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BRIEF INTRODUCTION TO PAINLEVÉ VI

by

Philip Boalch

Abstract. — We will give a quick introduction to isomonodromy and the sixth Painlevé

differential equation, leading to some questions regarding algebraic solutions.

Résumé(Une brève introduction à Painlevé VI). — Nous donnons une brève introduction

à l’isomonodromie et à la sixième équation différentielle de Painlevé, ce qui conduit

à des questions sur les solutions algébriques.
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1. Introduction

The sixth Painlevé equation (PVI) is a second order nonlinear differential equation

for a complex function y(t):

y′′ = R(y, y′, t)

where R is a certain rational function (see below) depending on four parameters

α, β, γ, δ ∈ C. (Thus we need to fix these parameters to get a particular PVI equation.)

The main thing one needs to know about PVI is the following:
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70 P. BOALCH

Fact. — Suppose we have a local solution y of PVI on some disk D ⊂ P1 \{0, 1,∞} in

the three-punctured sphere. Then y extends, as a solution of PVI, to a meromorphic

function on the universal cover of P1 \ {0, 1,∞}.

Thus solutions only branch at 0, 1,∞ and all other singularities are just poles; this

is the so-called ‘Painlevé property’ of the equation.

Thus PVI shares many of the properties of the Gauss hypergeometric equation,

which is a linear second order equation whose solutions branch only at 0, 1,∞.

Another well-known fact about PVI is that generic solutions y(t) of PVI are “new”

transcendental functions (i.e., they are not expressible in terms of classical special

functions). Thus it is very difficult to find explicit solutions to PVI in general.

However, for special values of the parameters it turns out that there are explicit

solutions, and even solutions y(t) which are algebraic, i.e., defined implicitly by poly-

nomial equations

(1) F (y, t) = 0.

Our aim is to describe some of the geometry behind PVI leading up to a description

of how some of these algebraic solutions may be constructed.

Note immediately that by definition such plane algebraic curves

{(y, t)
∣∣ F (y, t) = 0} ⊂ C2

are covers of the t-line, branched only at 0, 1,∞ and so are Belyi curves. Also, in all

examples so far, the polynomial F turns out to have integer coefficients.

To give a brief taste of the geometry let us mention that, as is often the case,

the three-punctured sphere above arises as the moduli space of (ordered) four-tuples

of points on another P1. Explicitly, to each t ∈ P1 \ {0, 1,∞} we will associate the

four-tuple (0, t, 1,∞) of points and in turn the four-punctured sphere

Pt := P1 \ {0, t, 1,∞}.

As we will explain, PVI arises by considering (isomonodromic) deformations of certain

non-rigid linear differential equations on theses four-punctured spheres. In particular

solving PVI leads to explicit linear differential equations on the four-punctured sphere

with known, non-rigid, monodromy representations.

Acknowledgments. — The reader should note that the literature on PVI is huge and

we will not attempt a survey. (A good bibliography and historical survey may be

found in [DM00].) This note is written to explain some introductory facts about the

method of [Boa05], which extends that of Dubrovin and Mazzocco [DM00]. I would

like to thank Daniel Bertrand and Pierre Dèbes for the invitation to speak at this

conference.
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BRIEF INTRODUCTION TO PAINLEVÉ VI 71

2. Monodromy and actions of the fundamental group of the base

Suppose we have a complete flat connection on a fibre bundle π : M → B. Choose

a basepoint t ∈ B and let Mt = π−1(t) be the fibre of M over t. (See appendix B.)

Then given any loop γ in B based at t, we may integrate the connection on M

around γ, yielding an automorphism

aγ : Mt

∼=−→Mt

of the fibre over t. This automorphism only depends on the homotopy class of the

loop γ (since the connection is flat), and in this way one obtains an action of the

fundamental group of the base on the fibre, i.e., a homomorphism

π1(B) −→ Aut(Mt),

the monodromy action.

