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GEOMETRIC IRREGULARITY AND D-MODULES

by

Yves Laurent

Abstract. — In the one dimensional case, J.-P. Ramis associated a Newton polygon

to an analytic differential operator. On this polygon may be read the irregularity of
the operator as well as its indices in various functional spaces. This result is here
generalized in the higher dimensional case. We define a Newton polygon and positive

microcharacteristic cycles. We get so a purely algebraic definition of the characteristic
cycle of the irregularity of a holonomic D-module.

Résumé(Irrégularité géométrique et D-modules). — En une variable, J.-P. Ramis

a associé à un opérateur différentiel analytique un polygone de Newton sur lequel

on peut lire l’irrégularité de cet opérateur ainsi que ses indices dans divers espaces
fonctionnels. On montre ici que ce résultat se généralise en dimension quelconque,

en définissant un polygone de Newton et des cycles microcaractéristiques positifs. En
particulier, on obtient une définition purement algébrique du cycle caractéristique de

l’irrégularité d’un D-module holonome.

Introduction

Let X be a complex manifold and DX the sheaf of differential operators with
holomorphic coefficients on X. Regular holonomic DX -modules are completely deter-
mined by the Riemann-Hilbert correspondence which is an equivalence of categories
between these modules and the perverse sheaves on X. In the non regular case, things
are much more complicated.

When the dimension of X is 1, the irregularity of an ordinary differential equation
is just a positive number. In higher dimensions, it may be understood as a perverse
sheaf as explained by Mebkhout in this Summer School or as a positive cycle as we
will see here. The relation between these two points of view is simply the fact that
the positive cycle is the characteristic cycle associated to the perverse sheaf. But in
fact, the two methods are completely different and give complementary results.
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412 Y. LAURENT

As shown in dimension 1 by the results of Ramis, the irregularity itself is not
sufficient and we have to define a finite family of positive cycles, not only one. This
will be done by a method which is very similar to the definition of the characteristic
cycle. We will define a family of filtrations on the sheaf DX and from it we will get
the family of microcharacteristic cycles.

More precisely, if Y is a submanifold of X, the microcharacteristic cycles form a
finite family of lagrangian cycles on the space T ∗T ∗

Y X (cotangent to the conormal
space to Y ). They give a formula to compute the index of solutions of the DX -
module. In particular they compute the index of the sheaf of irregularity introduced
by Mebkhout.

But these cycles are not the good ones. Let us assume that Y is a hypersurface.
Then the sheaf of irregularity is a sheaf on Y and we need cycles on T ∗Y not on
T ∗T ∗

Y X. We show that to each lagrangian cycle on T ∗T ∗
Y X with a suitable action

of C∗ is associated a cycle on T ∗Y , called its irregularity, which has good properties
of homogeneity and positivity.

Applying this to DX -modules, we get positive cycles on T ∗Y which compute the in-
dex of the sheaf of irregularity and which vanishes if and only if M is regular along Y .
Moreover we show that these cycles are positive (positivity of the irregularity) and
that they are divisible by an integer (the denominator of the slope). These properties
generalize the properties of the irregularity in dimension one. In particular it gener-
alizes the positivity while the last property is the generalization of the fact that the
vertices of Newton Polygon have integral coordinates.

The detailed proofs are not given here but may be found in [5] and [6].

1. Ordinary differential equations

1.1. Newton Polygon (cf. Ramis [9]). — Let X be an open neighborhood of 0
in C and and P a differential operator on X:

P (t,Dt) =
∑

06j6m

pj(t)D
j
t

(with Dj
t = dj/dtj). Developing the pj functions in Taylor series near 0 we get:

P (t, Dt) =
∑

06j6m
i>0

pijt
iDj

t

For 0 6 j 6 m, we denote by kj the valuation of the function pj at 0 (i.e. the
highest power of t dividing pj) and we define:

Sj = { (λ, µ) ∈ R2 | λ 6 j, µ > kj − j }

Then S0(P ) is the union of the sets Sj and the Newton Polygon N0(P ) is the convex
hull of S0(P ). It is a convex subset of R2 (Figure 1).
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Figure 1. Newton Polygon

The operator P is said to be regular at 0, or to have “regular singularities” if the
Newton Polygon has only one vertex.

In the general case, this polygon is made of two half-lines (one vertical, one hori-
zontal) and of a finite number of segments. We denote by 0 < sN < · · · < s1 < +∞
the slopes of these segments and by 1 < r1 < · · · < rN < +∞ the rational numbers
given by (ri − 1)si = 1. The numbers ri are, by definition, the slopes of P or the
“algebraic slopes” of P (sometimes also called the critical indexes of P ).

The sum
∑

pijt
iτ j over (j, i− j) on the vertical half-line of the Newton Polygon is

nothing else than the function pm(t)τm where m is the order of P that is the principal
symbol of P . In a similar way, we define the the determining equation of P relative
to the index r as the restriction to t = 1 of the sum

∑
pijt

iτ j over (j, i − j) on the
segment of slope 1/(r − 1).

If r is not a slope of P , the corresponding determining equation is monomial,
otherwise it is a polynomial function of τ . The Newton Polygon is determined up to
a translation by the list of the degrees and valuations of the determining equations.

1.2. The algebraic case. — If all the coefficients of P are polynomial in t, we may
define a “negative part” of the Newton Polygon. Keeping the previous notations, we
denote by dj the degree of pj and replace the sets Sj by the two families:

S′j = { (λ, µ) ∈ R2 | λ 6 j, µ = kj − j }(1.2.1)

S′′j = { (λ, µ) ∈ R2 | λ 6 j, µ = dj − j }(1.2.2)

We get a Newton Polygon with positive and negative slopes (Figure 2).

