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ON THE ALTERNATE DISCRETE PAINLEVÉ EQUATIONS

AND RELATED SYSTEMS

by

Alfred Ramani, Basil Grammaticos & Thamizharasi Tamizhmani

Abstract. — We examine the family of discrete Painlevé equations which were intro-
duced under the qualifier of “alternate”. We show that there exists a transformation
between the two canonical forms of these equations, and we proceed to link these
forms to the contiguity relations of the continuous PVI. We describe the full degen-
eration cascade of this contiguity, obtaining all related discrete Painlevé equations
(among which, one which has never been derived before) as well as mappings which
are solvable by linearisation.

Résumé(Sur les équations discrètes alternatives de Painlevé et les systèmes associés)
Nous étudions la famille des équations de Painlevé discrètes dites « alternatives ».

Nous exhibons une transformation entre les deux formes canoniques et nous relions
celles-ci aux relations de contigüıté de l’équation de Painlevé continue PVI. Nous dé-
crivons la cascade de dégénérescence complète liée à cette contigüıté ; nous explicitons
toutes les équations de Painlevé discrètes correspondantes (dont une inconnue à ce
jour) ainsi que des applications résolubles par linéarisation.

1. Introduction

While the discrete Painlevé equations (d-Ps) have properties which mirror those

of their continuous counterparts, there exists an aspect where the two families differ

drastically: it concerns the abundance of the two sets of equations. The continuous

Painlevé equations are traditionally given under six canonical forms [6] and, while the

situation is somewhat more complicated than that [2], it remains that their number

is restricted and small. The number of the known discrete Painlevé equations, on the

other hand, has been steadily increasing resulting to, literally, dozens of various dis-

crete analogues of the discrete Painlevé transcendental equations [4]. To fix the ideas,

we remind the reader that the term discrete Painlevé equations is used to designate a

nonlinear, nonautonomous, integrable, second order mapping, the continuous limit of
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which is a Painlevé equation. This last feature has been the source of two difficulties.

First, as was shown in various works, and proven in a systematic way by Sakai [15],

the discrete Painlevé equations may contain up to seven parameters while the number

of parameters of the continuous Painlevé equations cannot exceed four (in the case

of PVI). Thus, all continuous limits of discrete Painlevé equations, with a number

of parameters at least equal to four, are constrained to lead to PVI. Second, even

for discrete equations with a number of parameters less than four, one has a profu-

sion of equations with the same continuous limit. What is most unfortunate is that,

when the discrete Painlevé equations were first discovered, their naming was based

essentially on their continuous limit [13]. Thus, a d-P with continuous limit PI was

called “discrete PI” and so on. These difficulties were alleviated later, thanks to the

Sakai classification, based on the affine Weyl group that describes the transformations

of each d-P. But the traditional names of the d-Ps, once introduced, turned out to

be impossible to eradicate. Among the various ways to deal with the nomenclature

difficulty was the introduction of qualifiers like “standard”, “alternate”, “asymmetric”

and so on.

Thus, when in [3] we derived the d-P:

(1.1)
zn−1 + zn

1 − xn−1xn

+
zn + zn+1

1 − xnxn+1
= xn +

1

xn

+ 2zn + 2µ

and found that its continuous limit was PII, we dubbed it alternate d-PII (“alterna-

tive” could have been a better choice of adjective), in order to distinguish it from

the “standard” d-PII, xn+1 + xn−1 = (znxn + a)/(1 − x2
n). In the same paper, the

alternate d-PI was also obtained:

(1.2)
zn−1 + zn

xn−1 + xn

+
zn + zn+1

xn + xn+1
= x2

n + 1

As a matter of fact, (1.2) is the difference equation obtained by Jimbo and Miwa in

[7] from the contiguity relations of the solutions of the (continuous) Painlevé II.

