = βj . Otherwise,
we would have (αj , βj) > (αj , βj). Let i be such that (αj , βj , i) ∈ N (Mj). Then
we have by definition of the exponent that (αj , βj , i) > (αj , βj , ij), and therefore
(αj , βj) > (αj , βj), which is in contradiction with the last inequality.

By the first part of the proof, there exists λ adapted to (M1, . . . ,Mr). Now given
a positive constant K there is µ ∈ Nn with µj > K/q and λj < µj such that
λαj−µβj < λα−µβ for every (α, β)∈N (M

′
j). Let us see that λ = qλ is adapted to F

and µ = qµ is K-admissible for (F , λ). Let (α, β, i)∈N (M ′
j), then (α, β)∈N (M j),

hence λαj − µβj 6 λα− µβ by construction. Now we distinguish two cases:
If (α, β) > (αj , βj), then λαj − µβj < λα − µβ. But λ as well as µ are multiples

of q, and therefore λαj − µβj 6 λα − µβ − q, and λαj − µβj − ij < λαj − µβj 6
λα− µβ − q 6 λα− µβ − i.

If (α, β) = (αj , βj), then we must have i < ij , hence λαj−µβj−ij < λαj−µβj−i =
λα− µβ − i. In either case, we get the desired inequality.

This completes the proof of the lemma.

Lemma 2.3. — Let F1, . . . ,Fm be a finite number of vectors whose coordinates are
in Dq

n as above (they may have distinct lengths). Then there exists λ ∈ Nn which is
adapted to all of them.

Proof. — This is a direct consequence of the following lemma applied to the vector
constructed by concatenation of F1, . . . ,Fm.

The following lemma is clear:

Lemma 2.4. — Let F =(M1, . . . ,Mr) be a vector in (Dq
n)r and let G =(Mi1 , . . . ,Mik

),
with 1 6 i1 < · · · < ik 6 r. Then every λ ∈ Nn adapted to F is also adapted to G .

Before stating the main theorem of this section we make one further definition:

Definition 2.5. — Let λ ∈ (N∗)n be a weight. A basis B of open neighborhoods of
0 ∈ Cn is said to be a λ-basis if it consists of open polycylinders of polyradius sλ for
0 < s < s0, for some s0 > 0. We will say that B is adapted to F if it is a λ-basis for
some λ adapted to F .

From the lemmas above it follows that we can always find a basis of neighborhoods
of 0 adapted to F , and even a basis adapted to a finite number of vectors F1, . . . ,Fm.

After these preliminaries we are ready to state the continuity theorem of the division
of linear differential operators:

Theorem 2.6. — Let F = (M1, . . . ,Mr), with Mi ∈ Dq
n and let Qi(F ;E), i = 1, . . . , r

(resp. R(F ;E)) be the quotients (resp. the remainder) of the division of E ∈ Dq
n by F
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136 L. NARVÁEZ MACARRO & A. ROJAS LEÓN

(see [4]). Then, for any weight λ ∈ (N∗)n adapted to F , there exists a λ-basis B of
open neighborhoods of 0 ∈ Cn, such that for every U ∈ B the C-linear morphisms
Qi(F ;−) (resp. R(F ;−)) map DCn(U)q into DCn(U) (resp. into DCn(U)q). Fur-
thermore,

Qi(F ;−) : DCn(U)q −→ DCn(U),

R(F ;−) : DCn(U)q −→ DCn(U)q

are continuous with respect to the canonical topology.

The proof of theorem 2.6 will be obtained after some majorations, as in [14], [8],
and it will not be finished until the end of 2.13. Our task consists of adapting the
proof in [8] to the vector case. Roughly speaking, as explained in loc. cit., the key
point is to approximate the Dn-linear map Dr

n → Dq
n defined by the finite system

of vectors F = (M1, . . . ,Mr) ∈ (Dq
n)r instead of approximating the system itself by

their initial monomials. This idea has been introduced in [7] in the commutative case
of vectors of convergent power series.

Let (αj , βj , ij) be the exponent of Mj . For every i = 1, . . . , n, let Tj : Dq
n → Dq

n be
the C-linear map defined by Tjx

α∂βei = xα∂β+ej ei. Given A =
∑

cγδx
γ∂δ ∈ Dn, we

will denote by Ao the map
∑

cγδx
γT δ : Dn → Dn, and A′ = A−Ao (A is considered

here to be acting by multiplication on the left). Let also {∆1, . . . ,∆r,∆} be the
partition of N2n × {1, . . . , q} defined by M1, . . . ,Mr (see [3] and [4] in this volume).

