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2-DIMENSIONAL VERSAL S4-COVERS AND

RATIONAL ELLIPTIC SURFACES

by

Hiro-o Tokunaga

Abstract. — We introduce the notion of a versal Galois cover, and study versal S4-

covers explicitly. Our goal of this article is to show that two S4-covers arising from

certain rational elliptic surfaces are versal.

Résumé(S4-revêtements galoisiens versels de dimension2 et surfaces rationnelles elliptiques)
On introduit la notion de revêtement galoisien versel et on étudie explicitement

les S4-revêtements galoisiens. Le but de cet article est de montrer que deux S4-

revêtements galoisiens obtenus à partir de certaines surfaces elliptiques rationnelles

sont versels.

Introduction

Let G be a finite group. Let X and Y be normal projective varieties. X is called

a G-cover of Y if there exists a finite surjective morphism π : X → Y such that

the induced inclusion morphism π∗ : C(Y ) → C(X) gives a Galois extension with

Gal(C(X)/C(Y )) ∼= G, where C(X) and C(Y ) denote the rational function fields

of X and Y , respectively.

G-covers have been used in various branches of algebraic geometry and topology,

e.g., to construct algebraic varieties having the prescribed invariants, to study the

topology of the complement to a reduced plane algebraic curve, and so on. In this

article, our main concern is not applications of G-covers, but G-covers themselves.

One of fundamental problems in the study of G-covers is to give an explicit“bottom-

to-top” method in constructing G-covers from some geometric data of the base va-

riety Y or intermediate covers, i.e., covers corresponding to the intermediate field

between C(X) and C(Y ). This point of view resembles the constructive aspects of
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the inverse Galois problem: to construct a field extension of Q having a prescribed

group as its Galois group over Q.

In the investigation of the inverse Galois problem, many works have been done

about “generic polynomials or versal polynomials” for these twenty years (see [3]

for detail references, for example). The main purpose of this article is to make an

analogous geometric study of them. Let us begin with the definition of a versal G-

cover.

Definition 0.1. — A G-cover $ : X → M is said to be versal if it satisfies the following

property:

For any G-cover π : Y → Z, there exist a rational map ν : Z · · · → M and a Zariski

open set U in Z such that

(i) ν|U : U → M is a morphism, and

(ii) π−1(U) is birational to U ×M X over U .

Note that we do not assume any uniqueness for $ and ν. Also we do not assume

that ν is dominant. One could say that a versal G-cover is a geometric realization of

the Galois closure of a versal G-polynomial introduced in [1].

Intuitively, any G-cover is obtained as rational pull-back of $, if a versal G-cover

exists. It is known that a versal G-cover exists for any G (see [9], [10]). Concretely, let

n = #(G) and let X = (P1)n be the n-ple direct product of P1. By using the regular

representation of G, one can regard G as a transitive subgroup of Sn (the symmetric

group of n letters), and obtain a natural G-action on X by the permutation of the

coordinates. Let M := X/G be the quotient variety with respect to this action, and

we denote the quotient morphism by $ : X → M . Then we have

Theorem 0.1(Namba [9], [10]). — $ : X → M is a versal G-cover.

By Theorem 0.1, the existence of a versal G-cover is assured for any G. Namba’s

model, however, has too large dimension to use it to consider concrete problems. Also

his construction is “top-to-bottom,” i.e., the one to find a variety with a natural G-

action first, and then to take the quotient with respect to this action. This approach

is different from our viewpoint. This leads us to pose the following question:

Question 0.1. — Find a tractable versal G-cover (via a “bottom-to-top” construction

if possible).

In order to obtain a tractable versal G-cover, it is natural to consider such cover of

as small dimension as possible. To formulate our problem along this line, the notion

of the essential dimension of G introduced by Buhler and Reichstein in [1] is at our

disposal. The essential dimension of G gives the lower bound of dimensions of versal

G-covers and it is denoted by edk(G), where k is the base field of variety (k = C in our

case). We refer to [1] about details on edk(G), and put here some of the properties

and results about edC(G):
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2-DIMENSIONAL VERSAL S4-COVERS 309

– edC(G) = 1 if and only if G is either a cyclic group Z/nZ or a dihedral group

D2r (r: odd) of order 2r. Versal G-covers of dimension 1 are classically well-known

(see §2 or [1]).

– edC(G) = 2 for G = S4, A4, A5, S5, where Sn and An denote the symmetric and

alternating groups of n letters, respectively.

– edC(G) is equal to the smallest dimension of a versal G-cover (Theorem 7.5 in [1]).