The alternate d-PII has been the object of a very detailed study [8], where we

have presented its Lax pair, Miura transformations, auto-Bäcklund transformations,

special solutions, and so on. Moreover, the study of alternate d-PII has revealed

the property of self-duality, which has been crucial for the geometrical description of

discrete Ps in terms of affine Weyl groups.

In this paper, we examine the equations of the “alternate” family, from a slightly

different point of view. We show in particular how they can be derived from the conti-

guity relations of the solutions of the continuous PVI equation. While the systematic

application of this approach mostly leads to known d-Ps, we obtain also one new

d-P which has an unusual form. We show how we can, starting from the contiguity

relation, obtain also discrete equations which are not d-Ps but linearisable mappings.
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2. The canonical form of alternate d-Ps

Finding the canonical form of a given equation, be it differential or difference, is a

highly nontrivial task. The criteria of “canonicity” are not always explicit and thus,

sometimes, the choice of the canonical form is a question of ... choice. For the discrete

Ps, both difference- and q-, we have presented in [12] an approach which classified the

forms based on the QRT matrices of the mapping that one finds in the autonomous

limit of the d-P. However, this approach concerns only what we have called the

“standard” family of d-Ps, and thus does not apply to the alternate forms.

For d-Ps, the only transformations that are allowed in order to bring a given d-P

under canonical form are homographic transformations. For reasons that will become

obvious in the next section, we have sought a transformation which would bring the

l.h.s. of the alternate d-PII equation to the form of the l.h.s. of the alternate d-PI.

This transformation turns out to be simply:

(2.1) y =
x + 1

x − 1

Thus, starting from (1.1) we obtain the mapping:

(2.2)
zn−1 + zn

yn−1 + yn

+
zn + zn+1

yn + yn+1
=

4(znyn + µ)

y2
n − 1

+
4(y2

n + 1)

(y2
n − 1)2

While the l.h.s. of the equation becomes identical to that of alternate d-PI, the r.h.s.

becomes substantially more complicated.

At this point, it is interesting to notice that the transformation (2.1) is an invo-

lution, and therefore it transforms the l.h.s. of the alternate d-PII into that of the

alternate d-PI and vice-versa. Indeed applying the transformation (2.1) to (1.2) we

obtain:

(2.3)
zn−1 + zn

1 − yn−1yn

+
zn + zn+1

1 − ynyn+1
=

4z

1 − yn

+
4yn(y2

n + 1)

(1 − yn)4

Finally, we wish to point out another interesting transformation that exists for equa-

tions of the form of alternate d-PI and alternate d-PII. It consists in simply inverting

x. For an equation of the form (1.1) and r.h.s. R(x) we find that, after the transforma-

tions that restore the l.h.s. to its initial form, the r.h.s. becomes R′(x) = 4z − R( 1
x
).

In particular, for the alternate d-PII we find that the equation is invariant if we in-

vert x provided we change the sign of x and µ. In the alternate d-PI case, if we

start from an equation of the form (1.2) and r.h.s. R(x), we obtain, after the proper

manipulations so as to leave the l.h.s. invariant, a new r.h.s. R′(x) = 4z
x
− 1

x2 R( 1
x
).

The transformations presented in this section do show that there is no reason to

prefer an alternate d-PI form to an alternate d-PII one, and vice-versa. Still, they

cannot settle the question of finding the canonical form of the alternate d-Ps. In order

to provide a satisfactory answer we must go back to the origin of these equations. As

we have shown in [3], these d-Ps stem from contiguity relations of the continuous PII
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and PIII respectively. Thus, the question of canonical forms of the alternate d-Ps can

be recast as a question on the canonical form of contiguity relations of continuous Ps.

This makes possible to enlarge the scope of the investigations and analyse in more

generality the discrete Ps that appear as contiguities.

3. Discrete Ps as contiguity relations of continuous Ps

Since we are going to examine the relations of discrete to continuous Ps through

the contiguities of the latter, it is natural to start with the most general continuous P,

namely PVI. The discrete Ps related to PVI have been examined already in [10], and

also in [9]. In what follows, we shall present a somewhat different approach which

will allow the treatment of the equations involved on the same footing.