We define now the following sets L and J :

L = {A ∈ Dr
n : exp(Mj) + N (Aj) ⊂ ∆j , ∀ j = 1, . . . , r}

J = {B ∈ Dq
n : N (B) ⊂ ∆}

and the linear map u : L⊕ J → Dq
n given by u(A,B) =

∑r
j=1 AjMj + B.

From the division theorem ([4], th. 2.4.1) we see that L and J are the sets where
quotients and the remainder of the division by M1, . . . ,Mr are “allowed” to lie, the
Aj and B are just the quotients and the remainder of the division of u(A,B) by F

and the map u is bijective.
We start by splitting u as a sum v + w1 + w2, with

v(A,B) =
∑

Ao
jx

αj ∂βj eij
+ B

w1(A,B) =
∑

A′
jx

αj ∂βj eij

w2(A,B) =
∑

AjM
′
j .

The C-linear map v is easily seen to be an isomorphism of C-vector spaces, by defini-
tion of L and J .

We follow the notation in the previous section regarding the seminorms | − |µ,t
s .

Let E ∈ Dq
n, and (A,B) = v−1(E) ∈ L ⊕ J , with Aj =

∑
γδ aj

γδx
γ∂δ. Then,

E =
∑

jγδ aj
γδx

αj+γ∂βj+δeij + B. If we take the | − |µ,t
s norm on both sides, and
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CONTINUOUS DIVISION OF LINEAR DIFFERENTIAL OPERATORS 137

keep in mind that (αj , βj , ij) + N (Aj) ⊂ ∆j , N (B) ⊂ ∆ and that the sets ∆j ,∆
are pairwise disjoint, we get:

(2) |E|µ,t
s =

∑
j

∣∣∣ ∑
γδ

aj
γδx

αj+γ∂βj+δeij

∣∣∣µ,t

s
+

∣∣B∣∣µ,t

s

>
∑

jγδ

∣∣aj
γδ

∣∣∣∣βj + δ
∣∣!sλ(αj+γ)−(ij−1)t−µ(βj+δ).

Proposition 2.7. — There is a constant C1 > 0 such that |(w1v
−1)E|µ,s

s 6 C1s|E|µ,s
s

for every E ∈ Dq
n and for every µ admissible for (F , λ).

Proof. — Let (A,B) = v−1(E), with Aj =
∑

γδ aj
γδx

γ∂δ. First, we have

|(w1v
−1)E|µ,s

s = |w1(A,B)|µ,s
s =

∣∣∣ ∑
j

A′
jx

αj ∂βj eij

∣∣∣µ,s

s

=
∣∣∣ ∑

jγδ

aj
γδx

γ(∂δ − T δ)xαj ∂βj eij

∣∣∣µ,s

s
.

Expanding the inner product, we get

|(w1v
−1)E|µ,s

s =
∣∣∣ ∑

jγδ

aj
γδx

γ
∑

0<ε6αj ,δ

(
αj

ε

)
δ!

(δ − ε)!
xαj−ε∂βj+δ−εeij

∣∣∣µ,s

s

6
∑
jγδ

∑
0<ε6αj ,δ

|aj
γδ|

(
αj

ε

)
δ!

(δ − ε)!
|βj + δ − ε|!sλ(αj+γ−ε)−(ij−1)−µ(βj+δ−ε)

6
∑

j

∑
0<ε6αj

∑
δ>ε

∑
γ

|aj
γδ|2

|αj | δ!
(δ − ε)!

|βj + δ − ε|!sλ(αj+γ−ε)−(ij−1)−µ(βj+δ−ε).

Therefore

|(w1v
−1)E|µ,s

s

|E|µ,s
s

6

∑
j

∑
0<ε6αj

∑
δ>ε

∑
γ |a

j
γδ|2|αj | δ!

(δ − ε)!
|βj + δ − ε|!sλ(αj+γ−ε)−(ij−1)−µ(βj+δ−ε)∑

jγδ |a
j
γδ||βj + δ|!sλ(αj+γ)−(ij−1)−µ(βj+δ)

6
∑
jε

∑
δ>ε

∑
γ |a

j
γδ|2|αj | δ!

(δ − ε)!
|βj + δ − ε|!sλ(αj+γ−ε)−(ij−1)−µ(βj+δ−ε)∑

γδ |a
j
γδ||βj + δ|!sλ(αj+γ)−(ij−1)−µ(βj+δ)

=
∑
jε

∑
δ>ε

∑
γ |a

j
γδ|2|αj | δ!

(δ − ε)!
|βj + δ − ε|!sλ(αj+γ−ε)−µ(βj+δ−ε)∑

γδ |a
j
γδ||βj + δ|!sλ(αj+γ)−µ(βj+δ)

6
∑
jε

∑
γδ |a

j
γδ|2|αj | δ!