The purpose of this article is to study versal S4-covers of dimension 2 as a first step

of the study of versal G-covers. In §1, we summarize for a method to deal with S4-

covers developed in [15]. In §2, we give two examples of S4-covers using this method.

We denote them by π431 : S431 → Σ431 and π9111 : S9111 → Σ9111. Both of them

are constructed from certain rational elliptic surfaces in a canonical way. Both of the

actions of the Galois groups S4 on S431 and S9111 are described by the language of

the Mordell-Weil groups of the corresponding elliptic surfaces by the same idea. Our

goal of this article is to prove the following:

Theorem 0.2. — Both π431 : S431 → Σ431 and π9111 : S9111 → Σ9111 are versal S4-

covers.

The rest of this article is devoted to proving this theorem. We first show that

π9111 is versal by using Tsuchihashi’s result in [17] in §3. In §4, we explain a method

for a top-to-bottom method in constructing of a versal G-cover by using a linear

representation of G. The method seems to be well-known to the specialists who are

working on generic polynomials or versal polynomials. In fact, it is essentially used

in [1]. Yet we put it here since we need it to prove the versality for π431. We give

several examples in §5 by using this method. In §6, we prove the versality for π431

by comparing S431 with an example in §5.

Acknowledgment. — Part of this work was done during the author’s visit to Professor

Alan Huckleberry under the support from SFB 237 in September 2001. The author

thanks Professor Huckleberry for his hospitality. He also thanks Dr. A. Ledet who

told him about the paper [1]. Many thanks go to the organizer of the conference

“Singularités franco-japonaises,” at CIRM for their hospitality.

1. S4-covers

In [15], the author has developed a method in studying Galois covers having S4

as their Galois groups. We here explain it briefly (see [15] for a proof). For a finite

surjective morphism π : X → Y , the branch locus of π is the subset of Y given by

{y ∈ Y | π is not locally isomorphic over y}.
We denote it by ∆(X/Y ) or ∆π .

Let π : X → Y be an S4-cover. Let V4(∼= (Z/2Z)⊕2) be the subgroup given by

{1, (12)(34), (13)(24), (14)(23)},
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and let C(X)V4 be the V4-invariant subfield of C(X). We denote the C(X)V4-

normalization of Y by D(X/Y, V4). There are canonical morphisms:

β1(π, V4) : D(X/Y, V4) −→ Y, β2(π, V4) : X −→ D(X/Y, V4).

Note that β2(π, V4) is a (Z/2Z)⊕2-cover, while β1(π, V4) is an S3-cover, where S3

denotes the symmetric group of 3 letters.

Proposition 1.1. — Let f : Z → Y be an S3-cover of Y . Suppose that Z is smooth

and there exist three different reduced divisors, D1, D2 and D3 on Z satisfying the

following conditions:

(i) There is no common component among D1, D2 and D3. Put Gal(Z/Y ) =

S3 = 〈σ, τ | σ2 = τ3 = (στ)2 = 1〉, then (i − a) Dσ
1 = D2 and Dσ

3 = D3, and (i − b)

Dτ
1 = D2, Dτ

2 = D3, Dτ
3 = D1. (Dσ and Dτ denote the pull-back of D by σ and τ ,

respectively).

(ii) There exists a line bundle, L, such that D1 is linearly equivalent to 2L.

Then there exists an S4-cover π : X → Y satisfying (i) D(X/Y, V4) = Z and (ii)

∆(X/Z) = Supp(D1 + D2 + D3).

2. S4-covers arising from certain rational elliptic surfaces

In this section, we make use of various results in the theory of elliptic surfaces

freely in order to construct two example which play main roles in this article. See for

[4], [6], [7] and [13] for the details about the theory of elliptic surfaces. Note that

our method in this section can be generalized to any elliptic surface ϕ : S → P1 with

3-torsion

2.1. The surface S431. — Let ϕ : X431 → P1 be a rational elliptic surface obtained

by blowing up base points q : X431 → P2 of the pencil of cubic curves

Λ : {λ0(X0X1X2) + λ1(X0 + X1 + X2)
3 = 0}[λ0,λ1]∈P1 ,

where X0, X1, X2 are homogeneous coordinates of P2. The notation X431 is due

to [7]. It is known that ϕ : X431 → P1 satisfies the following properties(see [7]):

– The Mordell-Weil group, MW(X431), is isomorphic to Z/3Z; and we denote its

elements by O, s1 and s2.

– ϕ has three singular fibers and their types are of I1, I3 and IV ∗.

We may assume that the three singular fibers , s1 and s2 sit in X431 as in Figure 1

below. The curves O, s1, s2, C2,i (i = 0, 1, 2, 4, 5, 6) are the exceptional curves of q.

