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EXPLICIT UPPER BOUNDS FOR THE RESIDUES AT s=1
OF THE DEDEKIND ZETA FUNCTIONS OF SOME
TOTALLY REAL NUMBER FIELDS

by

Stéphane R. Louboutin

Abstract — We give an explicit upper bound for the residue at s = 1 of the Dedekind
zeta function of a totally real number field K for which (x(s)/{(s) is entire. Notice
that this is conjecturally always the case, and that it holds true if K/Q is normal or
if K is cubic.

Résumé (Bornes supérieures explicites pour les résidus en = 1 des fonctions zéta de
Dedekind de corps de nombres totalement réels)

Nous donnons une borne supérieure explicite pour le résidu en s = 1 de la fonction
zéta de Dedekind d’un corps de nombres K totalement réel pour lequel (x(s)/¢(s)
est entiére. On remarque que c’est conjecturalement toujours le cas, et que c’est vrai
si K/Q est normale ou si K est cubique.

1. Introduction

Let dx and (x(s) denote the absolute value of the discriminant and the Dedekind
zeta function of a number field K of degree m > 1. It is important to have explicit
upper bounds for the residue at s =1 of (i (s). As for the best general such bounds,
we have (see [Lou01, Theorem 1]):

elogdg ml
)

Ress—1(Cx (s)) < (2(”17—1

However, for some totally real number fields an improvement on this bound is known
(see [BL] and [Oka)] for applications):

Theorem 1(See[Lou01, Theorem 2]). — Let K range over a family of totally real num-
ber fields of a given degree m > 3 for which (k(s)/C(s) is entire. There exists Cp,
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(computable) such that dx > C,, implies

log™ tdg < 1 ( elogdx )m_l
2(m —1)

Ress—1(Cx (s)) < 2m=1(m — 1)! = 2r(m — 1)

Moreover, for any non-normal totally real cubic field K we have the slightly better
bound

(logdg — k)?

ool =

Res,—1(Ck (s)) <
where k := 2log(4m) —2 — 2y =1.90761... .

Remark 2 — If K/Q is normal or if K is cubic, then (x(s)/((s) is entire.

We will simplify our previous proof of Theorem 1 (by improving those of [Lou98,
Theorem 5] and [Lou01, Theorem 2]) and we will give explicit constants C,, for which
Theorem 1 holds true:

Theorem 3 — There exists C > 0 (effective) such that for any totally real number
field K of degree m > 3 and root discriminant py := d}(/m > C™ we have

log™ dg
Ress=1(Cr (5)) < 2m—T(m — 1)’

provided that Cx (s)/((s) is entire. Moreover, C = 3309 will do for m large enough.

This result is not the one we would have wished to prove. It would indeed have
been much more satisfactory to prove that there exists C' > 0 (effective) such that
this bound is valid for such totally real number fields K of root discriminants px > C
large enough. It would have been even more satisfactory to prove that this constant
C is small enough to obtain that our bound is valid for all totally real number fields
K for which (x(s)/¢(s) is entire (e.g., see [Was, Page 224] for explicit lower bounds
on root discriminants of totally real number fields K'). Let us finally point out that, in
the case that K/Q is abelian, we have an even better bound (see [Lou01, Corollary 8]
and use [Ram, Corollary 1]):

logdx \™ "

Rese—1(Cx (s)) < (2(m 1

2. Proof of Theorem 1

Proposition 4 — Let K be a totally real number field of degree m > 1, set d = v/dy,
and assume that Cx(s)/((s) is entire. Then, Ress—1(Ck(s)) < pm—1(d) where
1 1
)(dsfl +d75)}.

(1) pmi(d) = Resor {5+ (x/20(s/2)¢()) "7 (£ + ==
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Proof. — To begin with, we set some notation: if K is a totally real number field of
degree m > 1, we set Ax = /di /™ and Fk(s) = A3 T™(s/2)Ck(s). Hence, Fk(s)
is meromorphic, with only two poles, at s = 1 and s = 0, both simple, and it satisfies
the functional equation Fx (1 — s) = Fk(s).

