VARIATION OF PARABOLIC COHOMOLOGY AND POINCARÉ DUALITY

by

Michael Dettweiler \& Stefan Wewers

Abstract

We continue our study of the variation of parabolic cohomology ([DW]) and derive an exact formula for the underlying Poincaré duality. As an illustration of our methods, we compute the monodromy of the Picard-Euler system and its invariant Hermitian form, reproving a classical theorem of Picard. Résumé (Variation de la cohomologie parabolique et dualité de Poincaré). - On continue l'étude de la variation de la cohomologie parabolique commencée dans [DW]. En particulier, on donne des formules pour l'accouplement de Poincaré sur la cohomologie parabolique, et on calcule la monodromie du système de Picard-Euler, confirmant un résultat classique de Picard.

Introduction

Let x_{1}, \ldots, x_{r} be pairwise distinct points on the Riemann sphere $\mathbb{P}^{1}(\mathbb{C})$ and set $U:=\mathbb{P}^{1}(\mathbb{C})-\left\{x_{1}, \ldots, x_{r}\right\}$. The Riemann-Hilbert correspondence [Del70] is an equivalence between the category of ordinary differential equations with polynomial coefficients and at most regular singularities at the points x_{i} and the category of local systems of \mathbb{C}-vectorspaces on U. The latter are essentially given by an r-tuple of matrices $g_{1}, \ldots, g_{r} \in \mathrm{GL}_{n}(\mathbb{C})$ satisfying the relation $\prod_{i} g_{i}=1$. The Riemann-Hilbert correspondence associates to a differential equation the tuple $\left(g_{i}\right)$, where g_{i} is the monodromy of a full set of solutions at the singular point x_{i}.

In $[\mathbf{D W}]$ the authors investigated the following situation. Suppose that the set of points $\left\{x_{1}, \ldots, x_{r}\right\} \subset \mathbb{P}^{1}(\mathbb{C})$ and a local system \mathcal{V} with singularities at the x_{i} depend on a parameter s which varies over the points of a complex manifold S. More precisely, we consider a relative divisor $D \subset \mathbb{P}_{S}^{1}$ of degree r such that for all $s \in S$ the fibre $D_{s} \subset \mathbb{P}^{1}(\mathbb{C})$ consists of r distinct points. Let $U:=\mathbb{P}_{S}^{1}-D$ denote the complement

[^0]and let \mathcal{V} be a local system on U. We call \mathcal{V} a variation of local systems over the base space S. The parabolic cohomology of the variation \mathcal{V} is the local system on S
$$
\mathcal{W}:=R^{1} \pi_{*}\left(j_{*} \mathcal{V}\right)
$$
where $j: U \hookrightarrow \mathbb{P}_{S}^{1}$ denotes the natural injection and $\pi: \mathbb{P}_{S}^{1} \rightarrow S$ the natural projection. The fibre of \mathcal{W} at a point $s_{0} \in S$ is the parabolic cohomology of the local system \mathcal{V}_{0}, the restriction of \mathcal{V} to the fibre $U_{0}=U \cap \pi^{-1}\left(s_{0}\right)$.

A special case of this construction is the middle convolution functor defined by Katz [Kat97]. Here $S=U_{0}$ and so this functor transforms one local system \mathcal{V}_{0} on S into another one, \mathcal{W}. Katz shows that all rigid local systems on S arise from one-dimensional systems by successive application of middle convolution. This was further investigated by Dettweiler and Reiter [DR03]. Another special case are the generalized hypergeometric systems studied by Lauricella [Lau93], Terada [Ter73] and Deligne-Mostow [DM86]. Here S is the set of ordered tuples of pairwise distinct points on $\mathbb{P}^{1}(\mathbb{C})$ of the form $s=\left(0,1, \infty, x_{4}, \ldots, x_{r}\right)$ and \mathcal{V} is a one-dimensional system on \mathbb{P}_{S}^{1} with regular singularities at the (moving) points $0,1, \infty, x_{4}, \ldots, x_{r}$. In $[\mathbf{D W}]$ we gave another example where S is a 17 -punctured Riemann sphere and the local system \mathcal{V} has finite monodromy. The resulting local system \mathcal{W} on S does not have finite monodromy and is highly non-rigid. Still, by the comparison theorem between singular and étale cohomology, \mathcal{W} gives rise to ℓ-adic Galois representations, with interesting applications to the regular inverse Galois problem.

In all these examples, it is a significant fact that the monodromy of the local system \mathcal{W} (i.e. the action of $\pi_{1}(S)$ on a fibre of \mathcal{W}) can be computed explicitly, i.e. one can write down matrices $g_{1}, \ldots, g_{r} \in \mathrm{GL}_{n}$ which are the images of certain generators $\alpha_{1}, \ldots, \alpha_{r}$ of $\pi_{1}(S)$. In the case of the middle convolution this was discovered by Dettweiler-Reiter [DR00] and Völklein [VÖ1]. In $[\mathbf{D W}]$ it is extended to the more general situation sketched above. In all earlier papers, the computation of the monodromy is either not explicit (like in $[\mathbf{K a t 9 7}]$) or uses ad hoc methods. In contrast, the method presented in $[\mathbf{D W}]$ is very general and can easily be implemented on a computer.

It is one matter to compute the monodromy of \mathcal{W} explicitly (i.e. to compute the matrices g_{i}) and another matter to determine its image (i.e. the group generated by the g_{i}). In many cases the image of monodromy is contained in a proper algebraic subgroup of GL_{n}, because \mathcal{W} carries an invariant bilinear form induced from Poincaré duality. To compute the image of monodromy, it is often helpful to know this form explictly. After a review of the relevant results of $[\mathbf{D W}]$ in Section 1, we give a formula for the Poincaré duality pairing on \mathcal{W} in Section 2. Finally, in Section 3 we illustrate our method in a very classical example: the Picard-Euler system.

1. Variation of parabolic cohomology revisited

1.1. Let X be a compact Riemann surface of genus 0 and $D \subset X$ a subset of cardinality $r \geq 3$. We set $U:=X-D$. There exists a homeomorphism $\kappa: X \xrightarrow{\sim}$ $\mathbb{P}^{1}(\mathbb{C})$ between X and the Riemann sphere which maps the set D to the real line $\mathbb{P}^{1}(\mathbb{R}) \subset \mathbb{P}^{1}(\mathbb{C})$. Such a homeomorphism is called a marking of (X, D).

Having chosen a marking κ, we may assume that $X=\mathbb{P}^{1}(\mathbb{C})$ and $D \subset \mathbb{P}^{1}(\mathbb{R})$. Choose a base point $x_{0} \in U$ lying in the upper half plane. Write $D=\left\{x_{1}, \ldots, x_{r}\right\}$ with $x_{1}<x_{2}<\cdots<x_{r} \leq \infty$. For $i=1, \ldots, r-1$ we let γ_{i} denote the open interval $\left(x_{i}, x_{i+1}\right) \subset U \cap \mathbb{P}^{1}(\mathbb{R})$; for $i=r$ we set $\gamma_{0}=\gamma_{r}:=\left(x_{r}, x_{1}\right)$ (which may include ∞). For $i=1, \ldots, r$, we let $\alpha_{i} \in \pi_{1}(U)$ be the element represented by a closed loop based at x_{0} which first intersects γ_{i-1} and then γ_{i}. We obtain the following well known presentation

$$
\begin{equation*}
\pi_{1}\left(U, x_{0}\right)=\left\langle\alpha_{1}, \ldots, \alpha_{r} \mid \prod_{i} \alpha_{i}=1\right\rangle \tag{1}
\end{equation*}
$$

which only depends on the marking κ.
Let R be a (commutative) ring. A local system of R-modules on U is a locally constant sheaf \mathcal{V} on U with values in the category of free R-modules of finite rank. Such a local system corresponds to a representation $\rho: \pi_{1}\left(U, x_{0}\right) \rightarrow \mathrm{GL}(V)$, where $V:=\mathcal{V}_{x_{0}}$ is the stalk of \mathcal{V} at x_{0} (note that V is a free R-module of finite rank). For $i=1, \ldots, r$, set $g_{i}:=\rho\left(\alpha_{i}\right) \in \mathrm{GL}(V)$. Then we have

$$
\prod_{i=1}^{r} g_{i}=1
$$

and \mathcal{V} can also be given by a tuple $\mathbf{g}=\left(g_{1}, \ldots, g_{r}\right) \in \mathrm{GL}(V)^{r}$ satisfying the above product-one-relation.

