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Abstract — In this note, we compute the adiabatic limit of Chern forms for holomor-
phic fibrations over complex curves. We assume that the projection of the fibration
has only isolated critical points.

Résumé(Points critiques isolés et limites adiabatiques des fornsede Chern). —  Dans
cet article, nous calculons la limite adiabatique des formes de Chern pour les fibra-
tions holomorphes sur des coubes complexes. Nous supposons que le projection de la
fibration n’a que des points critiques isolés.

1. Introduction

Let X be a complex manifold of dimension n + 1 and S a Riemann surface. Let
f X — S be a proper surjective holomorphic map. The critical locus of f is the
analytic subset of X defined by

Yy ={peX;df, =0}

In this note, we always assume that ¥, is discrete.
Let g% be a Hermitian metric on the holomorphic tangent bundle TX. Let g7
be a Hermitian metric on 7'S. Define the family of Hermitian metrics on T'X by

1 *
ggTX=gTX+§f g™ (e>0).

Let V7X:9.™ be the holomorphic Hermitian connection of (T'X, g7X), whose cur-
vature form is denoted by RTX:9:" . Then RT*X:9” is a (1,1)-form on X with values
in End(TX). Let ¢;(TX,gT™) be the i-th Chern form of (T'X, gZ*X).
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444 AY. YOSHIKAWA & K. YOSHIKAWA

Let P(c) = P(c1,...,¢n41) € Clea, ..., Cny1] be a polynomial in the variables
C1y...,Cnt+1. The purpose of this note is to study the family of differential forms
P(TX,gT%) := P(c(TX,gTX)) as ¢ — 0, called the adiabatic limit, under certain
assumptions on the metrics g7X, g7 (see Assumption 2.1).

The study of this problem was initiated by Bismut and Bost in [3, Sect. 6 (a)]; they
treated the case where dim X = 2, the map f has only non-degenerate critical points,
and P(c) is the Todd polynomial. They applied their formula for the adiabatic limit
to compute the holonomy of the determinant line bundles on S ([3, Sect. 6 (b), (¢)]).
Then Bismut treated in [2, Sect. 1 (e)] the case where dim X is arbitrary, the critical
locus of the map f is locally defined by the equation f(zo, z1,2’) = 2021, and P(c) is
arbitrary; he used his result to study the boundary behavior of Quillen metrics.

The goal of this note is to establish the convergence of the adiabatic limit
lim. o P(TX,grX) in the sense of currents on X and to compute the explicit
formula for it. In particular, we extend [3, Sect.6 (a)] to the case where f has only
isolated critical points. Our result (Theorem 2.2) is compatible with [15].

2. Statement of the Result

Let f : X — S be a proper surjective holomorphic map between complex manifolds.
Throughout this note, we assume the following:

(i) The critical locus X is a discrete subset of X.
(ii) dim X =n+1 and dimS = 1.

Let ¢g7X and ¢7° be Hermitian metrics on TX and T'S, respectively. We define
the family of Hermitian metrics {gZ*}.~0 by

gTX o= gTX 4 =2 gTS,

The unit disc {s € C; |s| < 1} and the unit punctured disc {s € C; 0 < |s| < 1} are
denoted by A and A* = A \ {0}, respectively.

2.1. Assumptions on metrics. — Let I'y C X x S be the graph of f:
I'y={(z,t) € X x S; f(z) =t}.

Let pr; : I'y — X and pry : I'y — S be the natural projections. Let (Up, (20,...,2n))
be a coordinate neighborhood of p € Xy in X centered at p. Let (Dj,),t) be a
coordinate neighborhood of f(p) in S centered at f(p). Assume that

(i) UpNUy = @ for p,q € Xy with p # ¢;

(i) (Up,p) = (A", 0);

(i) (f(Up), f(P)) C (Dy(p),0).
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Then T'y|y, is a submanifold of U, x Dy,). Let ¢ : |y, < U, X Dy, be the
inclusion. We have the commutative diagram:

(Tslu, (s f(p)) —— (Up x Dy, (0,0))

prll Jprg
f

(Up,p) ——————— (D (), 0).

Assumption 2.1 — Let § > 0 be a constant. Assume that the Hermitian metrics g7 X
and ¢g7% are expressed as follows on each U, (p € Zy):

)

(1) prig" 00, = {Zdzi®d2i+5-dt®d%}
¢ (Tsluy)

(2) 9"%Ip,,, = dt®dt.

We are mainly interested in the case § = 0 because g7X |u, is the restriction of the
Euclidean metric on C"*? in this case.

2.2. Chern forms. — Let M,,11(C) be the set of all complex (n + 1) x (n + 1)
matrices. For A € M, 11(C), set ¢(A) =det(Ip41+A) =14+ c1(A) + -+ + cnt1(A),
where ¢;(A) is homogeneous of degree i. For a polynomial P(c) = P(c1,...,¢nt1) €
Cler, ..y enga], set P(A) = P(e1(A), ..., cnt1(A)).