1.3. Formal power series. — When P is regular at 0, Fuchs theorem says that
all formal power series which are solutions of the equation Pu = 0 are convergent.
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Figure 2. Second Newton Polygon

In [7], Malgrange has defined the irregularity of P as

Irr(P ) = χ(P, C[[t]])− χ(P, C{t})

where C[[t]] is the ring of formal power series and C{t} the ring of convergent series.
Let us recall that if P is an operator on a C-vector space F , P has finite index if

the kernel and the cokernel of P are finite dimensional C-vector spaces and the index
χ(P, F ) of P is:

χ(P, F ) = dimC Ker(P )− dimC Coker(P )

Malgrange proved that the irregularity is equal to the height between the higher
and the lower vertex of the Newton Polygon of P (with the definition of section 1.1).
It is thus a positive number which vanishes if and only if P is regular.

Ramis [9] improved this results using the rings C[[t]]r of Gevrey formal powers. A
formal power series u(t) =

∑
k>0 uktk is an element of C[[t]]r if and only if:

Fr[u](t) :=
∑
k>0

uk
tk

(k!)r−1

is convergent.

Theorem 1.3.1(Ramis [9])

(1) The operator P has a finite index on C[[t]]r for any r > 1.
(2) If u is a formal power series solution of the equation Pu = 0, it belongs to one

of the spaces C[[t]]r where r is a slope of P and the convergence radius of Fr[u] is
equal to the inverse of the modulus of one of the roots of the corresponding determining
equation.

(3) The index χ(P, C[[t]]r), as a function of r, is constant outside of the points r

which are slopes of P . Its jump at one of these points is equal to the height of the
segment of slope 1/(r − 1) of the Newton Polygon of P .
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1.4. Holomorphic microfunctions. — The previous result may be stated and
proved in other families of functions. We will consider in particular the family of
holomorphic microfunctions with support in {0} which is easier to generalize in higher
dimensional case as we shall see later.

If U is a neighborhood of 0 in C the quotient O(U − {0}) /O(U) does not depend
on U , it is denoted by B∞

{0}|C. The subspace generated by meromorphic functions
at 0 is denoted by B{0}|C.

The space B∞
{0}|C operates on germs of holomorphic functions at 0 by the Cauchy

formula. If f is a holomorphic function on a neighborhood U of 0 and if u ∈ B∞
{0}|C

is represented by a function ϕ(t) on U −{0}, we choose a path γ in U −{0} such that
the index of 0 is 1, e.g. a small circle centered at 0 and we set:

〈u, f〉 =
∫

γ

ϕ(t)f(t)dt

In this way, the class of the function 1
2iπ

1
t is identified to the Dirac operator δ :

f 7→ f(0) and the function

Φk(t) =
(−1)k+1

2iπ

k!
tk+1

to the k-th derivative δ(k)(t). This shows that an element of B∞
{0}|C is written in a

unique way:
u(t) =

∑
k∈N

akδ(k)(t)

where ak is a sequence of complex numbers satisfying:

∀ ε > 0, ∃Cε > 0, ∀ k > 0, |ak| 6 Cεε
k 1
k!

and such an u is an element of B{0}|C if and only if the sum is finite. B{0}|C is thus
the space of distributions with support {0} and B∞

{0}|C the space of hyperfunctions
with support {0}.

For r > 1, we define the spaces of ultradistributions B{0}|C{r} and B{0}|C(r). An
element u(t) =

∑
akδ(k)(t) of B∞

{0}|C is in B{0}|C{r} if the sequence ak satisfies:

∀ ε > 0, ∃Cε > 0, ∀ k > 0, |ak| 6 Cεε
k 1
(k!)r

and it is in B{0}|C(r) if

∃C > 0, ∀ k > 0, |ak| 6 Ck+1 1
(k!)r

The spaces C[[t]]r et B{0}|C{r} carry natural topologies for which they are topo-
logically duals and the theorem 1.3.1 may be translated to B{0}|C{r}.

Theorem 1.4.1(Ramis [9])

(1) The operator P has a finite index on B{0}|C{r} and B{0}|C(r) for any r > 1.
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(2) If ri and ri+1 are two consecutive slopes of P , then Ker(P,B{0}|C{r}) is inde-
pendent of r ∈ [ri, ri+1[, Ker(P,B{0}|C(r)) is independent of r ∈ ]ri, ri+1], and they
are equal. The same is true for the cokernel.

(3) The indices χ(P,B{0}|C{r}) and χ(P,B{0}|C(r)), are constant in r except at the
slopes of P where their jump (which is also equal to χ(P,B{0}|C(r))−χ(P,B{0}|C{r}))
is equal to the height of the segment of slope 1/(r − 1) of the Newton Polygon of P .

2. Microcharacteristic Varieties

We quit now the one dimensional case and we consider a complex analytic mani-
fold X of dimension n and a submanifold Y of X. We will denote by Λ = T ∗

Y X the
conormal bundle to Y in X. In fact, what we are going to do here may be extended
to the case where Λ is any homogeneous lagrangian submanifold of T ∗X (see [4]).

2.1. Newton Polygon of an operator.— Let (x1, . . . , xp, t1, . . . , tq) be local co-
ordinates of X such that Y = { (x, t) ∈ X | t = 0 }, then Λ is given by

Λ = T ∗
Y X = { (x, t, ξ, τ) ∈ T ∗X | t = 0, ξ = 0 }

We have thus coordinates (x, τ) on Λ and we will denote by (x, τ, x∗, τ∗) the corre-
sponding coordinates on the conormal bundle T ∗Λ.

Let P be a differential operator defined in a neighborhood of Y (or a microdiffer-
ential operator defined in a neighborhood of Λ). Its symbol is a formal series:

P (x, t, ξ, τ) =
∑
j6m

pj(x, t, ξ, τ)

where pj is a homogeneous function of degree j in (ξ, τ) (if P is a differential operator,
pj is polynomial in (ξ, τ) and pj ≡ 0 if j < 0).

