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Abstract. — We present in these lecture notes a few recent results about the large

time behavior of solutions of the Euler equations in the full plane or in a half plane.

We will investigate the confinement properties of the vorticity and we will try to

determine the structure of the weak limit of different rescalings of the vorticity.

Résumé(Comportement en temps grand pour les fluides parfaits incompressibles)
Nous présentons dans ces notes de cours quelques résultats récents sur le com-

portement en temps grand des solutions des équations d’Euler dans le plan entier

ou dans un demi-plan. Nous étudions les propriétés de confinement du tourbillon et

nous essaierons de déterminer la structure de la limite faible de divers changements

d’échelle du tourbillon.

1. Introduction

These lecture notes correspond to an eight hours mini-course that the author taught

at the CIMPA summer school in Lanzhou (China) during July 2004.

The equation of motion of a perfect incompressible fluid were deduced by Euler

[13] by assuming that there is no friction between the molecules of the fluid. In the

modern theory of existence and uniqueness of solutions, the case of the dimension two

is by far the richest one. Global existence and uniqueness of bidimensional solutions

was first proved by Wolibner [42] for smooth initial data and by Yudovich [45] for data

with bounded vorticity. There are also some global existence results (no uniqueness

yet) when the vorticity belongs to Lp or is a nonnegative compactly supported H−1

Radon measure. As far as the dimension three is concerned, only some local in time

results are known, except in some very particular cases.
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c© Séminaires et Congrès 15, SMF 2007



120 D. IFTIMIE

After obtaining this global existence theory in dimension two under more or less

satisfactory hypothesis, a natural question arises: what is the large time behavior of

these solutions? Unfortunately, the answer to this question is still largely unknown.

The few results that are known give some information on the vorticity rather than the

velocity itself. This 8 hours mini-course is intended to present the latest developments

on the subject together with a introduction to the equations and a review of the main

global existence of solutions results.

The structure of these notes is the following. In Part I we start by giving a very

short presentation of the equations, we introduce the main quantities and list without

proof the conservations laws that will be used in the sequel. Next we review the

most important global existence and uniqueness of solutions results; the main ideas

of the proofs are also highlighted. After this introductory part, we discuss in Part

II some relevant examples of solutions for the Euler equations and the vortex model;

the behavior observed here will be precious in the sequel. Part III deals with the

confinement properties of nonnegative vorticity. We end this work with the most

general case, the case of unsigned vorticity. Here we will find another point of view for

the large time behavior: we will try to describe the weak limits of different rescalings

of the vorticity.

Part I is given only to make these lecture notes self-contained. For these reasons,

the write-up is rather sketchy with very few details given. The main part of this work

consists of Parts II, III and IV which are more complete and carefully written.

PART I

PRESENTATION OF THE EQUATIONS AND EXISTENCE OF

SOLUTIONS

2. Presentation of the equations, Biot-Savart law and conserved

quantities

Let u be the velocity of a perfect incompressible fluid filling R
n and p the pressure.

Assuming that the density is constant equal to 1, the vector field u and the scalar

function p must satisfy the following Euler equation

∂tu+ u · ∇u = −∇p, div u = 0, u
∣∣
t=0

= u0,

where div u =
∑

i ∂iui and u · ∇ =
∑

i ui∂i. If we place ourselves on a bounded

domain, then we must also assume the so-called slip boundary conditions which say

that the velocity is tangent to the boundary and express the fact that the boundary
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LARGE TIME BEHAVIOR IN PERFECT INCOMPRESSIBLE FLOWS 121

is not permeable. We define the vorticity to be the following antisymmetric matrix

Ω = (∂jui − ∂iuj)i,j .

In dimension 2 we identify Ω to a scalar function,

Ω ≡ ω = ∂1u2 − ∂2u1

while in dimension 3 we identify it with the following vector field.

Ω ≡ ω =




∂2u3 − ∂3u2

∂3u1 − ∂1u3

∂1u2 − ∂2u1



 .

From the divergence free condition on u, one can check that

4u = div Ω =
(∑

j

∂jΩij

)

i

Using the formula for the fundamental solution of the Laplacian in R
n we deduce the

following formula expressing the velocity in terms of the vorticity.

u = Cn

∫

Rn

Ω(y)
x− y
|x− y|n dy.

The above relation is called the Biot-Savart law. In dimension 2, the Biot-Savart law

can be expressed as follows:

u =

∫

R2

(x− y)⊥
2π|x− y|2ω(y) dy =

x⊥

2π|x|2 ∗ ω,

where x⊥ = (−x2, x1).

It is a simple calculation to check that the vorticity equation is

∂tΩ + u · ∇Ω + (∇u)Ω + Ω(∇u)t = 0

while in dimension 2 it can be expressed as a simple transport equation:

(1) ∂tω + u · ∇ω = 0.

From this transport equation it is not difficult to deduce that the following quan-

tities are conserved in dimension 2:

–
∫

R2 u;

– the energy ‖u‖2L2 and the generalized energy
∫∫

R2×R2 log |x− y|ω(x)ω(y) dxdy;

–
∫

R2 ω and all Lp norms of ω, 1 ≤ p ≤ ∞;

– center of mass
∫

R2 xω(x) dx;

– moment of inertia
∫

R2 |x|2ω(x) dx;

– circulation on a material curve
∫
Γ
u · ds (Γ is a curve transported by the flow).
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122 D. IFTIMIE

3. Existence and uniqueness results

The aim of this section is to give a review of the most important global existence

(and sometimes uniqueness) of bidimensional solutions to the Euler equations and

also to give a very short sketch of the proof with the main ingredients. We start

with the case of classical solutions in Subsection 3.1, we continue with Lp vortici-

ties in Subsection 3.2 and we end with the very interesting case of vortex sheets in

Subsection 3.3.

3.1. Strong solutions and the blow-up criterion of Beale-Kato-Majda. —

We first deal with strong solutions that belong to the Sobolev space Hm(Rn), m >
n
2 +1. By Sobolev embeddings, such a solution is C1 so it verifies the equation in the

classical sense. Their existence is in general only local in time, but the Beale, Kato

and Majda [3] blow-up criterion ensures that the existence is global in dimension 2.

More precisely, we have the following result.

Theorem 3.1. — Suppose that the initial velocity u0 is divergence free and belongs to

the Sobolev space Hm(Rn) where m > n
2 + 1. There exists a unique local solution

u ∈ C0
(
[0, T );Hm

)
with T ≥ C

‖u0‖Hm
. Moreover, the following blow-up criterion

due to Beale, Kato and Majda holds: if T ∗, the maximal time existence of this local

solution, is finite, then
∫ T∗

0 ‖Ω‖L∞ =∞.

Corollary 3.2. — In dimension 2 the above solution is global.

Proof of the corollary. — The proof is trivial from the Beale, Kato and Majda blow-

up criterion since the L∞ norm of the vorticity is conserved.

Sketch of proof of Theorem 3.1. — The a priori estimates

∂t‖u‖2Hm ≤ C‖u‖2Hm‖∇u‖L∞

follow from the following Gagliardo-Nirenberg inequality

‖D`u‖
L

2k
`
≤ C‖u‖1−

`
k

L∞ ‖Dku‖
`
k

L2 , 0 ≤ ` ≤ k,

and from the cancellation
∫
u ·∇DmuDmu = 0. The first part of the theorem follows

from the Sobolev embedding Hm−1 ⊂ L∞ used to estimate ‖∇u‖L∞ ≤ C‖u‖Hm .

We now prove the blow-up condition. Assume, by absurd, that
∫ T∗

0
‖Ω‖L∞ < ∞.

From the vorticity equation and using that ‖∇u‖L2 ' ‖Ω‖L2, one can easily deduce

that Ω ∈ L∞(0, T ∗;L2). We now use the following standard logarithmic inequality

‖∇u‖L∞ ≤ C[1 + ‖Ω‖L2 + ‖Ω‖L∞(1 + log+ ‖u‖Hm)]

to deduce that

‖∇u‖L∞ ≤ C(1 + ‖Ω‖L∞

∫ t

0

‖∇u‖L∞).
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LARGE TIME BEHAVIOR IN PERFECT INCOMPRESSIBLE FLOWS 123

Gronwall’s inequality therefore implies that
∫ T∗

0
‖∇u‖L∞ < ∞ which in turn gives

that u ∈ L∞(0, T ∗;Hm) which obviously contradicts the maximality of T ∗.