Let

– σϕ = the inversion morphism with respect to the group law

– τsi
= the translation by si.
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s1

s2
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C1,2

C1,0
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C2,6

C2,3

C2,0

Figure 1

Both σϕ and τs1
are fiber preserving automorphisms on X431 such that σ2

ϕ = τ3
s1

=

(σϕτs1
)2 = 1. Hence σϕ and τs1

define an S3-action on X431. We put Σ431 = X431/S3,

and denote its quotient morphism by f431 : X431 → Σ431. On a smooth fiber of ϕ, this

S3-action is a natural one: the S3-action induced by the inversion and the translation

by a 3-torsion on an elliptic curve.

Lemma 2.1. — The S3-action on the singular fibers are described as follows:

I1-fiber: σϕ and τs1
give non-trivial automorphisms. By taking a suitable local

coordinate (z1, z2) around the node P , they are described as follows:

σϕ : (z1, z2) 7−→ (z2, z1),

τs1
: (z1, z2) 7−→ (ωz1, ω

2z2),

where P := (0, 0) and ω = exp(2π
√
−1/3).

I3-fiber: No irreducible component is pointwise fixed. σ∗
ϕ and τ∗

s1
permute the

irreducible components as follows:

σ∗

ϕ :

C1,0 7→ C1,0,

C1,1 7→ C1,2,

C1,2 7→ C1,1,

τ∗

s1
:

C1,0 7→ C1,2,

C1,1 7→ C1,0,

C1,2 7→ C1,1.

IV ∗-fiber: C2,4 is the unique component which is pointwise fixed by σϕ and no

irreducible component is pointwise fixed by τs1
. σ∗

ϕ and τ∗
s1

permute irreducible com-

ponents as follows:

σ∗

ϕ :
C2,1 7→ C2,6, C2,2 7→ C2,5, C2,3 7→ C2,3,

C2,4 7→ C2,4, C2,0 7→ C2,0,
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τ∗

s1
:

C2,0 7→ C2,6, C2,1 7→ C2,0, C2,2 7→ C2,4

C2,3 7→ C2,3, C2,4 7→ C2,5, C2,5 7→ C2,2

C2,6 7→ C2,1.

Proof. — We only prove the second half of (i). It is easy to see that the stabilizer

group at P is S3. Hence the representation at the tangent space at P in X431 give

a 2-dimensional faithful representation of S3, and the statement follows. For other

statements, see §9, [4], §5, [8], and [11], for example.

As for the action on s1, s2, note that

s
σϕ

1 = s2, Oσϕ = O,

s
τs1

1 = O, s
τs1

2 = s1, Oτs1 = s2.

By Lemmas 8.1 and 8.2 in [13], we have

s1 ≈Q O + F − 1

3
(2C1,1 + C1,2)

−1

3
(4C2,1 + 5C2,2 + 6C2,3 + 3C2,4 + 4C2,5 + 2C2,6) ,

s2 ≈Q O + F − 1

3
(C1,1 + 2C1,2)

−1

3
(4C2,6 + 5C2,5 + 3C2,4 + 6C2,3 + 4C2,2 + 2C2,1) ,

where F denotes a fiber of ϕ, and ≈Q denotes the Q-algebraic equivalence of divisors.

Since X431 is simply connected, one can replace the algebraic equivalence by the linear

equivalence. Hence we have

s1 + s2 + C1,1 + C1,2 + C2,2 + C2,5

∼ 2(O + F − C2,1 − C2,2 − 2C2,3 − C2,4 − C2,5 − C2,6),

where ∼ denotes the linear equivalence of divisors. Put

D = s1 + s2 + C1,1 + C1,2 + C2,2 + C2,5,

and define

D1 = Dτs1

D2 = Dτ2
s1

D3 = D.

Then, by Proposition 1.1, there exists (Z/2Z)⊕2-cover g431 : S431 → X431 such that

(i) π431 = f431 ◦ g431 : S431 → Σ431 is an S4-cover,

(ii) D(S431/Σ431, V4) = X431, and

(iii) ∆g431
= Supp(D1 + D2 + D3).
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2.2. The surface S9111. — Let ([s0, s1], [t0, t1]) be a (bi-) homogeneous coordinate

of P1 × P1. Consider the pencil

Λ1 : {λ0(s0s1t
2
0 + s2

0t0t1 + s2
1t

2
1) + λ1(s0s1t0t1) = 0}[λ0:λ1]∈P1.

By blowing up the base points of Λ1, we obtain a rational elliptic surface. Following

to [7], we denote this elliptic surface by ϕ1 : X9111 → P1 and denote the blowing-ups

X9111 → P1 × P1 by q1. It is known that ϕ1 : X9111 → P1 satisfies the following

properties(see [7]):

– MW(X9111) ∼= Z/3Z; and we denote its elements by O, s1 and s2.