In both cases, pj is defined near Λ and thus has a Taylor expansion in (t, ξ):

pj(x, t, ξ, τ) =
∑

(α,β)∈Nq×Np

p
(j)
α,β(x, τ)tαξβ

and we may define the following functions:

pij(x, τ, x∗, τ∗) =
∑

|α|+|β|=i

p
(j)
α,β(x, τ)(−τ∗)α(x∗)β

The Newton Polygon of the operator P is defined as the convex hull NΛ(P ) of the
union of the sets

Sj = { (λ, µ) ∈ R2 | λ 6 j, µ > i− j }
over all (i, j) such that pij 6≡ 0.

As in dimension 1, the polygon is made of two half-lines and of a finite number of
segments. We will be interested in the functions pij corresponding to (i, j) such that
(j, i− j) belongs to one of these segments.
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GEOMETRIC IRREGULARITY AND D-MODULES 417

We fix a rational number r between 1 and infinity, denote by Dr the segment of
slope 1/(r − 1) of the boundary of the Newton polygon of P (of course, it is reduced
to one point except for a finite number of r). The function σ[r](P ) is the sum of all
functions pij such that (j, i− j) ∈ Dr.

We define also the functions σ(r)(P ) and σ{r}(P ) in the following way:

• If r is not a slope of P , that is if Dr is a point, then σ(r)(P ) = σ{r}(P ) = σ[r](P ).
• If r is a slope, then σ(r)(P ) = σ[r − ε](P ) and σ{r}(P ) = σ[r + ε](P ) for small

ε > 0.
• If r =∞, we still define σ(∞)(P ) as the function σ(r)(P ) with r greater than the

last slope of P .

The functions σ(r)(P ) and σ{r}(P ) are always bihomogeneous, that is homogeneous
separately in (x∗, τ∗) and (x∗, τ). A function σ[r](P ) is bihomogeneous if and only
if r is not a slope. Moreover σ(r)(P ) (resp. σ{r}(P )) is the homogeneous part of
higher (resp. lower) degree of the Taylor expansion of σ[r](P ) relative to the variables
(x∗, τ∗).

If M is a coherent DX -module of the form DX/I with I ideal of DX , we may
define its microcharacteristic variety of type r as

Σ(r)
Λ (M ) = { (x, τ, x∗, τ∗) ∈ T ∗Λ | ∀P ∈ I , σ[r](P )(x, τ, x∗, τ∗) = 0 }

and the same definition applied to σ(r)(P ) and σ{r}(P ) defines the varieties
ChΛ (r)(M ) and ChΛ {r}(M ).

However, these definitions are not very convenient and it is not easy to show that
they do not depend on local coordinates or local presentation of M . As for charac-
teristic varieties, we will use filtrations to redefine them.

2.2. The V -filtration. — The sheaf DX |Y of differential operators defined near Y

is provided with two canonical filtrations. First, the filtration by the usual order of
operators denoted by (DX,m)m>0 and second the V -filtration of Kashiwara [3]:

VkDX = {P ∈ DX |Y | ∀ j ∈ Z, PI j
Y ⊂ I j−k

Y }

where IY is the definition ideal of Y and I j
Y = OX if j 6 0. These definitions may

be extended to microdifferential operators [4].
In the local coordinates such that Y = {t = 0}, we can see that I k, k > 0, is the

sheaf of holomorphic functions ∑
|α|=k

fα(x, t)tα

hence the operators xi and Dxi
have order 0 for the V -filtration while the operators ti

have order −1 and Dti order +1.
This proves that VkDX is the sheaf of operators whose Newton Polygon is above the

horizontal line with ordinate −k, while DX,k is the sheaf of operators whose Newton
Polygon is to the left of the vertical line with abscissa k.
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418 Y. LAURENT

The associated graduate is defined by:

grV DX := ⊕ grk
V DX , grk

V DX := VkDX /Vk−1DX

By definition of the V -filtration, grV DX operates on the direct sum
⊕ (

I k
/
I (k+1)

)
.

But this sheaf is canonically isomorphic to the direct image by the projection p :
TY X → Y of the sheaf O[TY X] of holomorphic functions on the normal bundle
TY X which are polynomial in the fibers of p. In this way grV DX is a subsheaf
of p∗ HomC(O[TY X],O[TY X]) and it is easily verified in local coordinates that this
subsheaf is exactly the sheaf of differential operators on TY X with coefficients in
O[TY X].

The principal symbol of such an operator is a function on the cotangent bundle
T ∗(TY X) but it is more convenient to work on the cotangent bundle T ∗

Y X where we
can use homogeneous symplectic transformations.

As the fiber bundles TY X et T ∗
Y X are dual each other, there is a canonical isomor-

phism between their cotangent bundles T ∗(TY X) and T ∗(T ∗
Y X). In local coordinates

this isomorphism is given by (x, t̃, x∗, t̃∗) 7→ (x,−t̃∗, x∗, t̃).
To a differential operator P on X, we associate thus its image in grV DX which

is a differential operator on TY X, then the principal symbol of this operator which
is a function on T ∗(TY X) and finally a function on T ∗(T ∗

Y X). In coordinates this
map associates to the operators xi, Dxi

, tj , Dtj
respectively the functions xi, x∗i , −τ∗j

and τj .
Moreover, it is clear from the definition that the function associated to P is the pij-

function associated to the lowest vertex of the Newton Polygon of P , that is σ(∞)(P )
and also that, for any operators P and Q, we have σ(∞)(PQ) = σ(∞)(P )σ(∞)(Q).

2.3. The Fr-filtrations. — Let r be a rational number written in its irreducible
form as r = p/q with p > q > 1, the Fr-filtration is defined as:

F k
r DX =

∑
(p−q)m+qn=k

DX,n ∩ VmDX

In this way, we get a family of filtrations for 1 < r < +∞.
By the definition, F k

r DX is the sheaf of operators whose Newton Polygon is above
the line which equation is qj + (q − p)(i − j) = k. This shows in particular that the
Newton Polygon is independent of local coordinates.