(δ − ε)!
|βj + δ − ε|!sλ(αj+γ−ε)−µ(βj+δ−ε)∑

γδ |a
j
γδ||βj + δ|!sλ(αj+γ)−µ(βj+δ)

.
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Now, using that

δ!
(δ − ε)!

6
|βi + δ|!

|βi + δ − ε|!
for βi > 0,

we get

|(w1v
−1)E|µ,s

s

|E|µ,s
s

6
∑
jε

∑
γδ |a

j
γδ|2|αj ||βj + δ|!sλ(αj+γ−ε)−µ(βj+δ−ε)∑
γδ |a

j
γδ||βj + δ|!sλ(αj+γ)−µ(βj+δ)

=
∑
jε

2|αj |s(µ−λ)ε.

For each j, there is only a finite number of ε 6 αj , so this last sum is finite. Moreover,
since ε > 0 and µ − λ has positive components, the exponent of s in every term of
the sum is greater that 1. Assuming s < 1, we can therefore bound this sum by C1s,
with C1 =

∑
i 2|αi|#{ε ∈ Nn : 0 < ε 6 αi}. We end up with the following bound

(3) |(w1v
−1)E|µ,s

s 6 C1s|E|µ,s
s

for s < 1.

Proposition 2.8. — There is a constant C2 > 0, and an s0 > 0 such that
|(w2v

−1)E|µ,s
s 6 C2s|E|µ,s

s for 0 < s < s0 and for every E ∈ Dq
n and every µ

admissible for (F , λ).

Proof. — We have

|(w2v
−1)E|µ,s

s = |w2(A,B)|µ,s
s =

∣∣∣ ∑
j

AjM
′
j

∣∣∣µ,s

s

=
∣∣∣ ∑

j

(
∑
γδ

aj
γδx

γ∂δ)(
∑
αβi

cj
αβix

α∂βei)
∣∣∣µ,s

s
=

∣∣∣ ∑
jαβγδi

aj
γδc

j
αβix

γ∂δxα∂βei

∣∣∣µ,s

s

=
∣∣∣ ∑

jαβγδi

aj
γδc

j
αβix

γ(
∑

ε6α,δ

(
α

ε

)
δ!

(δ − ε)!
xα−ε∂δ−ε)∂βei

∣∣∣µ,s

s

=
∣∣∣ ∑

jαβγδεi

aj
γδc

j
αβi

(
α

ε

)
δ!

(δ − ε)!
xγ+α−ε∂β+δ−εei

∣∣∣µ,s

s

6
∑

jαβγδεi

|aj
γδ||c

j
αβi|

(
α

ε

)
δ!

(δ − ε)!
|β + δ − ε|!sλ(γ+α−ε)−(i−1)−µ(β+δ−ε)

=
∑

jαβεi

|cj
αβi|

(
α

ε

) ∑
γδ

|aj
γδ|

δ!
(δ − ε)!

|β + δ − ε|!sλ(α+γ−ε)−(i−1)−µ(β+δ−ε)
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with ε and δ satisfying 0 6 ε 6 α and ε 6 δ. Now, using (2), we get

|(w2v
−1)E|µ,s

s

|E|µ,s
s

6

∑
jαβεi |c

j
αβi|

(
α
ε

) ∑
γδ>ε |a

j
γδ|

δ!
(δ − ε)!

|β + δ − ε|!sλ(α+γ−ε)−(i−1)−µ(β+δ−ε)∑
jγδ |a

j
γδ||βj + δ|!sλ(αj+γ)−(ij−1)−µ(βj+δ)

6
∑
αβεi

∑
j |c

j
αβi|

(
α
ε

) ∑
γδ |a

j
γδ|

δ!
(δ − ε)!

|β + δ − ε|!sλ(α+γ−ε)−(i−1)−µ(β+δ−ε)∑
jγδ |a

j
γδ||βj + δ|!sλ(αj+γ)−(ij−1)−µ(βj+δ)

6
∑

jαβεi

|cj
αβi|

(
α

ε

) ∑
γδ |a

j
γδ|

δ!
(δ − ε)!

|β + δ − ε|!sλ(α+γ−ε)−(i−1)−µ(β+δ−ε)∑
γδ |a

j
γδ||βj + δ|!sλ(αj+γ)−(ij−1)−µ(βj+δ)

.

We use the fact that δ!
(δ−ε)! 6 |δ|!

|δ−ε|! 6 |βj+δ|!
|β+δ−ε|! and therefore

|(w2v
−1)E|µ,s

s

|E|µ,s
s

6
∑

jαβεi

|cj
αβi|

(
α

ε

) ∑
γδ |a

j
γδ||βj + δ|!sλ(α+γ−ε)−(i−1)−µ(β+δ−ε)∑

γδ |a
j
γδ||βj + δ|!sλ(αj+γ)−(ij−1)−µ(βj+δ)

=
∑

jαβεi

|cj
αβi|

(
α

ε

)
sλ(α−αj−ε)−(i−ij)−µ(β−βj−ε)

6
∑

jαβεi

|cj
αβi|2

|α|sλ(α−αj−ε)−(i−ij)−µ(β−βj−ε).