3.2. Solutions with compactly supported Lp vorticity. — From now on we

assume that the space dimension is equal to two. Let Lp
c denote the space of com-

pactly supported Lp functions. If p > 1 and ω0 ∈ Lp
c then ω ∈ L∞(R+;Lp) and

therefore u ∈ L∞(R+;W 1,p
loc ). Global existence of solutions follows with a standard

approximation procedure and basically from the compact embedding W 1,p
loc ↪→ L2

loc,

see [12]. Uniqueness of these solutions is not known unless p =∞ when the following

uniqueness result due to Yudovich [45] holds.

Theorem 3.3(Yudovich). — Suppose that ω0 ∈ L∞
c . There exists a unique global so-

lution such that ω ∈ L∞(R+;L∞
c ).

Sketch of proof of uniqueness. — The proof relies on the following well-known singu-

lar integral estimate:

‖∇u‖Lp ≤ Cp‖ω‖Lp ∀2 ≤ p <∞.

Let u and v be two solutions and set w = u− v. Then

∂tw + u · ∇w + w · ∇v = ∇p′.

We now make L2 energy estimates on this equation by multiplying with w to obtain

∂t‖w‖2L2 = −2

∫
w · ∇vw ≤ 2‖w‖L2‖∇v‖Lp‖w‖

L
2p

p−2
≤ Cp‖w‖2−

2
p

L2 .

After integration we get ‖w(t)‖L2 ≤ (Ct)p. Sending p→∞ yields w
∣∣
[0, 1

C ]
= 0. Global

uniqueness follows by repeating this argument.

3.3. Vortex sheets and the Delort theorem. — The vortex sheet problem ap-

pears when the velocity has a jump over an interface. In this case, the vorticity is no

longer a function but a measure since it must contain the Dirac mass of the interface.

Previous global existence results do not apply. Nevertheless, we have the following

very important global existence result due to Delort [11].

Theorem 3.4(Delort). — Suppose that u0 ∈ L2
loc(R

2) is such that the initial vorticity

ω0 is a nonnegative compactly supported Radon measure. Then there exists a global

solution u ∈ L∞
loc(R+;L2

loc).

Sketch of proof. — We give here the main ideas of the version of the proof given by

Schochet [40]. First of all, it is very easy to see by standard energy estimates that a

priori u ∈ L∞
loc(R+;L2

loc) which implies that ω ∈ L∞
loc(R+;H−1

loc ).
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124 D. IFTIMIE

The first main ingredient is the following weak definition of the nonlinear term

from the vorticity equation:

〈div(uω), ϕ〉 = −1

2

∫∫

R2×R2

(x− y)⊥
2π|x− y|2 [∇ϕ(x) −∇ϕ(y)]ω(x)ω(y) dxdy.

Since the kernel above is bounded and smooth outside the diagonal, the double integral

above makes sense if the measure ω⊗ω doesn’t charge the diagonal which is the case

since ω ∈ H−1
loc and Dirac masses of points does not belong to H−1

loc .

The second main ingredient is to control how the vorticity doesn’t charge the points.

This control is contained in the following non-concentration lemma.

Lemma 3.5. — For all T > 0, there exists C = C(‖u‖L∞(0,T ;L2
loc)

) such that
∫

B(x0,r)

ω(t, x) dx ≤ C√
| log r|

for all t ∈ [0, T ], r ∈ (0, 1), x0 ∈ R
2.

Proof of lemma. — Let

hr(x) =






1, |x| < r;
log |x|
log

√
r
− 1, r ≤ |x| ≤ √r;

0, |x| ≥ r.

Then hr is a continuous and nonnegative function such that ‖∇hr‖L2 ≤ C√
| log r|

. The

desired bound follows from an integration by parts and a simple estimate.
∫

B(x0,r)

ω(t, x) dx ≤
∫
hr(x− x0)ω(t, x) dx =

∫
hr(x − x0) curlu(t, x) dx

=

∫
u(t, x)·∇⊥hr(x−x0) dx ≤ ‖u‖L2(B(x0,1))‖∇hr‖L2 ≤ C√

| log r|
‖u‖L∞(0,T ;L2

loc)
.

The passing to the limit with a standard approximation scheme is now easy since

what is not on the diagonal passes to the limit immediately and what is on the diagonal

gives no contribution because of the above lemma.

PART II

SOME EXAMPLES OF SOLUTIONS

In order to understand the large time behavior of solutions, a good starting point

is to look at the available examples. However, the smooth examples are not so many

and rather difficult to examine. On the other hand, there exists an approximation of
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LARGE TIME BEHAVIOR IN PERFECT INCOMPRESSIBLE FLOWS 125

the Euler equations called the vortex model which is a system of ordinary differential

equations much more tractable from the point of view of examples.

The aim of this part is to examine several types of large time behavior that can

be observed in examples of solutions of the vortex model and of the Euler equation.

We start with the richer case of the vortex model and end with the more complicated

case of smooth solutions of the Euler equations.

4. Discrete examples, the vortex model

The vortex model assumes that the vorticity is a sum of Dirac measures of some

points:

ω(t, x) =

k∑

i=1

aiδzi(t).

Accordingly, for x 6∈ {z1, z2, . . . , zk}, the associated velocity is

u(x) =

∫

R2

(x− y)⊥
2π|x− y|2ω(y) dy =

k∑

j=1

aj
(x − zj)

⊥

2π|x− zj|2
.

The problem is how to define the velocity of each of the points z1, z2, . . . , zk since

the above formula does not make sense in these points. The vortex model consists in

simply ignoring the undefined terms and therefore reads

(2) z′i =
∑

j∈{1,...,k}\{i}
aj

(zi − zj)
⊥

2π|zi − zj|2
, i ∈ {1, . . . , k}.

This system of ordinary differential equations holds similar conservation laws as

the Euler equations, namely:

– center of mass
∑
aizi;

– moment of inertia
∑
ai|zi|2;

– generalized energy
∑
i6=j

aiaj log |zi − zj|.

Global existence of solutions for the vortex model holds for almost every initial

data (meaning that the set of initial data leading to blow-up is of vanishing Lebesgue

measure) but not for every data. An example of collapse will be given in subsection 4.5.

We refer to the excellent book by Marchioro and Pulvirenti [30] for a nice presentation

and results on the vortex model, and more generally on perfect incompressible flows.

4.1. Justification of the model. — First we note that the solution of the vortex

model is not a solution of the Euler equation in the sense of distributions. The reason

is that the velocity is not locally square integrable as it would be required in order

to define the terms uiuj that appear in the Euler equation. Nevertheless, it can be

considered as a good discrete approximation for the Euler system.
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126 D. IFTIMIE

Formally, this can be justified in the following way. The vortex approximation

consists in ignoring the term (x−zi)
⊥

2π|x−zi|2 when it comes to define the velocity of the point

zi. But this contribution is just rotation about zi (faster and faster as x approaches

zi) so it shouldn’t affect zi itself.

Rigorously, the first complete justification is due to Marchioro and Pulvirenti [29]

and was later improved by Marchioro [28] and Serfati [41]. It consists in proving that

if the initial vorticity is localized and converges to a sum of Dirac masses in a certain

way not too restrictive, then at later times it will stay localized and converge to a

sum of Dirac masses that are the solutions of the vortex system. More precisely, we

have the following theorem.

Theorem 4.1(Serfati). — Suppose that ωε(0) =
k∑

j=1

ωj
ε(0) and z1(0), . . . , zk(0) are dis-

tinct points such that

– ωj
ε(0) has definite sign;

– suppωj
ε(0) ⊂ D

(
zj(0), ε

)
;

– ‖ωj
ε(0)‖L1 = aj;

– |ωε(0)| ≤ C
εk for some arbitrary k ∈ N.

Let ωj
ε(t) denote the time evolution of ωj

ε(0) and
k∑

j=1

ajδzj(t) the solution of the vortex

model with initial data
k∑

j=1

ajδzj(0). Then for any T > 0 and µ < 1
2 there exists a

constant C1 = C1(T, µ) such that

suppωj
ε(T ) ⊂ D

(
zj(T ), C1ε

µ
)
.

Moreover, for any T ≥ 0, we have the following weak convergence in the sense of

measures:

ωε(T, ·) ⇀
k∑

j=1

ajδzj(T ) as ε→ 0.

4.2. The case when all masses are positive. — If all masses ai are positive,

then the conservation of the moment of inertia implies that the trajectories zj(t)

stay bounded. Moreover, the conservation of the generalized energy also shows that

collapse cannot occur as this would require blow-up of the generalized energy. We

infer that the right-hand side of (2) stays bounded and therefore global existence of

solutions of the vortex model holds in the case of positive masses and no spreading of

the vortices is observed.