This should be compared with the cases of a) linear connections (where the fibre

is a vector space V and so one obtains a representation π1(B) → GL(V )), and b)

coverings (where the fibre is a finite set and so Aut(Mt) = Symn ).

We will be interested in horizontal sections of such flat connections which are finite

covers of the base — i.e., sections which only have a finite number of branches. The

point to be made here is that, in terms of the monodromy action, such sections

correspond precisely to the finite orbits of the monodromy action. Given a point of

m ∈ Mt which is in a finite orbit, the horizontal section of the connection through m

will extend, by definition, to a section with a finite number of branches.

3. Main example: the PVI fibrations

The main example of fibre bundle with complete flat connection we are interested

in here comes from geometry. It is the simplest isomonodromy or non-abelian Gauss-

Manin connection.

Take the base B to be the three-punctured sphere

B := P1 \ {0, 1,∞}.
For each point t ∈ B there is a corresponding four-punctured sphere, namely

Pt := P1 \ {0, t, 1,∞}.
Thus we can think of B as parameterising a (universal) family of four-punctured

spheres, with labelled punctures. Write a1, a2, a3, a4 for these punctures positions:

(a1, a2, a3, a4) := (0, t, 1,∞).

For each t ∈ B we consider the space of conjugacy classes of SL2(C) representations

of the fundamental group of Pt

(2) Hom(π1(Pt), G)/G
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72 P. BOALCH

where G := SL2(C), and we have not specified the basepoint used in π1(Pt), since

changing basepoints yields conjugate representations (which are identified in the quo-

tient (2)).

Now suppose we choose four generic conjugacy classes of G = SL2(C)

C1, C2, C3, C4 ⊂ G.

Then we can consider the subset of (2),

Ct := HomC(π1(Pt), G)/G ⊂ Hom(π1(Pt), G)/G

of representations which take simple positive loops around ai into Ci for i = 1, 2, 3, 4.

Explicitly if we choose loops γi generating π1(Pt) such that γ4 · γ3 · γ2 · γ1

is contractible and that γi is a simple positive loop around ai. Then each

ρ ∈ Hom(π1(Pt), G) determines matrices Mi = ρ(γi) ∈ G and we obtain the

explicit description:

(3) Ct
∼= {(M1, M2, M3, M4)

∣∣ Mi ∈ Ci, M4 · · ·M1 = 1}/G

where G acts by overall conjugation. A simple dimension count shows that in general

these spaces are of complex dimension two and taking the invariant functions identifies

Ct with an affine cubic surface, (cut out by the so-called “Fricke relation”between the

invariants) which is smooth in general (see e.g. [Iwa02, Boa05]).

Remark. — One might ask why, in the simplest case, one cannot have dimension

one instead, but that is because these spaces of “conjugacy classes of fundamental

group representations with fixed local conjugacy classes”, have natural holomorphic

symplectic structures on them, so are even-dimensional.

Lemma. — The surfaces Ct fit together as the fibres of a (nonlinear) fibre bundle

M −→ B

over B and this fibration has a natural complete flat connection defined by identifying

representation with the “same” monodromy.

Proof. — Choose t ∈ B arbitrarily and choose loops generating π1(Pt) to obtain an

explicit description of Ct as in (3). Then there is a small neighbourhood U of t in

B for which we can use the same loops to generate π1(Ps) for any s ∈ U . Thus we

have isomorphisms between Cs and the right-hand side of (3) for any s ∈ U . This

gives a preferred trivialisation of M over U (and one obtains the same trivialisation

if different loops were initially chosen). Since t was arbitrary we may cover B with

such patches U with a preferred trivialisation over each. This is equivalent to giving

a complete flat connection.

Thus we are now in the situation of the previous section, with a complete flat

connection on a fibre bundle.
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BRIEF INTRODUCTION TO PAINLEVÉ VI 73

The Painlevé VI equation amounts to an explicit description of this connection.