The continuous PVI equation is traditionally given in the form

(3.1)

w′′ =
1

2

(

1

w
+

1

w − 1
+

1

w − t

)

w′2 −

(

1

t
+

1

t − 1
+

1

w − t

)

w′

+
w(w − 1)(w − t)

2t2(t − 1)2

(

α2 −
β2

w2
+

γ2(t − 1)

(w − 1)2
+

(1 − δ2)t(t − 1)

(w − t)2

)

where in this particular parametrisation α, β, γ and δ are exactly the monodromy

exponents θ∞, θ0, θ1 and θt. In this form it is assumed that three of the singular

points of PVI are located at the fixed points ∞, 0, 1, while the last singular point at t

remains movable. While this is an assumption that simplifies substantially the form

of PVI, it is by no means necessary. It is in fact interesting to investigate the form

of PVI when all four singular points are movable: at a(t), b(t), c(t) and d(t). In this

case, we can rewrite PVI as (with the constraint (a−d)(b−c)
(a−c)(b−d) = t)

(3.2)

w′′ =
1

2

( 1

w − a
+

1

w − b
+

1

w − c
+

1

w − d

)

w′2

−
(1

t
+

1

t − 1
+

a′

w − a
+

b′

w − b
+

c′

w − c
+

d′

w − d
+ e

)

w′

+(w−a)(w−b)(w−c)(w−d)
( f

(w − a)2
+

g

(w − b)2
+

h

(w − c)2
+

k

(w − d)2

)

where

e =
a′ − b′

a − b
+

a′ − c′

a − c
+

(a − d)(b − c)

(a − b)(a − c)
+

(a − d)a′

(a − b)(a − c)
+

(a − d)b′

(a − b)(c − b)
+

(a − d)c′

(a − c)(b − c)

and f, g, h, k are lengthy expressions which cannot be given in a paper of reasonable

length. They are of the form f = f0α
2 + f1, and similarly for g, h, k, where the

derivatives of a, b, c, d appear only in f1, g1, h1, k1. In order to recover the “standard”

expression (3.1) we take a → ∞, b → 0, and c → 1, whereupon d → t.
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The Miura transformations associated to (3.1) have been derived in the form of

a first degree relation by Okamoto [11] and rediscovered in a different approach by

Nijhoff and collaborators [9]. Using this Miura transformation one can derive the

Schlesinger transformations for PVI and obtain the contiguity relations following the

well-established procedure [3]. (We will avoid at this point all comments on the fine

distinctions on the “Schlesinger transformation” proper terminology [1]. While these

distinctions are necessary when one aims at a rigorous treatment they are beyond the

scope of the practical approach adopted here, where our aim is just the derivation of

discrete Ps).

We shall not go into the details of the derivation of the contiguity relation of PVI.

They can essentially be found in [10] and [1]. Adopting the convenient form of the

latter (and correcting a factor of 2 misprint) we can rewrite the contiguity relation as

(3.3)

zn−1 + zn

xn − xn−1
+

zn + zn+1

xn − xn+1
=

zn + p(−1)n

xn − a
+

zn + q(−1)n

xn − b
+

zn + r(−1)n

xn − c
+

zn + s(−1)n

xn − d

where zn = δ(n − n0) and we have the constraint p + q + r + s=0. Expression (3.3)

is the contiguity relation for a general position of the singularities corresponding to

equation (3.2). Notice that if one of the singular points, say a, is taken to ∞, then

the r.h.s. has only three terms and no constraint exists between the surviving q, r, s.

Bringing the positions of the singularities in (3.3) to the “standard” ones ∞, 0, 1, t,

involves homographic transformations of the independent variables, which amounts

to going backwards from (3.2) to (3.1).