Convention 1.1. - Let α, β be two elements of $\pi_{1}\left(U, x_{0}\right)$, represented by closed path based at x_{0}. The composition $\alpha \beta$ is (the homotopy class of) the closed path obtained by first walking along α and then along β. Moreover, we let GL (V) act on V from the right.
1.2. Fix a local system of R-modules \mathcal{V} on U as above. Let $j: U \hookrightarrow X$ denote the inclusion. The parabolic cohomology of \mathcal{V} is defined as the sheaf cohomology of $j_{*} \mathcal{V}$, and is written as $H_{p}^{n}(U, \mathcal{V}):=H^{n}\left(X, j_{*} \mathcal{V}\right)$. We have natural morphisms $H_{c}^{n}(U, \mathcal{V}) \rightarrow H_{p}^{n}(U, \mathcal{V})$ and $H_{p}^{n}(U, \mathcal{V}) \rightarrow H^{n}(U, \mathcal{V})\left(H_{c}\right.$ denotes cohomology with compact support). Moreover, the group $H^{n}(U, \mathcal{V})$ is canonically isomorphic to the group cohomology $H^{n}\left(\pi_{1}\left(U, x_{0}\right), V\right)$ and $H_{p}^{1}(U, \mathcal{V})$ is the image of the cohomology with compact support in $H^{1}(U, \mathcal{V})$, see [DW, Prop. 1.1]. Thus, there is a natural inclusion

$$
H_{p}^{1}(U, \mathcal{V}) \hookrightarrow H^{1}\left(\pi_{1}\left(U, x_{0}\right), V\right)
$$

Let $\delta: \pi_{1}(U) \rightarrow V$ be a cocycle, i.e. we have $\delta(\alpha \beta)=\delta(\alpha) \cdot \rho(\beta)+\delta(\beta)$ (see Convention 1.1). Set $v_{i}:=\delta\left(\alpha_{i}\right)$. It is clear that the tuple $\left(v_{i}\right)$ is subject to the relation

$$
\begin{equation*}
v_{1} \cdot g_{2} \cdots g_{r}+v_{2} \cdot g_{3} \cdots g_{r}+\cdots+v_{r}=0 \tag{2}
\end{equation*}
$$

By definition, δ gives rise to an element in $H^{1}\left(\pi_{1}\left(U, x_{0}\right), V\right)$. We say that δ is a parabolic cocycle if the class of δ in $H^{1}\left(\pi_{1}(U), V\right)$ lies in $H_{p}^{1}(U, \mathcal{V})$. By [DW, Lemma 1.2], the cocycle δ is parabolic if and only if v_{i} lies in the image of $g_{i}-1$, for all i. Thus, the assignment $\delta \mapsto\left(\delta\left(\alpha_{1}\right), \ldots, \delta\left(\alpha_{r}\right)\right)$ yields an isomorphism

$$
\begin{equation*}
H_{p}^{1}(U, \mathcal{V}) \cong W_{\mathbf{g}}:=H_{\mathbf{g}} / E_{\mathbf{g}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{\mathbf{g}}:=\left\{\left(v_{1}, \ldots, v_{r}\right) \mid v_{i} \in \operatorname{Im}\left(g_{i}-1\right), \text { relation (2) holds }\right\} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{\mathbf{g}}:=\left\{\left(v \cdot\left(g_{1}-1\right), \ldots, v \cdot\left(g_{r}-1\right)\right) \mid v \in V\right\} \tag{5}
\end{equation*}
$$

1.3. Let S be a connected complex manifold, and $r \geq 3$. An r-configuration over S consists of a smooth and proper morphism $\bar{\pi}: X \rightarrow S$ of complex manifolds together with a smooth relative divisor $D \subset X$ such that the following holds. For all $s \in S$ the fiber $X_{s}:=\bar{\pi}^{-1}(s)$ is a compact Riemann surface of genus 0 . Moreover, the natural map $D \rightarrow S$ is an unramified covering of degree r. Then for all $s \in S$ the divisor $D \cap X_{s}$ consists of r pairwise distinct points $x_{1}, \ldots, x_{r} \in X_{s}$.

Let us fix an r-configuration (X, D) over S. We set $U:=X-D$ and denote by $j: U \hookrightarrow X$ the natural inclusion. Also, we write $\pi: U \rightarrow S$ for the natural projection. Choose a base point $s_{0} \in S$ and set $X_{0}:=\bar{\pi}^{-1}\left(s_{0}\right)$ and $D_{0}:=X_{0} \cap D$. Set $U_{0}:=X_{0}-D_{0}=\pi^{-1}\left(s_{0}\right)$ and choose a base point $x_{0} \in U_{0}$. The projection $\pi: U \rightarrow S$ is a topological fibration and yields a short exact sequence

$$
\begin{equation*}
1 \longrightarrow \pi_{1}\left(U_{0}, x_{0}\right) \longrightarrow \pi_{1}\left(U, x_{0}\right) \longrightarrow \pi_{1}\left(S, s_{0}\right) \longrightarrow 1 \tag{6}
\end{equation*}
$$

Let \mathcal{V}_{0} be a local system of R-modules on U_{0}. A variation of \mathcal{V}_{0} over S is a local system \mathcal{V} of R-modules on U whose restriction to U_{0} is identified with \mathcal{V}_{0}. The parabolic cohomology of a variation \mathcal{V} is the higher direct image sheaf

$$
\mathcal{W}:=R^{1} \bar{\pi}_{*}\left(j_{*} \mathcal{V}\right)
$$

By construction, \mathcal{W} is a local system with fibre

$$
W:=H_{p}^{1}\left(U_{0}, \mathcal{V}_{0}\right)
$$

(Since an r-configuration is locally trivial relative to S, it follows that the formation of \mathcal{W} commutes with arbitrary basechange $S^{\prime} \rightarrow S$.) Thus \mathcal{W} corresponds to a representation $\eta: \pi_{1}\left(S, s_{0}\right) \rightarrow \mathrm{GL}(W)$. We call ρ the monodromy representation on the parabolic cohomology of \mathcal{V}_{0} (with respect to the variation \mathcal{V}).
1.4. Under a mild assumption, the monodromy representation η has a very explicit description in terms of the Artin braid group. We first have to introduce some more notation. Define

$$
\mathcal{O}_{r-1}:=\left\{D^{\prime} \subset \mathbb{C}| | D^{\prime} \mid=r-1\right\}=\left\{D \subset \mathbb{P}^{1}(\mathbb{C})| | D \mid=r, \infty \in D\right\}
$$

The fundamental group $A_{r-1}:=\pi_{1}\left(\mathcal{O}_{r-1}, D_{0}\right)$ is the Artin braid group on $r-1$ strands. Let $\beta_{1}, \ldots, \beta_{r-2}$ be the standard generators, see e.g. [DW, § 2.2.] (The element β_{i} switches the position of the two points x_{i} and x_{i+1}; the point x_{i} walks through the lower half plane and x_{i+1} through the upper half plane.) The generators β_{i} satisfy the following well known relations:

$$
\begin{equation*}
\beta_{i} \beta_{i+1} \beta_{i}=\beta_{i+1} \beta_{i} \beta_{i+1}, \quad \beta_{i} \beta_{j}=\beta_{j} \beta_{i} \quad(\text { for }|i-j|>1) \tag{7}
\end{equation*}
$$

Let R be a commutative ring and V a free R-module of finite rank. Set

$$
\mathcal{E}_{r}(V):=\left\{\mathbf{g}=\left(g_{1}, \ldots, g_{r}\right) \mid g_{i} \in \operatorname{GL}(V), \prod_{i} g_{i}=1\right\}
$$

We define a right action of the Artin braid group A_{r-1} on the set $\mathcal{E}_{r}(V)$ by the following formula:

$$
\begin{equation*}
\mathbf{g}^{\beta_{i}}:=\left(g_{1}, \ldots, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, \ldots, g_{r}\right) \tag{8}
\end{equation*}
$$

One easily checks that this definition is compatible with the relations (7). For $\mathbf{g} \in$ $\mathcal{E}_{r}(V)$, let $H_{\mathbf{g}}$ be as in (4). For all $\beta \in A_{r-1}$, we define an R-linear isomorphism

$$
\Phi(\mathbf{g}, \beta): H_{\mathbf{g}} \xrightarrow{\sim} H_{\mathbf{g}^{\beta}}
$$

as follows. For the generators β_{i} we set
(9) $\quad\left(v_{1}, \ldots, v_{r}\right)^{\Phi\left(\mathbf{g}, \beta_{i}\right)}:=(v_{1}, \ldots, v_{i+1}, \underbrace{v_{i+1}\left(1-g_{i+1}^{-1} g_{i} g_{i+1}\right)+v_{i} g_{i+1}}_{(i+1) \text { th entry }}, \ldots, v_{r})$.

For an arbitrary word β in the generators β_{i}, we define $\Phi(\mathbf{g}, \beta)$ using (9) and the 'cocycle rule'

$$
\begin{equation*}
\Phi(\mathbf{g}, \beta) \cdot \Phi\left(\mathbf{g}^{\beta}, \beta^{\prime}\right)=\Phi\left(\mathbf{g}, \beta \beta^{\prime}\right) \tag{10}
\end{equation*}
$$

(Our convention is to let linear maps act from the right; therefore, the left hand side of (9) is the linear map obtained from first applying $\Phi(\mathbf{g}, \beta)$ and then $\Phi\left(\mathbf{g}^{\beta}, \beta^{\prime}\right)$.) It is easy to see that $\Phi(\mathbf{g}, \beta)$ is well defined and respects the submodule $E_{\mathbf{g}} \subset H_{\mathbf{g}}$ defined by (5). Let

$$
\bar{\Phi}(\mathbf{g}, \beta): W_{\mathbf{g}} \xrightarrow{\sim} W_{\mathbf{g}^{\beta}}
$$

denote the induced map on the quotient $W_{\mathbf{g}}=H_{\mathbf{g}} / E_{\mathbf{g}}$.
Given $\mathbf{g} \in \mathcal{E}_{r}(V)$ and $h \in \operatorname{GL}(V)$, we define the isomorphism

$$
\Psi(\mathbf{g}, h):\left\{\begin{array}{ccc}
H_{\mathbf{g}^{h}} & \stackrel{\sim}{\longrightarrow} & H_{\mathbf{g}} \\
\left(v_{1}, \ldots, v_{r}\right) & \longmapsto & \left(v_{1} \cdot h, \ldots, v_{r} \cdot h\right) .
\end{array}\right.
$$

where $\mathbf{g}^{h}:=\left(h^{-1} g_{1} h, \ldots, h^{-1} g_{r} h\right)$. It is clear that $\Psi(\mathbf{g}, h)$ maps $E_{\mathbf{g}^{h}}$ to $E_{\mathbf{g}}$ and therefore induces an isomorphism $\bar{\Psi}(\mathbf{g}, h): W_{\mathbf{g}^{h}} \xrightarrow{\sim} W_{\mathbf{g}}$.