– ϕ has four singular fibers and their types are of I9, I1, I1, I1.

We may assume that the four singular fibers , s1 and s2 sit in X9111 as in Figure 2

below. The curves O, s1, s2, C0, C2, C3, C6, C7 are the exceptional curves for q1.

s1

s2

O

C0

C2 C3

C5

C6C8

C1

C4

C7

Figure 2

Likewise the case of X431, we canonically obtain an S3-action given by σϕ1
(the

inversion with respect to the group law) and τs1
(the translation by s1). Let Σ9111 :=

X9111/S3 and we denote the quotient morphism by f9111 : X9111 → Σ9111.

Lemma 2.2. — The S3-action on the I9 fiber and I1 fibers are described as follows:

(i) I1 fiber: the same as that in Lemma 2.1.

(ii) I9 fiber:

σ∗
ϕ1

: Ci → C9−i( mod 9),

τ∗
s1

: Ci → Ci−3( mod 9).

Also note that
s

σϕ1

1 = s2, Oσϕ1 = O,

s
τs1

1 = O, s
τs1

2 = s1, Oτs1 = s2.

For a proof, see §9, [4], §5, [8], and [11], for example.
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By Lemmas 8.1 and 8.2 in [13], we have

s1 ≈Q O + F − 1

3
(2C1 + 4C2 + 6C3 + 5C4 + 4C5 + 3C6 + 2C7 + C8),

and

s2 ≈Q O + F − 1

3
(C1 + 2C2 + 3C3 + 4C4 + 5C5 + 6C6 + 4C7 + 2C8),

whereF denotes a fiber of ϕ1, and ≈Q denotes Q-algebraic equivalence. Since X9111 is

simply connected, we can replace the algebraic equivalence by the linear equivalence.

Hence

s1 + s2 + C1 + C3 + C4 + C5 + C6 + C8

∼ 2(O + F − C2 − C3 − C4 − C5 − C6 − C7).

Now we put

D = s1 + s2 + C1 + C3 + C4 + C5 + C6 + C8,

and define three effective divisors D1, D2 and D3 on X9111 as follows:

D1 = Dτs1 , D2 = Dτ2
s1 , D3 = D.

Then, by Proposition 1.1, we have a (Z/2Z)⊕2-cover g9111 : S9111 → X9111 such that

(i) π9111 = f9111 ◦ g9111 : S9111 → Σ9111 is an S4-cover,

(ii) D(S9111/Σ9111, V4) = X9111, and

(iii) ∆g9111 = Supp(D1 + D2 + D3).

3. Versality for π9111 : S9111 → Σ9111

Let us make a quick review for Tsuchihashi’s versal S4-cover $ts : Xts → Mts in

[17]. Let Y be a surface obtained from P1 × P1 by blowing up two points: (s, t) =

(0,∞), (∞, 0), where (s, t) denotes an inhomonogenous coordinate. Y admits an S3-

action induced by birational automorphisms on P1 × P1 given by

σ : (s, t) 7−→ (t, s) τ : (s, t) 7−→
( 1

st
, s

)
.

We write

D1 = the strict transform of P1 × {0}
D2 = the strict transform of {0} × P1

D3 = the strict transform of {∞} × P1

D4 = the strict transform of P1 × {∞}
E1 = the exceptional divisor from (∞, 0)

E2 = the exceptional divisor from (0,∞).

With these notations, we have

Pic(Y ) = ZD1 ⊕ ZD2 ⊕ ZE1 ⊕ ZE2,
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and

D4 ∼ D1 + E1 − E2, and D3 ∼ D2 − E1 + E2.

As for the S3-action on Di (i = 1, 2, 3, 4) and Ej (j = 1, 2), we have

Dσ
1 = D2, Dσ

3 = D4, Eσ
1 = E2,

Dτ
1 = E2, Dτ

2 = D4, Dτ
3 = D1,

Dτ
4 = E1 Eτ

1 = D2 Eτ
2 = D3

Let Mts = Y/S3, and we denote the quotient morphism by fts : Y → Mts. By [17],

Mts is P2 and the branch locus ∆fts
is a 3 cuspidal quartic curve. We now construct

a (Z/2Z)⊕2-cover, gts : X → Y so that the composition fts ◦ gts gives an S4-cover.

Let R1, R2, and R3 be effective divisors on Y given by

R1 = D1 + D4 + E1 + E2,

R2 = D2 + D3 + E1 + E2, and

R3 = D1 + D2 + D3 + D4.