Denote by A%? (resp. A% ) the vector space of smooth (p, ¢)-forms (resp. r-forms)
on X. For a complex vector bundle F' on X, the set of smooth (p,q)-forms on X
with values in F' is denoted by ARY(F). For ® € A%, ®'P denotes the bidegree
(dim X, dim X)-part of ®. Hence ®'P ¢ A%,

Let (E,h%) be a holomorphic Hermitian vector bundle on X. Let V4" be the
holomorphic Hermitian connection. Namely, the (0, 1)-part of V¥ 7 g given by the
D-operator and V" is compatible with the metric hZ (cf. [10, Chap. 1, Sect. 4]).
Let REMY — (VER")2 ¢ ALY (End(E)) be the curvature form of VZ" . Set

rank(E) .
Ey\ _ ) Ey ._ v HEWE p,p
(B, hF) = Z ci(E,h )._c(sz )G@Ax.
i=0 p=0
2.3. The convergence of adiabatic limits. — Let

Tf:=ker{f.:TX|x.x, — f'TS}

be the relative holomorphic tangent bundle of the map f : X — S. Then Tf is a
holomorphic subbundle of T'X | x. s,

Let ¢gTf = 9"\ rs = (g7%)|r be the Hermitian metric on T'f induced from g7 .
Then g7/ is independent of € > 0. Let RTF9"" be the curvature of (Tf,g7%). The
i-th Chern form ¢;(Tf, g7/) lies in A}i\zf fori=1,...,n.
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For p € 3¢, let p(f,p) € N be the Milnor number of f at p, i.e.,

u(J.p) = dime Ceon .., 20}/ (g—i(a ﬂ@) ,

,...,8zn

where (2L ..., 2L) © C{z,..., 2.} is the ideal generated by the germs 2L, ... 21

dzo’ ) Ozn Oz0 ) Ozp *

The Dirac §-current supported at p € Xy is the (n + 1,n + 1)-current 6, on X
defined by

/90517 =p(p), Vel X).
X

For a formal power series of one variable ¢(t) € C[[t]], let ¢(t)|im be the coefficient
of the term t™ in (1), i.e., @(t)|pm = = (%)m lt=0 ©(t).

m!

Main Theorem 2.2 — With the same notation as above, assume that Xy is a discrete
subset of X and that the metrics g7X, g7% verify Assumption 2.1. Then the following
hold:

(1) The differential form P(Tf@® f*TS, g7/ @ fgT9)tr ¢ A?(tlg;ﬂ extends trivially
to a smooth (n+ 1,n+ 1)-form on X.

(2) The adiabatic limit lim._o P(T X, gI*)®*P converges to a (n + 1,n + 1)-current
on X. Moreover, the following identity holds:

(2.1) ili% P(TX, gg“X)top — P(Tf a f*TS, ng o f*gTS)top

Pty ()™ ) [ > u(fap) 8,

pEXy

In particular, the following equation of currents on U, holds:

(22)  lim P(TX, g2) Py, = Pt () owss - 1(f,0) by,

Corollary 2.3([8], [4, Example 14.1.5], [ 7, Chap. V1, 3], [9, Cor. 2.4])

Let X be a compact complex manifold of dimension n+1 and S a compact Riemann
surface. Let f: X — S be a proper surjective holomorphic map with general fiber F.
Let xgp(X), xep(F), xep(S) be the topological Euler-Poincaré numbers of X, F, S,
respectively. If Xy is a finite set, then the following identity holds:

xep(X) = xep(F)xer(S) + (=1)"" > u(f,p).
pEX;

Proof of Corollary 2.3. — Consider the polynomial P(A) = ¢, 4+1(A) = det(A). Then
the corresponding genus is the Euler characteristic. Since

a1t (Tf @ TS, g7 @ f*g7%) = e (Tf, g7 A fer (TS, 97°) € A}+1,n+1
by Theorem 2.2 (1), the result follows from (2.1) and the projection formula:

/ enst(Tf ® f°TS, g7 @ f*g75) = / en(Tf, g™ )|r / ¢1(TS, g"s)
X

F S
= xep(F)xep(S). O
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Example 2.4 — Let A be an Abelian variety of dimension ¢ and E an elliptic curve.
Let X C A x E be a smooth hypersurface such that the restriction of the projection
pro|x : X — E has only isolated critical points. Set f = pry|x.

Let g4 and g7 be the flat Kdhler metrics on TA and TE, respectively. For
e >0, set

1
gIX = gTA <1+ _2> gTE
€ X

Then, for all x € X, there is a neighborhood U, in A x E such that the metrics
g™X == ¢gIX and ¢g7F verify Assumption 2.1 on U,. The first term of the R.H.S. of
(2.1) vanishes identically on X by Propositions 4.1 and 4.2 below. Hence it follows
from (2.1) that

(23) lim P(TX, g7%) = P(~t,.., (=) - 3 u(f,p)5,.

per

In particular, the support of the adiabatic limit lim. .o P(TX, gZ*)*P concentrates
on the critical locus ¥ in this example.

Remark 2.5 — We can verify (2.3) as an identity of cohomology classes as follows.
Let N be the normal bundle of X in A x E. Then we have the exact sequence of
holomorphic vector bundles on X:

0—TX —T(AxE)|x =C/"' — N —0,

from which we obtain ¢(X) = ¢(N)~! = (1+¢1(N))~L. Hence ¢;(X) = (—c1(N))? for
t1=1,...,g and

P(c(X)) =P(—t,...,(=t)9)|to - c1(N)? = (=1)9P(—t,...,(=t)9)|ts - cg(X).