Note that the computation of the maps $\bar{\Phi}(\mathbf{g}, \beta)$ and $\bar{\Psi}(\mathbf{g}, h)$ can easily be implemented on a computer.
1.5. Let S be a connected complex manifold, $s_{0} \in S$ a base point and (X, D) an r configuration over S. As before we set $U:=X-D, D_{0}:=D \cap X_{s_{0}}$ and $U_{0}:=U \cap X_{s_{0}}$. Let \mathcal{V}_{0} be a local system of R-modules on U_{0} and \mathcal{V} a variation of \mathcal{V}_{0} over S. Let \mathcal{W} be the parabolic cohomology of the variation \mathcal{V} and let $\eta: \pi_{1}\left(S, s_{0}\right) \rightarrow \mathrm{GL}(W)$ be the corresponding monodromy representation. In order to describe η explicitly, we find it convenient to make the following assumption on (X, D) :

Assumption 1.2

1. $X=\mathbb{P}_{S}^{1}$ is the relative projective line over S.
2. The divisor D contains the section $\infty \times S \subset \mathbb{P}_{S}^{1}$.
3. There exists a point $s_{0} \in S$ such that $D_{0}:=D \cap \bar{\pi}^{-1}\left(s_{0}\right)$ is contained in the real line $\mathbb{P}^{1}(\mathbb{R}) \subset \mathbb{P}^{1}(\mathbb{C})=\bar{\pi}^{-1}\left(s_{0}\right)$.

In practise, this assumption is not a big restriction. See $[\mathbf{D W}]$ for a more general setup.

By Assumption 1.2, we can consider D_{0} as an element of \mathcal{O}_{r-1}. Moreover, the divisor $D \subset \mathbb{P}_{S}^{1}$ gives rise to an analytic map $S \rightarrow \mathcal{O}_{r-1}$ which sends $s_{0} \in S$ to $D_{0} \in \mathcal{O}_{r-1}$. We let $\varphi: \pi_{1}\left(S, s_{0}\right) \rightarrow A_{r-1}$ denote the induced group homomorphism and call it the braiding map induced by (X, D).

For $t \in \mathbb{R}^{+}$let $\Omega_{t}:=\{z \in \mathbb{C}| | z \mid>t, z \notin(-\infty, 0)\}$. Since Ω_{t} is contractible, the fundamental group $\pi_{1}\left(U_{0}, \Omega_{t}\right)$ is well defined for $t \gg 0$ and independent of t, up to canonical isomorphism. We write $\pi_{1}\left(U_{0}, \infty\right):=\pi_{1}\left(U_{0}, \Omega_{t}\right)$. We can define $\pi_{1}(U, \infty)$ in a similar fashion, and obtain a short exact sequence

$$
\begin{equation*}
1 \rightarrow \pi_{1}\left(U_{0}, \infty\right) \longrightarrow \pi_{1}(U, \infty) \longrightarrow \pi_{1}\left(S, s_{0}\right) \rightarrow 1 \tag{11}
\end{equation*}
$$

It is easy to see that the projection $\pi: U \rightarrow S$ has a continuous section $\zeta: S \rightarrow U$ with the following property. For all $s \in S$ there exists $t \gg 0$ such that the region Ω_{t} is contained in the fibre $U_{s}:=\pi^{-1}(s) \subset \mathbb{P}^{1}(\mathbb{C})$ and such that $\zeta(s) \in \Omega_{t}$. The section ζ induces a splitting of the sequence (11), which is actually independent of ζ. We will use this splitting to consider $\pi_{1}\left(S, s_{0}\right)$ as a subgroup of $\pi_{1}(U, \infty)$.

The variation \mathcal{V} corresponds to a group homomorphism $\rho: \pi_{1}(U, \infty) \rightarrow \operatorname{GL}(V)$, where V is a free R-module. Let ρ_{0} denote the restriction of ρ to $\pi_{1}\left(U_{0}, \infty\right)$ and χ the restriction to $\pi_{1}\left(S, s_{0}\right)$. By Part (iii) of Assumption 1.2 and the discussion in $\S 1.1$ we have a natural ordering $x_{1}<\cdots<x_{r}=\infty$ of the points in D_{0}, and a natural choice of a presentation $\pi_{1}\left(U_{0}, \infty\right) \cong\left\langle\alpha_{1}, \ldots, \alpha_{r} \mid \prod_{i} \alpha_{i}=1\right\rangle$. Therefore, the local system \mathcal{V}_{0} corresponds to a tuple $\mathbf{g}=\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{E}_{r}(V)$, with $g_{i}:=\rho_{0}\left(\alpha_{i}\right)$. One checks
that the homomorphism $\chi: \pi_{1}\left(S, s_{0}\right) \rightarrow \mathrm{GL}(V)$ satisfies the condition

$$
\begin{equation*}
\mathbf{g}^{\varphi(\gamma)}=\mathbf{g}^{\chi(\gamma)^{-1}} \tag{12}
\end{equation*}
$$

for all $\gamma \in \pi_{1}\left(S, s_{0}\right)$. Conversely, given $\mathbf{g} \in \mathcal{E}_{r}(V)$ and a homomorphism $\chi: \pi_{1}\left(S, s_{0}\right)$ such that (12) holds then there exists a unique variation \mathcal{V} which induces the pair (g, χ).

With these notations one has the following result (see [DW, Thm. 2.5]):
Theorem 1.3. - Let \mathcal{W} be the parabolic cohomology of \mathcal{V} and $\eta: \pi_{1}\left(S, s_{0}\right) \rightarrow \mathrm{GL}\left(W_{\mathbf{g}}\right)$ the corresponding monodromy representation. For all $\gamma \in \pi_{1}\left(S, s_{0}\right)$ we have

$$
\eta(\gamma)=\bar{\Phi}(\mathbf{g}, \varphi(\gamma)) \cdot \bar{\Psi}(\mathbf{g}, \chi(\gamma)) .
$$

Thus, in order to compute the monodromy action on the parabolic cohomology of a local system \mathcal{V}_{0} corresponding to a tuple $\mathbf{g} \in \mathcal{E}_{r}(V)$, we need to know the braiding $\operatorname{map} \varphi: \pi_{1}\left(S, s_{0}\right) \rightarrow A_{r-1}$ and the homomorphism $\chi: \pi_{1}\left(S, s_{0}\right) \rightarrow \operatorname{GL}(V)$.

Remark 1.4. - Suppose that R is a field and that the local system \mathcal{V}_{0} is irreducible, i.e. the subgroup of GL (V) generated by the elements g_{i} acts irreducibly on V. Then the homomorphism χ is determined, modulo the scalar action of R^{\times}on V, by \mathbf{g} and φ (via (12)). It follows from Theorem 1.3 that the projective representation $\pi_{1}\left(S, s_{0}\right) \rightarrow$ $\operatorname{PGL}(V)$ associated to the monodromy representation η is already determined by (and can be computed from) \mathbf{g} and the braiding map φ.

The above result is crucial for recent work of the first author [Det05] on the middle convolution, where the above methods are used to realize special linear groups as Galois groups over $\mathbb{Q}(t)$.

2. Poincaré duality

Let \mathcal{V} be a local system of R-modules on the punctured Riemann sphere U. If \mathcal{V} carries a non-degenerate symmetric (resp. alternating) form, then Poincaré duality induces on the parabolic cohomology group $H_{p}^{1}(U, \mathcal{V})$ a non-degenerate alternating (resp. symmetric) form. Similarly, if $R=\mathbb{C}$ and \mathcal{V} carries a Hermitian form, then we get a Hermitian form on $H_{p}^{1}(U, \mathcal{V})$. In this section we derive an explicit expression for this induced form.
2.1. Let us briefly recall the definition of singular (co)homology with coefficients in a local system. See e.g. [Spa93] for more details. For $q \geq 0$ let $\Delta^{q}=\left|y_{0}, \ldots, y_{q}\right|$ denote the standard q-simplex with vertices y_{0}, \ldots, y_{q}. We will sometimes identify Δ^{1} with the closed unit interval $[0,1]$. Let X be a connected and locally contractible topological space and \mathcal{V} a local system of R-modules on X. For a continuous map $f: Y \rightarrow X$ we denote by \mathcal{V}_{f} the group of global sections of $f^{*} \mathcal{V}$.