It is easily shown [4, Proposition 2.2.4] that if (j, i−j) is a point of the distinguished
boundary of the Newton Polygon of P (that is a vertex of the polygon or a point on a
segment joining two vertices), there exists an operator Q in the intersection of DX,j

and of Vj−iDX such that P − Q belongs to DX,j−1 + Vj−i−1DX and σ(∞)(Q) 6≡ 0.
This function σ(∞)(Q) is equal to pij and this proves that the functions pij associated
to points of the distinguished boundary of the Newton Polygon of P are independent
of local coordinates.
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We saw that F k
r DX is the sheaf of operators whose Newton Polygon is above the

line with equation qj + (q − p)(i− j) = k. The map which associates to an operator
of F k

r DX the function
∑

qj+(q−p)(i−j)=k pij induces a bijection

grk
Fr

DX
∼−−−→

⊕
qj+(q−p)(i−j)=k

π∗O[T∗Λ][i, j]

where O[T∗Λ][i, j] is the sheaf of holomorphic functions on T ∗Λ which are polynomial
in the fibers of T ∗Λ→ Y , and homogeneous of degree i in (x∗, τ∗) and of degree j in
(x∗, τ) while π is the projection of T ∗Λ on Y . We have thus an isomorphism

grFr
DX

∼−−−→ π∗O[T∗Λ]

compatible with the ring structures.
The definition of the microcharacteristic variety of a DX -module is now similar to

the definition of the characteristic variety. If M is a coherent DX -module, a filtration
(F k

r M )k∈Z of M is said to be a good Fr-filtration if locally there exists generators
u1, . . . , uN of M and integers k1, . . . , kN such that

Mk =
∑

i=1,...,N

F (k−ki)
r DXui

It may be shown that if F •
r M is a good filtration of M , the associated graduate

π−1 grFr
M is a coherent O[T∗Λ]-module. To this module, we associate the support

of OT∗Λ ⊗ π−1 grFr
M which is an analytic subset of T ∗Λ independent of the choice

of the good filtration. This variety is the microcharacteristic variety of type r of M ,
denoted by Σ(r)

Λ (M ).
We may also consider the positive analytic cycle associated to OT∗Λ⊗π−1 grFr

M ,
this means that we may associate a positive multiplicity to each irreducible component
of Σ(r)

Λ (M ). The microcharacteristic cycle of type r of M is denoted by Σ̃(r)
Λ (M ).

We can show that if P is a differential operator we have:

Σ(r)
Λ (DX/DXP ) = {ω ∈ T ∗Λ | σ[r](P )(ω) = 0 }

and if I is a coherent ideal of DX :

Σ(r)
Λ (DX/I ) = {ω ∈ T ∗Λ | ∀P ∈ I , σ[r](P )(ω) = 0 }

2.4. The case of a vector bundle. — In this section we assume that X is a vector
bundle on Y and we identify Y with the zero section of X. We denote by D[X] the
sheaf of differential operators on X whose coefficients are polynomial in the fibers of
p : X → Y .

To a fiber bundle is associated the Euler vector field θX characterized by the fact
that θXf = kf for any homogeneous function of degree k.

In local coordinates (x1, . . . , xp, t1, . . . , tq) where x is a system of local coordinates
on Y and t linear coordinates of the fibers, θX = 〈t,Dt〉.
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Let us denote by D[X][k] the subsheaf of D[X] of differential operators P such that
[P, θX ] = kP . This equivalent to the fact that for any function f homogeneous of
degree `, then Pf is homogeneous of degree `− k.

In local coordinates, ti is in D[X][−1], Dti in D[X][1],xi and Dxi in D[X][0].

The sheaf D[X] is equal to
⊕

k D[X][k] and the filtration is given by

VkD[X] =
⊕
j6k

D[X][j]

We may define another canonical filtration by

V −
k D[X] =

⊕
j>k

D[X][j]

and then define the Fr-filtration for r = p/q 6 1 by the formula:

F k
r DX =

∑
(q−p)m+qn=k

DX,n ∩ V −
m DX

Then we may adapt all definition of section 2.3 to any rational number r. In dimen-
sion 1, we recover the results of section 1.2.

2.5. Properties of microcharacteristic varieties

Theorem 2.5.1

(1) The microcharacteristic varieties Σ(r)
Λ (M ) are involutive subsets of T ∗Λ.

(2) The dimension of Σ(r)
Λ (M ) is less or equal to the dimension of the characteristic

variety of M .
(3) It exists a finite number of algebraic slopes (or critical indexes) 1 = r0 < r1 <

· · · < rN = +∞ (or −∞ = r0 < r1 < · · · < rN = +∞ in the case of section 2.4) such
that Σ(r)

Λ (M ) is independent of r on each open interval ]ri, ri+1[.

This result have been proved in [4].
By construction, the variety Σ(r)

Λ (M ) is homogeneous under the action of C given
in coordinates by (x, τ, x∗, τ∗) 7→ (x, λpτ, λqx∗, λq−pτ∗) (with r = p/q).

If this variety is independent of r for r in an open interval, it is homogeneous for
any r hence bihomogeneous, that is separately homogeneous relatively to (x∗, τ∗) and
(x∗, τ).

So, varieties Σ(r)
Λ (M ) are of two different kinds, a non bihomogeneous variety for

each critical index and a bihomogeneous variety for each interval between critical
indexes. In particular, there is only a finite number of distinct microcharacteristic
varieties.

That is why we introduce new notations:

ChΛ (r)(M ) = ChΛ {r}(M ) = Σ(r)
Λ (M )
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GEOMETRIC IRREGULARITY AND D-MODULES 421

if r is not a critical index and

ChΛ (r)(M ) = Σ(r−ε)
Λ (M ), ChΛ {r}(M ) = Σ(r+ε)

Λ (M )

for small ε > 0 if r is a critical index.
The variety ChΛ (r)(M ) corresponds to the function σ(r)(P ) while ChΛ {r}(M )

corresponds to σ{r}(P ). They are involutive bihomogeneous varieties.
All these definitions extend to the microcharacteristic cycles and we will denote

by C̃hΛ(r)(M ) and C̃hΛ{r}(M ) the cycles corresponding to the varieties ChΛ (r)(M )
and ChΛ {r}(M ) and which are defined in the same way.