Since xgp(E) = 0, this yields that
[ Pelx) = (1Pt () e ()
= Pty () - {xen (P on (B) + (17 Y i}

pEEf

=P(~t,..., (=)o - > ulf.p)-

pEXy

3. An analytic characterization of the Milnor number

Set U := A"*1. We denote by 2z = (20, .. ., z,) the system of coordinates of U. Let
f:(U,0) — (C,0) be a holomorphic function on U such that

2, = {0}.
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448 AY. YOSHIKAWA & K. YOSHIKAWA

The Milnor number p(f,0) is denoted by u(f), for short. Set ||df|* = >i, |gi 2,

We prove the following result in this section, which shall be used in the proof of the
Main Theorem 2.2 in Section 5.

Theorem 3.1 — The following equation of currents on U holds:
Z. _ n+1
iy { 0B loB 7+ €4)} = () o
E— s

Following [2, Sect.1 (c)], we regard € as a complex parameter and replace 2 by
le|? in what follows. Hence € € A.

3.1. Proof of Theorem 3.1. — Define the holomorphic map v : (U x A) \
{(0,0)} — P"*! by
v(z,€) = (g—i(z) HER aa—ZJ;(z) : 5) .

Then v extends to a meromorphic map from U x A into P"*! with indeterminacy locus
{(0,0)}. Let 7 : (m, E) — (U x A,(0,0)) be the resolution of the indeterminacy
of v. Hence E = 7~%(0,0). Then there exists a holomorphic map 7 : U x A — P"*!
such that ;|(E;Z)\E =vom. Let Ux {0} C U x A be the proper transform of the
divisor U x {0} C U x A.

Set

H={(z:e) e P""; e =0} c P",
where (2 1 €) = (20 : +++ : 2, : €) are the homogeneous coordinates of P"*!. Then
H = P". Since v(U x {0} ~ {(0,0)}) C H and hence (U x {0} \ E) C H, we get

(3.1) (U x {0}) C H.

Let p: U x A — A be the natural projection. Set p=pom. Thenp: U x A — A
is a holomorphic map such that

_ ) Ux{e} (e #0)

(3:2) 51(6)_{U><{0}+E (e =0).

Here F is a (possibly non-reduced) divisor on U x A such that Supp(E) C E.
Let

wpns1 = 5=001og(||zI|” + [¢])

be the Fubini-Study form on P"*1. Then we have the identity on U x A ~ {(0,0)}:

Viwpnt1 = gaalog(ﬂdeQ + lef?).

SEMINAIRES & CONGRES 10
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Proposition 3.2 — The following equation of currents on U holds:

. n+1
lim {Laglog(ﬂdfﬂz + |£|2)} = </ 'ﬁ*wgﬁl) do-
e—0 | 27 E

Proof. — Let ¢ € C§°(U). Since = : Ux A NP H0) - U x A~p10) is an

—~

isomorphism and since 7 = vom on U x ANp~1(0), we have for all e € A* = A\ {0}:

/ ¢ vrwptl, = / ™o Tt wptl = / T Urwptly.
Ux{e} p=1(e) p=1(e)

Since 7 - Z*wl’fgil € A%EAL"H, we obtain from [1, Th.1] that
X
lir% ™ - Z*w?,}'[il = / ™ - ﬁ*wlﬁtil,
e Ip1(e) p=1(0)
which, together with (3.2), yields that

. +1 _
lim - Viwphi = /
e=0 Jux{e} Ux{0}

:@(O)ﬁﬂ*wlﬁﬁl.
E

Here the second term of the R.H.S. of the first equality follows from (7*p)|g = ¢(0)
and the second equality from (3.1) because (wpn+1|g)" ™t = 0.

| i ntl
T U wp i + 30(0)/ U wphia
B

To prove that [z 7*wpt, = pu(f), we need the following:

Proposition 3.3 — Let x(z) € C§°(U) and assume that x(z) = 1 when ||z|| < 2. For
g€ A* = A~ {0}, set

|€|2 ) * n—+l1
ale) = leog(— Vw1,
0 J 8 () bt
be)i= [ @) log(ldf(2)I? + e vt
Ux{e}
Then there exist 11(g),2(c) € C°(A) such that for all e € A* = A~ {0},

a(e) = ¥ (e), b(e) = u(f)loglel* + a(e).

The proof of Proposition 3.3 is technical and shall be given in Section 3.2. However,
it is easy to verify the proposition when f has a non-degenerate critical point at 0
(see Lemma 3.11 below).

Proof of Theorem 3.1. — By Proposition 3.3, we have
log |€|2/U - X(2) V't = ale) +ble) = p(f) logel? + ¥ (e) + va(e).
X1€

Hence, as € — 0,

1
* n+1
x(z)viwnri = u(f —|—O<—>.
/Ux{s} () v wpns ) log ||
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Comparing this with Proposition 3.2 and using x(0) = 1, we get

pp=tim [ et =x0 [Tt = [T,
=0 Jux{e} E E
which, together with Proposition 3.2, yields the theorem. O

3.2. Proof of Proposition 3.3 via the Picard-Lefschetz principle. — In the
rest of Section 3, we prove Proposition 3.3. Our approach is as follows:

(I) We take a morsification F'(z,w) of f(z) and extend the meromorphic map v to
a meromorphic map N from U x A? into P"*!.