4.3. Discrete vortex pairs. — We call discrete vortex pairs a couple of two vor-

tices with vanishing sum of masses. The motion in this case is translation with

constant velocity parallel to the perpendicular bisector of the segment formed by the
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LARGE TIME BEHAVIOR IN PERFECT INCOMPRESSIBLE FLOWS 127

vortices. More precisely, suppose that z1(0) = (0, α), z2(0) = (0,−α), a1 = a > 0 and

a2 = −a. The vortex system then reads

z1(t) =
( at

4πα
, α

)
, z2(t) =

( at

4πα
,−α

)
.

The important thing to note is that, in contrast to the positive masses case, the

vortices move linearly in time to infinity but stay at bounded distance one from

another.

4.4. Vortices with diameter growing linearly. — The previous example shows

a couple of vortices moving fast to infinity. However, the distance between the two vor-

tices stays bounded. Is there any configuration showing linear growth of the distance

between the two vortices too? The answer is yes and here is an example. Consider

z = (x, y) a point vortex of mass a > 0 situated in the first quadrant and extend it by

symmetry with respect to the axis of coordinates and the masses by antisymmetry.

In other words,

ω = aδ(x,y) − aδ(x,−y) + aδ(−x,−y) − aδ(−x,y), a > 0.

This special symmetry is preserved by the flow and the vortex model simply reads

x′ =
ax2

4πy(x2 + y2)
, y′ = − ay2

4πx(x2 + y2)
.

Therefore, x increases and y decreases. From the conservation of the generalized

energy we see that the quantity 1
x2 + 1

y2 is conserved, so the minimum distance between

the vortices has a positive lower bound. We infer that lim
t→∞

y(t) > 0 and, since x has a

limit at infinity too, it follows that x′ = ax2

4πy(x2+y2) has a finite limit. This shows that

x(t) ' O(t) and so does the diameter of this configuration since it equals 2
√
x2 + y2.

4.5. Collapse and special growth. — We end this sequence of discrete exam-

ples with a configuration that can be found in [30] and that leads on one hand to

collapse and on the other hand to a peculiar kind of growth. We consider an initial

configuration of three point vortices

ω = a1δz1
+ a2δz2

+ a3δz3

such that

a1a2 + a2a3 + a3a1 = 0

and

a1a2|z1 − z2|2 + a2a3|z2 − z3|2 + a3a1|z3 − z1|2 = 0.

According to the known conservation laws, the above quantity is conserved and there-

fore it will vanish for all times. Under this assumption it is not difficult to check that

d

dt

( |z1 − z2|2
|z1 − z3|2

)
=

d

dt

( |z1 − z2|2
|z2 − z3|2

)
=

d

dt

( |z1 − z3|2
|z2 − z3|2

)
= 0.
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This means that the triangle formed by these vortices changes only in size by

similitude. We infer from this observation that

d

dt
|z1 − z2|2 =

2Aa3

π

[ 1

|z2 − z3|2
− 1

|z1 − z3|2
]

= constant in time,

where A is the area of the triangle formed by the three vortices. Setting

M =
2A(0)a3

π

[ 1

|z2(0)− z3(0)|2 −
1

|z1(0)− z3(0)|2
]

we get

|z1 − z2|2 = |z1(0)− z2(0)|2 +Mt.

Depending on the sign of M , that is on the sign of a3, we get one of the following two

peculiar situations:

– either M < 0 which implies that the three vortices collapse at time

t = − |z1(0)−z2(0)|2
M ;

– or M > 0 which shows growth of the distance between the vortices as O(t
1
2 ).

An example of such an initial configuration is given by a1 = a2 = 2, a3 = −1,

z1(0) = (−1, 0), z2(0) = (1, 0), z3(0) = (1,
√

2). Even though the growth is of only

O(t
1
2 ) instead of O(t) as observed in the previous subsection, the interest of this

example stems from the fact that the total mass is non-zero. The significance of this

will be obvious in section 8, see Remark 8.2.

5. Smooth examples

Smooth examples are much more difficult to obtain. To exhibit similar large time

behavior as in the previous section is not always possible and when it is possible it

requires a nontrivial proof, not just simple observations and calculations. For instance,

we cannot prove that a smooth nonnegative vorticity has support bounded in time;

for more details we refer to section 6. What we can do, is to prove that the smooth

versions of the examples from subsections 4.3 and 4.4 retain some of the properties of

their discrete counterparts and this is our aim for the rest of this part.

5.1. Vortex pairs and nonnegative vorticity in the half plane. — The initial-

boundary value problem for the incompressible 2D Euler equations in the half-plane

(1) with bounded initial vorticity ω0 is globally well-posed since it is equivalent,

through the method of images, to an initial-value problem in the full-plane, with

bounded, compactly supported initial vorticity (shown to be well-posed by Yudovich

in [45]). The method of images consists in the observation that the Euler equations

are covariant with respect to mirror-symmetry. Thus an initial vorticity which is odd

with respect to reflection about the horizontal axis will remain so, and give rise to

flow under which the half-plane is invariant. Conversely, the odd extension, with

respect to x2 = 0, of vorticity in half-plane flow gives rise to full-plane flow. This
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LARGE TIME BEHAVIOR IN PERFECT INCOMPRESSIBLE FLOWS 129

observation is especially useful in order to deduce the Biot-Savart law for half-plane

flow, to recover velocity from vorticity.

Steady vortex pairs are a remarkable example of exact smooth solutions whose mo-

tion is just translation at constant speed without deformation (i.e. traveling waves).

The initial vorticity is antisymmetric with respect to some axis of symmetry and has

definite sign on each side of the axis. An explicit example can be found in [2] p.534,

while some mathematical studies can be found in [6, 43, 33]. The sign and antisym-

metry hypothesis given above are of course not sufficient to define a steady vortex

pair; we call such a vorticity a vortex pair. In fact it is equivalent to the motion of

nonnegative vorticity in the half-plane. However, it can be proved that for any vortex

pair, the center of mass behaves like the one of a steady vortex pair, meaning that it

is exactly like O(t). More precisely, it is proved in [18] the following theorem.

Theorem 5.1. — Consider the Euler equation in the half-plane x2 > 0. Suppose that

the initial vorticity is nonnegative and compactly supported, ω0 ∈ L1 ∩ L∞. Then

the center of mass P (t) =
∫
xω(t, x) dx is moving parallely to the boundary with a

velocity bounded from below by a positive constant. In other words, there exists a

constant C > 0 such that P2 = cst. and P1(t) ≥ Ct for t sufficiently large.

Proof. — In the following, C,C1, . . . denote some constants which may depend on ω0

and may change from one line to another. The set H denotes the half-plane x2 > 0.

The following lemma will be useful in the sequel.

Lemma 5.2. — Let a ∈ (0, 2), S ⊂ R
2 and h : S → R+ be a function belonging to

L1(S) ∩ Lp(S), p > 2
2−a . Then

∫

S

h(y)

|x− y|a dy ≤ C‖h‖
2−a−2/p
2−2/p

L1(S) ‖h‖
a

2−2/p

Lp(S) .

Proof. — Let k ∈ R be arbitrary. We can bound by Hölder’s inequality

∫

S

h(y)

|x− y|a dy =

∫

S∩{|x−y|>k}

h(y)

|x− y|a dy +

∫

S∩{|x−y|<k}

h(y)

|x− y|a dy

≤ ‖h‖L
1(S)

ka
+ ‖h‖Lp(S)

∥∥∥
1

|x|a
∥∥∥

L
p

p−1 (|x|≤k)

=
‖h‖L1(S)

ka
+ C‖h‖Lp(S)k

2−a−2/p.

The choice k =
(
‖h‖L1(S)‖h‖−1

Lp(S)

) 1
2−2/p

completes the proof of the lemma.
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Let us return to the proof of Theorem 5.1. First remark that the conservations of

the center of mass and moment of inertia are no longer true in H. We assume for

simplicity that
∫
H

ω(x) dx = 1. From the method of images, we see that the Biot-Savart

law in the full plane gives the Biot-Savart law in x2 > 0:

v(x) =
1

2π

∫

H

(
(x − y)⊥
|x− y|2 −

(x− y)⊥
|x− y|2

)
ω(y) dy,

where y = (y1,−y2) denotes the complex conjugate of y. A very simple calculation

now shows that

v1(x) =
1

2π

∫

H

(
− x2 − y2
|x− y|2 +

x2 + y2
|x− y|2

)
ω(y) dy(3)

v2(x) =
2

π

∫

H

(x1 − y1)x2y2
|x− y|2|x− y|2ω(y) dy.(4)

Let

P (t) =

∫

H

xω(t, x) dx,

be the center of mass of the vorticity. We get from (1) and after an integration by

parts that

(5) P ′(t) =

∫

H

x∂tω(t, x) dx = −
∫

H

xv(x) · ∇ω(x) dx =

∫

H

v(x)ω(x) dx.