For every β appearing in this sum as part of the exponent of a monomial in M ′
j , let

(αjβ , β, ijβ) ∈ N (M ′
j) be such that λαjβ = min{λα : (α, β, i) ∈ N (M ′

j)}. Then∑
jαβεi

|cj
αβi|2

|α|sλ(α−αj−ε)−(i−ij)−µ(β−βj−ε)

=
∑

jαβεi

|cj
αβi|2

|α|s(µ−λ)εsλ(α−αjβ)s(λαjβ−µβ−i)−(λαj−µβj−ij)

and the exponents (λαjβ − µβ − i) − (λαj − µβj − ij) are integers greater or equal
than one. Therefore for s < 1 the last sum is bounded by

s
∑

jαβεi

|cj
αβi|2

|α|s(µ−λ)εsλ(α−αjβ) 6 s
( ∑

ε

s(µ−λ)ε
) ∑

jβ

( ∑
iα

|cj
αβi|2

|α|sλ(α−αjβ)
)

and this series converges for s small enough.

Lemma 2.9. — Given j, β, there are sjβ > 0 and Cjβ > 0 such that the series∑
iα |c

j
αβi|2|α|sλ(α−αjβ) converges with sum bounded by Cjβ for 0 < s < sjβ.

Proof. — The power series
∑

iα |c
j
αβi|xα defines an analytic function F (x) in a neigh-

borhood of 0 ∈ Cn. Therefore, the function f(s) = F (2sλ1 , . . . , 2sλn) is analytic in a
neighborhood of 0 ∈ C. Its expansion as a power series near 0 is

∑
iα |c

j
αβi|2|α|sλα.
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Let r be its radius of convergence, and let sjβ < min{1, r}. The function f is analytic
in the disc |s| 6 sjβ .

Since λα > λαjβ for every α, this series does not have any term in which the
exponent of s is less than λαjβ . Hence f(s) has a zero of order at least λαjβ in
s = 0, and therefore the function g(s) = f(s)/sλαjβ in analytic in the disc |s| 6 sjβ .
In particular, it is bounded inside the interval [0, sjβ ] of the real line. And this
is what we want, since the power series expansion of g in a neighborhood of 0 is∑

iα |c
j
αβi|2|α|sλ(α−αjβ).

Lemma 2.10. — The series
∑

ε s(µ−λ)ε converges and its sum is uniformly bounded
for s < 1/2.

Proof. — Since µj > λj for every j = 1, . . . , n, we have:∑
ε

s(µ−λ)ε =
∑

ε

∏
j

s(µj−λj)εj =
∏
j

∑
εj

s(µj−λj)εj 6
∏
j

∑
εj

sεj =
(

1
1− s

)n

6 2n

Now take s0 = min{ 1
2 ,minjβ sjβ} and C2 = 2n

∑
jβ Cjβ . From the last two lemmas

it follows that

(4)
|(w2v

−1)E|µ,s
s

|E|µ,s
s

6 C2s

for 0 < s < s0.

From these two propositions we can deduce the following

Theorem 2.11. — There are constants s0 > 0 and C > 0 such that for every E =
u(A,B) ∈ Dq

n we have ∑
j

|Aj |µ,s
s |Mj |µ,s

s + |B|µ,s
s 6 C|E|µ,s

s

for 0 < s < s0 and for every µ admissible for (F , λ).

Proof. — Let Dn(s)d denote the subspace of Dn(s) whose elements are germs of
differential operators of degree at most d. So far we know that there are s0 > 0 and
C1, C2 > 0 such that

|((w1 + w2)v−1)E|µ,s
s 6 |(w1v

−1)E|µ,s
s + |(w2v

−1)E|µ,s
s 6 (C1 + C2)s|E|µ,s

s

for 0 < s < s0. Choose ε > 0. Taking s < min{s0,
1−ε

C1+C2
}, the map (w1 + w2)v−1

has norm | − |µ,s
s less than 1 − ε. Hence the series

∑
(−(w1 + w2)v−1)n converges

to a continuous endomorphism on every Dn(s)q
d with norm at most 1/ε, since the

map does not increase the degree on ∂ and Dn(s)q
d is a Banach space for the | − |µ,s

s

norm. Therefore, this series defines a continuous endomorphism of the whole Dn(s)q
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which is nothing but the inverse of (Id+(w1 + w2)v−1). In particular we see that
u = (Id+(w1 + w2)v−1)v is an isomorphism. Furthermore, we have the inequality∑

j

|Ao
jx

αj ∂βj eij
|µ,s
s + |B|µ,s

s = |v(A,B)|µ,s
s

= |(Id+(w1 + w2)v−1)−1u(A,B)|µ,s
s 6 ε−1|E|µ,s

s

for every E = u(A,B) ∈ Dn(s)q. We conclude with two lemmas.