(IT) Replacing df by d,F and v by N in the definitions of a(¢) and b(¢), we obtain
their extensions A(e, w), B(e, w) € C*°(A*x A) such that A(e,0) = a(e) and B(e,0) =
b(e).

(IIT) Proposition 3.3 is deduced from the regularities of A(e,w) and B(e,w); we
prove that A(e,w) € C'(A?) and B(e,w) — u(f)log|e|?> € C>=(A?).

To distinguish between the target C of f(z) and the parameter space A%, we denote
by (e, w) the coordinates of A2

3.2.1. Preliminaries

a) A holomorphic function F(z,w) € O(U x A) satisfying the following properties
(i) and (ii) is called a morsification of f(z):

(i) F(z,0) = f(2);

(ii) Flux{wy € O(U) has only non-degenerate critical points when w # 0.

There always exists a morsification of f(z) if we replace U by a smaller open subset
of 0 € C™*! (¢f. [13, Loo, Cor.4.10 and 4.11 and Prop. 4.12]).

Let F(z,w) be a morsification of f(z). Assume that for every w € A,

1
(3.3) EF(~,w) C {z e U; ||ZH < 5}

This can be satisfied if we replace the disc A = {w € C; |w| < 1} by a smaller one.
Associated to the morsification F'(z,w), we deform the meromorphic map v as
follows: Define the meromorphic map A : U x A? — P! by

N(z,e,w) = <g—i(z,w) o g—i(z,w):s>.

Then we have M|y« a«x {0} = V|uxa~. Outside the indeterminacy locus of N,
N wpnai(z,6,w) = %Bglog(HdZF(z,w)H? + e,

where d,F = (88_5)’ ce gi). The indeterminacy locus of N is given by the set

{(2,0,w) € U x A?%; d,F(z,w) =0} = UweaEre w0, w).

Lemma3.4 — SetV :={z € U; |z|| > 2}. Then d.F(z,w) is nowhere vanishing on

2 « n+1 de n+2,n+1 « n+1 dz n+1,n+2
V x A%, Moreover, N*wpii, NS € A0 and N wpin NS € Ay ).
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Proof. — For i =0,...,n, set V; = {(z,e,w) € V x A% gf(z w) # 0} and f; = 2 7

Then every V; is an open subset of V' x A2, On Vy, the differential forms
wo == fy 1d<f1> /\d(f"> wi = fT T L A - Adf Adfo

Jo fo
are holomorphic. Let ((1,...,yy1) be the inhomogeneous coordinates of P"+1, where
Ci=z/z0fori=1,...,n and {,+1 = £/29. Then one can verify that

N*(d<1 VARERIVAN d<n+1)|vo = Wo A de — EWwi.
Hence there exists a smooth function g(z,e,w) on Vy such that

N*wl’iﬂl Voxa = g(wo Ade —ew1) A (wo Ade —ewn)
= g{(-1)"wo ANwg Ade ANdE — w1 Nwg ANedE
—(=1)"wo A@y AEde + |e]Pwr AT}

By this formula, we get J\/*wl’iﬁl A E e Aﬁ:Q’"H and N*wl’iﬁl A §,€ A%;”l’"“.
Similarly, we can verify that N*wl’iﬁl NE € AﬁjQ’"H and N*wpll, N E € Aﬁjl’"w

fori=1,...,n. Since V. x A% =JI_, V; by (3.3), this implies the result. O

b) Let 2 C A be a domain. Define the subspace Af, . C Afry o by
Ux02ve = 1w € Alrx o3 Supp(w) C K x 2 for some compact subset K C U}.

We define the linear map [, : Afy o, — A%7272 as follows: For (e, w) € Af, and
w(z,e,w) = a(z,&,w)dz! ANdz7 A b(e,w) € AZ‘;;‘QIL”,

(,/Uw)(f‘?,w) = { fU o w dZO dzndz@---d?n)H(s,w) (I:J: {07--.,71}),

(otherwise),

where dz! = dz;j; A+ Adz, and |I| = p for I = {iy < --- < ip}. Then we extend
linearly the map [, to Afr, ¢ .. One can verify that for all w € Af;, .,

(3.4) dm(/ w) =/ dyx a2 w, 3A25A2(/ w) =/ Oux 220U x a2 w.

c) Identify C? with R*. Then we may regard 2 CC R*. For p > 1, LP(£2) (resp.
L? (£2)) denotes the vector space of (resp. locally) LP-integrable functions on 2.
When p = oo, L®(2) (resp. L{3.(§2)) denotes the vector space of (resp. locally)
bounded functions on 2. For a multi-index & = (ki,...,k4), k1,...,ks > 0 and for
a function f € LY (£2), set |k| = ki + -+ + kg and D¥ f(z) = 9% --- 9% f(z), where
D¥ f is the derivative of f of order |k| in the sense of distributions on 2. Obviously,
DFf ¢ LT (£2) in general. For a real number 1 < p < oo and an integer [ > 1, we
define the Sobolev spaces WhP(2) € WP(2) by

loc
WhP(Q2) == {f € LP(Q2); D*f € LP(2) if |k| <1},
WiP(2) = {f € L}, (2); D f € LY, () if |k <1}

loc

SOCIETE MATHEMATIQUE DE FRANCE 2005



452 AY. YOSHIKAWA & K. YOSHIKAWA

We refer to [5, Chap. 1-9] and [6, Chap. 3] for distributions, currents, Sobolev spaces,
and the regularity theory of the Laplace operator.