The most interesting case is the case of holonomic DX -modules. Then the charac-
teristic variety is lagrangian hence has the minimal dimension, that is the dimension n

of X. But the previous theorem shows that the dimension of the microcharacteristic
varieties is less than n and that they are involutive, they are thus lagrangian too. We
will see in section 4.1 that bihomogeneous lagrangian varieties have very particular
properties.

3. Sheaves of solutions

As stated in the first section, we will state the index formulas with the sheaves of
holomorphic hyperfunctions, but similar results could be stated with formal comple-
tions of holomorphic functions. Holomorphic hyperfunctions may be microlocalized
and this is very interesting for example to change the codimension of the submani-
fold Y .

3.1. Holomorphic Hyperfunctions. — We assume that Y has codimension 1
and we denote by B∞

Y |X the sheaf of holomorphic hyperfunctions, which is defined as
the cohomology sheaf:

B∞
Y |X = H 1

Y (OX)

that is the sheaf j∗j
∗OX/OX , if j : X − Y ↪→ X is the canonical immersion. This

means that it is the quotient of holomorphic functions on X with singularities on Y

modulo holomorphic functions.
The sheaf BY |X is the subsheaf of B∞

Y |X generated by meromorphic functions on Y ,
it is the algebraic cohomology sheaf:

BY |X = H 1
[Y ](OX)

Let us fix local coordinates (x, t) of X such that Y = { t = 0 }. Let V be an open
subset of Y and U a neighborhood of Y in X. A holomorphic function on U − V is
given by a Laurent expansion:

f(x, t) =
∑
k∈Z

fk(x)tk
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The sum
∑

k>0 fk(x)tk is holomorphic near Y hence its class in B∞
Y |X is 0. Using the

functions Φk(t) of section 1.4, the negative part of the expansion may be written

f(x, t) =
∑
k>0

fk(x)Φk(t)

and thus the class of f is a section of B∞
Y |X on V given by:

(3.1.1) u(x, t) =
∑
k>0

fk(x)δ(k)(t)

where the functions fk are holomorphic on V .
The fact that f has essential singularity on Y is equivalent to the following condi-

tions on the functions fk:

(3.1.2) ∀ ε > 0, ∀K ⊂⊂ Y, ∃Cε > 0, ∀ k > 0, sup
K
|fk(x)| 6 Cεε

k 1
k!

The set Γ(V,B∞
Y |X) of holomorphic hyperfunctions on Y is thus equal to the set

of series 3.1.1 satisfying the condition 3.1.2. The subsheaf BY |X correspond to mero-
morphic functions hence Γ(V,BY |X) is equal to the set of series 3.1.1 where the sum
is finite.

As in dimension 1, we define now the sheaves of holomorphic hyperfunctions with
Gevrey growth. For any r > 1, Γ(V,BY |X{r}) is the set of series 3.1.1 satisfying:

(3.1.3) ∀ ε > 0, ∀K ⊂⊂ V, ∃Cε > 0, ∀ k > 0, sup
K
|fk(x)| 6 Cεε

k 1
(k!)r

while Γ(V,BY |X (r)) is the set of series 3.1.1 satisfying:

(3.1.4) ∀K ⊂⊂ V, ∃Cε > 0, ∀ k > 0, sup
K
|fk(x)| 6 Ck+1 1

(k!)r

It is easy to verify that these conditions are independent of local coordinates and
define subsheaves BY |X{r} and BY |X (r) of B∞

Y |X .
If Y is a submanifold of codimension d of X, the sheaf B∞

Y |X is defined as H d
Y (OX),

the sheaf BY |X as H d
[Y ](OX) and we can still define sheaves BY |X{r} and BY |X (r),

see [4] for the details.

3.2. Index theorems. — The index of a coherent DX -module M with value in a
sheaf F is the function:

χ(M ,F )x =
∑

j

(−1)j dimC Extj
DX

(M ,F )x

that is the Euler characteristic of the complex RHomDX
(M ,F ). This index is well

defined if all Extj are finite dimensional C-vector spaces, especially if the sheaves
Extj(M ,F ) are constructible.
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Kashiwara proved in [2] that for any holonomic DX -module M , the sheaves of
holomorphic solutions Extj

DX
(M ,OX) are constructible and the index χ(M ,OX) is

equal to the Euler obstruction of the characteristic cycle of M .
Let us recall that an analytic cycle is a variety with integers, called multiplicities,

attached to each irreducible component. Such a cycle is written:

Σ̃ =
∑

ni[Si]

where ni are integers and Si irreducible varieties.
The support of Σ̃ is the union of all Si such that ni 6= 0. If all ni are > 0, the cycle

is said to be positive. If all Si are lagrangian the cycle is lagrangian.
In particular, the characteristic variety of a holonomic DX -module is a lagrangian

subvariety of the cotangent bundle and thus each irreducible component is of pure
dimension n = dimC X. The analytic cycle of M is, by definition a positive cycle
with support the characteristic variety.

To each lagrangian analytic cycle Σ̃ of T ∗X is associated a constructible function
on X, the local Euler obstruction Eu

(
Σ̃

)
. (A map X → Z is constructible if it

is constant on the strata of some stratification of X). We do not give the precise
definition of this function (see [1]) but we recall its main properties:

• The Euler obstruction is a one-to-one map from the lagrangian analytic cycles of
T ∗X to the constructible functions on X.

• It is additive, in particular

Eu
(∑

ni[Λi]
)

=
∑

ni Eu (Λi)

• If Z is a submanifold of X with codimension d then Eu (T ∗
ZX) = (−1)dCZ .

So, Kashiwara’s theorem relates the Euler characteristic of the complex

RHomDX
(M ,OX)

and the Euler obstruction of the characteristic cycle of M . In fact this complex is a
perverse sheaf and this correspond to the fact that the characteristic cycle is positive.