A more interesting transformation one can perform on (3.3) is to treat the even-

and odd-index xs in a different way. For example, if we reverse the sign of one x out

of two, i.e., xn → (−1)nxn, then we obtain an equation (which is reminiscent of that

of alternate d-PI):

(3.4)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

∑

i=1,4

zn − αi(−1)n

xn − ai(−1)n

Similarly, if we invert one x out of two, i.e. xn → x
(−1)n

n , we obtain a form reminiscent

of alternate d-PII:

(3.5)
zn−1 + zn

1 − xnxn−1
+

zn + zn+1

1 − xnxn+1
=

∑

i=1,4

zn − αi(−1)n

1 − xna
(−1)n+1

i

This mapping is just the one obtained in [10], with specific values for the ais, precisely

as a contiguity of the solutions of PVI (but, also, initially as a similarity reduction of

the discrete mKdV).

Now, that the general framework is set, we turn to the cases obtained from (3.3)

or equivalently, (3.4) or (3.5), by degeneration through coalescence of singularities.
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For this, it is essential that we work with the general equation involving four ais:

fixing three of them to ∞, 0 and 1 at the outset makes it impossible to construct the

proper degeneration cascade. Of course, once we have obtained the degenerate forms

we are free to perform homographic transformations on the ais and bring them to the

“canonical” values.

The first reduction one can construct from the contiguity relation (3.4) is by taking

a1 = a2 = a. We obtain directly the mapping

(3.6)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

2zn − (α1 + α2)(−1)n

xn − a(−1)n
+

∑

i=3,4

zn − αi(−1)n

xn − ai(−1)n

and one can simplify further by taking a → ∞. The mapping, now, has the form

(3.7)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

zn − α3(−1)n

xn − a3(−1)n
+

zn − α4(−1)n

xn − a4(−1)n
.

We start by translating xn to xn+(−1)n(a3+a4)/2 in which case the two denominators

of the r.h.s. become xn ± (−1)n(a4 − a3)/2 while those of the l.h.s. are unchanged.

Rescaling x through x → 2x/(a4 − a3), we obtain at the r.h.s. the denominators

xn ± (−1)n. By considering the even and odd ns we can show that the mapping has

the form

(3.8)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

2znxn + α(−1)n

x2
n − 1

where α = 2(α3 +α4)/(a4 − a3) and we have translated zn to zn + (−1)n(α3 + α4)/2.

This mapping was first obtained in [14] where we have shown that it is not a discrete

P but rather a mapping that can be reduced to a linear one. Moreover, from the

results of [14], one can show that zn entering (3.8) is an arbitrary function of n, and

not just a linear one: the mapping is linearisable for any z(n).

However, it is possible to obtain a discrete P at this level of degeneration. For this,

we start by taking a1 = −a2 = a. Then, from (3.4) we have

(3.9)

zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

2znxn − x(α1 + α2)(−1)n + (α1 − α2)a

x2
n − a2

+
∑

i=3,4

zn − αi(−1)n

xn − ai(−1)n

Next, we take a → ∞ and at the same time we require that (α1 −α2)/a be finite, say

−κ. This is perfectly possible while keeping (α1 + α2) finite. (This last constraint is

essential. Given that α1 + α2 + α3 + α4 = 0, we cannot have a diverging (α1 + α2)

unless (α3 +α4) also diverges. This would lead to a diverging r.h.s. of (3.9) unless one

considers further degeneration of a3, a4). Thus, when a → ∞, the only contribution

that survives from the first term in the r.h.s. of (3.9) is the constant κ. Applying the
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same homographic transformations to the remaining mapping as for (3.8) we obtain

finally

(3.10)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
= κ +

(2zn − β(−1)n)xn + α(−1)n

x2
n − 1

with α = 2(α3 + α4)/(a4 − a3) and β = (α3 + α4). This mapping was first identified

in [14] and is indeed a discrete Painlevé equation.