By the S3-action described as above, we have

Rσ
1 = R2, Rσ

3 = R3, and Rτ
1 = R2, Rτ

2 = R3.

Also,

R1 ∼ 2(D1 + E1).

Since there is no common irreducible component among R1, R2 and R3, by Proposition

1.1, there exists a (Z/2Z)⊕2-cover gts : Xts → Y branched at Supp(R1 + R2 + R3) so

that $ts = fts ◦ gts gives an S4-cover. In [17], Tsuchihashi showed

Theorem 3.1. — The S4-cover $ts : Xts → Mts is versal.

Since S3 acts six divisors Di (i = 1, 2, 3, 4) and Ei (i = 1, 2) transitively, they

are mapped to one plane curve. By [17], it is the unique bitangent line of ∆ts.

Hence ∆$ts
consists of a 3-cuspidal quartic and its unique bitangent line. Note

that such configuration is unique up to projective transformations (see [2] Ch. 4, §4.)

Concretely, it is given by the equation

(X + Y + Z){(XY + Y Z + ZX)2 − 4XY Z(X + Y + Z)} = 0,

where [X, Y, Z] denotes a homogeneous coordinate of P2.

Lemma 3.1. — Let π : X → P2 be an S4-cover such that

(i) ∆π consists of two irreducible components: a 3-cuspidal quartic curve Q and

its unique bitangent line L, and

(ii) β1(π, V4) is branched at Q, and β2(π, V4) is branched at (β1(π, V4))
∗(L).

Then there exists a covering isomorphism φ : X → Xts such that π = $ts ◦ φ and it

induces a covering isomorphism φ : D(X/P2, V4) → Y .
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Proof. — One may assume that both covers is branched at the same quintic curve

after a suitable covering transformation. Since β1(π, V4) : D(X/P2, V4) → P2 is

branched at Q, it is determined by a normal subgroup, N , of π1(P
2 r Q) such that

π1(P
2 r Q) ∼= S3. As π1(P

2 r Q) is isomorphic to the binary dihedral group of

order 12, such a normal subgroup is unique. Hence, up to covering isomorphisms, we

can consider that D(X/P2, V4) = Y , fts = β1(π, V4), and (β1(π, V4))
∗(L) =

∑
i Di +∑

j Ej . Since π1(D(X/P2, V4) r (β1(π, V4))
∗(L)) = π1(Y r

∑
i Di +

∑
j Ej) ∼= Z⊕Z,

there exists a unique (Z/2Z)⊕2-cover branched at β1(π, V4))
∗(L). Thus, up to covering

isomorphisms, we have X = Xts, and β2(π, V4) = gts.

Lemma 3.2. — Let f9111 : X9111 → Σ9111 be the S3-cover given in § 2. Then Σ9111 is

described as follows:

Let B = Q+L be a quintic curve consisting of two irreducible components Q and L,

where Q is a 3-cuspidal quartic curve, and L is the bitangent line to Q. Choose

x ∈ Q ∩ L. (Note that by using the above explicit equation, one can easily check that

the there exists a linear transformation P2 → P2 such that (i) it preserves Q + L and

(ii) it exchanges the two points in Q ∩ L). Let qx : (P2)x → P2 be the blowing up

at x. We denote the strict transform of Q and L by Q′ and L′, respectively and the

exceptional divisor by E. Let y be the unique point in Q′∩L′∩E. Blow up (P2)x at y.

Then the resulting surface Σ9111, and we denote the blowing up by qy : Σ9111 → (P2)x.

Moreover, (i) ∆f9111
= Q′′ + E′, where Q′′ and E′ are strict transforms of Q′ and E,

respectively, and (ii) the preimage of L consists of some of the irreducible components

of the I9-fiber.

Proof. — By Lemma 2.2, the quotient surface X9111/〈τs1
〉 by 〈τs1

〉 has three A2

singularities corresponding to the nodes of I1. The minimal resolution of X9111/〈τs1
〉

is again an elliptic surface having 4 I3-fibers. Following to [7], we denote it by X3333.

The image of O is a section O and the induced action by σϕ1
again gives the inversion

morphism over the generic fiber, where O is the neutral element. By the results in

[7], §6 (Table 6.8), our lemma follows.

Proof of Theorem 0.2 for S9111. — Consider the composition q ◦ q1 ◦ π9111 : S9111 →
P2, and let π9111 : S9111 → P2 be the Stein factorization. Then S9111 is an S4-cover

of P2 satisfying the conditions in Lemma 3.1. Hence it coincides with $ts : Xts → P2.

By Theorem 3.1, the versality for S9111 follows.