The Biot-Savart law (3)–(4) now implies that

P ′
1(t) =

1

2π

∫∫

H2

x2 + y2
|x− y|2ω(x)ω(y) dx dy,

P ′
2(t) = 0,

where we have used that the expressions x2−y2

|x−y|2ω(x)ω(y) and (x1−y1)x2y2

|x−y|2|x−y|2ω(x)ω(y)

are antisymmetric with respect to the change of variables (x, y) ←→ (y, x). We

immediately obtain a new conservation law.
∫

H

x2ω(x) dx = cst.

Let us now prove that there exists a constant C > 0 such that P ′
1 ≥ C. For

notational convenience, we denote by ω the extension of the vorticity by antisymmetry

with respect to the axis x2 = 0. Since this new vorticity verifies the Euler equations
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in R
2, the following (generalized) energy is conserved.

E0 = − 1

2π

∫∫

R2×R2

log |x− y|ω(x)ω(y) dx dy

=
1

2π

∫∫

H2

log
|x− y|2
|x− y|2ω(x)ω(y) dx dy

=
1

2π

∫∫

H2

log

(
1 +

4x2y2
|x− y|2

)
ω(x)ω(y) dx dy.

Note that the kernel above is nonnegative, in contrast to what happens for a nonneg-

ative vorticity in R
2. An application of Hölder’s inequality gives

E0 ≤ C(P ′
1)

1−1/q




∫∫

H2

( |x− y|2
x2 + y2

)q−1 [
log

(
1 +

4x2y2
|x− y|2

)]q

ω(x)ω(y) dx dy




1/q

,

with q > 1 to be chosen later. We now use the obvious inequality log(1+t) ≤ C t
(1+t)α ,

1− 1/q ≤ α < 1, with t = 4x2y2

|x−y|2 which implies 1 + t = |x−y|2
|x−y|2 . We therefore get

∫∫

H2

( |x− y|2
x2 + y2

)q−1[
log

(
1 +

4x2y2
|x− y|2

)]q

ω(x)ω(y) dx dy

≤ C
∫∫

H2

|x− y|2q−2xq
2y

q
2

(x2 + y2)q−1|x− y|2q−2αq|x− y|2αq
ω(x)ω(y) dx dy

≤ C
∫∫

H2

(x2 + y2)
3q−2αq−1

|x− y|2q−2αq
ω(x)ω(y) dx dy

= C

∫∫

H2

x2 + y2
|x− y|2−q

ω(x)ω(y) dx dy

= 2C

∫

H

x2ω(x)
(∫

H

1

|x− y|2−q
ω(y) dy

)
dx

where we have chosen α = 3/2− 1/q which is allowed if q < 2. Lemma 5.2 therefore

yields

E0 ≤ C(P ′
1)

1−1/qP
1/q
2 = CP2(0)1/q(P ′

1)
1−1/q,

from which we deduce that P ′
1 is bounded from below by a positive constant. Let us

also note that the velocity v being bounded in space and time and relation (5) implies

that P ′
1 is bounded by another constant.
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5.2. Smooth vorticity with diameter growing linearly. — The aim of this

subsection is to present an example of vorticity, with indefinite sign, whose support

grows like O(t). This rate is optimal since the growth can be at most linear in

time. The initial vorticity is not positive, rather it consists of four blobs, identical

except for alternating sign, located symmetrically in the four quadrants. The initial

configuration is inspired by two examples. First, the discrete analog of this set-up

was investigated above in subsection 4.4 and the point vortices are seen to spread at

a rate of O(t). Secondly, at the other extreme, Bahouri and Chemin [1] consider an

example for which the initial vorticity is piecewise constant with alternating values

±1 in the unit square of the four quadrants. There one finds rapid loss of Hölder

regularity of the flow map. The motion in our example restricts to a solution of the

Euler equations in the first quadrant with slip boundary conditions. The proof will

show that the center of the mass located in the first quadrant moves at a rate of

O(t). In this case, the conservation of the center of mass and moment of inertia are

no longer useful since both quantities vanish. Instead, we shall use conservation of

energy.

Let us denote the first quadrant by Q. Let ω̃0 be a nonnegative function, belonging

to L∞, compactly supported in Q. We denote m0 =
∫
ω̃0(x) dx, M0 = ‖ω̃0‖L∞ , and

P0 =
∫
x ω̃0(x) dx. Our example of initial vorticity is a function antisymmetric with

respect with both coordinate axes and equal to ω̃0 in the first quadrant. In other

words, using x for the complex conjugate of x, we define ω0(x) = ω̃0(x) for x ∈ Q

and extend ω0 to R
2 so as to have ω0(x) = −ω0(x) = −ω0(−x) = ω0(−x). We shall

prove the following theorem from [19].

Theorem 5.3. — There exists a constant C0 = C0(m0,M0,P0) such that, for every

time t, the diameter, d(t), of the support of the vorticity evolved from ω0 satisfies

d(t) ≥ C0t.

Proof. — By uniqueness, the vorticity ω(t, x) preserves the antisymmetry of the initial

data,

ω(t, x) = −ω(t, x) = −ω(t,−x) = ω(t,−x).
Moreover, the flow map is antisymmetric, and so it leaves each quadrant and both

coordinate axes invariant. Consequently, we have

(6)

∫

Q

ω(t, x) dx =

∫

Q

ω(0, x) dx =

∫

Q

ω̃0(x) dx = m0.

We shall consider the evolution of the center of mass of ω(t, x) restricted to Q

defined by

P(t) =
1

m0

∫

Q

xω(t, x) dx.

Let P(t) = (P1(t), P2(t)). The support of ω has a non-empty intersection with the

region {x1 ≥ P1}. Therefore, the symmetry properties of ω(t, x) imply that the
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diameter of the support of the vorticity is bounded by below by P1(t). So, in order to

prove Theorem 5.3, it is enough to prove that P1(t) ≥ C0(m0,M0,P0)t. In the course

of the proof, we shall also see that P1(t) is increasing and that P2(t) is decreasing.

From the Biot-Savart law (15) along with the obvious changes of coordinates, we

deduce

v(x) =

∫

R2

(x− y)⊥
|x− y|2 ω(y) dy

=

∫

Q

(
(x− y)⊥
|x− y|2 +

(x+ y)⊥

|x+ y|2 −
(x− y)⊥
|x− y|2 −

(x+ y)⊥

|x+ y|2
)
ω(y) dy.

Separating the components, we can further write

v1(x) =

∫

Q

[
−(x2 − y2)

(
1

|x− y|2 −
1

|x+ y|2
)

+ (x2 + y2)

(
1

|x− y|2 −
1

|x+ y|2
)]
ω(y) dy

v2(x) =

∫

Q

[
(x1 − y1)

(
1

|x− y|2 −
1

|x− y|2
)

+ (x1 + y1)

(
1

|x+ y|2 −
1

|x+ y|2
)]
ω(y) dy.

(7)

Differentiating P(t), using the vorticity equation (14), and integrating by parts

implies

P′(t) =
1

m0

∫

Q

x∂tω(t, x) dx =
1

m0

∫

Q

v(t, x)ω(t, x) dx.

Furthermore, according to the modified Biot-Savart law (7), we obtain

P ′
1 =

1

m0

∫∫

Q2

[
−(x2 − y2)

(
1

|x− y|2 −
1

|x+ y|2
)

+ (x2 + y2)

(
1

|x− y|2 −
1

|x+ y|2
)]
ω(x)ω(y) dx dy

P ′
2 =

1

m0

∫∫

Q2

[
(x1 − y1)

(
1

|x− y|2 −
1

|x− y|2
)

+ (x1 + y1)

(
1

|x+ y|2 −
1

|x+ y|2
)]
ω(x)ω(y) dx dy.

(8)

Interchanging the coordinates, x↔ y, yields
∫∫

Q2

(x2 − y2)
(

1

|x− y|2 −
1

|x+ y|2
)
ω(x)ω(y) dx dy

= −
∫∫

(x2 − y2)
(

1

|x− y|2 −
1

|x+ y|2
)
ω(x)ω(y) dx dy,
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so ∫∫

Q2

(x2 − y2)
( 1

|x− y|2 −
1

|x+ y|2
)
ω(x)ω(y) dx dy = 0.

In a similar manner, we see that
∫∫

Q2

(x1 − y1)
( 1

|x− y|2 −
1

|x− y|2
)
ω(x)ω(y) dx dy = 0.