In the following discussion, a q-chain will be a function φ which assigns to each singular q-simplex $\sigma: \Delta^{q} \rightarrow X$ a section $\varphi(\sigma) \in \mathcal{V}_{\sigma}$. Let $\Delta^{q}(X, \mathcal{V})$ denote the
set of all q-chains, which is made into an R-module in the obvious way. A q-chain φ is said to have compact support if there exists a compact subset $A \subset X$ such that $\varphi_{\sigma}=0$ whenever $\operatorname{supp}(\sigma) \subset X-A$. The corresponding R-module is denoted by $\Delta_{c}^{q}(X, \mathcal{V})$. We define coboundary operators $d: \Delta^{q}(X, \mathcal{V}) \rightarrow \Delta^{q+1}(X, \mathcal{V})$ and $d: \Delta_{c}^{q}(X, \mathcal{V}) \rightarrow \Delta_{c}^{q+1}(X, \mathcal{V})$ through the formula

$$
(d \varphi)(\sigma):=\sum_{0 \leq i \leq q}(-1)^{i} \cdot \overline{\varphi\left(\sigma^{(i)}\right)}
$$

Here $\sigma^{(i)}$ is the i th face of σ (see [Spa66]) and $\overline{\varphi\left(\sigma^{(i)}\right)}$ denotes the unique extension of $\varphi\left(\sigma^{(i)}\right)$ to an element of \mathcal{V}_{σ}. It is proved in [Spa93] that we have canonical isomorphisms

$$
\begin{equation*}
H^{n}(X, \mathcal{V}) \cong H^{n}\left(\Delta^{\bullet}(X, \mathcal{V}), d\right), \quad H_{c}^{n}(X, \mathcal{V}) \cong H^{n}\left(\Delta_{c}^{\bullet}(X, \mathcal{V}), d\right) \tag{13}
\end{equation*}
$$

i.e. singular cohomology agrees with sheaf cohomology. Let $x_{0} \in X$ be a base point and V the fibre of \mathcal{V} at x_{0}. Then we also have an isomorphism

$$
\begin{equation*}
H^{1}(X, \mathcal{V}) \cong H^{1}\left(\pi_{1}\left(X, x_{0}\right), V\right) \tag{14}
\end{equation*}
$$

Let φ be a 1-chain with $d \varphi=0$. Let $\alpha:[0,1] \rightarrow X$ be a closed path with base point x_{0}. By definition, $\varphi(\alpha)$ is a global section of $\alpha^{*} \mathcal{V}$. Then $\alpha \mapsto \delta(\alpha):=\varphi(\alpha)(1)$ defines a cocycle $\delta: \pi_{1}\left(X, x_{0}\right) \rightarrow V$, and this cocycle represents the image of φ in $H^{1}(X, \mathcal{V})$.

A q-chain φ is called finite if $\varphi(\sigma)=0$ for all but finitely many simplexes σ. It is called locally finite if every point in X has a neighborhood $U \subset X$ such that $\varphi(\sigma)=0$ for all but finitely many simplexes σ contained in U. We denote by $\Delta_{q}(X, \mathcal{V})$ (resp. by $\left.\Delta_{q}^{l f}(X, \mathcal{V})\right)$ the R-module of all finite (resp. locally finite) q-chains. For a fixed q simplex σ and a section $v \in \mathcal{V}_{\sigma}$, the symbol $v \otimes \sigma$ will denote the q-chain which assigns v to σ and 0 to all $\sigma^{\prime} \neq \sigma$. Obviously, every finite (resp. locally finite) q-chain can be written as a finite (resp. possibly infinite) sum $\sum_{\mu} v_{\mu} \otimes \sigma_{\mu}$. We define boundary operators $\partial: \Delta_{q}(X, \mathcal{V}) \rightarrow \Delta_{q-1}(X, \mathcal{V})$ and $\partial: \Delta_{q}^{l f}(X, \mathcal{V}) \rightarrow \Delta_{q-1}^{l f}(X, \mathcal{V})$ through the formula

$$
\partial(v \otimes \sigma):=\left.\sum_{0 \leq i \leq q}(-1)^{i} \cdot v\right|_{\sigma^{(i)}} \otimes \sigma^{(i)}
$$

We define homology (resp. locally finite homology) with coefficients in \mathcal{V} as follows:

$$
H_{q}(X, \mathcal{V}):=H_{q}(\Delta \bullet(X, \mathcal{V})), \quad H_{q}^{l f}(X, \mathcal{V}):=H_{q}\left(\Delta_{\bullet}^{l f}(X, \mathcal{V})\right)
$$

2.2. Let $X:=\mathbb{P}^{1}(\mathbb{C})$ be the Riemann sphere and $D=\left\{x_{1}, \ldots, x_{r}\right\} \subset \mathbb{P}^{1}(\mathbb{R})$ a subset of $r \geq 3$ points lying on the real line, with $x_{1}<\cdots<x_{r} \leq \infty$. Let \mathcal{V} be a local system of R-modules on $U=X-D$. Choose a base point x_{0} lying in the upper half plane. Then \mathcal{V} corresponds to a tuple $\mathbf{g}=\left(g_{1}, \ldots, g_{r}\right)$ in GL (V) with $\prod_{i} g_{i}=1$,

It corresponds to the tuple $\mathbf{g}^{*}=\left(g_{1}^{*}, \ldots, g_{r}^{*}\right)$ in GL $\left(V^{*}\right)$, where V^{*} is the dual of V and for each $g \in \operatorname{GL}(V)$ we let $g^{*} \in \operatorname{GL}\left(V^{*}\right)$ be the unique element such that

$$
\left\langle w \cdot g^{*}, v \cdot g\right\rangle=\langle w, v\rangle
$$

for all $w \in V^{*}$ and $v \in V$. Note that $V^{* *}=V$ because V is free of finite rank over R.
Let φ be a 1-chain with compact support and with coefficients in \mathcal{V}^{*}. Let $a=$ $\sum_{\mu} v_{\mu} \otimes \alpha_{\mu}$ be a locally finite 1 -chain with coefficients in \mathcal{V}. By abuse of notation, we will also write $\varphi($ resp. $a)$ for its class in $H_{c}^{1}\left(U, \mathcal{V}^{*}\right)$ (resp. in $H_{1}^{l f}(U, \mathcal{V})$). The cap product

$$
\varphi \cap a:=\sum_{\mu}\left\langle\varphi\left(\alpha_{\mu}\right), v_{\mu}\right\rangle
$$

induces a bilinear pairing

$$
\begin{equation*}
\cap: H_{c}^{1}\left(U, \mathcal{V}^{*}\right) \otimes H_{1}^{l f}(U, \mathcal{V}) \longrightarrow R \tag{15}
\end{equation*}
$$

It is easy to see from the definition that $H_{0}^{l f}(U, \mathcal{V})=0$. Therefore, it follows from the Universal Coefficient Theorem for cohomology (see e.g. [Spa66, Thm. 5.5.3]) that the pairing (15) is nonsingular on the left, i.e. identifies $H_{c}^{1}\left(U, \mathcal{V}^{*}\right)$ with $\operatorname{Hom}\left(H_{1}^{l f}(U, \mathcal{V}), R\right)$. The cap product also induces a pairing

$$
\begin{equation*}
\cap: H^{1}\left(U, \mathcal{V}^{*}\right) \otimes H_{1}(U, \mathcal{V}) \longrightarrow R . \tag{16}
\end{equation*}
$$

(This last pairing may not be non-singular on the left. The reason is that

$$
H_{0}(U, \mathcal{V}) \cong V /\left\langle\operatorname{Im}\left(g_{i}-1\right) \mid i=1, \ldots, r\right\rangle
$$

may not be a free R-module, and so $\operatorname{Ext}^{1}\left(H_{0}(U, \mathcal{V}), R\right)$ may be nontrivial.) Let $f^{1}: H_{c}^{1}\left(U, \mathcal{V}^{*}\right) \rightarrow H^{1}\left(U, \mathcal{V}^{*}\right)$ and $f_{1}: H_{1}(U, \mathcal{V}) \rightarrow H_{1}^{l f}(U, \mathcal{V})$ denote the canonical maps. Going back to the definition, one can easily verify the rule

$$
\begin{equation*}
f^{1}(\varphi) \cap a=\varphi \cap f_{1}(a) \tag{17}
\end{equation*}
$$

Let $\varphi \in H_{c}^{1}\left(U, \mathcal{V}^{*}\right)$ and $\psi \in H^{1}(U, \mathcal{V})$. The cup product $\varphi \cup \psi$ is defined as an element of $H_{c}^{2}(U, R)$, see [Ste43] or [Spa93]. The standard orientation of U yields an isomorphism $H_{c}^{2}(U, R) \cong R$. Using this isomorphism, we shall view the cup product as a bilinear pairing

$$
\cup: H_{c}^{1}\left(U, \mathcal{V}^{*}\right) \otimes H^{1}(U, \mathcal{V}) \longrightarrow R
$$

Similarly, one can define the cup product $\varphi \cup \psi$, where $\varphi \in H^{1}\left(U, \mathcal{V}^{*}\right)$ and $\psi \in$ $H_{c}^{1}(U, \mathcal{V})$. Given $\varphi \in H_{c}^{1}\left(U, \mathcal{V}^{*}\right)$ and $\psi \in H_{c}^{1}(U, \mathcal{V})$, one checks that

$$
\begin{equation*}
f^{1}(\varphi) \cup \psi=\varphi \cup f^{1}(\psi) \tag{18}
\end{equation*}
$$

Proposition 2.1 (Poincaré duality). - There exist unique isomorphisms of R-modules

$$
p: H_{1}(U, \mathcal{V}) \xrightarrow{\sim} H_{c}^{1}(U, \mathcal{V}), \quad p: H_{1}^{l f}(U, \mathcal{V}) \xrightarrow{\sim} H^{1}(U, \mathcal{V})
$$

such that the following holds. If $\varphi \in H_{c}^{1}\left(U, \mathcal{V}^{*}\right)$ and $a \in H_{1}^{l f}(U, \mathcal{V})$ or if $\varphi \in H^{1}\left(U, \mathcal{V}^{*}\right)$ and $a \in H_{1}(U, \mathcal{V})$ then we have

$$
\varphi \cap a=\varphi \cup p(a)
$$

These isomorphisms are compatible with the canonical maps f_{1} and f^{1}, i.e. we have $p \circ f_{1}=f^{1} \circ p$.
Proof. - See [Ste43] or [Spa93].
Corollary 2.2. - The cup product induces a non-degenerate bilinear pairing

$$
\cup: H_{p}^{1}\left(U, \mathcal{V}^{*}\right) \otimes H_{p}^{1}(U, \mathcal{V}) \longrightarrow R .
$$

Proof. - Let $\varphi \in H_{p}^{1}\left(U, \mathcal{V}^{*}\right)$ and $\psi \in H_{p}^{1}(U, \mathcal{V})$. Choose $\varphi^{\prime} \in H_{c}^{1}\left(U, \mathcal{V}^{*}\right)$ and $\psi^{\prime} \in$ $H_{c}^{1}(U, \mathcal{V})$ with $\varphi=f^{1}\left(\varphi^{\prime}\right)$ and $\psi=f^{1}\left(\psi^{\prime}\right)$. By (18) we have $\varphi^{\prime} \cup \psi=\varphi \cup \psi^{\prime}$. Therefore, the expression $\varphi \cup \psi:=\varphi^{\prime} \cup \psi$ does not depend on the choice of the lift φ^{\prime} and defines a bilinear pairing between $H_{p}^{1}\left(U, \mathcal{V}^{*}\right)$ and $H_{p}^{1}(U, \mathcal{V})$. By Proposition 2.1 and since the cap product (15) is non-degenerate on the left, this pairing is also non-degenerate on the left. But the cup product is alternating (i.e. we have $\varphi \cup \psi=-\psi \cup \varphi$, where the right hand side is defined using the identification $\mathcal{V}^{* *}=\mathcal{V}$), so our pairing is also non-degenerate on the right.