A similar theorem has been proved in [5] relating the holomorphic hyperfunction
solutions with the microcharacteristic cycles:

Theorem 3.2.1. — Let M be a holonomic DX-module defined near Y , then for each
r ∈ ]1,+∞[, the sheaves of solutions Extj

DX
(M ,BY |X (r)) and Extj

DX
(M ,BY |X{r})

are constructible and

χ
(
M ,BY |X (r)

)
= Eu

(
C̃hΛ(r)(M )

)
(3.2.1)

χ
(
M ,BY |X{r}

)
= Eu

(
C̃hΛ{r}(M )

)
(3.2.2)

It also been proved in [5] that the sheaves Extj
DX

(M ,BY |X{r}) are independent
of r outside the critical indexes that is:
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Theorem 3.2.2. — Let M be a holonomic DX-module defined near Y , rk and rk+1

two successive critical indexes, then for any r in ]rk, rk+1[, there are isomorphisms:

RHomDX
(M ,BY |X (rk)) = RHomDX

(M ,BY |X (r))(3.2.3)

= RHomDX
(M ,BY |X{r})

= RHomDX
(M ,BY |X{rk+1})(3.2.4)

The problem with theorem 3.2.1 is that it makes a connection between a complex of
sheaves on Y , RHomDX

(M ,BY |X (r)) and an analytic cycle on T ∗T ∗
Y X, C̃hΛ(r)(M ).

This means that to compute the index, we take a cycle on T ∗T ∗
Y X, compute its Euler

obstruction which is a function on T ∗
Y X and then restrict this function to Y . But in

this way we have no connection between perverse sheaves and positivity of cycles.
Indeed C̃hΛ(r)(M ) is positive and the complex RHomDX

(M ,BY |X (r)) is not per-
verse while the complex

RHomDX

(
M ,BY |X (r)

/
BY |X{r}

)
is perverse but its index is computed by the cycle C̃hΛ(r)(M )− C̃hΛ{r}(M ) which is
not positive. To solve this problem, we have to study more closely lagrangian cycles
on T ∗T ∗

Y X and connect them to cycles on T ∗Y , this the object of section 4.

4. Geometric irregularity

4.1. Bihomogeneous lagrangian varieties. — Let Λ → Y be a fiber bundle
Λ → Y . It is provided with an Euler vector field θΛ which is characterized by the
fact that θΛf = kf for any function f homogeneous of degree k in the fibers of Λ.
This vector field may be considered as a function on the cotangent bundle T ∗Λ. This
function defines a canonical hypersurface of T ∗Λ which will be denoted by SΛ.

This hypersurface may also be defined in another way. The action of C∗ on the
fibers of Λ induces an action H∞ of C∗ on T ∗Λ. The manifold T ∗Λ is thus provided
with two actions of C∗, H∞ and the usual action H0 on the fibers of T ∗Λ→ Λ.

To each action is associated an Euler vector field. The manifold T ∗Λ is thus
provided with two vector fields u∞ et u0. As any cotangent bundle, T ∗Λ has also a
symplectic structure hence a canonical 2-form Ω. The function Ω(u∞, u0) is thus well
defined on T ∗Λ and equal to the function defined by θΛ as we can see in coordinates.

Let us fix local coordinates (x1, . . . , xp, τ1, . . . , τq) of Λ where Λ is a system of local
coordinates on Y and τ linear coordinates of the fibers as in section 2.4. The action
of C∗ is given by (x, τ) 7→ (x, λτ), the Euler vector field is θΛ = 〈τ, ∂/∂τ〉 and define
the function 〈τ, τ∗〉 in the coordinates (x, τ, x∗, τ∗) of T ∗Λ.

The two actions of C∗ on T ∗Λ are H∞ : (x, τ, x∗, τ∗) 7→ (x, λτ, x∗, λ−1τ∗) asso-
ciated to the vector field u∞ = 〈τ, ∂/∂τ〉 − 〈τ∗, ∂/∂τ∗〉 and H0 : (x, τ, x∗, τ∗) 7→
(x, τ, λx∗, λτ∗) associated to u0 = 〈τ∗, ∂/∂τ∗〉+ 〈x∗, ∂/∂x∗〉. The value of the canon-
ical 2-form Ω = dx∗ ∧ dx + dτ∗ ∧ dτ on these vector field is 〈τ, τ∗〉 i.e. θΛ.
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Let us consider a lagrangian bihomogeneous submanifold Σ of T ∗Λ. The 2-form
Ω vanishes on the vector fields tangent to Σ because it is lagrangian. If it is biho-
mogeneous, the two vector fields u∞ and u0 are tangent to Σ and thus the function
Ω(u∞, u0) vanishes on Σ. If Σ is not smooth the same result is still true for the
smooth part of Σ.

Finally, we proved that the bihomogeneous lagrangian varieties are all included in
the canonical hypersurface.

We will use later the following family of actions of C∗ on T ∗Λ: Let r = p/q

be a rational number, p/q being irreducible, we define the action Hr = Hp
∞Hq

0 as-
sociated to the vector field pu∞ + quo. In coordinates it is Hr : (x, t, x∗, τ∗) 7→
(x, λpt, λqx∗, λq−pτ∗).

The canonical immersion Y ↪→ Λ and the projection Λ→ Y define maps:

T ∗Y
p1←−(T ∗Y )×Y Λ

j1−→ T ∗Λ

T ∗Y
p2←−(T ∗Λ)×Λ Y

j2−→ T ∗Λ

The maps p1 et p2 are submersions while j1 and j2 are immersions. In local
coordinates we have:

p1(x, x∗, τ) = (x, x∗) j1(x, x∗, τ) = (x, τ, x∗, 0)

p2(x, x∗, τ∗) = (x, x∗) j2(x, x∗, τ∗) = (x, 0, x∗, τ∗)

We assume now that Λ is a line bundle over Y , i.e. that the fibers of p : Λ→ Y are
of dimension 1. In local coordinate we have SΛ = { (x, τ, x∗, τ∗) ∈ T ∗Λ | ττ∗ = 0 }
and therefore the union of j1((T ∗Y )×Y Λ) and of j2((T ∗Λ)×Λ Y ) is exactly SΛ.