We then set Fx/q(s) = Fk(s)/Fq(s), which under our assumption is entire, and
satisfies the functional equation F,q(1 —s) = Fk/q(s), and Ax/q := Ax/Aq =
V/dg /mm—1. Notice that Fg/q(1) = vdx Ress—1(Cx (s)). Let

1 c+i00

(2) Skiq(x) = o Frq(s)r™%ds (c>1and z > 0)

denote the Mellin transform of Fi,q(s). Since Fk,q(s) is entire, it follows that
Sk/q(x) satisfies the functional equation

S ! S =
(3) K/Q(x) =7 K/Q(E)
(shift the vertical line of integration R(s) = ¢ > 1 in (2) leftwards to the vertical line of
integration R(s) = 1—c < 0, then use the functional equation F/q(1—s) = Fx/q(s)
to come back to the vertical line of integration (s) = ¢ > 1), and

e Jdr e s _odx
(1) Fiiae) = | Sira@e T = [ Swjala)(et + 0%
0 € 1 €
is the inverse Mellin transform of Sk /q ().
Now, set
(5) Frne1(s) = F§™4(s) = (/T (5/2)¢(s))" ",
Am—l — A871 _ ﬂ.—(m—l)/Q
and let
1 ct+100
(6) Sm—1(z) := 5 Fr—1(s)z7°ds (¢>1and z > 0)
T Jc—ico

denote the Mellin transform of F,,,_1(s). Here, F,,_1(s) has two poles, at s = 1 and
s = 0, the functional equation F,—1(1 — s) = Fy,—1(s) yields
ReSS:()(Fm,1 (s)xfs) = — ResS:1 (mel(S)l'sil)
and
—S s—1 1 1
(7) Sm-1(@) = Ressmt{Fn_1() (2™ = 2" ™)} + Sy (E)
(shift the vertical line of integration $(s) = ¢ > 1 in (6) leftwards to the vertical line
of integration R(s) = 1 — ¢ < 0, notice that you pick up residues at s = 1 and s = 0,
then use the functional equation F,,_1(1 —s) = Fy,,—1(s) to come back to the vertical
line of integration R(s) = ¢ > 1). Finally, we set
1 c+ioo

Hpy_1(z) = 30 ' Y(s/2)z %ds (c>1and z > 0).

c—100
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Notice that 0 < H,,_;(x) for > 0 (see [Lou00, Proof of Theorem 2](")). Now, write

Cxe(s)/¢(s) = Z ag/q(n)n*

nz=1

and

M) = Z Am—1(n)n=%.

n>1

Then, |ax/q(n)| < am-1(n) for all n. > 1 (see [Lou01, Lemma 26]). Since

n>1
and
0< Sp—1(z) = Z am—1(M)Hpm—1(nz/Am—_1),
n>1
we obtain
(8) Sk/Q(@) < Smor(w/d) with d:= Ag/q/Am—1 = Vdx.

We are now ready to proceed with the proof of Proposition 4. We have
o 1
dRes1(Cx(9) = Fia(D) = [ Sia) (14 )de (o (9)
1
< /OO Sor(w/d) (14 2)dr  (by (8))
1 T
& 1
_ /l/d Sm_l(:c)(d + E)dm
o 1 | 1\ /d
e 1
<(d+1 — 1+ —)d
@+1) [ Sues(a)(1+7)do

d
d
_ -5 _ ,.5—1 -
/1 Ress_1{Fin_1(s)(z ™ — 2 )}(m n l)daz
(by (7), and for S,,—1(x) = 0 for z > 0)

(DNotice the misprints in [Lou00, page 273, line 1] and [Lou01, Theorem 20] where one should
read

(Ml *MQ)(:B) = ‘/Ooo Ml(m/t)MQ(t)%'
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— (d+ 1)/100 Sm_l(x)(l + %)dx

_ Resszl{Fm,l(s) /ld(;cs _ 1‘5*1)(3 4 1)dz}

(compute these residues as contour integrals along a circle
of center 1 and of small radius, and use Fubini’s theorem)

“ i) ([T s (1 e v {mno (e )

#Res,co{ (o) +d7) (5 + ) |

The desired result now follows from Lemma 5 below. O

Lemmab — Set

1 1
o9 B 125,
Then,

Iy = /100 sm,l(x)(1 + i)daz = Resy_1 (Gm_1(s)).

Proof. — By (6) and Fubini’s theorem, we have

= o [ B[ e han)as = 3 [ G o
m-1= — m—1(s x x x)ds = — m—1(8)ds
! 211 c—i00 ! 1 2mi c—100 !
The functional equation Gy,—1(1 — s) = —Gp—1(s) yields
1 c+ioco
L1 = — _
s e Gm—1(8)ds
1 1—c+ioco
= Ress=1(Gm—-1(8)) + Ress—o(Gm—1(s)) + 30 / Gm-1(s)ds
1—c—ico

= 2R685:1(Gm71(8)) - Imflv

from which the desired result follows. O
Let us now complete the proof of Theorem 1. Since
1
) 720 (5/2)(s) = —— —a+O(s — 1),
s —
with a = (log(4m) —~)/2 =0.97690. . ., using (1) we obtain
1 - Cm—1 -2 -3
m-1(d) = ———log" 'd — —"—=1log™ *d + O(log™ *d
pm—1(d) (m =1y 8 (m—2)1 8 + O(log )

with ¢p—1 := (m —1)a— 1 > 0 for m > 3, and the desired first result follows. In the
special case m = 3, in writing

R (5/2)G(s) = — —a+bls — 1) +O((s — 1)),
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with b = 1.00024 ..., and in setting K’ = k/2 := 2a—1 = log(4m) —1—~ = 0.95380. ..
and k" = 3+ 2a% — 4b = 0.90769. .., we have

1 1
p2(d) = 5((logd— k)2 — k") + 2d((10gd—|— &) —kK") < §(logd —K')?

for (d+1)x” > (logd + £’)?, hence for d = \/dx > /148 (notice that 148 is the least
discriminant of a non-normal totally real cubic ﬁeld).