For $a \in H_{1}^{l f}\left(U, \mathcal{V}^{*}\right)$ and $b \in H_{1}(U, \mathcal{V})$, the expression

$$
(a, b):=p(a) \cup p(b)
$$

defines another bilinear pairing $H_{1}^{l f}\left(U, \mathcal{V}^{*}\right) \otimes H_{1}(U, \mathcal{V}) \rightarrow R$. It is shown in [Ste43] that this pairing can be computed as an 'intersection product of loaded cycles', generalizing the usual intersection product for constant coefficients, as follows. We may assume that a is represented by a locally finite chain $\sum_{\mu} v_{\mu}^{*} \otimes \alpha_{\mu}$ and that b is represented by a finite chain $\sum_{\nu} v_{\nu} \otimes \beta_{\nu}$ such that for all μ, ν the 1 -simplexes α_{μ} and β_{ν} are smooth and intersect each other transversally, in at most finitely many points. Suppose x is a point where α_{μ} intersects β_{ν}. Then there exists $t_{0} \in[0,1]$ such that $x=\alpha\left(t_{0}\right)=\beta\left(t_{0}\right)$ and $\left(\left.\frac{\partial \alpha}{\partial t}\right|_{t_{0}},\left.\frac{\partial \beta}{\partial t}\right|_{t_{0}}\right)$ is a basis of the tangent space of U at x. We set $\imath(\alpha, \beta, x):=1$ (resp. $\imath(\alpha, \beta, x):=-1)$ if this basis is positively (resp. negatively) oriented. Furthermore, we let $\alpha_{\mu, x}$ (resp. $\beta_{\nu, x}$) be the restriction of α (resp. of β) to the interval $\left[0, t_{0}\right]$. Then we have

$$
\begin{equation*}
(a, b)=\sum_{\mu, \nu, x} \imath\left(\alpha_{\mu}, \beta_{\nu}, x\right) \cdot\left\langle\left(v^{*}\right)^{\alpha_{\mu, x}}, v^{\beta_{\nu, x}}\right\rangle \tag{19}
\end{equation*}
$$

2.3. Let $\mathcal{V} \otimes \mathcal{V} \rightarrow \underline{R}$ be a non-degenerate symmetric (resp. alternating) bilinear form, corresponding to an injective homomorphism $\kappa: \mathcal{V} \hookrightarrow \mathcal{V}^{*}$ with $\kappa^{*}=\kappa$ (resp. $\left.\kappa^{*}=-\kappa\right)$. We denote the induced map $H_{p}^{1}(U, \mathcal{V}) \rightarrow H_{p}^{1}\left(U, \mathcal{V}^{*}\right)$ by κ as well. Then

$$
\langle\varphi, \psi\rangle:=\kappa(\varphi) \cup \psi
$$

defines a non-degenerate alternating (resp. symmetric) form on $H_{p}^{1}(U, \mathcal{V})$.

Similarly, suppose that $R=\mathbb{C}$ and let \mathcal{V} be equipped with a non-degenerate Hermitian form, corresponding to an isomorphism $\kappa: \overline{\mathcal{V}} \xrightarrow{\sim} \mathcal{V}^{*}$. Then the pairing

$$
\begin{equation*}
(\varphi, \psi):=-i \cdot(\kappa(\bar{\varphi}) \cup \psi) \tag{20}
\end{equation*}
$$

is a nondegenerate Hermitian form on $H_{p}^{1}(U, \mathcal{V})$ (we identify $H_{p}^{1}(U, \overline{\mathcal{V}})$ with the complex conjugate of the vector space $H_{p}^{1}(U, \mathcal{V})$ in the obvious way).

Suppose that the Hermitian form on \mathcal{V} is positive definite. Then we can express the signature of the form (20) in terms of the tuple \mathbf{g}, as follows. For $i=1, \ldots, r$, let

$$
g_{i} \sim\left(\begin{array}{lll}
\alpha_{i, 1} & & \tag{21}\\
& \ddots & \\
& & \alpha_{i, n}
\end{array}\right)
$$

be a diagonalization of $g_{i} \in \mathrm{GL}(V)$. Since the g_{i} are unitary, the eigenvalues $\alpha_{i, j}$ have absolute value one and can be uniquely written in the form $\alpha_{i, j}=\exp \left(2 \pi i \mu_{i, j}\right)$, with $0 \leq \mu_{i, j}<1$. Set $\bar{\mu}_{i, j}:=1-\mu_{i, j}$ if $\mu_{i, j}>0$ and $\bar{\mu}_{i, j}:=0$ otherwise.

Theorem 2.3. - Suppose that \mathcal{V} is equipped with a positive definite Hermitian form and that $H^{0}(U, \mathcal{V})=0$. Then the Hermitian form (20) on $H_{p}^{1}(U, \mathcal{V})$ has signature

$$
\left(\left(\sum_{i, j} \mu_{i, j}\right)-\operatorname{dim}_{\mathbb{C}} V,\left(\sum_{i, j} \bar{\mu}_{i, j}\right)-\operatorname{dim}_{\mathbb{C}} V\right)
$$

Proof. - If $\operatorname{dim}_{\mathbb{C}} V=1$, this formula is proved in [DM86, §2]. The general case is proved in a similar manner. We will therefore only sketch the argument.

Let $\Omega^{\bullet}(\mathcal{V}): \mathcal{O}(\mathcal{V}) \rightarrow \Omega^{1}(\mathcal{V})$ be the holomorphic \mathcal{V}-valued de Rham complex on $U([\mathbf{D M 8 6}, \S 2.7])$. Let $j_{*}^{m} \Omega^{\bullet}(\mathcal{V})$ denote the subcomplex of $j_{*} \Omega^{\bullet}(\mathcal{V})$ consisting of sections which are meromorphic at all the singular points. Then we have

$$
H^{1}(U, \mathcal{V})=\mathbb{H}^{1}\left(X, j_{*}^{m} \Omega^{\bullet}(\mathcal{V})\right)=H^{1} \Gamma\left(X, j_{*}^{m} \Omega^{\bullet}(\mathcal{V})\right)
$$

We define a subbundle \mathcal{E} of $j_{*}^{m} \mathcal{O}(\mathcal{V})$ as follows. Fix an index i and let $U_{i} \subset X$ be a disk-like neighborhood of x_{i} which does not contain any other singular point. Set $U_{i}^{*}:=U_{i}-\left\{x_{i}\right\}$. We obtain a decomposition

$$
\left.\mathcal{V}\right|_{U_{i}^{*}}=\oplus_{j} L_{j}
$$

into local systems of rank one, corresponding to the diagonalization (21) of the monodromy matrix g_{i}. In the notation of [DM86, § 2.11], we set

$$
\left.\mathcal{E}\right|_{U_{i}}:=\oplus_{j} \mathcal{O}\left(\mu_{i, j} \cdot x_{i}\right)\left(L_{j}\right) .
$$

In other words: a holomorphic section of \mathcal{E} on U_{i} can be written as $\sum_{j} z^{-\mu_{i, j}} f_{j} v_{j}$, where z is a local parameter on U_{i} vanishing at x_{i}, f_{j} is a holomorphic function and v_{j} is a (multivalued) section of L_{j} on (the universal cover of) U_{i}^{*}. It is clear that
\mathcal{E} is a vectorbundle of $\operatorname{rank} \operatorname{dim}_{\mathbb{C}} V$. Moreover, it is easy to see (compare [DM86], Proposition 2.11.1) that

$$
\begin{equation*}
\operatorname{deg} \mathcal{E}=\sum_{i, j} \mu_{i, j} \tag{22}
\end{equation*}
$$

In the same manner we define a subbundle \mathcal{E}^{\prime} of $j_{*}^{m} \Omega^{1}(\overline{\mathcal{V}})$. It is clear that

$$
\begin{equation*}
\operatorname{deg} \mathcal{E}^{\prime}=\sum_{i, j} \bar{\mu}_{i, j} \tag{23}
\end{equation*}
$$

where $\bar{\mu}_{i, j}$ is defined as above.
We define the subspace $H^{1,0}(U, \mathcal{V})$ of $H^{1}(U, \mathcal{V})$ as the image of the map

$$
H^{0}\left(X, \mathcal{E} \otimes \Omega_{X}^{1}\right) \rightarrow \mathbb{H}^{1}\left(X, j_{*}^{m} \Omega^{\bullet}(\mathcal{V})\right)=H^{1}(U, \mathcal{V})
$$