Lemma 2.12. — For every j = 1, . . . , r we have |Aoxαj ∂βj eij
|µ,t
s > |xαj ∂βj eij

|µ,t
s |A|µ,t

s

for every A ∈ Dn and every s, t > 0.

Proof. — Let A =
∑

αβ aαβxα∂β . Then Aoxαj ∂βj eij
=

∑
αβ aαβxα+αj ∂β+βj eij

and
therefore

|Aoxαj ∂βj eij
|µ,t
s =

∑
αβ

|aαβ | · |β + βj |! · sλ(α+αj)−(ij−1)t−µ(β+βj)

= sλαj−(ij−1)t−µβj

∑
αβ

|aαβ | · |β + βj |! · sλαt−µβ

> sλαj−(ij−1)t−µβj |βj |!
∑
αβ

|aαβ | · |β|! · sλαt−µβ

= |xαj ∂βj eij
|µ,t
s |A|µ,t

s .

Lemma 2.13. — For every j = 1, . . . , r, there is a constant Cj > 0 such that |Mj |µ,s
s 6

Cj |xαj ∂βj eij
|µ,s
s for 0 < s < s0.

Proof. — We have

|Mj |µ,s
s

|xαj ∂βj eij |
µ,s
s

=
∑
αβi

|cj
αβi|

|β|!
|βj |!

sλα−λαj+(ij−i)+µβj−µβ

6
∑
αβi

|cj
αβi|s

(λα−µβ−i)−(λαj−µβj−ij)

Now with an argument analogous to that in the proof of 2.9, we see that the series∑
α |c

j
αβi|sλα defines an analytic function in a neighborhood of 0, with a zero of order

at least µβ + i + (λαj − µβj − ij) at the origin, hence our series defines a continuous
function in a neighborhood of the origin, from where the existence of the constants
Cj is deduced.

This concludes the proof of the theorem 2.11, by taking C = ε−1 ·maxj{Cj}.

We see that the fact that u is bijective implies the division theorem, more precisely,
it implies the existence and uniqueness of the quotients and the remainder of the
division of E by M1, . . . ,Mr, assuming that their Newton diagrams are contained in
L and J respectively.
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Proof of Theorem 2.6. — Using the same notation as in the previous theorem, we
have Aj = Qj(F ;E) and B = R(F ;E). Let B be the basis of open neighborhoods
of 0 consisting of open polycylinders of polyradius sλ with 0 < s < s0. The canonical
topology on DCn(U)q for any open polycylinder U centered at 0 of polyradius sλ,
s > 0, is given by the seminorms | − |µ,s′

s′ , 0 < s′ < s and µ admissible for (F , λ) (see
section 1). Hence the bound in Theorem 2.11 implies the continuity of Qj and R.

Let us suppose now the following additional hypothesis on the chosen ordering:

(?) For every (α, β) ∈ N2n, (α, β) < (α′, β′) =⇒ (0, β) < (0, β′) =⇒ |β| 6 |β′|.

There are many monomial orderings satisfying this condition. For instance, if <′ is a
well ordering in Nn compatible with sums, we can set

(α, β) < (α′, β′) if


|β| < |β′| or

|β| = |β′| and β <′ β′ or

β = β′ and α <′ α′.

We will see that under hypothesis (?) we can obtain a sharper result, namely (see [8]):

Theorem 2.14. — There are constants s0 > 0, C > 0 such that for every E =
u(A,B) ∈ Dq

n we have ∑
j

|Aj |µ,t
s |Mj |µ,t

s + |B|µ,t
s 6 C|E|µ,t

s

for every 0 < t < s < s0 and for every µ admissible for (F , λ).

The proof of the theorem in this case follows exactly the same steps as in the former
case, the required hypothesis allows us to find admissible µ’s with arbitrarily large
components satisfying the following additional condition:

µβj > µβ for every (α, β) ∈ N (M ′
j) and for every j = 1, . . . , r.

Proof. — We keep the notation used in Lemma 1. We will first check that β ∈
π2(N (σ(Mj))) when µβ is maximal. Otherwise there would be (α′, β′) ∈ N (Mj)∩M

with |β′| > |β|, hence

µβ = p|β| − ρβ < p|β| 6 p|β′| − p < p|β′| − σα′ − ρβ′ < p|β′| − ρβ′ = µβ′.