3. Proof of Theorem 3

Set rix = Rese—1(Ck (), d = Vi, g(t) = Y, e7™ " (t > 0) and A(s) =
s(s — 1)m=%/2T'(s/2)¢(s). We have

e dt
(10) A(s) =1+ s(s — 1)/ g(t)(¢*/? + e =)/2) — .
1
(see [Lan, Page 250])(?) and
2s —1
Hpoa(s) = =——A™"1(s).
s
According to Proposition 4, we have
1 25 —1
< = _ = (g5t —s\22 T Am—1
kK < pm-1(d) Ressfl{s — TG (d°="4+d™°) g A (s)}
1 dmfl
= — &+ d) Hyy
(m—1)!dsm—1 5:1( +d) 1(s)

1 " m-1 —1ym=1=k qk (s
:(m1)!kz_:( k )(log kd)(H( )d ) dsk()
Now, H,,—1(1) = A(1) =1 and
H, (1)=1—(m—1)(1=A(1)) = —cm_1 <0

for m > 3 (for A’(1) = (24 v —log(4m))/2 = 0.02309...). Using Lemma 6 below, we
obtain

s:l-

(m=1)1 kg < (1+ (_1)”1_1)1ogm*1 d
—(m— 1)(1 + #)cm_l log™ 2 d
1 m= 3
+(m—1)- (14 é) . Err;;}nﬂ (Alljrr ) Z rlogd
k=0

1t follows that A(s) is positive and convex for s > 0 (see [SZ] for a different proof, and [Lou00,
Lemma 9] for a stronger result), for (10) yields A¥)(s) > 0 for s > 1/2 and k > 0, and the functional
equation A(1 — s) = A(s) then yields (—1)*A(®) (s) >0 for s < 1/2.
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Now, assume that d > exp(2(m — 3)/r). Then,
(rlogd)* o (rlogd)™=3
k! = (m—3)!

2= (m=3-kK) fr 0<k<m—3

and
- 1! 1 1
1(077;'"”71)6an -1 < E — (m— 1)(1 — E)Cm,llog_ld

1y 2r+1 (A +7r)\m-1
2m —1)(m —2 (1 —) ( ) log=2d,
+ (m )(m ) + d (1 _ 7’)7"2 1—7r 08
and this right hand side is clearly negative for m > 3 and d > d,,, large enough. Now,

we take
2

(m—1)(14+A'(1))
(hence, 0 < r < 1 for m > 3) and we still assume that

4> exp(2(m — 3)/r) = exp((L + A'(1))(m — 3)(m — 1)).

T =

We have 2r+1 (A1 +7r)\m-1 1 )2 9 9
(14)7,2( — ) = J(L+ N (1))%m? + O(m)
and for any
C/M =4.052168162. ..

2(1— A'(1))
we obtain ((m — 1)!) - kg < log™ ' d for d > exp(C’'m?) and m large enough, which
proves the desired result for any C' = exp(2C”) > 3308.78497 . ...

Lemma6 — Fork >0 and 0 < r <1, it holds that

d*Hpa(s)| | _ 2r+1 (A(l -i-r))m*lk_!
dsk# ls=1| T 1—-r \ 1—7 7k’
Proof. — Since H,,_1(s) is analytic in the half plane $(s) > 0, for any r € (0,1) we
have
d*H 1 (s) k! Hyo1(2) k!
T dsF =5 — %% < H,, )
‘ dsk s=1 21 /|Z—1—7‘ (z — 1)F+1 z k ‘ZEILPZJ 1(2)]

Since (for t > 0) o — t7/2 +t(179)/2 ig convex in (0, 00), we have
|tz/2 +t(1fz)/2| < t0/2 +t(170)/2 < max(t(lfr)/2 +tr/27t(1+r)/2 +1577"/2)
_ a2y /2

forc=R(z)and 0 < |1 —z| =r <1 and t > 1, and using (10) we obtain

AN+ Wt [ g@E 4 e = )
1

and
2r+1

(1—r)m
for0<|z—-1=r<1. O

[Hm—1(2)] < A" (1)
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