We conclude that relation (8) can be now written as

P ′
1 =

1

m0

∫∫

Q2

4x1y1(x2 + y2)

|x− y|2|x+ y|2ω(x)ω(y) dx dy

P ′
2 = − 1

m0

∫∫

Q2

4x2y2(x1 + y1)

|x+ y|2|x+ y|2ω(x)ω(y) dx dy.

(9)

The first thing to remark is that P1 is increasing and P2 is decreasing.

The second main ingredient is conservation of energy. When the velocity lies in

L2, its norm is equivalent to the quantity

E0 = − 1

2π

∫∫

R2×R2

log |x− y|ω(x)ω(y) dx dy.

However, it can be seen directly that the latter integral is a constant of the motion.

Thanks to the symmetry, a few changes of coordinates reduce the integration to the

first quadrant

E0 =
2

π

∫∫

Q2

log
|x− y||x+ y|
|x− y||x+ y| ω(x)ω(y) dx dy.

The kernel is nonnegative, since we can write

log
|x− y||x+ y|
|x− y||x+ y| =

1

2
log
|x− y|2|x+ y|2
|x− y|2|x+ y|2

=
1

2
log

(
1 +
|x− y|2|x+ y|2 − |x− y|2|x+ y|2

|x− y|2|x+ y|2
)

(10)

=
1

2
log

(
1 +

16x1y1x2y2
|x− y|2|x+ y|2

)
.

Taking 1/p+ 1/q = 1, with 1 < q < 2, Hölder’s inequality along with relation (9)

imply

(11) Ep
0 ≤ Cm0 P

′
1 I

1/(q−1),

in which

(12) I ≡
∫∫

Q2

[ |x− y|2|x+ y|2
x1y1(x2 + y2)

]q−1 [
log
|x− y||x+ y|
|x− y||x+ y|

]q

ω(x)ω(y) dx dy.
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In the following, we will derive an upper bound for the integral I.

Since the logarithm grows more slowly than any power, given 0 < α < 1, there is

a constant Cα such that log(1 + z) ≤ Cαz/(1 + z)α, for all z > 0. Therefore, using

(10), the logarithm has the bound

log

(
1 +

16x1y1x2y2
|x− y|2|x+ y|2

)
≤ C x1y1x2y2
|x− y|2|x+ y|2

[ |x− y|2|x+ y|2
|x− y|2|x+ y|2

]−α

= C
x1y1x2y2

|x− y|2(1−α)|x+ y|2(1−α)|x− y|2α|x+ y|2α
.

From (12), this leads to the upper bound

I ≤ C
∫∫

Q2

x1y1(x2y2)
q|x+ y|2αq−2

(x2 + y2)q−1|x− y|2q(1−α)|x+ y|2αq|x− y|2−2q(1−α)

× ω(x)ω(y) dx dy.

If we agree to take α = 1/q, then this simplifies to

I ≤ C
∫∫

Q2

x1y1(x2y2)
q

(x2 + y2)q−1|x− y|2(q−1)|x+ y|2|x− y|2(2−q)
ω(x)ω(y) dx dy.

Now the trivial inequalities

x1y1 ≤ (x1 + y1)
2 ≤ |x+ y|2 and x2y2 ≤ (x2 + y2)

2 ≤ |x− y|2

ensure that

I ≤ C
∫∫

Q2

(x2 + y2)
3(q−1)

|x− y|2(q−1)
ω(x)ω(y) dx dy.

If q ≤ 6/5, so that 5(q − 1) ≤ 1, we can apply Hölder’s inequality to get

I ≤ CI1−5(q−1)
1 I

2(q−1)
2 I

3(q−1)
3 ,

with

I1 =

∫∫

Q2

ω(x)ω(y) dx dy, I2 =

∫∫

Q2

1

|x− y|ω(x)ω(y) dx dy,

I3 =

∫∫

Q2

(x2 + y2)ω(x)ω(y) dx dy.

From (6), we have that I1 = m2
0. Lemma 5.2 with a = 1 and p = ∞ tells us that

I2 ≤ Cm
3/2
0 M

1/2
0 . Also, the monotonicity of P2 gives I3 ≤ Cm2

0P2(0). Altogether,

we have the bound

I ≤ C(q)m2
0

[
M0P2(0)3

m0

]q−1

.
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Going back to (11), we obtain

P ′
1 ≥ C0 ≡ C(q)

[
E0

m2
0

]1/(q−1)
E0

M0P2(0)3
,

so that

P1(t) ≥ P1(0) + C0t.

This completes the proof of Theorem 5.3.

PART III

WHEN THE VORTICITY IS NONNEGATIVE: GROWTH OF THE

SUPPORT

The confinement results for the vorticity depend heavily on the (unbounded) do-

main. We first treat the most important case, the full plane, and we discuss at the

end what can be proved for other domains.

6. The case of the full plane

The evolution of ideal incompressible fluid vorticity preserves compactness of sup-

port. We saw in Section 3 that the initial value problem for the 2d incompressible

Euler equations is globally well-posed in a variety of settings. The divergence-free

fluid velocity vector field v(t, x) generates a particle flow map Φ(t, p) through the

system of ODE’s

(13)
d

dt
Φ(t, p) = v(t,Φ(t, p)), Φ(0, p) = p,

such that the map p 7→ Φ(t, p) is a continuously varying family of area-preserving

diffeomorphisms of the plane. Recall that the scalar vorticity ω = ∂1v2 − ∂2v1 is

transported by this flow

(14) Dt ω = ∂t ω + v · ∇ω = 0, ω(0, x) = ω0(x),

and the velocity is coupled to the vorticity through the Biot-Savart law

(15) v(t, x) =
1

2π

∫

R2

(x− y)⊥
|x− y|2 ω(t, y) dy.

Despite the successful existence theory, little can be said about the large time

behavior of solutions. This is not surprising since point vortex approximations, even

using small numbers of particles, can generate complex dynamics. Given that the

vorticity is transported by a area-preserving flow (14), it follows that its Lp norms

are constant in time. In the case of smooth data, Hölder regularity of the flow map is
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preserved in time, but the Hölder norm of the flow map is only known to be bounded

by an expression of the form exp(expCt). Clearly, any growth in the Hölder norm of

the flow map would be related to the evolution of compact regions under the flow.

If the initial vorticity is supported in a compact set Ω ⊂ R
2, then equation (14)

shows that at time t > 0 the vorticity is supported in Ω(t) = Φ(t,Ω). Nothing can

be said about the geometry of Ω(t). However in the case where the vorticity equals

the characteristic function of a set with smooth boundary, the so-called vortex patch,

Chemin [8] proved that the regularity of the boundary is propagated, see also [5].

A simple estimate from (15), given in Lemma 5.2, provides a uniform bound for the

velocity, and so the support of the vorticity can grow at most linearly in time. For

nonnegative initial vorticity, Marchioro [25] demonstrated that the conservation of

the moment of inertia,
∫

R2 |x|2ω(t, x)dx, further acts to constrain the spreading of

the support to a rate of O(t1/3). This result was generalized to include vorticity in

Lp for 2 < p <∞, in [22].

We will present in this section a result from [19] (see Theorem 6.1 below) which

shows that Marchioro’s bound for the growth rate of the support of nonnegative

vorticity can be improved to O[(t log t)1/4] by taking into account not only the con-

servation of the moment of inertia but also the conservation of the center of mass,∫
R2 xω(t, x) dx. Bounds for the flow map will come from an estimate for the radial

component of the velocity starting from (15). The heart of the matter is to measure

the vorticity in L1 outside of balls centered at the origin, Proposition 6.2. The ap-

proach taken here is to estimate higher momenta of the vorticity following the idea

of Gamblin included in the Appendix of [19]. The analysis applies to weak solutions

in Lp, 2 < p ≤ ∞. We also note that Serfati [41] has independently obtained a result

similar to Theorem 6.1 with the factor t1/4 log ◦ · · · ◦ log t replacing (t log t)1/4.

There are a few examples of nonnegative explicit solutions, but none of these exhibit

any growth of support. Spherically symmetric initial vorticity gives rise to a stationary

solution whose velocity vector field induces flow lines which follow circles about the

origin. The support of the Kirchoff elliptical vortex patch rotates with constant

angular velocity, although the velocity vector field has a nontrivial structure exterior

to the support, (see [20], p.232). We also note that numerical simulations starting

with a pair of positively charged vortex patches show homogenization of the patches

simultaneous with the formation of long filaments [7]. On the other hand, when

the vorticity is not signed, we saw in subsection 5.2 that it is useless to look for

confinements results.