Let (α, β) ∈ N (σ(Mj)). Then, (αj , βj) 6 (α, β) implies (0, βj) 6 (0, β) because of
the hypothesis (?). Since (0, βj) and (0, β) are in M and the ordering restricted to
this set is defined by the weights (σ, ρ), we have ρβj 6 ρβ , hence µβj > µβ as we
wanted to show.

This permits to verify the inequalities in the proof of the theorem for every t < s,
and not only for t = s.
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It is possible to obtain a similar result if we restrict ourselves to the Weyl algebra
An(C) (cf. [6], I.6) and consider the division operator inside this ring (cf. [4], Thm.
2.4.1, with L2(β) = |β|). The proof is basically the same one (now we do not have to
take care of the convergence problems, since every element of An(C) consists only of
a finite number of monomials). We will just state the corresponding results without
giving the proofs, which can be found in [15].

In this case, the canonical topology on An(C) that we consider is the one induced
by the canonical topology on DCn(Cn) (or on D∞

Cn(Cn)). It is defined by the family of
seminorms (which in fact are now norms) parameterized by s−λ and t−µ for suitable λ

and µ, such that s tends to zero and t−µ � 0. Here we say that a weight λ ∈ (N∗)n is
adapted to an r-tuple (M1, . . . ,Mr) of elements of An(C) if for every positive constant
K there exists µ ∈ Nn with components greater than K such that

λαj + µβj − ij > λα + µβ − i

for every (α, β, i) ∈ N (M ′
j) and every j = 1, . . . , r, where (αj , βj , ij) is the exponent

of Mj , defined in this case as follows:
Let σ(M) =

∑
i

∑
αβ aαβix

α∂βei be the symbol of M (defined as above). The ex-
ponent of M is max{(α, β, i)|aαβi 6= 0} (this is a finite set in this case, so its maximum
with respect to the ordering considered is well defined). The initial monomial of M

is the monomial corresponding to its exponent.
In the same way as above, one can show that there is always a weight λ adapted

to any r-tuple F , and even one adapted to several r-tuples (for distinct r’s) simulta-
neously.

Theorem 2.15. — Let F = (M1, . . . ,Mr), with Mi ∈ An(C)q and let Qi(F ;E),
i = 1, . . . , r (resp. R(F ;E)) be the quotients (resp. the remainder) of the division of
E ∈ An(C)q by F . Then the C-linear maps

Qi(F ;−) : An(C)q −→ An(C),

R(F ;−) : An(C)q −→ An(C)q

are continuous with respect to the canonical topology.

Proposition 2.16. — There is a constant C1 > 0 such that |(w1v
−1)E|s−µ

s−λ 6 C1s|E|s
−µ

s−λ

for every E ∈ An(C)q and 0 < s < 1.

Proposition 2.17. — There are constants C2 > 0 and s0 > 0 such that |(w2v
−1)E|s−µ

s−λ 6

C2s|E|s
−µ

s−λ for 0 < s < s0 and for every E ∈ An(C)q.

Theorem 2.18. — The map u : L ⊕ J → An(C)q is a bi-continuous isomorphism.
There are constants s0 > 0, C > 0 such that for every E = u(A,B) ∈ An(C)q we have∑

j

|Aj |s
−µ

s−λ |Mj |s
−µ

s−λ + |B|s
−µ

s−λ 6 C|E|s
−µ

s−λ

for 0 < s < s0.
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As in the previous case, it is also possible to obtain a sharper result if we assume the
additional hypothesis (?) given earlier on the ordering. The new stronger statement
is the following:

Theorem 2.19. — If the chosen ordering satisfies hypothesis (?), the map u : L⊕ J →
An(C)q is a bi-continuous isomorphism. There are constants s0 > 0, C > 0 such that
for every E = u(A,B) ∈ An(C)q we have, for 0 < t < s < s0,∑

j

|Aj |t
−µ

s−λ |Mj |t
−µ

s−λ + |B|t
−µ

s−λ 6 C|E|t
−µ

s−λ .

3. Continuous scissions

Proposition 3.1. — Let V ⊂ Cn be an open neighborhood of 0, ri, qi > 1, 1 6 i 6 m

integers and Fi : Dri

V → D
qi

V , 1 6 i 6 m a finite family of DV -linear maps. There
exists a weight λ ∈ (N∗)n, a λ-basis B of open neighborhoods of 0 ∈ Cn and a family
of continuous scissions {σi

U : DV (U)qi → DV (U)ri}U∈B of Fi, i.e. :

Fi(U) ◦ σi
U ◦ Fi(U) = Fi(U), U ∈ B, 1 6 i 6 m

compatible with restrictions, i.e. σi
U |W = σi

W for W ⊂ U .