In order to pursue the degeneration, one must explore the possibility either to send

a third singularity to ∞ or collapse the two remaining singularities to a common

value. We first examine the degenerations of the linearisable mapping (3.7). Taking

a1 = a2 = a3 = a, and letting a → ∞, we obtain the mapping:

(3.11)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

zn

xn

where we have translated x and z so as to bring a4 and α4 to zero. This mapping is,

quite expectedly, a linearisable one and zn is a free function of n.

Taking a3 = a4 → 0 in (3.7) leads to another linearisable mapping:

(3.12)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

2zn

xn

Again we have translated z so as to bring α3 + α4 to zero and in fact zn is a free

function of n. The linearisation of both (3.11) and (3.12) is straightforward. Putting

yn = xn/xn−1 one obtains a homographic mapping for y. In fact this linearisation

would work even for totally arbitrary functions of n in all three numerators of (3.11)

and (3.12).

Next, we take a3 = −a4 = a in (3.7) and find:

(3.13)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

2znxn − xn(α3 + α4)(−1)n + (α3 − α4)a

x2
n − a2

At the limit a → 0, we find again an expression like (3.12), unless we let α3 − α4

diverge in such a way that (α3 − α4)a remains finite with value, say, λ. The end

result, after a translation of z, is:

(3.14)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

2zn

xn

+
λ

x2
n

This is, again, a linearisable mapping, first discovered in [14], and zn can be a free

function of n.

We now turn to mapping (3.9) with a → ∞ and (α1 − α2)a → −κ. The first

degeneration is obtained by the coalescence a3 = a4 = b (and a subsequent translation

which brings b to zero). We obtain, after a translation of z, the linearisable mapping:

(3.15)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
= κ +

2zn

xn

One can again introduce a free function of n, provided one replaces the 2zn in the r.h.s.

of (3.15) by zn−1 +zn+1. It was first derived in [14] where it was shown that it can be
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linearised, with zn a free function of n. In fact (3.15) is related to (3.14) by the simple

transformation x → 1/x. For a generic (nonlinear) function z(n), the r.h.s. of (3.15)

is transformed by the transformation R′(xn) = (2zn + zn+1 + zn−1)/xn −R(1/xn)/x2
n

and we have κ = −λ.

A different degeneration does also exist and is, in fact, more interesting. It is

obtained if instead of coalescing a3 and a4 we send one of them to ∞ and the other

to zero. We find in this case:

(3.16)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
= κ +

zn

xn

This is a linearisable mapping that has not been derived before. Again zn can be a free

function of n. In order to linearise (3.16) we introduce the Miura xn = zn/(yn+1 +

yn + κ) and find that yn satisfies the homographic mapping yn+1ynznC(−1)n =

yn+1 + yn + κ, where C is an integration constant.

A non-linearisable limit can be obtained if we take a3 = −a4 = b and subsequently

we assume that b → 0 and (α3 − α4)b goes over to a finite value λ. The resulting

mapping reads:

(3.17)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
= κ +

2(zn + µ(−1)n)

xn

+
λ

x2
n

where µ = (α3 + α4)/2. Equation (3.17) is nothing but the alternate d-PII we have

presented already in section 2. Indeed, start by scaling x and z so as to have κ = λ =

−1 (and µ is to be understood as a rescaled one). Now, it suffices to invert one x out

of two, and examining separately the even and odd indices we find that the resulting

equation is precisely (1.1).

Finally, a still more interesting degeneracy of contiguities exists. We obtain it by

letting three singularities coalesce to infinity. We take a1 = a, a2 = aj, a3 = aj2,

(with j3 = 1) and, then, let a → ∞. From (3.4), we find

(3.18)

zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

zn − α4(−1)n

xn − a4(−1)n

+
[

3zn − (α1 + α2 + α3)(−1)n − axn(α1 + jα2 + j2α3)

−a2(α1 + j2α2 + jα3)(−1)n
]/

[

x3
n − a3(−1)n

]

Due to the constraint α1 +α2 +α3 +α4 = 0, the quantity α1 +α2 +α3 must be finite,

lest a4 also diverge. The two other quantities however, namely (α1 + jα2 + j2α3)

and (α1 + j2α2 + jα3), may both diverge as a2 and a respectively. Thus, at the limit

a → ∞ we have

(3.19)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
= λ(−1)nxn + κ +

zn − α4(−1)n

xn
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where we have translated x so as to bring a4 to zero. This is a new discrete P, which

has not been derived before. It is related to the continuous PIV and the geometry of

its transformations can be described by the affine Weyl group A
(1)
2 .