We will make use of several quantities that are conserved by the time evolution,

namely the total mass
∫
ω(t, x) dx =

∫
ω0(x) dx = m0,
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the maximum norm

‖ω(t)‖L∞ = ‖ω0‖L∞ = M0,

the center of mass ∫
xω(t, x) dx =

∫
xω0(x) dx = c0,

and the moment of inertia∫
|x|2ω(t, x) dx =

∫
|x|2ω0(x) dx = i0.

Assume that the support of ω0 is contained in the ball centered at the origin of radius

d0. We will prove the following theorem.

Theorem 6.1. — Let ω(t, x) be the solution of the 2d incompressible Euler equations

with a nonnegative compactly supported initial vorticity ω0 ∈ L∞(R2). There exists a

constant C0 = C0(i0, d0,m0,M0) such that, for every time t ≥ 0, the support of ω(t, ·)
is contained in the ball |x| < 4d0 + C0[t log(2 + t)]1/4.

Proof. — First, by making the change of variable x → x − c0

m0
, we may assume,

without loss of generality, that the center of mass is located at the origin.

In the following estimates, constants will be independent of ω0, unless otherwise

indicated, and then the dependence will be only through the quantities i0, d0, m0,

and M0. We will establish the theorem for classical solutions, and the general result,

for weak solutions, follows immediately since these quantities are stable under passage

to the weak limit. The time variable will often be suppressed since it plays no role in

the estimation of the various convolution integrals.

We are going to show that the radial component of the velocity satisfies an estimate

of the form

(16)

∣∣∣∣
x

|x| · v(t, x)
∣∣∣∣ ≤

C0

|x|3 , for all |x| ≥ 4d0 + C0[t log(2 + t)]1/4,

with C0 = C0(i0, d0,m0,M0). The proof of the theorem concludes by noticing that

the region

{(t, x) : t ≥ 0, |x| < 4d0 + C0[t log(2 + t)]1/4}
is invariant for the flow

dt

ds
= 1,

dx

ds
= v(t, x)

since the bound (16) implies that the vector field (1, v(t, x)) points inward along the

boundary of this region.

We now turn to the verification of (16). The radial part of the velocity is

x

|x| · v(x) =
1

2π

∫
x

|x| ·
(x− y)⊥
|x− y|2 ω(y) dy.

The last integral will be divided into two pieces.
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The portion of the integral over the region |x − y| < |x|/2 is immediately seen to

be bounded by

C

∫

|x−y|<|x|/2

ω(y)

|x− y| dy.

Using that x · (x − y)⊥ = −x · y⊥ and the fact that the center of mass is at the

origin, we can express the other portion as

∫

|x−y|>|x|/2

x

|x| ·
(x− y)⊥
|x− y|2 ω(y) dy = −

∫

|x−y|>|x|/2

x · y⊥
|x||x − y|2 ω(y) dy

=−
∫

|x−y|>|x|/2

x · y⊥
|x|

(
1

|x− y|2 −
1

|x|2
)
ω(y) dy

+

∫

|x−y|<|x|/2

x · y⊥
|x|3 ω(y) dy

=−
∫

|x−y|>|x|/2

x · y⊥
|x|

〈y, 2x− y〉
|x− y|2|x|2 ω(y) dy

+

∫

|x−y|<|x|/2

x · y⊥
|x|3 ω(y) dy.

Next, we note that |x− y| > |x|/2 implies

|2x− y| ≤ |x− y|+ |x| < 3|x− y|,

and so the first of these integrals is bounded as follows

∣∣∣
∫

|x−y|>|x|/2

x · y⊥
|x|

〈y, 2x− y〉
|x− y|2|x|2 ω(y) dy

∣∣∣≤
∫

|x−y|>|x|/2

|y|2|2x− y|
|x|2|x− y|2 ω(y) dy

≤ C

|x|3
∫

|x−y|>|x|/2

|y|2ω(y) dy ≤ Ci0
|x|3 .

On the grounds of simple homogeneity, it is difficult to see how to improve this

estimate using only the conserved quantities at hand.

As for the second piece, we use that |x− y| < |x|/2 gives |y| ≤ 3|x|/2 to write

∣∣∣
∫

|x−y|<|x|/2

x · y⊥
|x|3 ω(y) dy

∣∣∣≤ C
∫

|x−y|<|x|/2

ω(y)

|x− y| dy.
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We have deduced the following estimate for the radial component of velocity

(17)

∣∣∣∣
x

|x| · v(x)
∣∣∣∣ ≤

Ci0
|x|3 + C

∫

|x−y|<|x|/2

ω(y)

|x− y| dy.

The rest of the proof consists in showing that the last integral is negligible for large

|x|.
From (17), Lemma 5.2 with a = 1, p =∞, and the fact that

{y : |x− y| < |x|/2} ⊂ {y : |y| > |x|/2},

the estimate for the radial component of the velocity is
∣∣∣∣
x

|x| · v(x)
∣∣∣∣ ≤

Ci0
|x|3 + CM

1/2
0

(∫

|y|>|x|/2

ω(y) dy
)1/2

.

Given the following proposition, with k = 6, the last integral is also O(|x|−3) for |x|
large so that inequality (16) holds, and hence Theorem 6.1 is valid.

Proposition 6.2. — There exists a constant C0 = C0(i0, d0,m0,M0, k) such that for

any k > 0 ∫

|y|>|x|/2

ω(t, y) dy ≤ C0

|x|k ,

for all |x| > 4d0 + C0[t log(2 + t)]1/4.

Proof of the Proposition. — In order to estimate the decay of the mass of vorticity

far from the center of mass, we introduce the higher momenta:

mn(t) =

∫
|x|4nω(t, x) dx.

Although these are not conserved quantities, a recursive estimate holds for their

derivatives leading to the following result.

Lemma 6.3. — There exists a constant C0 such that for any n ≥ 1

(18) mn(t) ≤ m0(d
4
0 + C0i0nt)

n.

Assume, for the moment, that Lemma 6.3 is true and let us use it to prove Propo-

sition 6.2. Fix k ≥ 1, and suppose that

(19) r4 ≥ 2
[
d4
0 + C0i0kt log(2 + t)

]
.

Choose n ≥ k/4 in such a way that

(20) k log(2 + t)− 1 < n ≤ k log(2 + t).
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LARGE TIME BEHAVIOR IN PERFECT INCOMPRESSIBLE FLOWS 141

Recalling that the vorticity remains nonnegative during the motion, we have using

(18), (19), and (20)
∫

|x|≥r

ω(t, x) dx ≤ mn(t)

r4n
≤ m0

rk

(d4
0 + C0i0nt)

n

r4n−k

≤ m0

rk
2k/4−n

[
d4
0 + C0i0kt log(2 + t)

]k/4
.

Note that by (20), we have that 2n+1 ≥ (2 + t)k log 2. This means that the right-hand

side can be bounded above by C(i0, d0,m0, k)/r
k when (19) holds, and so Proposi-

tion 6.2 follows.

Proof of Lemma 6.3. — Using the vorticity equation (2) and the Biot-Savart law (15),

we have after some integrations by parts

m′
n(t) =

2n

π

∫∫ 〈x, (x − y)⊥〉
|x− y|2 |x|4n−2ω(t, x)ω(t, y) dx dy.

We define

K(x, y) = 〈x, (x− y)⊥〉
(

1

|x− y|2 −
1

|x|2
)
.

Since the center of mass is at the origin, we can write

m′
n(t) =

2n

π

∫∫
K(x, y)|x|4n−2ω(t, x)ω(t, y) dx dy.

Let us consider the following partition of the plane:

A1 =

{
(x, y) : |y| ≤

(
1− 1

2n

)
|x|

}
,

A2 =

{
(x, y) :

(
1− 1

2n

)
|x| < |y| <

(
1− 1

2n

)−1

|x|
}
,

A3 =

{
(x, y) : |x| ≤

(
1− 1

2n

)
|y|

}
.

Then, we have

m′
n(t) = α1(t) + α2(t) + α3(t)

with

αi =
2n

π

∫∫

Ai

K(x, y)|x|4n−2ω(t, x)ω(t, y) dx dy.

We will study each of these three terms.

First, assume that (x, y) ∈ A1 and write

K(x, y) = 〈y, (x− y)⊥〉 〈y, 2x− y〉|x− y|2|x|2 .