A local computation shows that $H^{1,0}(U, \mathcal{V})$ is actually contained in $H_{p}^{1}(U, \mathcal{V})=$ $H^{1}\left(X, j_{*} \mathcal{V}\right)$. Let ω be a global section of $\mathcal{E} \otimes \Omega_{X}^{1}$ and let $[\omega]$ denote the corresponding class in $H^{1,0}(U, \mathcal{V})$. The pairing (20) applied to $[\omega]$ is then given by the following integral

$$
([\omega],[\omega])=-i \cdot \int_{U} \omega \wedge \bar{\omega}
$$

see [DM86, § 2.18]. Here the integrand is defined as follows: if we write locally $\omega=$ $v \alpha$, where v is a section of \mathcal{V} and α is a holomorphic one-form, then $\omega \wedge \bar{\omega}:=\|v\|^{2} \alpha \wedge \bar{\alpha}$. The definition of \mathcal{E} ensures that the above integral converges. It follows that the pairing (20) is positive definite on $H^{1,0}(U, \mathcal{V})$ and that $H^{1,0}(U, \mathcal{V})=H^{0}\left(X, \mathcal{E} \otimes \Omega_{X}^{1}\right)$. By Riemann-Roch and (22) we have

$$
\begin{align*}
\operatorname{dim} H^{1,0}(U, \mathcal{V}) & \geq \operatorname{deg}\left(\mathcal{E} \otimes \Omega_{X}^{1}\right)+\operatorname{rank}\left(\mathcal{E} \otimes \Omega_{X}^{1}\right) \\
& \geq \sum_{i, j} \mu_{i, j}-\operatorname{dim} V \tag{24}
\end{align*}
$$

We define $H^{0,1}(U, \mathcal{V})$ as the complex conjugate of $H^{1,0}(U, \overline{\mathcal{V}})$, considered as a subspace of $H_{p}^{1}(U, \mathcal{V})$. Note that the latter space is the image of $H^{0}\left(X, \mathcal{E}^{\prime} \otimes \Omega_{X}^{1}\right)$, and we can represent an element in $H^{0,1}(U, \mathcal{V})$ as an antiholomorphic form with values in \mathcal{E}^{\prime}. The same reasoning as above shows that the pairing (20) is negative definite on $H^{0,1}(U, \mathcal{V})$ and that $H^{0,1}(U, \mathcal{V})$ is equal to the complex conjugate of $H^{0}\left(X, \mathcal{E}^{\prime} \otimes \Omega_{X}^{1}\right)$. Furthermore, we have

$$
\begin{equation*}
\operatorname{dim} H^{0,1}(U, \mathcal{V})=\operatorname{deg}\left(\mathcal{E}^{\prime} \otimes \Omega_{X}^{1}\right)+\operatorname{rank}\left(\mathcal{E}^{\prime} \otimes \Omega_{X}^{1}\right) \geq \sum_{i, j} \bar{\mu}_{i, j}-\operatorname{dim} V \tag{25}
\end{equation*}
$$

Together with (24) we get the inequality

$$
\begin{aligned}
\operatorname{dim} H_{p}^{1}(U, \mathcal{V}) & \geq \operatorname{dim} H^{1,0}(U, \mathcal{V})+\operatorname{dim} H^{0,1}(U, \mathcal{V}) \\
& \geq \sum_{i, j}\left(\mu_{i, j}+\bar{\mu}_{i, j}\right)-2 \operatorname{dim} V \\
& =(r-2) \operatorname{dim} V-\sum_{i} \operatorname{dim} \operatorname{Ker}\left(g_{i}-1\right)
\end{aligned}
$$

But according to [DW, Remark 1.3], this inequality is an equality. It follows that (24) and (25) are equalities as well. The theorem is now a consequence of the fact pointed out before that the pairing (20) is positive definite on $H^{1,0}(U, \mathcal{V})$ and negative definite on $H^{0,1}(U, \mathcal{V})$.

Remark 2.4. - The authors expect several applications of the above results, such as the construction of totally real Galois representations of classical groups (in combination with the results of [Det05]). Another possible application would be to find new examples of differential equations with a full set of algebraic solutions, in the spirit of the work of Beukers and Heckman [BH89].
2.4. We are interested in an explicit expression for the pairing of Corollary 2.2. We use the notation introduced at the beginning of $\S 2.2$, with the following modification. By γ_{i} we now denote a homeomorphism between the open unit interval $(0,1)$ and the open interval $\left(x_{i}, x_{i+1}\right)$. We assume that γ_{i} extends to a path $\bar{\gamma}_{i}:[0,1] \rightarrow \mathbb{P}^{1}(\mathbb{R})$ from x_{i} to x_{i+1}. We denote by $U^{+} \subset \mathbb{P}^{1}(\mathbb{C})$ (resp. U^{-}) the upper (resp. the lower) half plane and by $\bar{U}^{+}\left(\right.$resp. $\left.\bar{U}^{-}\right)$its closure inside $U=\mathbb{P}^{1}(\mathbb{C})-\left\{x_{1}, \ldots, x_{r}\right\}$. Since \bar{U}^{+}is simply connected and contains the base point x_{0}, an element of V extends uniquely to a section of \mathcal{V} over \bar{U}^{+}. We may therefore identify V with $\mathcal{V}\left(\bar{U}^{+}\right)$and with the stalk of \mathcal{V} at any point $x \in \bar{U}^{+}$.

Choose a sequence of numbers $\epsilon_{n}, n \in \mathbb{Z}$, with $0<e_{n}<e_{n+1}<1$ such that $\epsilon_{n} \rightarrow 0$ for $n \rightarrow-\infty$ and $\epsilon_{n} \rightarrow 1$ for $n \rightarrow \infty$. Let $\gamma_{i}^{(n)}:[0,1] \rightarrow U$ be the path $\gamma_{i}^{(n)}(t):=\gamma_{i}\left(\epsilon_{n} t+\epsilon_{n-1}(1-t)\right)$. Let $w_{1}, \ldots, w_{r} \in V$. Since $\operatorname{supp}\left(\gamma_{i}\right) \subset \bar{U}^{+}$, it makes sense to define

$$
w_{i} \otimes \gamma_{i}:=\sum_{n} w_{i} \otimes \gamma_{i}^{(n)}
$$

This is a locally finite 1-chain. Set

$$
c:=\sum_{i=1}^{r} w_{i} \otimes \gamma_{i} .
$$

Note that $\partial(c)=0$, so c represents a class in $H_{1}^{l f}(U, \mathcal{V})$.

Lemma 2.5

1. The image of c under the Poincaré isomorphism $H_{1}^{l f}(U, \mathcal{V}) \cong H^{1}(U, \mathcal{V})$ is represented by the unique cocycle $\delta: \pi_{1}\left(U, x_{0}\right) \rightarrow V$ with

$$
\delta\left(\alpha_{i}\right)=w_{i}-w_{i-1} \cdot g_{i}
$$

2. The cocycle δ in (i) is parabolic if and only if there exist elements $u_{i} \in V$ with $w_{i}-w_{i-1}=u_{i} \cdot\left(g_{i}-1\right)$, for all i.

Proof. - For a path $\alpha:[0,1] \rightarrow U$ in U, consider the following conditions:
(a) The support of α is contained either in U^{+}or in U^{-}.

Figure 1.
(b) We have $\alpha(0) \in U^{+}, \alpha(1) \in U^{-}$and α intersects γ_{i} transversally in a unique point.
(c) We have $\alpha(0) \in U^{-}, \alpha(1) \in U^{+}$and α intersects γ_{i} transversally in a unique point.
In Case (b) (resp. in Case (c)) we identify \mathcal{V}_{α} with V via the stalk $\mathcal{V}_{\alpha(0)}$ (resp. via $\mathcal{V}_{\alpha(1)}$. Let $\varphi \in C^{1}(U, \mathcal{V})$ be the unique cocycle such that

$$
\varphi(\alpha)= \begin{cases}0, & \text { if } \alpha \text { is as in Case (a) } \\ -w_{i}, & \text { if } \alpha \text { is as in Case (b) } \\ w_{i}^{\alpha^{-1}}, & \text { if } \alpha \text { is as in Case (c) }\end{cases}
$$

(To show the existence and uniqueness of φ, choose a triangulation of U in which all edges satisfy Condition (a), (b) or (c). Then use simplicial approximation.) We claim that φ represents the image of the cycle c under the Poincaré isomorphism. Indeed, this follows from the definition of the Poincaré isomorphism, as it is given in [Ste43]. Write $\alpha_{i}=\alpha_{i}^{\prime} \alpha_{i}^{\prime \prime}$, with $\alpha_{i}^{\prime}(1)=\alpha_{i}^{\prime \prime}(0) \in U^{-}$. Using the fact that φ is a cocycle we get

$$
\varphi\left(\alpha_{i}\right)=\varphi\left(\alpha_{i}^{\prime}\right)+\varphi\left(\alpha_{i}^{\prime \prime}\right)^{\alpha_{i}^{\prime-1}}=-w_{i-1}+w_{i} \cdot g_{i}^{-1}
$$

Therefore we have $\delta\left(\alpha_{i}\right)=\varphi\left(\alpha_{i}\right) \cdot g_{i}=w_{i}-w_{i-1} \cdot g_{i}$. See Figure 1. This proves (i).
By Section 1.1, the cocycle δ is parabolic if and only if v_{i} lies in the image of $g_{i}-1$. So (ii) follows from (i) by a simple manipulation.