Proof. — First, let us write fi = (Fi)0 and let us take a Gröbner (or standard) basis
Gi = {N i

1, . . . , N
i
si
} of im(fi) ⊂ Dqi

n for each i = 1, . . . ,m (see [4] in this volume) , and
consider the corresponding linear map gi : Dsi

n → Dqi
n . By shrinking V if necessary,

we can suppose that gi is the stalk at 0 of a linear map Gi : Dsi

V → D
qi

V . Let us
consider

τ i = (Q1(Gi;−), . . . , Qsi
(Gi;−)) : Dqi

n −→ Dsi
n .

Let λ ∈ (N∗)n be a weight adapted to Gi, for every i = 1, . . . ,m (see lemma 2.3). By
theorem 2.6, there exists a λ-basis B of open neighborhoods of 0 ∈ Cn, such that for
every U ∈ B and every i the C-linear map τ i

U := τ i|DV (U)qi : DV (U)qi → DV (U)si is
continuous. Furthermore, the fact that Gi is a Gröbner basis implies that gi ◦ τ i ◦gi =
gi. By analytic continuation we obtain

Gi(U) ◦ τ i
U ◦Gi(U) = Gi(U), ∀U ∈ B, ∀ i = 1, . . . ,m.

Let hi : Dsi
n → Dri

n be the linear map such that fi ◦ hi = gi. By shrinking V again
if necessary, we can suppose that hi is the stalk at 0 of a linear map Hi : Dsi

V → Dri

V .
Let σi := hi ◦ τ i : Dqi

n → Dri
n and σi

U := hi(U) ◦ τ i
U : DV (U)qi → DV (U)ri , U ∈ B,

which are continuous.
From im(fi) = im(gi) (Gi is a Gröbner basis of im(fi)) and gi ◦ τ i ◦ gi = gi we

deduce fi ◦σi ◦ fi = fi. Analytic continuation gives again Fi(U) ◦σi
U ◦Fi(U) = Fi(U)

for all U ∈ B, 1 6 i 6 m.
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Corollary 3.2. — Let V ⊂ Cn be an open neighborhood of 0, ri, si, qi > 1, i = 1, . . . ,m
integers and

Dri

V

Fi−−−→ Dsi

V

Gi−−−→ Dti

V , i = 1, . . . ,m

a finite family of exact sequences of DV -linear maps. There exists a weight λ ∈ (N∗)n

and a λ-basis B of open neighborhoods of 0 ∈ Cn such that for any U ∈ B and any
i = 1, . . . ,m the sequence

DV (U)ri
Fi(U)
−−−−−−→ DV (U)si

Gi(U)
−−−−−−→ DV (U)ti

is exact and topologically split.

Proof. — By proposition 3.1, there exists a weight λ ∈ (N∗)n, a λ-basis B of open
neighborhoods of 0 ∈ Cn and a family of continuous scissions {σi

U : DV (U)qi →
DV (U)ri}U∈B of Fi, i = 1, . . . ,m compatible with restrictions. Let us write fi =
(Fi)0, gi = (Gi)0 and σi = lim

U∈B
σi

U for each i = 1, . . . ,m. We have fi = fi ◦ σi ◦ fi

and
ker gi = im fi = ker(1− fi ◦ σi).

Then, for any U ∈ B and any M ∈ ker Gi(U) we have

0 = M0 − fi(σi(M0)) =
(
M − Fi(U)(σi

U (M))
)
0
,

and by analytic continuation we deduce M ∈ ker(1− Fi(U) ◦ σi
U ) ⊂ im Fi(U).

Proposition 3.3. — Let V ⊂ Cn be an open neighborhood of 0, Mi a coherent DV -
module, i = 1, . . . ,m, and

Dri

V

Fi−−−→ Dsi

V

πi−−−→ Mi −→ 0

a finite presentation. Then, for any λ-basis B of open neighborhoods of 0 ∈ Cn such
that the morphisms Fi(U) split for U ∈ B and i = 1, . . . ,m, the sequence

DV (U)ri
Fi(U)
−−−−−−→ DV (U)si

πi(U)
−−−−−−→ Mi(U) −→ 0

is exact for U ∈ B and i = 1, . . . ,m.