Since |x− y| ≥ |x|/2n and |2x− y| ≤ 3|x|, we have the inequality

|K(x, y)| ≤ |y|
2|2x− y|
|x|2|x− y| ≤ 6n

|y|2
|x|2 ,
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and we obtain the bound

|α1(t)| ≤
12n2

π

∫∫

A1

|x|4(n−1)|y|2ω(t, x)ω(t, y) dx dy ≤ 12n2

π
i0mn−1(t).

Now, assume that (x, y) ∈ A3. This implies that |x − y| ≥ |y|/2n and (1 −
1/2n)|y|/|x| ≥ 1. The kernel K(x, y) may be written as

K(x, y) =
〈x, (x− y)⊥〉
|x− y|2 +

〈x, y⊥〉
|x|2 ,

and we deduce that on A3

|K(x, y)| ≤ |x|
|x− y| +

|y|
|x| ≤ 2n

|y|2
|x|2 .

It follows that

|α3(t)| ≤
4n2

π
i0mn−1(t).

Finally, we split the integral over A2 into two terms

α2(t) = I1(t) + I2(t)

where

I1(t) = −2n

π

∫∫

A2

|x|4n−2 〈x, y⊥〉
|x− y|2ω(t, x)ω(t, y) dx dy,

I2(t) =
2n

π

∫∫

A2

|x|4(n−1)〈x, y⊥〉ω(t, x)ω(t, y) dx dy.

In the region A2, we have |x| ≤ 2|y|, and we can bound the second contribution, I2(t),

by

|I2(t)| ≤
4n

π
i0mn−1(t).

Now, observe that the region A2 is symmetric with respect to the diagonal and that

H(x, y) ≡ 〈x, y
⊥〉

|x− y|2 = −H(y, x).

The integral I1(t) can be therefore rewritten as

I1(t) = −n
π

∫∫

A2

H(x, y)
(
|x|4n−2 − |y|4n−2

)
ω(t, x)ω(t, y) dx dy.

To evaluate this integral, we first use the following identity

|x|4n−2 − |y|4n−2 = 〈x− y, x+ y〉
2n−2∑

j=0

|x|4n−4−2j |y|2j .
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Thus, in the region A2, we find

∣∣|x|4n−2 − |y|4n−2
∣∣ ≤ 3|y||x− y||x|4(n−1)

2n−2∑

j=0

(
1− 1

2n

)−2j

≤ 6n |y||x− y||x|4(n−1).

On the other hand, we note that

|H(x, y)| =
∣∣〈x− y, y⊥〉

∣∣
|x− y|2 ≤ |y|

|x− y| .

Combining the two last estimates yields

|I1(t)| ≤
6n2

π
i0mn−1(t).

Summing up the bounds for α1, α3, I1, and I2, and then using Hölder’s inequality

we get

m′
n(t) ≤ C0i0n

2mn−1(t) ≤ C0i0n
2m

1/n
0 mn(t)1−1/n.

It follows that mn(t) can be estimated as claimed in (18).

7. Discussion of other cases

The influence of the boundary on the large time behavior of the vorticity is crucial.

The result for the full plane case is clearly false for domains with boundaries. To

convince ourselves, it is sufficient to remember that in subsection 5.1 it is proved that

the center of mass of nonnegative vorticity in the half-plane behaves exactly like O(t),

so no confinement is possible. On the other hand, in the latter case not even the

diameter can be estimated better than O(t); this is suggested by the discrete example

of section 9.4. In fact, the compactness of the boundary is extremely important. We

discuss next two relevant cases: the exterior domain and the half plane.

7.1. The case of the half plane. — As noted above, no complete confinement can

be true. However, partial confinements can hold. We will discuss this in the following.

Let us begin by fixing basic notation. We denote by H the horizontal half-plane given

by H = {x ∈ R
2;x2 > 0}. Reflection with respect to x2 = 0 will be denoted by

x = (x1, x2) 7→ x = (x1,−x2). We use Lp
c(H) to denote the Lebesgue space of p-th

power integrable functions, p ≥ 1, with compact support in H. The dual of Lp is Lp′

,

with the conjugate exponent given by p′ = p/(p− 1).

Let us fix an initial vorticity ω0. We will assume in this part that ω0 is a given

nonnegative function in Lp
c(H) for some p > 2. If ω0 ∈ Lp

c(H), 2 < p < ∞, then we

saw that there exists a weak solution u, ω of (1) associated with this initial vorticity

(see [23]). Furthermore, ω(t, ·) ≥ 0, t ≥ 0, and the L1 and Lp-norms of ω(t, ·) are
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bounded by the L1 and Lp-norms, respectively, of the initial vorticity. Using the

method of images we can write the velocity u in terms of vorticity ω as:

(21) u(t, x) =

∫

H

[ (x− y)⊥
2π|x− y|2 −

(x − y)⊥
2π|x− y|2

]
ω(t, y) dy.

We denote the kernel appearing in the integral above by:

(22) K = K(x, y) =
(x− y)⊥
2π|x− y|2 −

(x− y)⊥
2π|x− y|2 ,

whose components are given explicitly by:

(23) K1(x, y) =
y2[y

2
2 − x2

2 + (x1 − y1)2]
π|x − y|2|x− y|2 and K2(x, y) =

2(x1 − y1)x2y2
π|x− y|2|x− y|2 .

It is easy to see that

(24) |K(x, y)| ≤ 1

π|x− y| ,

from which we can deduce the fact that, if p > 2, then an L1 ∩ Lp-vorticity ω gives

rise to an L∞-velocity u with the estimate:

‖u‖L∞(H) ≤ C‖ω‖p
′/2

Lp(H)‖ω‖
1−p′/2
L1(H)

as can be seen from Lemma 5.2.

7.1.1. Vertical confinement. — We start with a vertical confinement result that was

proved in [18].

Theorem 7.1. — There exists a constant C such that x2 ≤ C(t log t)
1
3 for all x ∈

suppω(t, ·).

If we show that there exists a constant C1 >
√

3 such that |v2(x)| ≤ C1x
−2
2 for all

x such that x2 ≥ C1(t log t)1/3 and t sufficiently large, then this will imply that no

fluid particle can escape the region x2 ≤ C1(t log t)1/3.

As |x− y|2 ≥ max(x2
2, x2y2) we can estimate by relation (4) and by Lemma 5.2.

|v2(x)| ≤
2

π

∣∣∣
∫

y2<x2/2

(x1 − y1)x2y2
|x− y|2|x− y|2ω(y) dy

∣∣∣+
2

π

∣∣∣
∫

y2>x2/2

(x1 − y1)x2y2
|x− y|2|x− y|2ω(y) dy

∣∣∣

≤ C

x2

∫

y2<x2/2

y2
|x− y|ω(y) dy + C

∫

y2>x2/2

1

|x− y|ω(y) dy

≤ C

x2

∫

y2<x2/2

y2
|x2 − y2|

ω(y) dy + C

(
‖ω‖L∞

∫

y2>x2/2

ω(y) dy

)1/2

≤ C

x2
2

∫

H

y2ω(y) dy + C

(
‖ω‖L∞

∫

y2>x2/2

ω(y) dy

)1/2

.
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The proof of the theorem is completed once the following proposition is proved:

Proposition 7.2. — For all k > 0 there exists a constant C0 such that
∫

y2>x2/2

ω(t, y) dy ≤ C0

xk
2

,

for all x2 > C0

[
(1 + t) log(2 + t)

]1/3
.

Proof of the proposition. — Let

fr(t) =

∫

H

η

(
x2 − r
λr

)
ω(t, x) dx,

where λ = λ(r) ∈ (0, 1) is to be chosen later and

η(s) =
es

1 + es
.

We easily see that

fr(t) ≥ η(0)

∫

x2>r

ω(t, x) dx.

So, to prove the proposition it suffices to estimate

fr(t) ≤
C0

rk
,

for all r > C0[(1+ t) log(2+ t)]1/3. To do that, we will deduce a differential inequality

verified by fr.

The equation for ω as well as the Biot-Savart law (4) imply

f ′
r(t) =

∫

H

η
(x2 − r

λr

)
∂tω(t, x) dx

= −
∫

H

η
(x2 − r

λr

)
v(x) · ∇ω(x) dx

=
1

λr

∫

H

η′
(x2 − r

λr

)
v2(x)ω(x) dx

=
2

πλr

∫∫

H2

η′
(x2 − r

λr

) (x1 − y1)x2y2
|x− y|2|x− y|2ω(x)ω(y) dx dy.

Using the change of variables (x, y)←→ (y, x) we finally get

(25) f ′
r(t) =

1

πλr

∫∫

H2

[
η′

(x2 − r
λr

)
−η′

(y2 − r
λr

)]
(x1 − y1)x2y2
|x− y|2|x− y|2ω(x)ω(y) dx dy.