Theorem 2.6. - Let $\varphi \in H_{p}^{1}\left(U, \mathcal{V}^{*}\right)$ and $\psi \in H_{p}^{1}(U, \mathcal{V})$, represented by cocycles δ^{*} : $\pi_{1}\left(U, x_{0}\right) \rightarrow V^{*}$ and $\delta: \pi_{1}\left(U, x_{0}\right) \rightarrow V$. Set $v_{i}:=\delta\left(\alpha_{i}\right)$ and $v_{i}^{*}=\delta^{*}\left(\alpha_{i}\right)$. If we choose $v_{i}^{\prime} \in V$ such that $v_{i}^{\prime} \cdot\left(g_{i}-1\right)=v_{i}$ (see Lemma 2.5), then we have

$$
\varphi \cup \psi=\sum_{i=1}^{r}\left(\left\langle v_{i}^{*}, v_{i}^{\prime}\right\rangle+\sum_{j=1}^{i-1}\left\langle v_{j}^{*} g_{j+1}^{*} \cdots g_{i-1}^{*}\left(g_{i}^{*}-1\right), v_{i}^{\prime}\right\rangle\right) .
$$

Proof. - Let $w_{1}:=v_{1}, w_{1}^{*}:=v_{1}^{*}$ and

$$
w_{i}:=v_{i}+w_{i-1} \cdot g_{i}, \quad w_{i}^{*}:=v_{i}^{*}+w_{i-1}^{*} \cdot g_{i}^{*}
$$

Figure 2.
for $i=2, \ldots, r$. By Lemma 2.5, we can choose $u_{i} \in V$ with $w_{i}-w_{i-1}=u_{i} \cdot\left(g_{i}-1\right)$, for $i=1, \ldots, r$. The claim will follow from the following formula:

$$
\begin{equation*}
\varphi \cup \psi=\sum_{i=1}^{r}\left\langle w_{i}^{*}-w_{i-1}^{*}, u_{i}-w_{i-1}\right\rangle \tag{26}
\end{equation*}
$$

To prove Equation (26), suppose δ is parabolic, and choose $u_{i} \in V$ such that $w_{i}-$ $w_{i-1}=u_{i} \cdot\left(g_{i}-1\right)$. Let $D_{i} \subset X$ be a closed disk containing x_{i} but none of the other points $x_{j}, j \neq i$. We may assume that the boundary of D_{i} intersects γ_{i-1} in the point $\gamma_{i-1}^{(0)}(1)$ but nowhere else, and that D_{i} intersects γ_{i} in the point $\gamma_{i}^{(0)}(0)$ but nowhere else. Set $D_{i}^{+}:=D_{i} \cap \bar{U}^{+}$and $D_{i}^{-}:=D_{i} \cap \bar{U}^{-}$. Let $u_{i}^{+}:=u_{i}-w_{i-1}$, considered as a section of \mathcal{V} over D_{i}^{+}via extension over the whole upper half plane U^{+}. It makes sense to define the locally finite chain

$$
u_{i}^{+} \otimes D_{i}^{+}:=\sum_{\sigma} u_{i}^{+} \otimes \sigma
$$

where σ runs over all 2-simplexes of a triangulation of D_{i}^{+}. (Note that $x_{i} \notin D_{i}^{+}$, so this triangulation cannot be finite.) Similarly, let $u_{i}^{-} \in \mathcal{V}_{D_{i}^{-}}$denote the section of \mathcal{V} over D_{i}^{-}obtained from $u_{i} \in V$ by continuation along a path which enters U^{-}from U^{+}by crossing the path γ_{i-1}; define $u_{i}^{-} \otimes D_{i}^{-}$as before. Let

$$
c^{\prime}:=c+\partial\left(u_{i}^{+} \otimes D_{i}^{+}+u_{i}^{-} \otimes D_{i}^{-}\right)
$$

It is easy to check that c^{\prime} is homologous to the cocycle

$$
c^{\prime \prime}:=\sum_{i}\left(w_{i} \otimes \gamma_{i}^{(0)}+u_{i}^{+} \otimes \beta_{i}^{+}+u_{i}^{-} \otimes \beta_{i}^{-}\right)
$$

where β_{i}^{+}(resp. β_{i}^{-}) is the path from $\gamma_{i}^{(0)}(0)$ to $\gamma_{i-1}^{(0)}(1)$ (resp. from $\gamma_{i-1}^{(0)}(1)$ to $\gamma_{i}^{(0)}(0)$) running along the upper (resp. lower) part of the boundary of D_{i}. See Figure 2. Note that $c^{\prime \prime}$ is finite and that, by construction, the image of $c^{\prime \prime}$ under the canonical map $f_{1}: H_{1}(U, \mathcal{V}) \rightarrow H_{1}^{l f}(U, \mathcal{V})$ is equal to the class of c. Let $\psi^{\prime} \in H_{c}^{1}(U, \mathcal{V})$ denote the image of $c^{\prime \prime}$ under the Poincare isomorphism $H_{1}(U, \mathcal{V}) \cong H_{c}^{1}(U, \mathcal{V})$. The last statement of Proposition 2.1 shows that ψ^{\prime} is a lift of $\psi \in H_{p}^{1}(U, \mathcal{V})$.

Let $c^{*}:=\sum_{i} w_{i}^{*} \otimes \gamma_{i} \in C_{1}\left(U, \mathcal{V}^{*}\right)$. By (i) and the choice of w_{i}^{*}, the image of c^{*} under the Poincaré isomorphism $H_{1}^{l f}\left(U, \mathcal{V}^{*}\right) \cong H^{1}\left(U, \mathcal{V}^{*}\right)$ is equal to φ. By definition,
we have $\varphi \cup \psi=\left(c^{*}, c^{\prime \prime}\right)$. To compute this intersection number, we have to replace c^{*} by a homologous cycle which intersects the support of $c^{\prime \prime}$ at most transversally. For instance, we can deform the open paths γ_{i} into open paths γ_{i}^{\prime} which lie entirely in the upper half plane. See Figure 2. It follows from (19) that

$$
\left(c^{*}, c^{\prime \prime}\right)=\sum_{i}\left\langle w_{i-1}^{*}, u_{i}^{+}\right\rangle-\left\langle w_{i}^{*}, u_{i}^{+}\right\rangle=\sum_{i}\left\langle w_{i}^{*}-w_{i-1}^{*}, u_{i}-w_{i-1}\right\rangle .
$$

This finishes the proof of (26). The formula in (iv) follows from (26) from a straightforward computation, expressing w_{i} and u_{i} in terms of v_{i} and v_{i}^{\prime}.

Remark 2.7. - In the somewhat different setup, a similar formula as in Theorem 2.6 can be found in [VÖ1, § 1.2.3].

3. The monodromy of the Picard-Euler system

Let

$$
S:=\left\{(s, t) \in \mathbb{C}^{2} \mid s, t \neq 0,1, s \neq t\right\}
$$

and let $X:=\mathbb{P}_{S}^{1}$ denote the relative projective line over S. The equation

$$
\begin{equation*}
y^{3}=x(x-1)(x-s)(x-t) \tag{27}
\end{equation*}
$$

defines a finite Galois cover $f: Y \rightarrow X$ of smooth projective curves over S, tamely ramified along the divisor $D:=\{0,1, s, t, \infty\} \subset X$. The curve Y is called the Picard curve. Let G denote the Galois group of f, which is cyclic of order 3 . The equation $\sigma^{*} y=\chi(\sigma) \cdot y$ for $\sigma \in G$ defines an injective character $\chi: G \hookrightarrow \mathbb{C}^{\times}$. As we will see below, the χ-eigenspace of the cohomology of Y gives rise to a local system on S whose associated system of differential equations is known as the Picard-Euler system.

We fix a generator σ of G and set $\omega:=\chi(\sigma)$. Let $K:=\mathbb{Q}(\omega)$ be the quadratic extension of \mathbb{Q} generated by ω and $\mathcal{O}_{K}=\mathbb{Z}[\omega]$ its ring of integers. The family of G-covers $f: Y \rightarrow X$ together with the character χ of G corresponds to a local system of \mathcal{O}_{K}-modules on $U:=X-D$. Set $s_{0}:=(2,3) \in S$ and let \mathcal{V}_{0} denote the restriction of \mathcal{V} to the fibre $U_{0}=\mathbb{A}_{\mathbb{C}}^{1}-\{0,1,2,3\}$ of $U \rightarrow S$ over s_{0}. We consider \mathcal{V} as a variation of \mathcal{V}_{0} over S. Let \mathcal{W} denote the parabolic cohomology of this variation; it is a local system of \mathcal{O}_{K}-modules of rank three, see [DW, Rem. 1.4]. Let $\chi^{\prime}: G \hookrightarrow \mathbb{C}^{\times}$denote the conjugate character to χ and \mathcal{W}^{\prime} the parabolic cohomology of the variation of local systems \mathcal{V}^{\prime} corresponding to the G-cover f and the character χ^{\prime}. We write $\mathcal{W}_{\mathbb{C}}$ for the local system of \mathbb{C}-vectorspaces $\mathcal{W} \otimes \mathbb{C}$. The maps $\pi_{Y}: Y \rightarrow S$ and $\pi_{X}: X \rightarrow S$ denote the natural projections.
Proposition 3.1. - We have a canonical isomorphism of local systems

$$
R^{1} \pi_{Y, *} \mathbb{C} \cong \mathcal{W}_{\mathbb{C}} \oplus \mathcal{W}_{\mathbb{C}}^{\prime}
$$

This isomorphism identifies the fibres of $\mathcal{W}_{\mathbb{C}}$ with the χ-eigenspace of the singular cohomology of the Picard curves of the family f.