4. Versal G-covers and linear representations of G

In this section, we explain a method to construct versal G-covers. Our argument

here is a geometric analog to that in Proposition 1.1.4, Chapter 1, [3]. Although we

treat simpler cases than those in [3], it is enough for our purpose. Let G be a finite

group as before. Let ρ1(= 1G), . . . , ρs be the set of all non-equivalent irreducible
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representations of G, where 1G is the trivial representation. We denote the degree of

ρi by deg ρi. Let ρ : G → GL(r, C) be a faithful representation which is equivalent to

⊕i>2ρ
⊕mi

i , mi 6 deg ρi. Put ρ̃ = 1G ⊕ ρ. By using ρ̃ and ρ, we define the G-actions

on Pr and Pr−1 in the following way:

g ([z0 : . . . : zr]) := [z0 : . . . : zr] (ρ̃(g))
−1

,

for Pr and

g ([z0 : . . . : zr−1]) := [z0 : . . . : zr−1] (ρ(g))−1 ,

for Pr−1. Let MG,eρ = Pr/G and MG,ρ = Pr−1/G be the quotient space with respect

to these actions. We denote the quotient morphisms by $G,eρ and $G,ρ, respectively.

Our goal of this section is to prove the following proposition.

Proposition 4.1

(i) $G,eρ : Pr → MG,eρ is a versal G-cover.

(ii) If the action on Pr−1 is faithful ( i. e., G ⊂ Aut(Pr−1)), then $G,ρ : Pr−1 →
MG,ρ is a versal G-cover.

Corollary 4.1. — If ρ(g) 6= a scalar matrix for any g ∈ G, g 6= 1, then $G,ρ is versal.

In particular, if the center of G is trivial, then $G,ρ is versal.

In order to prove Proposition 4.1, let us first recall the normal basis theorem from

Galois theory.

Theorem 4.1. — Let k be a field and let K/k be a finite Galois extension with

[K : k] = n. Put G = Gal(K/k) and let g1(= 1), . . . , gn be the element of G. Then

there exists an element, ω ∈ K such that g1(ω), . . . , gn(ω) form a basis of K over k.

For a proof, see [5], p. 229.

Since K is considered as an n-dimensional k-vector space, the action of the Galois

group gives rise to an n dimensional representation of G, and we denote it by ρGal :

G → GL(n, k). By Theorem 4.1, we have the following:

Corollary 4.2. — ρGal is equivalent to the regular representation RG.

Proposition 4.2. — Let G be a finite group and let ρ1,. . . , ρr denote all irreducible

distinct representations of G over C. Then RG is equivalent to ⊕iρ
deg ρi

i .

See [12] for a proof.

Let X be a G-variety, i.e., a variety which admits a G-action. We define a subset,

Fix(G), of X as follows:

Fix(G) = {x ∈ X | Gx 6= {1}},
where Gx denotes the stabilizer at x. Also we call X a faithful G-variety if G ⊂
Aut(X).
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Lemma 4.1. — Let X be a faithful G-variety. Let π : Y → Z be a G-cover and let

µ : Y → X be a G-equivalent rational map such that µ(Y ) 6⊂ Fix(G). We denote the

induced rational map from Z to X/G by ν. Choose a Zariski open subset U on Z in

such a way that

(i) ν is a morphism on U , and

(ii) µ is a morphism on π−1(U).

Then the normalization of U ×X/G X is birational to π−1(U) over U .

Proof. — Let Φ be the canonical morphism π−1(U) → U ×X/G X .

Claim. — Φ is surjective and generically one to one.

Proof of Claim. — Since µ is G-equivalent, Φ is surjective. Let p1 : U ×X/G X → U

be the projection to the first factor. Since µ(Y ) 6⊂ Fix(G), #p−1
1 = #(G) for a general

point u ∈ U . Hence Φ is generically one to one.

By Claim, Lemma 4.1 follows.

Proof of Proposition 4.1. — We prove (ii) only, since our proof of (i) is similar. Let

π : Y → Z be an arbitrary G-cover. By the definition of a G-cover, C(Y ) is a G-

extension of C(Z) and the G-action is given by ξ ∈ C(Y ) 7→ g(ξ) = ξ ◦ g−1. We apply

Theorem 4.1 to the case when k = C(Z) and K = C(Z). Then there exists ω ∈ C(Y )

such that g1(ω), . . . , gn(ω) form a basis over C(Z). Let ρGal : G → GL(n, C(Z))

be the representation of G induced by the Galois action with respect to the basis

g1(ω), . . . , gn(ω). By Corollary 4.2, ρGal(g) ∈ GL(n, C) for any g ∈ G. Hence, by

Proposition 4.2, there exist ξi =
∑n

j=1 cijgj(ω), cij ∈ C, i = 1, . . . , r, such that

(i) ξ1, . . . , ξr generate r-dimensional C vector subspace W of C(Y ),

(ii) W is G-invariant and the representation G → GL(W ) induced by ρGal coincides

with ρ.