A final coalescence corresponds to all four singularities going to ∞.

We put a1 = a, a2 = ia, a3 = −a, a4 = −ia. We obtain, in this case,

(3.20)

zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
=

[

4znx3
n − ax2

n(α1 + iα2 − α3 − iα4)

−a2xn(α1 − α2 + α3 − α4)(−1)n − a3(α1 − iα2 + α3 − iα4)
] /

[

x4
n − a4

]

Next, we take a → ∞ and let α1, α2, α3, α4 diverge in such a way as to make all

three combinations (α1 + iα2−α3 − iα4)/a3, (α1 −α2 +α3−α4)/a2, (α1 − iα2 +α3−

iα4)/a finite. We obtain, finally,

(3.21)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
= µx2

n + λ(−1)nxn + κ

which is nothing but the alternate d-PI equation. Indeed, translating x by

λ(−1)n/(2µ) does not modify the l.h.s. and brings (3.21) to the form (1.2).

However, this is possible only if µ 6= 0. On the other hand, if we take µ = 0 in (3.21)

we obtain the mapping

(3.22)
zn−1 + zn

xn + xn−1
+

zn + zn+1

xn + xn+1
= λ(−1)nxn + κ

which is not a d-P but rather a (new) linearisable system and this for zn a free

function of n. In order to linearise it we compute its discrete derivative by upshifting

(3.22) and subtracting, eliminating κ. Next we introduce the auxiliary variable yn =

(zn + zn+1)/(xn + xn+1) and find yn−1 − yn+1 = λ(−1)n(xn + xn+1).

Using the definition of y and introducing un = ynyn−1 we find that the latter

satisfies the linear equation un − un+1 = λ(−1)n(zn + zn+1), with solution un =

C + λ(−1)nzn. Having u one gets y from a (very simple) homographic relation and

finally x though the solution of another linear equation.

4. Conclusion

In this paper, we have examined the discrete Painlevé equations which were intro-

duced (more than 10 years ago) under the qualifier of “alternate”. This term was used

for the description of the discrete forms of d-PI and d-PII obtained as contiguities of

the (solutions of) the continuous PII and PIII respectively. As we have shown, there

does not exist a unique canonical form for these “alternate” equations since the l.h.s.

of (1.1) can be transformed to that of (1.2) and vice-versa, and the choice for the final

form is a question of taste.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



246 A. RAMANI, B. GRAMMATICOS & T. TAMIZHMANI

Since these two equations are contiguities of the solutions of continuous Painlevé

equations we have addressed the question of systematically deriving the d-Ps that

appear as contiguities starting from the most general continuous Painlevé equations,

namely PVI. We have chosen to organize our findings along the degeneration cascade,

where one starts from the “higher” equation, and obtains the “lower” ones by coales-

cence of the singularities. Applying this approach to the contiguities of PVI we have

obtained essentially known d-Ps with one exception, namely equation (3.19), which

has never been derived before. This d-P, just like all those obtained as contiguities

of continuous Ps, is integrable by construction. Its Lax pair can be obtained from

the Lax pair of the continuous Painlevé equation (namely PIV), combined with its

Schlesinger transformation, as we explained in [5].

Moreover, in the degeneration process, we can obtain not only discrete Ps but also

mappings that can be reduced to linear ones, including two that have never been

derived before. Thus, our approach offers a unified picture of discrete (difference) Ps

and linearisable mappings, makes possible the connection to already existing results,

while allowing the discovery of new integrable systems.
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