Proof. - The group G has a natural left action on the sheaf $f_{*} \mathbb{\mathbb { C }}$. We have a canonical isomorphism of sheaves on X

$$
f_{*} \mathbb{C} \cong \underline{\mathbb{C}} \oplus j_{*} \mathcal{V}_{\mathbb{C}} \oplus j_{*} \mathcal{V}^{\prime}
$$

which identifies $j_{*} \mathcal{V}_{\mathbb{C}}$, fibre by fibre, with the χ-eigenspace of $f_{*} \mathbb{C}$. Now the Leray spectral sequence for the composition $\pi_{Y}=\pi_{X} \circ f$ gives isomorphisms of sheaves on S

$$
R^{1} \pi_{Y, *} \mathbb{C} \cong R^{1} \pi_{X, *}\left(f_{*} \mathbb{C}\right) \cong \mathcal{W}_{\mathbb{C}} \oplus \mathcal{W}_{\mathbb{C}}^{\prime}
$$

Note that $R^{1} \pi_{X, *} \underline{\mathbb{C}}=0$ because the genus of X is zero. Since the formation of $R^{1} \pi_{Y, *}$ commutes with the G-action, the proposition follows.

The comparison theorem between singular and deRham cohomology identifies $R^{1} \pi_{Y, *} \mathbb{C}$ with the local system of horizontal sections of the relative deRham cohomology module $R_{\mathrm{dR}}^{1} \pi_{Y, *} \mathcal{O}_{Y}$, with respect to the Gauss-Manin connection. The χ-eigenspace of $R_{\mathrm{dR}}^{1} \pi_{Y, *} \mathcal{O}_{Y}$ gives rise to a Fuchsian system known as the PicardEuler system. In more classical terms, the Picard-Euler system is a set of three explicit partial differential equations in s and t of which the period integrals

$$
I(s, t ; a, b):=\int_{a}^{b} \frac{\mathrm{~d} x}{\sqrt[3]{x(x-1)(x-s)(x-t)}}
$$

(with $a, b \in\{0,1, s, t, \infty\}$) are a solution. See [Pic83], [Hol86], [Hol95]. It follows from Proposition 3.1 that the monodromy of the Picard-Euler system can be identified with the representation $\eta: \pi_{1}(S) \rightarrow \mathrm{GL}_{3}\left(\mathcal{O}_{K}\right)$ corresponding to the local system \mathcal{W}.

Theorem 3.2 (Picard). - For suitable generators $\gamma_{1}, \ldots, \gamma_{5}$ of the fundamental group $\pi_{1}(S)$, the matrices $\eta\left(\gamma_{1}\right), \ldots, \eta\left(\gamma_{5}\right)$ are equal to

$$
\begin{aligned}
&\left(\begin{array}{ccc}
\omega^{2} & 0 & 1-\omega \\
\omega-\omega^{2} & 1 & \omega^{2}-1 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
\omega^{2} & 0 & 1-\omega^{2} \\
1-\omega^{2} & 1 & \omega^{2}-1 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & \omega^{2}-1 \\
0 & \omega^{2}-1 & -2 \omega
\end{array}\right) \\
&\left(\begin{array}{ccc}
\omega^{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
\omega^{2} & \omega-\omega^{2} & 0 \\
0 & 1 & 0 \\
1-\omega & \omega^{2}-1 & 1
\end{array}\right)
\end{aligned}
$$

The invariant Hermitian form (induced by Poincaré duality, see Corollary 2.2) is given by the matrix

$$
\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 0 & a \\
0 & a & 0
\end{array}\right)
$$

Figure 3. The braids $\gamma_{1}, \ldots, \gamma_{5}$
where $a=\frac{i}{3}\left(\omega^{2}-\omega\right)$.
Proof. - The divisor $D \subset \mathbb{P}_{S}^{1}$ satisfies Assumption 1.2. Let $\varphi: \pi_{1}\left(S, s_{0}\right) \rightarrow A_{4}$ be the associated braiding map. Using standard methods (see e.g. [V0̈1] and [DR00]), or by staring at Figure 3, one can show that the image of φ is generated by the five braids

$$
\beta_{3}^{2}, \beta_{3} \beta_{2}^{2} \beta_{3}^{-1}, \beta_{3} \beta_{2} \beta_{1}^{2} \beta_{2}^{-1} \beta_{3}^{-1}, \beta_{2}^{2}, \beta_{2} \beta_{1}^{2} \beta_{2}^{-1}
$$

It is clear that these five braids can be realized as the image under the map φ of generators $\gamma_{1}, \ldots, \gamma_{5} \in \pi_{1}\left(S, s_{0}\right)$.

Considering the ∞-section as a 'tangential base point' for the fibration $U \rightarrow S$ as in $\S 1.5$, we obtain a section $\pi_{1}(S) \rightarrow \pi_{1}(U)$. We use this section to identify $\pi_{1}(S)$ with a subgroup of $\pi_{1}(U)$. Let $\alpha_{1}, \ldots, \alpha_{5}$ be the standard generators of $\pi_{1}\left(U_{0}\right)$. Let $\rho: \pi_{1}(U) \rightarrow K^{\times}$denote the representation corresponding to the G-cover $f: Y \rightarrow X$ and the character $\chi: G \rightarrow K^{\times}$, and $\rho_{0}: \pi_{1}\left(U_{0}\right) \rightarrow G$ its restriction to the fibre above s_{0}. Using (27) one checks that ρ_{0} corresponds to the tuple $\mathbf{g}=\left(\omega, \omega, \omega, \omega, \omega^{2}\right)$, i.e. that $\rho_{0}\left(\alpha_{i}\right)=g_{i}$. Also, since the leading coefficient of the right hand side of (27) is one, the restriction of ρ to $\pi_{1}(S)$ is trivial. Hence, by Theorem 1.3, we have

$$
\eta\left(\gamma_{i}\right)=\bar{\Phi}\left(\mathbf{g}, \varphi\left(\gamma_{i}\right)\right)
$$

A straightforward computation, using (9) and the cocycle rule (10), gives the value of $\eta\left(\gamma_{i}\right)$ (in form of a three-by-three matrix depending on the choice of a basis of $\left.W_{\mathbf{g}}\right)$. For this computation, it is convenient to take the classes of $\left(1,0,0,0,-\omega^{2}\right)$, $(0,1,0,0,-\omega)$ and $(0,0,1,0,-1)$ as a basis. In order to obtain the 5 matrices stated in the theorem, one has to use a different basis, i.e. conjugate with the matrix

$$
B=\left(\begin{array}{ccc}
0 & -\omega-1 & -\omega \\
\omega+1 & \omega+1 & \omega+1 \\
1 & 0 & 0
\end{array}\right)
$$

The claim on the Hermitian form follows from Theorem 2.6 by another straightforward computation.

Remark 3.3. - Theorem 3.2 is due to Picard, see [Pic83, p. 125] and [Pic84, p. 181]. He obtains exactly the matrices given above, but he does not list all of the corresponding braids. A similar list as above is obtained in [Hol86] using different methods.

Remark 3.4. - It is obvious from Theorem 3.2 that the Hermitian form on \mathcal{W} has signature $(1,2)$ or $(2,1)$, depending on the choice of the character χ. This confirms Theorem 2.3 in this special case.

References

[BH89] F. Beukers \& G. Heckman - Monodromy for the hypergeometric function ${ }_{n} F_{n-1}$, Invent. Math. 95 (1989), p. 325-354.
[Del70] P. Deligne - Equations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, no. 163, Springer-Verlag, 1970.
[Det05] M. Dettweiler - Galois realizations of classical groups and the middle convolution, Habilitation thesis, 2005.
[DM86] P. Deligne \& G. Mostow - Monodromy of hypergeometric functions and nonlattice integral monodromy, Publ. Math. IHES 63 (86), p. 5-89.
[DR00] M. Dettweiler \& S. Reiter - An algorithm of Katz and its application to the inverse Galois problem, J. Symb. Comput. 30 (2000), p. 761-798.
[DR03] , On the middle convolution, Preprint (math.AG/0305311), 2003.
[DW] M. Dettweiler \& S. Wewers - Variation of local systems and parabolic cohomology, to appear in: Israel. J. Math.
[Hol86] R.-P. Holzapfel - Geometry and arithmetic around Euler partial differential equations, Mathematics and Its Applications, D. Reidel, 1986.
[Hol95] , The ball and some Hilbert problems, Lectures in Mathematics ETH Zürich, Birkhäuser, 1995.
[Kat97] N. Katz - Rigid local systems, Annals of Mathematics Studies 139, Princeton University Press, 1997.
[Lau93] Lauricella - Sulle funzioni ipergeometriche a piu variabili, Rend. di Palermo VII (1893), p. 111-158.
[Pic83] E. Picard - Sur les fonctions de deux variables indépendantes analogues aux fonctions modulaires, Acta Math. 2 (1883), p. 114-135.
[Pic84] et sur les fonctions hyperfuchsiennes correspondantes, Acta Math. 5 (1884), p. 121182.
[Spa66] E. Spanier - Algebraic topology, Springer-Verlag, 1966.
[Spa93] \qquad , Singular homology and cohomology with local coefficients and duality for manifolds, Pacific J. Math. 160 (1993), no. 1, p. 165-200.
[Ste43] N. Steenrod - Homology with local coefficients, Ann. of Math. 44 (1943), no. 2, p. 610-627.
[Ter73] T. Terada - Problème de Riemann et fonctions automorphes provenant des fonctions hypergéometriques de plusieurs variables, J. Math. Kyoto Univ. 13 (1973), p. 557-578.
[VÖ1] H. VÖLKLEIN - The braid group and linear rigidity, Geom. Dedicata 84 (2001), p. 135-150.
M. Dettweiler, Universität Heidelberg • E-mail: michael.dettweiler@iwr.uniheidelberg.de
Stefan Wewers, Universität Bonn - E-mail : wewers@math.uni-bonn.de

[^0]: 2000 Mathematics Subject Classification. - 14F05.
 Key words and phrases. - Parabolic cohomology, Poincaré duality, Riemann-Hilbert correspondence.