3.2.2. Some lemmas. — Recall that V = {z € U; ||z|| > 3} and that x € C§°(U) is
a function such that x =1 on U\V = {z € U; ||z|| < 2} (¢f. Proposition 3.3). Hence
Supp(dx) C V. By (3.3), we have the following for all w € A:

— 1
(3.5) Supp(dx) N X p(.,w) CVﬁ{zEU; l|z]| < 5} =g.

Definition 3.5. — For (g,w) € A* x A, set

lel?

A — 1 * n—i—l1
(&, w) Lﬂd%<MJ%MW+MJNw”“

Bew)i= | x(2)1oB(Id-F (0 + 1) A" wpi

Then A(e, w) and B(e, w) are smooth functions on A* x A such that A(e,0) = a(e)
and B(g,0) = b(g). To establish (IIT), we study the regularities of dp04A and
020 B. For this purpose, we introduce the following (1, 1)-forms on A* x A:

Write 0 = Opyx a2 and 0 = Oy x a2 in what follows.

Definition 3.6. — For (¢,w) € A* x A, set

i |£|2 ). * n+1
K =— [ 1 1%, &,
) = 5 ot (s oy ) PN AN )
7 = |5|2 * n+1
+27r /U Ox(z) A dlog <|sz(z,w)||2 m |a|2> AN Wil (2,6, w)

7 —= |5|2 * n+1
- A /\ ]- /\ 1 PSR 9
%AFW)a%Qaﬂmmqu Nwpni(2,6,0)

i ¥a) * M
L(e,w) = %/Ulog(HdZF(Zaw)H? + [e?) 90X (2) AN witl (z,,w)
+5 / Ox(2) A Dlog([[d- F(z, w)||? + [e[*) AN Wi, (2,2, w)
U
—;—ﬂ_ / 0x(2) A dlog(||d. F(z,w)|]* + ||*) /\N*wgiﬁl(z, g, w).
U

Then K (eg,w) and L(e,w) are real smooth (1, 1)-forms on A* x A such that

K(e,w)+ L(g,w) = {%/ 00x(2) /\J\/*wlﬁﬂl}log|s|2
U

(3.6) +2i / {8x(z) ANFWIEL A & _ Ax(2) AN*WEEL A ﬁ} .
™ U 19 g
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Lemma 3.7 — On A* x A, the following equations hold:
(1) %aAQEAQA(a,w) = K(e,w), (2) 213425&3(5,11}) = L(e, w).
™ ™

Proof
(1) By (3.4), we get

i Bl I P |E|2 * n+1
27T8A28A2A(5,w) = 27r/(]88{x(z)10g<|dZF(Z7w)”2+ |E|2>N Whai1
- L/ x(2) 00 4 log e AN*WRTE,
2 Ju ld=F(z, w)||* + || P

d Bk _ 1

KR (o) A A
+27T/U Og<|sz(z,w)||2+ |g|2> X(2) AN wpiia
+i / 8X(Z) A EIOg |E|2 A N*wn—i-l

2 Ju d.F(z, w)H? + |g|2 prt1
—L/ dx(2) A dlog el? At
2m U ”sz(Z, w)H? + |g|2 P+l

= / —x(2) ./\/'*wgfﬁl + K(g,w) = K(e,w),
U

where we used the equation d9log |e|?> = 0 on A* = A~ {0} to get the third equality

and the equation A/ *wlﬁﬁl = 0 to get the last one. This proves (1).

(2) Similarly, we can verify that

%8425AQB(6,U)) = / X(2) N*wpt?, + L(e,w) = L(e, w). O
U

Lemma 3.8

(1) L extends to a smooth (1,1)-form on AZ.
(2) There ezist o, T € AZi such that K =logle|? - o + 7 on A* x A.

Proo
(IJ; Since {(z,&,w) € UxA?% & = d,F(z,w) = 0}NSupp(dx) = @ by (3.5) and since
the indeterminacy locus of A" and the singular locus of the function log(||d. F(z, w)||*+
le|?) are given by {(z,&,w) € U x A% ¢ = d,F(z,w) = 0},
& = log(||d.F(z,w)|* + [e[*) 90x AN wptl,
+0x A Dlog(||d.F (2, w)|| + |e?) AN*wiHE,
~0x A dlog(||d. F(z,w)|? + [e) AN Wil

is well defined and is a smooth (n +2,n + 2)-form on U x A%, Since L = = [, ®, L
is a smooth (1,1)-form on A2. This proves (1).
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(2) Similarly, since dx /\N*w;}ﬂl AE~1dz and Oy /\N*wﬁi‘il A e~ Lde are smooth
(n+2,n + 2)-forms on U x A? by Lemma 3.4 and (3.5), we get

dg = de
(3.7) /Uax/\/\/’*wgﬁ1 nZ € AL, /Uax/\/\/'*w}iﬁl N € AL

By (3.6), (3.7), and L € A%, we get K (e,w) — 5={ [, 00X AN*wil, }loge|? € As.
Since 99x A N*will, is a smooth (n + 2,n + 2)-form on U x A2 by (3.5), we get
fU 00x /\N*w?j{il € Azé. This proves (2). O

Since the coefficients of K and L lie in L] (A?) by Lemma 3.8, K and L define real

(1,1)-currents on A2. By Lemma 3.7, they are ds2-closed on A* x A in the ordinary
sense.