Very briefly one defines two specific functions y, x on a dense open subset of M ,

which restrict to local coordinates on each fibre. (See appendix A for a better ap-

proximation.) Writing out the connection in these coordinates yields a pair of coupled

first order non-linear differential equations for y(t), x(t). Eliminating x then yields a

second order equation, the PVI equation, for y(t):

d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

) (
dy

dt

)2

−
(

1

t
+

1

t − 1
+

1

y − t

)
dy

dt
+

y(y − 1)(y − t)

t2(t − 1)2

(
α + β

t

y2
+ γ

(t − 1)

(y − 1)2
+ δ

t(t − 1)

(y − t)2

)
.

Thus the time t in PVI is essentially the cross-ratio of the four pole positions (and is

the coordinate t on the three-punctured sphere B). Also the four parameters α, β, γ, δ

in PVI correspond to the choice of four conjugacy classes Ci ⊂ SL2(C).

The main point is that from this geometrical viewpoint we see that that branching

of solutions y(t) to PVI corresponds to the monodromy of the connection on M →
B. Since this connection is complete, its monodromy amounts to an action of the

fundamental group of B on a fibre Ct.

In particular finite-branching solutions of PVI will be defined on finite covers of B

(i.e covers of P1 branched only over 0, 1,∞) and will correspond to finite orbits of the

monodromy action.

Explicitly this monodromy action can be described as follows in terms of the stan-

dard Hurwitz action.

The three-string braid group B3 acts on G3 = G × G × G as follows

β1(M3, M2, M1) = (M2, M
−1

2
M3M2, M1)

β2(M3, M2, M1) = (M3, M1, M
−1

1
M2M1)

(4)

where Mi ∈ G. The fundamental group of the base B is the free group on two letters

π1(B) = F2 and this appears as the subgroup < β2
1 , β2

2 > of B3. This F2 action on G3

restricts and descends to an action on Ct (where the Mi arise as in (3)). Explicitly,

with our conventions, the generator β2
1 corresponds to the monodromy of y around

1 and β2
2 to the monodromy of y around 0. An equivalent way of thinking of this is

to observe this F2 also arises as the pure mapping class group of the four-punctured

sphere, which acts on the conjugacy classes of representations in the natural way, by

pullback [Boa06].

4. Algebraic solutions

The problem of finding algebraic solutions to PVI can be broken into two parts:

1) Find all the finite orbits of the explicit braid group action (4) on triples of

elements of SL2(C). (Since all algebraic solutions will be finite branching these

orbits will a priori contain the branches of all algebraic solutions.)
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74 P. BOALCH

2) For each finite B3 (or F2) orbit prove the corresponding PVI solution is algebraic

and, if so, construct it explicitly.

The answer to problem 1) appears to be open in general (even though it is an easily

stated algebraic problem about triples of 2 × 2 matrices). However there is an easy

set of solutions; namely take the triple to generate a finite subgroup of SL2(C). (Of

course step 2) is still hard in these cases.) For example all the algebraic solutions

of Hitchin [Hit95, Hit03] and Dubrovin and Mazzocco [DM00] are equivalent to

solutions of this form (thus there are dihedral, tetrahedral, octahedral and icosahedral

solutions).

However it turns out not to be true that all algebraic solutions of PVI are related to

finite subgroups of SL2(C). The main purpose of [Boa05] was to construct a solution

related to Klein’s simple group PSL2(7) ∼= PSL3(2), the next simplest simple group

after the icosahedral group.

For problem 1) we used a different representation of PVI as a non-abelian Gauss-

Manin connection, by taking representations of the fundamental group of the four-

punctured sphere into GL3(C) such that three of the local monodromies are pseudo-

reflections (i.e., automorphisms of the form “one plus rank one”). One again finds

the spaces Ct are two dimensional and a similar relation to PVI. In fact one can

go further (and this is necessary for step 2) and show explicitly how to go between

this GL3(C) picture and the original (well-known) SL2(C) picture sketched above.