Using ξ1, . . . , ξr, we define a rational map µ : Y → Pr−1 = P(W∨), where W∨

denote the dual vector space of W , by

p ∈ Y 7−→ [ξ1(p) : . . . : ξr(p)] ∈ Pr−1.

Since

[g(ξ1)(p) : . . . : g(ξr)(p)] = [ξ1(g
−1(p)) : . . . : ξr(g

−1(p))]

= [ξ1(p) : . . . : ξr(p)]ρ(g)

= [ξ1(p) : . . . : ξr(p)](ρ(g−1))−1,

µ is G-equivalent. By our assumption, Fix(G) with respect to the G-action on Pr−1 is

a union of proper linear subspace. Since ξ1, . . . , ξr are linear independent over C(Y ),

µ(Y ) 6⊂ Fix(G). Hence Proposition 4.1 follows from Lemma 4.1.
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5. Examples

In this section, we give some examples of versal Galois covers of dimension edC(G).

By Theorem 6.2, [1], there exists one dimensional versal G-cover, if and only if G

is isomorphic to either a cyclic group, Z/nZ, or a dihedral group, D2n, of order 2n

(n: odd). For these groups, one can construct versal G-covers of dimension 1 in the

following manner.

Example 5.1. — G = Z/nZ. Let ρ : G → GL(1, C) = C× be an arbitrary faithful

representation, and put ρ̃ = 1G ⊕ ρ. Then, by Proposition 4.1 (i), $Z/nZ,eρ : P1 →
MZ/nZ,eρ(= P1) gives a one dimensional versal Z/nZ-cover.

Example 5.2. — G = D2n = 〈σ, τ | σ2 = τn = (στ)2 = 1〉 (n: odd). Let ρ : D2n →
GL(2, C) be the irreducible representation given by

σ 7−→
(

0 1

1 0

)
, τ 7−→

(
ζn 0

0 ζ−1
n

)
,

where ζn = exp(2π
√
−1/n). Then, by Proposition 4.1 (ii), $D2n,ρ : P1 → MD2n,ρ(=

P1) gives a one dimensional versal D2n-cover. In [14], we essentially use this cover

in constructing D2n-covers. The versal D2n-cover given by Tsuchihashi in [17] is the

same as this example.

We now go on to examples of versal G-covers of dimension 2. By Theorem 6.2, [1]

and Proposition 4.1, we have the following theorem.

Theorem 5.1. — Let G be a finite group isomorphic to neither Z/nZ nor D2n (n: odd).

(i) If G has a two dimensional faithful representation ρ, then $G,eρ : P2 → MG,eρ

gives a versal G-cover.

(ii) If G has a three dimensional faithful representation ρ and ρ(g) is not a scalar

matrix for any g, then $G,ρ : P2 → MG,ρ gives a versal G-cover.

By Theorem 5.1, we have 2-dimensional versal G-covers for D2n (n: even), A4, S4

and A5. Note that the essential dimensions for these groups are 2

Example 5.3. — Let ρS4
: S4 → GL(3, C) be the three dimensional irreducible repre-

sentation given by

(12)(34) 7−→



−1 0 0

0 −1 0

0 0 1


 , (123) 7−→




0 1 0

0 0 1

1 0 0


 , (12) 7−→




0 1 0

1 0 0

0 0 1




An irreducible representation ρA4
: A4 → GL(3, C) is also given by considering the

first two matrices. Put XS4
= XA4

= P2. We denote the versal S4- and A4-covers

coming from these representations by $S4
: XS4

→ MS4
and $A4

: XA4
→ MA4

,

respectively.
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6. Versality for π431 : S431 → Σ431

Let $S4
: XS4

→ MS4
be the versal S4-cover in Example 5.3. For this S4-cover,

D(XS4
/MS4

, V4) = P2. The morphism β2($S4
, V4) is given by

β2($S4
, V4) : [Z0 : Z1 : Z2] 7−→ [X0 : X1 : X2] = [Z2

0 : Z2
1 : Z2

2 ],

where [Z0 : Z1 : Z2] and [X0 : X1 : X2] are homogeneous coordinates of XS4
and

D(XS4
/MS4

, V4), respectively. The induced S3-action on D(XS4
/MS4

, V4) is given

by (12) : [X0, X1, X2] 7→ [X1, X0, X2] and (123) : [X0, X1, X2] 7→ [X1, X2, X0]. The

goal of this section is to show that $S4
: XS4

→ MS4
essentially coincide with

π431 : S431 → Σ431 in §2.