Lemma3.9 — K and L are daz2-closed currents on A2.

Proof. — Since dp2L = 0 on A* x A and since L is smooth on A? by Lemma 3.8 (1),
L is a closed (1,1)-form on A?. Let us prove that K is a ds2-closed current.

Let £ € Al. and assume that Supp(§) is compact. For 0 < r < 1, set
A(r) ={e € 4; |e|] < r}. Since dp2K =0 on A* x A, we obtain from Stokes’ formula
that
(3.8) K ANdp2€ = lim K ANdp2€ = —lim K AE.

A2 r=0J(ANA@)x A =0 JaA(r)x A
Write K = i{Kzde AN de + Kegde A dw + Kyzdw A dg + Ky dw A dw} and set
K2 = |Kz|? + | Kew|? + | Kuwzl? + |Kuww)? € C°(A* x A). We define the functions
€2 € C5°(A?) and |o|?,|7]? € C>°(A?) similarly. Then we have

2
g/ /|K(rei9,w)|~|£(rew,w)|rd0dwdw
0 A

/ K(e,w) A €(e,w)
AA(r)x A

< 27r3( sup |o|-logr® + sup |T|) -sup [£| - r
A2

Supp(§) Supp(§)
(3.9) -0 (r —0),
where we used Lemma 3.8 (2) to get the second line. Since £ is an arbitrary test form,
the result follows from (3.8), (3.9). O
Lemma 3.10

(1) There exists a function o € C*(A?) N C>®(A* x A) such that 3=0p20 200 = K
in the sense of currents on A2.

(2) There exists a function 3 € C*°(A?) such that %8A2542ﬁ = L.
Proof

(1) Since K is a real closed (1,1)-current on A? by Lemma 3.9, it follows from
the 90-Poincaré lemma ([14, Proof of Lemma 5.4]) that there exists a distribution

a on A? satisfying the equation of currents %aAngza = K on A%, Write K =
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i{ Kz de Nde+ Ko de NdW+ Kz dw AdE+ Koy dw Adw}. Then we have the equation
of distributions Oa = 27( Kz + Kyw) on A%, where [ = %?)g + % is the Laplacian.
Let £2 CC A? be an arbitrary relatively compact domain. Since K.z + Kz € LP(£2)
for every p > 1 by Lemma 3.8 (2), there exists a function & € W?2P(§2) by [5,
Th.9.9] such that Oa = 2m(K.z + Kyw) on 2. Then O(aln — @) = 0 in the sense
of distributions on 2. By [6, pp. 379, Lemma|, «|q — & is a harmonic function on 2.
Hence a|p —a € C¥(f2). Since 2 CC A? is arbitrary, we get o € Wli’cp(Ag) for
every p > 1 and hence o € C'(A?%) by the Sobolev embedding theorem WIOC (2) C
CH2) (p > 4) (cf [5, pp-158, (7.30)]). Since K.z + Kyw € C®°(A* x A) and
Oa = Kz + Kyw, we get o € COO(A* x A) by [5, Th.6.17].

(2) Since da:L =0 and L € A%}, the result follows from the 99-Poincaré lemma.

O

Lemma3.11 — Set C(n) = [qni: log(||2]|> + 1){5=0010g(]|z]|> + 1)}" T € R. Then
the following identities hold for alle € C~ {0}

. n+1
(1) / 10g(|2||2+|€|2){Laglog(||2|2+ |8|2)} = log || + C(n),
Cn+l 21

[l + e [ i 5 SN
@ [ (B ovtoniage + )

Proof. — By setting ¢ := e 'z and using Jant w;ﬁﬁl =1, we can verify (1), (2). O

C(n).

Lemma 3.12

(1) A€ C®(A* x A) extends to a C'-function on AZ.
(2) B — u(f)logle|* € C=(A* x A) extends to a C>-function on A?.

Proof. — Let w € A*. Since F(-,w) € O(U) has only non-degenerate critical points,

(gf;( 71 R 88;; (,w)) is a system of coordinates around ¥p(. ). Hence there is a
system of coordinates (Up, (u((Jp), e ,u,(lp))) around each critical point p € Y p(. ) such
that U, NU, = @ (p # q) and such that ||d.F(-,w)|* =31, |u§p)|2 on U,.