Lemma 4.1.1. — Let Λ be a line bundle over Y and Σ be a bihomogeneous lagrangian
subvariety of T ∗Λ. There exists two homogeneous lagrangian subvarieties S1 and S2

of T ∗Y such that:
Σ = j1p

−1
1 S1 ∪ j2p

−1
2 S2

Proof. — Let us consider an irreducible component of Σ. It is included in the set
SΛ = { ττ∗ = 0 } but, because it is irreducible, it is included in { τ = 0 } or in
{ τ∗ = 0 }. As it is lagrangian, if it is included in { τ∗ = 0 }, it is invariant by the
Hamiltonian vector field of τ∗ hence of the form:

{ (x, τ, x∗, τ∗) ∈ T ∗Λ | τ = 0, (x, x∗) ∈ S1 }

and it is clear that S1 is a homogeneous lagrangian subvariety of T ∗Y .
The proof is the same for a component included in { τ∗ = 0 }.

An analytic cycle Σ̃ whose support satisfy the hypothesis of lemma 4.1.1 decom-
poses in the sum of two cycles:

Σ̃ = j1p
−1
1 S̃1 + j2p

−1
2 S̃2

where S̃1 and S̃2 are two analytic cycles of T ∗Y .
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4.2. Filtrations. — We keep the notations of the previous section, Λ being a fiber
bundle but perhaps not a line bundle. Let O[T∗Λ] be the sheaf of holomorphic functions
on T ∗Λ which are polynomial in the fibers of T ∗Λ → Y and O(T∗Λ)(i, j) be the
subsheaf of functions which are homogeneous of degree i for H0 and of degree j − i

for H∞. If f is a section of O(T∗Λ)(i, j) we have thus u0f = if and u∞f = (j − i)f .
We consider two filtrations on O[T∗Λ] relative to H∞, that is

F+
k O[T∗Λ] =

⊕
i−j>k

O[T∗Λ](i, j)

F−
k O[T∗Λ] =

⊕
i−j6k

O[T∗Λ](i, j)

It is easy to verify that these filtrations are “noetherian” [4, proposition 3.2.3.] and
this means in particular that if M is a coherent O[T∗Λ]-module provided with a good
F+ or F− filtration, the associated graduate is a coherent O[T∗Λ]-module.

Let us now consider an irreducible subvariety Σ of T ∗Λ with equations in O[T∗Λ]

and denote by [Σ] the associated cycle with multiplicity 1. The definition ideal of Σ
is:

IΣ = { f ∈ O[T∗Λ] | f |Σ = 0 }

It is provided with the two filtrations F+ and F− induced by those of O[T∗Λ] and we
denote by I ±

Σ the corresponding graduate.
More explicitly, a function f of O[T∗Λ] is written as a finite sum

∑
fij with fij in

O[T∗Λ](i, j). Let k+ and k− be respectively the highest and the lowest values of i− j

such that fij 6≡ 0, we set:

σ±(f) =
∑

i−j=k±

fij

and we have:

I ±
Σ = {σ±(f) | f ∈ IΣ }

The coherent ideals I ±
Σ define two positive analytic cycles denoted by C±([Σ̃]) with

supports C±(Σ).
If Σ̃ is an analytic cycle of T ∗Λ whose support is defined by equations in O[T∗Λ]

we define C±(Σ̃) by linearity, that is if Σ̃ =
∑

ni[Σi] with Σi irreducible, we set:

C±(Σ̃) =
∑

i

niC
±([Σi])

The support of C±(Σ̃) is C±(Σ), it is homogeneous for H∞. We can prove [6] that
if the support Σ of Σ̃ is lagrangian than the same is true for the supports of C±(Σ̃).

Assume that Σ is homogeneous under Hr (see sec. 4.1), then the same is true for
C±(Σ) hence they are bihomogeneous.

We assume now that Λ is a line bundle and that Σ̃ is an analytic cycle of T ∗Λ whose
support is a lagrangian subvariety of T ∗Λ which is homogeneous for Hr. Than we
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have two bihomogeneous lagrangian cycles C±(Σ̃) to which we may apply the results
of the previous section to get the following decomposition:

C±(Σ̃) = j1p
−1
1 S̃±1 + j2p

−1
2 S̃±2

and we define the irregularity of Σ̃ as:

Irr(Σ̃) = C−
2 (Σ̃)− C+

2 (Σ̃)− C−
1 (Σ̃) + C+

1 (Σ̃)

The main result of [6] is:

Theorem 4.2.1. — If Σ̃ is a positive lagrangian analytic cycle, homogeneous for Hr,
then Irr(Σ̃) is a positive lagrangian analytic cycle of T ∗Y . Moreover r Irr(Σ̃) has
integral coefficients and Irr(Σ̃) is zero if and only if Σ̃ is bihomogeneous.

This means that the multiplicities of Irr(Σ̃) are positive integers, multiple of the
denominator q of r.

4.3. Monoidal transform. — If Λ is a fiber bundle with fibers of dimension greater
than 1, we may no more apply lemma 4.1.1, but we can still make a similar decom-
position. To do that we consider the monoidal transform of Λ.

Let us denote by Λ̇ = Λ − Y , the fiber bundle less its zero section and by PΛ
the associated projective bundle that is Λ̇/C∗. The monoidal transform of Λ is by
definition the set:

Λ̃ = { (x, ω) ∈ Λ× PΛ | x ∈ ω }

By definition, a point ω of PΛ is a class of Λ̇ modulo the action of C∗ hence a line
of a fiber of Λ. So, x ∈ ω means either that x ∈ Y and then x is the projection of ω

under PΛ→ Y or that x ∈ Λ̇ and in in this case ω is the class of x. This shows that
Λ̃ is the disjoint union of Λ̇ and of PΛ.