Theorem 6.1. — Let q : X431 → D(XS4
/MS4

, V4)(= P2) be the blowing-up the nine

base points of the pencil Λ in §2. Then:

(i) The S3-action on D(XS4
/MS4

, V4) induced by ρS4
also defines the one on X431.

It coincides with the S3-action given by σϕ and τs1
.

(ii) Let X be the (Z/2Z)⊕2-cover of X431 obtained as the C(XS4
)-normalization of

X431. Then X = S431.

The versality for π431 immediately follows from Theorem 6.1

Proof of Theorem 6.1

(i) Let us introduce a new coordinate [U : V : W ] of P2 by

U := X0 + X1

V := X1

W := X2

Let x = X0/X2, y = X1/X2, u = U/W and v = V/W . Then we have u = x+y, v = y.

With respect to the (u, v)-coordinate, the S3-action on D(XS4
/MS4

, V4) induced by

ρS4
is expressed in the following way:

(12) : (u, v) 7−→ (u, u − v), (123) : (u, v) 7−→
(

v + 1

u − v
,

1

u − v

)

Also with the (u, v) coordinate, the pencil of cubic curves is expressed by

{v(v − u) = µ(u + 1)3}
µ=

λ1
λ0

.

Note that this equation gives a “Weierstrass equation” of X431, which is an elliptic

curve over C(µ). Using this equation, we can write down the operation σϕ and τs2
,

explicitly. For this Weierstrass form, we may assume that O, s1 and s2 correspond

to the point at infinity, P1 = (−1, 0) and P2 = (−1,−1). Let (u0, v0) be an arbitrary

C(µ)-rational point on X431. By the definition of the addition law with O as the

neutral element, we can write down the action of σϕ and τs2
for the rational functions

(u, v) explicitly as follows:
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For σϕ, we have

σ∗

ϕ : (u, v) 7−→ (u, u − v).

Hence σϕ(u) = u ◦ σ−1
ϕ = u and σϕ(v) = v ◦ σ−1

ϕ = u − v.

For an element ξ ∈ C(X431), τs2
(ξ) = ξ ◦ τ−1

s2
= ξ ◦ τs1

. Hence the action of τs2

on rational functions is nothing but adding the point P1 on X431. Let (u1, v1) be the

third intersection point with the line connecting (u, v) and P1. Then we have

u1 = −1 − 1

µ

v

(u + 1)2
= −1 − 1

µ

v(u + 1)

(u + 1)3
= −1 − u + 1

v − u
=

v + 1

u − v
,

and

v1 =
v

u − v
.

Hence the point corresponding to (u, v)+P1, where + denotes the addition on X431, is
(

v + 1

u − v
,

1

u − v

)

Therefore the birational action induced by the S3-action on P2 coincides with that

of σϕ and τs1
on the generic fiber (X431)η of ϕ : X431 → P1. Since the latter is the

restriction of fiber preserving automorphisms, the statement (i) follows.

(ii) The (Z/2Z)⊕2-cover β2($S4
, V4) : XS4

(= P2) → D(XS4
/MS4

, V4)(= P2) is

given by

[Z0 : Z1 : Z2] 7−→ [Z2
0 : Z2

1 : Z2
2 ].

Hence the three lines X = 0, Y = 0 and Z = 0 are the branch locus. This implies

that π1(P
2 r ∆β2($S4

,V4))
∼= Z ⊕ Z. Since the subgroup H of Z ⊕ Z with Z ⊕ Z/H ∼=

Z/2Z ⊕ Z/2Z is unique, β2($S , V4) : XS4
→ P2 is the unique (Z/2Z)⊕2-cover.

The nine exceptional curves for X431 → P2 are

O, C2,0 C2,4

s1 C2,1 C2,2

s2 C2,6 C2,5,

and we may assume that the strict transform of the lines X = 0, Y = 0 and Z = 0

are C1,0, C1,1 and C1,2, respectively. On the other hand, the V4-cover S431 → X431 is

branched at

Supp(O + s1 + s2 + C1,0 + C1,1 + C1,2 + C2,2 + C2,4 + C2,5).

This means that the Stein factorization S′
431 of S431 → X431 → P2 is a V4-cover

branched at three lines X = 0, Y = 0 and Z = 0. This implies that S′
431

∼= XS4
over

P2. Hence C(X) ∼= C(XS4
) ∼= C(S′

431)
∼= C(S431) over C(X431), and our assertion

follows.

Remark 6.1. — Since both π431 and π9111 are versal, one is obtained from another by

a rational pull-back. An explicit study for these rational maps will be done in [16].
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