Proof. — By shrinking V if needed, we can suppose that the kernel of Fi has a good
filtration on V (cf. [6], prop. 10). Then, for any compact polycylinder K ⊂ V and
any i = 1, . . . ,m the sequence

(5) DV (K)ri
Fi(K)
−−−−−−→ DV (K)si

πi(K)
−−−−−−→ Mi(K) −→ 0

is exact by the Cartan-Oka theorem (cf. loc. cit., prop. 11). By proposition 3.1, there
exist a weight λ ∈ (N∗)n and a λ-basis B of open neighborhoods of 0 ∈ Cn such that
for any U ∈ B and any i = 1, . . . ,m the maps Fi(U) : DV (U)ri → DV (U)si split,
with scissions compatible with restrictions.
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If K is the closure of a U ′ ∈ B, the sequence (5) is the inductive limit of the
sequences

DV (U ′′)ri
Fi(U ′′)
−−−−−−−→ DV (U ′′)si −→ cokerFi(U ′′) −→ 0

with U ′′ ∈ B, K ⊂ U ′′, and hence it splits. Now, for any U ∈ B the sequence

DV (U)ri
Fi(U)
−−−−−−→ DV (U)si

πi(U)
−−−−−−→ Mi(U) −→ 0

is the projective limit of sequences (5), with K = U ′ ⊂ U , U ′ ∈ B, and consequently
it is exact.

4. Faithful flatness of D∞
X over DX

Faithful flatness of the ring of differential operators of infinite order over the ring
of differential operators of finite order has been stated for the first time by Sato,
Kashiwara and Kawai in [17]. Their proof used microlocal methods. In this section
we reproduce the proof given in [14], based on the continuity of division of differential
operators studied in the precedent sections.

Theorem 4.1. — For any complex analytic manifold X, the extension DX → D∞
X is

faithfully flat.

Proof. — It is enough to prove that the ring extension Dn → D∞
n is faithfully flat.

Let 0 −→ M1 −→ M2 −→ M3 −→ 0 be an exact sequence of Dn-modules. It is the stalk
at 0 of an exact sequence 0 −→ M1 −→ M2 −→ M3 −→ 0 of DV -modules, where V is an
open neighborhood of 0. We can find a commutative diagram

0 0 0

0 // M1
//

OO

M2
//

OO

M3
//

OO

0

0 // Dr1
V

//

OO

Dr2
V

//

OO

Dr3
V

//

OO

0

0 // Ds1
V

//

OO

Ds2
V

//

OO

Ds3
V

//

OO

0

0 // Dt1
V

//

OO

Dt2
V

//

OO

Dt3
V

//

OO

0
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with exact rows and columns. By propositions 3.1, 3.3 and corollary 3.2, there exist
a weight λ and a λ-basis of neighborhoods of 0 such that for any U ∈ B the diagram

0 0 0

0 // M1(U) //

OO

M2(U) //

OO

M3(U) //

OO

0

0 // DV (U)r1 //

OO

DV (U)r2 //

OO

DV (U)r3 //

OO

0

0 // DV (U)s1 //

OO

DV (U)s2 //

OO

DV (U)s3 //

OO

0

0 // DV (U)t1 //

OO

DV (U)t2 //

OO

DV (U)t3 //

OO

0

has exact and topologically splitting rows and columns.

Then, the corresponding diagram of topological completions has also exact rows
and columns. As for any open polycylinder W we have D̂V (W ) = D∞

V (W ), we deduce
M̂i(U) = D∞

V (U)⊗DV (U) Mi(U) and the exactness of the sequence

0 −→ D∞
V (U)⊗DV (U) M1(U) −→ D∞

V (U)⊗DV (U) M2(U) −→ D∞
V (U)⊗DV (U) M3(U) −→ 0

for every U ∈ B. Taking direct limits we obtain the exactness of

0 −→ D∞
n ⊗Dn

M1 −→ D∞
n ⊗Dn

M2 −→ D∞
n ⊗Dn

M3 −→ 0,

and so the extension Dn → D∞
n is flat.

To conclude, we observe that the quotient topology on Mi(U), U ∈ B, is separated.
Then Mi(U) ↪→ M̂i(U) = D∞

V (U)⊗DV (U)Mi(U) and Mi ↪→ D∞
n ⊗Dn

Mi. In particular
Mi 6= 0 implies D∞

n ⊗Dn
Mi 6= 0 and the extension Dn → D∞

n is faithfully flat.

Using the corresponding results for the Weyl algebra (Theorems 2.15 and 2.18) it
is possible to obtain the faithful flatness for the extension An(C) → D∞

Cn(Cn), as done
in [15].
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ciales, Dep. Álgebra, Univ. Sevilla, 2001.

[16] M. Sato – Hyperfunctions and partial differential equations, in Proc. Int. Conf. on
Functional Analysis, Tokyo (1969), Tokyo Univ. Press, Tokyo, 1970, p. 91–96.

[17] M. Sato, T. Kawai & M. Kashiwara – Microfunctions and pseudo-differential equa-
tions, in Hyperfunctions and pseudo-differential equations, Proc. Conf. Katata, (1971),
Lect. Notes in Math., vol. 287, Springer-Verlag, 1973, p. 265–529.
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