The set Λ̃ has a structure of line bundle over PΛ and there is a canonical projection
π : Λ̃→ Λ (which is the identity on Λ̇).

If Λ is a line bundle, then PΛ is isomorphic to Y and π : Λ̃→ Λ is an isomorphism
of line bundles.

Now let Σ be a lagrangian irreducible subvariety of T ∗Λ which is homogeneous
for Hr. We assume that Σ is not contained in T ∗Λ ×Λ Y . We intersect Σ with
T ∗Λ̇ = T ∗Λ×Λ (Λ− Y ), this set may be considered as a subset of T ∗Λ̃ by π and we
take its closure in T ∗Λ̃ which we denote by Σ. It is easy to see that Σ is lagrangian and
homogeneous for Hr. So, as Λ̃ is a line bundle over PΛ we may apply the definition of
the previous section to get the irregularity of Σ̃ = [Σ] which is a positive cycle on PΛ.

If Σ is contained in T ∗Λ ×Λ Y , it is bihomogeneous and we set Irr(Σ̃) = 0. By
linearity, we get a definition of Irr(Σ̃) for any lagrangian Hr-homogeneous cycle Σ̃
and by the definition the theorem 4.2.1 is still true.
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5. Application to DX-modules

5.1. The irregularity of a DX-module. — If M is a holonomic DX -module, we
have defined its microcharacteristic cycles Σ̃(r)

Λ (M ) and by theorem 2.5.1 they satisfy
the conditions of lemma 4.1.1 hence we may consider its irregularity:

Definition 5.1.1. — If M is a holonomic DX -module, the irregularity of type r of M

is the cycle:

Irr (r)M = Irr
(
Σ̃(r)

Λ (M )
)

If r is not a critical index for M then Σ(r)
Λ (M ) is bihomogeneous hence

Irr (r)M = 0. On the other hand, if r is a critical index we have

C−(Σ̃(r)
Λ (M )) = C̃hΛ(r)(M ) and C+(Σ̃(r)

Λ (M )) = C̃hΛ{r}(M )

The irregularity of type r is thus equal to

Irr (r)M = C2(C̃hΛ{r}(M ))− C1(C̃hΛ{r}(M ))− C2(C̃hΛ(r)(M )) + C1(C̃hΛ(r)(M ))

The irregularity of M is the finite sum:

IrrM =
∑
r>1

Irr (r)M

Applying theorem 4.2.1, we get:

Corollary 5.1.2. — Irr (r)M is a positive lagrangian analytic cycle of T ∗Y such that
r Irr(Σ̃) has integral multiplicities. It is the zero if and only if r is not a critical index
of M .

IrrM is a positive lagrangian analytic cycle of T ∗Y which is the zero if and only
if M has no critical index.

As an exercise, we may verify that the previous definition are compatible with the
definitions of section 1.1. If the dimension of X is 1 then T ∗Y is a point and the
cycles on T ∗Y are ordinary numbers.

Let P is a differential operator and taτ b + · · · + t`τm its determining equation
associated to the critical index r. We assume b > m and as the slope is 1/r − 1 we
have (r − 1)a− rb = (r − 1)`− rm.

Let M = DX/DXP . The cycle C̃hΛ{r}(M ) is given by the function (τ∗)`τm hence
is `[τ∗ = 0] + m[τ∗ = 0] while C̃hΛ(r)(M ) is given by (τ∗)aτ b hence is a[τ∗ = 0] +
b[τ∗ = 0]. We get:

C2(C̃hΛ{r}(M )) = m, C1(C̃hΛ{r}(M )) = `, C2(C̃hΛ(r)(M )) = b, C1(C̃hΛ(r)(M )) = a

and the irregularity of type r is (a− b)− (`−m) which is the height of the segment
of slope 1/(r − 1) of the Newton Polygon of P .

SÉMINAIRES & CONGRÈS 8
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We may remark that the fact that the coefficients of Irr(Σ̃) are multiple of the
denominator of r for each r is equivalent to the fact that the vertices of the Newton
Polygon of P have integral coordinates.

5.2. Positivity and perversity. — We can now connect these results with the
sheaf of Irregularity defined by Mebkhout [8]. From the definition of Euler obstruction
and lemma 4.1.1 , it is easy to see that if x is a point of Y and Σ̃ a lagrangian
bihomogeneous cycle of T ∗Λ (with Λ = T ∗

Y X), then the value of Eu(Σ̃) is Eu(S1) −
Eu(S2).

Applying theorem 3.2.1 we get:

χ
(
M ,BY |X (r)

/
BY |X{r}

)
= χ

(
M ,BY |X (r)

)
− χ

(
M ,BY |X{r}

)
= Eu

(
C̃hΛ(r)(M )

)
− Eu

(
C̃hΛ{r}(M )

)
= Eu (Irr (r)M )

Theorem 5.2.1. — If M is a holonomic module defined near Y , then we have:

χ
(
M ,BY |X (r)

/
BY |X{r}

)
= Eu (Irr (r)M )

and
χ

(
M ,B∞

Y |X
/
BY |X

)
= Eu (IrrM )

Now, we have connected the index of sheaves on Y with the analytic cycles on T ∗Y

and the perverse sheaf RHomDX

(
M ,BY |X (r)

/
BY |X{r}

)
correspond to a positive

analytic cycle.
This index is zero if and only if r is not a critical index of the module. This shows

in particular that M has no critical index if and only if RHomDX
(M ,BY |X) is equal

to RHomDX
(M ,B∞

Y |X).
We may also use holomorphic functions and consider the formal completion of OX

along Y denoted by O
X̂|Y . We have then analogous results and M has no critical

index if and only if RHomDX
(M ,OX) is equal to RHomDX

(M ,O
X̂|Y ).
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[7] B. Malgrange – Sur les points singuliers des équations différentielles, Enseign. Math.
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Grothendieck Festschrift, Progress in Math., vol. 88, no. 3, Birkhäuser, Basel, Boston,
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