(1) We have A

A+ x{w} € Lig.(A) for every w € A* by Lemma 3.11 (2) because

2 : n+1
aew) = [ v o8 () {0 on G )l + ) )
- ¥ / o (ot ) {amton( W 1))+ 001
v o, B\ TR ) o
=0(1)  (e—0)
Hence (A — a)|a~x{w} € L5.(A) because afax(wy € C'(A) by Lemma 3.10 (1).

Since 9420 42(A—a) =0 on A* x A by Lemmas 3.7 (1) and 3.10 (1), (4 — )| A x {w}
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is a harmonic function on A*. By Riemann’s removable singularities theorem,
(A — )| a*x {w} extends to a harmonic function on A.

Let r € (0,1) be an arbitrary number. Since (A — a)|ax{w} is harmonic on A, we
obtain from Poisson’s formula ([5, Th. 2.6]) that for all |¢| < r and w € A*,

1 [ 2 el

Ale,w) — ale,w) = — {A(r e w) — a(r ew,w)} |:

o |,  df,

e? — ¢
which implies that A —« € C°(A x A*). This, together with Lemma 3.10 (1), yields
that A —a € C®(A x A*) N C®(A* x A) = C°°(A? < {(0,0)}). Hence dp2(A — )
is a holomorphic 1-form on A% \ {(0,0)} because dp2{042(A — )} = 0 on A* x A
by Lemmas 3.7 (1) and 3.10 (1). By Hartogs’ principle, d2(A — «) extends to
a holomorphic 1-form on AZ2. Since ker &2 consists of anti-holomorphic functions
on A2, we get A — o € C¥(A?). Since a € C'(A?) by Lemma 3.10 (1), this implies
that A € C1(A?).
(2) We have B|axw) — p(f)logle* € LS. (A) by Lemma 3.11 (1) because

loc

B(e,w)

. n+1
[ X osllaeF G l? + ) { - odog(la.Flewl + 1) |
llzll<1 g

. n+1
7 —
S [ tonu @1+ 1) {godton(u 1 1)} o)

PEXF (. w) Up
= #(Zr(w) logle[* + O(1) = u(f)logle]* +O(1) (¢ — 0).
Here we used [13, pp.64 1.1-1.12] to get the last equality. Since we have the equation
0p20p2(B — pu(f)logle|> — B) = 0 on A* x A by Lemmas 3.7 (2) and 3.10 (2), the
same argument as above using Riemann’s removable singularities theorem, Poisson’s
formula, and Hartogs’ principle, yields that B — u(f)logle|? — 8 € C¥(A?). Since
B € C*(A?) by Lemma 3.10 (2), we get B — u(f)log|e|> € C*°(A?). O

Proof of Proposition 3.3. — Since a(e) = A(e,0) and b(e) = B(g,0) by the definitions
of a(e), be), A(e,w), B(e,w), the assertion follows from Lemma 3.12. O

Remark 3.13 — Theorem 3.1 seems to be similar to [11], [12]. However, no higher
Milnor numbers appear in Theorem 3.1, since our proof is based on the “Picard-
Lefschetz principle” (¢f. [15, Th. 4.1]). Is it possible to derive Theorem 3.1 from [11],
(12]?

4. Explicit formulas for the Chern forms around the critical point

As in Section 3, set U = A"t and let f : (U,0) — (C,0) be a holomorphic function
such that ¥y = {0}. We do not assume that f is surjective. The relative tangent
bundle T'f = ker f, is a holomorphic subbundle of TU|y {0} = TC"+1|U\{0}. As in
Section 2, let ¢ be the coordinate of C, which is the target of the map f.
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Define the Hermitian metrics gTC"+1, gTC, gTf on TU, TA, Tf, respectively by
+1 - +1
gte" = Zdzi ® dz;, gTC = dt @ dt, g7l =T |y
i=0

Let

7:U\{0}92—>(g—i(z):---:g—i(z))EP"

be the Gauss map. Under the identification H = P" as in Section 3.1, we have
v = V| {0})x {0} and v wpn = 5=90log ||df ||*.
Proposition 4.1 — The following equation of closed forms on U ~ {0} holds:
1
4.1 Tf g7y = ——
(4.1 oTf.9") = o

In particular, for every polynomial P(c) € Cley,...,cn] and for every flat Hermitian
vector bundle (F,h*) on U, P(Tf & F,g™% & h)*P|y; oy = 0.

Proof. — The equation (4.1) follows from [15, Lemma 2.1, (2.7), (2.13)]. Since
ci(Tf,gT) = (=1)iv*wh. by (4.1) and since the curvature of (T'f @ F, g7/ @ ht)
is given by RT59" we get ¢;(Tf & F, g™ & h¥) = (—1)"y*wh, (i > 1) and hence

P(Tfa® F,g™ @ hf)*P = P(—t,..., (=) |1 -y witit = 0. O
Recall that I'y C U x C is the graph of f. We identify U with I'y via the obvious
projection pry : I'y — U. Let § > 0. Define the Hermitian metric g™ s on TU by

TPy = ( TC"H g 5ch)

g g Ir,-

In this section, we regard € as a real parameter again. For € > 0, set
1 * n+1 1 *
gTU .= ¢TTs E_Qf gTC — e 4 (5+ 5_2> Fg7C.
Proposition 4.2 — For all € > 0, the following equation of closed forms on U holds:
1
Proof. — Identify U with I'y. Let N = Nr,,uxc) be the normal bundle of I'y in