The key technical step is in a paper [BJL81] of Balser–Jurkat–Lutz from 1981 and

involves the Fourier–Laplace transformation for certain irregular singular connections.

One can deduce from earlier papers of Dubrovin that the approach of Dubrovin and

Mazzocco (who did in fact use three-dimensional orthogonal reflections) is along the

same lines, although restricting to orthogonal reflections amounts to restricting to a

one-parameter subspace of the full four-parameter family of PVI equations, something

we have now managed to avoid.

In the situation of [Boa05] problem 2) was solved by adapting (and correcting)

a result of Jimbo giving a precise formula for the leading term in the asymptotic

expansion of a PVI solution at zero. This enabled us to pass from a finite braid group

orbit of SL2(C) triples to the explicit solution: an algebraic curve F (y, t) = 0 with

seven branches over the t-line and monodromy group A7, such that the function y(t)

solves PVI.

This asymptotic formula of Jimbo is incredibly useful. For example the article

[Boa06] shows that Jimbo’s formula may be used to compute the asymptotics at zero

of most of the icosahedral solutions to Painlevé VI. Moreover by inspecting the list

of such solutions one sees there is a solution to Painlevé VI whose parameters lie on

none of the reflecting hyperplanes of Okamoto’s affine F4 symmetry group; Jimbo’s

formula facilitates the explicit computation of this “generic” solution.
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BRIEF INTRODUCTION TO PAINLEVÉ VI 75

Since this was a Galois theory conference let us end with a related question. Recall

that an algebraic solution to Painlevé VI amounts to giving a Belyi map t : Π → P1

and a rational function y on Π such that the (local) function y(t) solves the Painlevé

VI equation.

Question. — Are all such “Painlevé curves” Π defined over Q?

Appendix A: Riemann–Hilbert map

We wish to describe (dense open subsets) of the spaces of (linear) connections

corresponding to the monodromy representations ρ ∈ Ct. Note that one needs to take

care not to confuse the monodromy of PVI (the monodromy of a nonlinear connection

on a bundle over the three-punctured sphere) with the monodromy representations

ρ ∈ Ct which will be the monodromy of the linear connections below (on vector

bundles over four-punctured spheres).

Recall we have chosen generic conjugacy classes Ci ⊂ SL2(C) for i = 1, 2, 3, 4. Now

choose adjoint orbits Oi ⊂ g := sl2(C) such that

Ci = exp(2π
√
−1Oi).

Now consider linear meromorphic connections on the trivial rank two vector bundle

over P1 of the form:

∇ := d − A(z)dz; A(z) =
3∑

i=1

Ai

z − ai

or, what amounts to the same thing, systems of linear differential equations of the

form
dΦ

dz
= A(z)Φ.

Here z is a coordinate on C ⊂ P1 and, given t 6= 0, 1, we have (a1, a2, a3, a4) :=

(0, t, 1,∞) as before. These connections have four singularities on P1; simple poles at

0, t, 1,∞. Thus on restriction to the four-punctured sphere Pt they are holomorphic

(and therefore flat) connections. Taking their monodromy gives a representation

ρ ∈ Hom(π1(Pt), G).

Now fixing the residue Ai to be in the orbit Oi (for i = 1, 2, 3, 4 where A4 :=

−A1 −A2 −A3 is the residue at infinity) implies that the monodromy around ai is in

Ci, so in fact ρ ∈ HomC(π1(Pt), G). The conjugacy class of ρ in Ct is independent of

the choice of base point/initial basis chosen to take the monodromy.

The moduli space of such connections thus looks like the space of four-tuples of

such matrices:

O :=
{

(A1, A2, A3, A4)
∣∣ Ai ∈ Oi,

∑
Ai = 0

}
/G
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where we quotient by diagonal conjugation by G, which corresponds to quotienting

by bundle automorphisms (automorphisms of the trivial bundle over P1 are just these

constant automorphisms).