U x C. Consider the following short exact sequence of holomorphic vector bundles
on I'y,

c(TU, gETU) =

0 — 1Ty — T(U x C)|r;, — N — 0.
Let g;‘F(UXC) be the Hermitian metric on T'(U x C) defined by

n+1 _
gg'(UXC) — gTC @ (5—|—6 Q)QTC-

Then ¢gZV =g )|1"f. Let gV be the metric on N induced from gET(UXC) by the
C*°-isomorphism N = (TTs)*. Since (T'(U x C),gg(UXC)) is a flat Hermitian vector

T(UxC
€
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bundle on U x C, we have ¢(TU, g?Y) A ¢(N,g¥) = 1 (¢f. [15, Lemma 2.1, (2.6),
(2.7)]). Hence

_ 1 _ 1 _ 1

S e(N.gY) 14 a(N,gN)  1— (N (gN)7Y)

where N* is the conormal bundle of I'y in U x C. Since N* is generated by the global
section df (z) — dt, we get

(4.2) c(TU, ggU)

cr(N*, (92) ™)

— =0 log ||df (=) — dt?
2

(4.3)

i —
—5-00log{|ldf|I* + (3 +=72) 7'}

T oBtog djar? + —=
2700708 14225 [°

where || - || denotes the norm on N* C T*(U x C) with respect to the Hermitian
metric induced from gz (UXC) " The assertion follows from (4.2) and (4.3). O

5. Proof of the Main Theorem 2.2

5.1. The convergence of the curvature form outside ;. — In this section,
we keep the notation and the assumptions of Section 2.

Let (T'f)* € TX be the orthogonal complement of T'f in T X with respect to g7X.
Then (T'f)* is a C®-vector bundle on X \ X¢. Let g(Tf)L be the Hermitian metric
on (Tf)* induced from g7 i.e., g(Tf)L = gTX|(Tf)L. Under the C*°-identification
f*TS = (Tf)* via the projection f. : TX — f*TS, there exists a positive C>-
function h on X \ Xy such that

gt =h- g(Tf)L.

Then the C*°-decomposition TX |x.x, ZTf @ (Tf)* is orthogonal with respect to
the Hermitian metrics

_ 1
gg‘X :ng® (I+e Qh)g(Tf)
for all € > 0. We define the family of positive functions {a.}.~o on X \ Xy by
ac =1+¢e¢2h.

Let A € Aﬁ(’o\zf (Hom(T'f, (T f)*)) be the second fundamental form of the following
exact sequence of holomorphic vector bundles on X \ X,

0 —Tf—TX|xs, — f'TS—0,

with respect to the Hermitian metrics g%, g7¥, g(Tf)L on Tf, TX, (Tf)"*, respec-
tively ([10, Chap. 1, Sect.6]). Notice that A is independent of £ > 0.
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Proposition 5.1 — As € — 0, the curvature RTX.92™ converges uniformly on every
compact subset of X \ Xy to the following matriz:

PGS _ RTH9™ _(9A* — dlog h A A¥)
° = 0 f*RTS,gTS :

Proof. — We follow [3, pp.37 1.1-1.15]. By a straightforward computation (cf. [10,
Chap.1, (6.1)]), the curvature matrix of (I'X, gZ*)|x s, with respect to the orthog-
onal decomposition TX = T f @ (T f)* is given by

Tfg™ _ 1 g+ N7y .
(5.1) RTXﬂ?X:(R ! acATNA (0A* — dloga. A A*) )

L(@A-Dloga. AA) RITS9™ L Galoga. — LA A

Qe

Then the assertion follows from (5.1) because we have the following uniform conver-
gences on every compact subset of X \ ¥ as ¢ — 0:

1 2 h = =
a—:;?—>0, 510ga5:628? — 0logh, 00loga. — 00logh
€
N n _
and also the identity f*RTS:9"° = RFT5:9" "™ 4 59log h. O
5.2. Proof of the Main Theorem 2.2. — Since (f*T'S, f*g7°) is a flat line

bundle on each U, by Assumption 2.1 (2), the assertion (1) follows from Proposi-
tion 4.1. On X \ Upezf Up, the assertion (2) follows from Proposition 5.1. Since
P(Tf® f*TS, g7t @ f*g"%)t°P vanishes on U,
it suffices to verify (2.2) on each U,,.

By Proposition 4.2, we have the following identities on U, for k =1,...,n+ 1:

es, Up™ {p} again by Proposition 4.1,

i e? ;
cr(TU,, g7Vr) = (_1)k{§8810g <|df||2+ 1+825)} )
which yields that

P(TUpa gZUp)top

i g? i g2 i
v = 2 v a5 2
P ( 27T8810g <|df|| + 1+525) ,...,{ Zﬂaalog (||df| + T +525>} )

) 9 n+1
_ . _\n+1 1. L 0 2 °

= P(=t,..., (=) ) |pns {27r5310g <|df|| +1+525)}

).

top

- P(_tﬂ"'v(_t)n+l)|t"+1 'M(fap) 517 (5 —0

Here we used Theorem 3.1 to get the last line. This completes the proof of Theorem
2.2. O
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