The same dimension count as before gives that dimC(O) = 2 so O is again a

complex surface, which we think of as the “additive analogue” of Ct.

Now let M∗ := B × O be the product of the base B and the surface O, which

we view as a trivial bundle over B with fibre O. A point of M∗ is thus a choice of

t and a point of O, and we view these as specifying a connection ∇ as above. The

procedure of taking the monodromy representations then gives a holomorphic bundle

map, the Riemann-Hilbert map:

M∗ ν−→M

from M∗ to the bundle M of monodromy representations. This map is actually

injective (as set-up here) and typically its image is the complement of an analytic

divisor (the points of this divisor correspond to linear meromorphic connections on

nontrivial degree zero bundles over P1).

Now we pull-back (restrict) the connection on M along the map ν to get a connec-

tion on the bundle M∗ → B.

It is better to say that PVI is what one gets by writing down this connection on M∗

explicitly — since the coordinates x, y appearing in the definition of PVI are certain

algebraic functions on M∗ (restricting to local coordinates on each fibre), whereas

they are transcendental when viewed from M . The explicit expressions for x, y are

well-known and are repeated for example in [Boa05].

Appendix B: connections on fibre bundles

A fibre bundle π : M → B is a surjective map π from a manifold M (the total

space) to a manifold B (the base). This should satisfy various conditions, e.g. that

all fibres are isomorphic: there is some manifold F (the standard fibre) such that

each fibre Mt := π−1(t) is isomorphic to F and also that the bundle should be

“locally trivialisable”, meaning each point t ∈ B of the base has a small neighbourhood

t ∈ U ⊂ B over which M decomposes as a product M |U := π−1(U) ∼= U × F .

By definition a connection on a fibre bundle is a “field of horizontal subspaces of

the tangent bundle of M”. Namely suppose m ∈ M lies over t ∈ B then the tangent

space TmM to M at m is a dim(M) dimensional vector space with a distinguished

dim(F ) dimensional subspace (the vertical directions or tangents to the fibres):

Vm := Tm(Mt) ⊂ TmM.

A connection on M is a (smoothly varying) choice of complementary subspace to Vm in

TmM : i.e., a choice of“horizontal subspaces”Hm ⊂ TmM such that Hm⊕Vm = TmM .

Now if we have a (sufficiently short) smooth path in the base starting at the point t

lying under m (i.e., a map γ : [0, 1] → B with γ(0) = t) then we can use the connection
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to lift γ to a unique path γ̃ in M starting at m. (In brief the projection π sets up an

isomorphism between Hm and the tangent space to B at t so the connection enables

us to lift any tangent vector to t to a tangent vector to M at m — by requiring the

lift to be in Hm. The lifted path γ̃ is got by following these lifted tangent vectors as γ

is traversed.)

The connection is said to be “complete” if any (not necessarily short) path in the

base can be lifted in this way. (This would be automatic if the fibres were compact,

but that will not be the case for our examples.) Given any path in the base, a complete

connection thus gives an isomorphism between the fibres over the endpoints of the

path: namely each point m ∈ Mt maps to the other end of the lifted path starting

at m).

The connection is “flat” if, for any two homotopic paths in the base (with the

same end points), the corresponding lifts have the same endpoints. In particular two

homotopic loops will lift to paths with the same endpoints. (Infinitesimally this can be

restated as follows: the above procedure of using a connection to lift tangent vectors

yields a map from the (sheaf of) vector fields on the base to the vector fields on M .

The flatness of the connection means precisely that this is a Lie algebra map.)

Complete flat connections thus give preferred “horizontal” local trivialisations:

namely if we have a contractible subset U ⊂ B of the base then any two paths

between any two points of U are homotopic. Thus the isomorphism given by the

connection between any two fibres over two points of U is independent of the path

chosen (in U). Thus we get a preferred trivialisation M |U ∼= Mt×U for any basepoint

t ∈ U .
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SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006