The mean value theorem implies

η′
(x2 − r

λr

)
−η′

(y2 − r
λr

)
=
x2 − y2
λr

η′′(ξ),
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where ξ is situated between x2−r
λr and y2−r

λr . It is very easy to check that |η′′(s)| ≤ η(s)
for all s and that the function η is nonnegative and increasing. We can therefore

conclude that
∣∣∣η′

(x2 − r
λr

)
−η′

(y2 − r
λr

)∣∣∣≤ |x2 − y2|
λr

(
η
(x2 − r

λr

)
+η

(y2 − r
λr

))
.

Inserting this relation in (25) yields

f ′
r(t) ≤

1

πλ2r2

∫∫

H2

[
η
(x2 − r

λr

)
+η

(y2 − r
λr

)]
x2y2

(x2 + y2)2
ω(x)ω(y) dx dy

=
2

πλ2r2

∫∫

H2

η
(x2 − r

λr

) x2y2
(x2 + y2)2︸ ︷︷ ︸

L(x,y)

ω(x)ω(y) dx dy.

For x2 < r/2 we bound L(x, y) ≤ e−
1
2λ and for x2 > r/2 we estimate L(x, y) ≤

η
(

x2−r
λr

)
y2

x2
≤ 2

rη
(

x2−r
λr

)
y2. Using also the conservation of mass and of

∫
H

x2ω(x) dx we

obtain the following bound:

f ′
r(t) ≤

C

λ2r2
e−

1
2λ +

C

λ2r3
fr(t).

Gronwall’s lemma now gives

fr(t) ≤ fr(0)e
Ct

λ2r3 + re
Ct

λ2r3 − 1
2λ .

We obviously have that fr(0) ≤ Ce− 1
2λ for r large enough. We therefore get

fr(t) ≤ Ce
Ct

λ2r3 − 1
2λ (1 + r).

If we assume that t < λr3

4C then

fr(t) ≤ Ce−
1
4λ (1 + r).

The choice λ =
[
4(k + 1) log r

]−1
, which leads to r ≥ C3(t log t)1/3, completes the

proof of the proposition.

7.1.2. One-sided horizontal confinement. — We saw in subsection 5.1 that the hori-

zontal component of the center of mass in half-plane flow travels with speed bounded

below by a positive constant. This excludes any possible sublinear-in-time horizontal

confinement, at least in the direction x1 > 0. On the other hand, half-plane flows

with nonnegative vorticity have a tendency to move to the right, resisting left “back

flow”. The purpose of this part is to make this statement more precise. The following

result was proved in [16]:

Theorem 7.3. — Let ω0 ∈ Lp
c(H), p > 2, ω0 ≥ 0. Let u and ω be solutions of (1) with

initial vorticity ω0. Then there exists a positive constant D depending solely on the

initial vorticity such that

suppω(t, ·) ⊂ {x ∈ H ; x1 ≥ −D(t log t)
1
2 }

for all t > 2.
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Before we give the proof of Theorem 7.3 we need a technical lemma, in which we

obtain an estimate on the mass of vorticity in the “back flow” region; we see that it is

exponentially small.

Lemma 7.4. — Given k ∈ N, there exist positive constants D1 and D2, depending only

on the initial vorticity and on k, such that
∫

y1<−r

ω(t, y) dy ≤ D1

rk

provided that r ≥ D2(t log t)
1
2 and t ≥ 2.

Proof. — Consider the auxiliary function η = η(s) = es

1+es . It is easy to see that η is

nonnegative, increasing and

(26) |η′′(s)| ≤ η(s).
Set

fr(t) =

∫
η
(
−x1 + r

λr

)
ω(t, x) dx,

where λ > 0 will be chosen later. As η is nonnegative and increasing we clearly have:

(27) fr(t) ≥
∫

x1≤−r

η
(
−x1 + r

λr

)
ω(t, x) dx ≥ η(0)

∫

x1≤−r

ω(t, x) dx,

where we have used that for x1 ≤ −r we have that −x1+r
λr ≥ 0. Therefore it suffices

for our purposes to estimate fr(t).

We will deduce a differential inequality for fr from which we estimate fr. To this

end we differentiate in time to find:

f ′
r(t) = − 1

λr

∫
η′

(
−x1 + r

λr

)
u1(t, x)ω(t, x) dx,

where we have used the vorticity equation (1) and integration by parts to throw

derivatives onto η,

= − 1

2πλr

∫∫
η′

(
−x1 + r

λr

)[ x2 + y2
|x− y|2 −

x2 − y2
|x− y|2

]
ω(t, x)ω(t, y) dxdy,

using the Biot-Savart law (21),

≤ 1

2πλr

∫∫
η′

(
−x1 + r

λr

) x2 − y2
|x− y|2 ω(t, x)ω(t, y) dxdy,

as η′, x2 and y2 are positive. Finally, we symmetrize the kernel above by making the

change of variables x↔ y to obtain:

f ′
r(t) ≤

1

4πλr

∫∫ [
η′

(
−x1 + r

λr

)
− η′

(
−y1 + r

λr

)] x2 − y2
|x− y|2 ω(t, x)ω(t, y) dxdy

≤ 1

4πλr

∫∫ |x1 − y1|
λr

|η′′(θx,y)|
|x2 − y2|
|x− y|2 ω(t, x)ω(t, y) dxdy,

by the mean value theorem, with θx,y some point between −x1+r
λr and − y1+r

λr .
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Next we use (26) and the fact that η is nonnegative and increasing to deduce that

|η′′(θx,y)| ≤ |η(θx,y)| ≤ η
(
−x1 + r

λr

)
+ η

(
−y1 + r

λr

)
.

Since |x1 − y1| |x2 − y2| ≤ |x− y|2 we finally obtain the differential inequality:

f ′
r(t) ≤

1

4πλ2r2

∫∫ [
η
(
−x1 + r

λr

)
+ η

(
−y1 + r

λr

)]
ω(t, x)ω(t, y) dxdy =

‖ω0‖L1

2πλ2r2
fr(t),

where we have used that the L1-norm of ω(t, ·) is constant in time. Integration now

yields

fr(t) ≤ fr(0) exp
(
t
‖ω0‖L1

2πλ2r2

)
.

Clearly we may assume, without loss of generality, that suppω0 ⊂ {x1 ≥ 0}. Then

fr(0) =

∫
η
(
−x1 + r

λr

)
ω0(x) dx ≤ η

(
− 1

λ

)
‖ω0‖L1 ≤ exp

(
− 1

λ

)
‖ω0‖L1.

Hence, we infer that

fr(t) ≤ ‖ω0‖L1 exp
(
t
‖ω0‖L1

2πλ2r2
− 1

λ

)
.

In view of (27), to finish the proof it is now sufficient to choose λ such that

exp
(
t
‖ω0‖L1

2πλ2r2
− 1

λ

)
≤ 1

rk
= exp(−k log r).

The choice

λ =
1

2k log r

is convenient provided that the following inequality holds

(28)
r2

log r
≥ t2k‖ω0‖L1

π
.

Notice that the function r 7→ r2/ log r is nondecreasing if r > e. Hence, choosing D2

sufficiently large, it is easy to ensure (28) if r ≥ D2(t log t)
1
2 and t ≥ 2. This completes

the proof.

Next we use Lemma 7.4 to estimate the horizontal velocity.

Proposition 7.5. — Under the hypothesis of Theorem 7.3, there exist positive constants

D3 and D4 such that

|u1(t, x)| ≤
D3

|x1|
for all t ≥ 2 and x ∈ H such that x1 ≤ −D4(t log t)

1
2 .
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Proof. — We will estimate directly u1(t, x). From the Biot-Savart law (21) and the

decay estimate (24) it follows that

|u1(t, x)| ≤
∫

1

π|x− y| ω(t, y) dy

≤
∫

y1<x1/2

1

π|x− y| ω(t, y) dy +

∫

y1≥x1/2

1

π|x − y| ω(t, y) dy

≤ D1,p

π
‖ω0‖p

′/2
Lp

(∫

y1<x1/2

ω(t, y) dy
)1−p′/2

+
2

π|x1|
‖ω0‖L1

,

using Lemma 5.2 with a = 1. We have also used that both the L1 and the Lp-norms

of ω(t, ·) are bounded by their initial values. Let

k =

[
2

2− p′
]

+ 1,

where [a] denotes the largest integer smaller than a. Choose D2 as in Lemma 7.4 and

let x satisfy x1 ≤ −D4(t log t)
1
2 with D4 = 2D2. The conclusion then follows from

Lemma 7.4 with D3 computed accordingly.

We end this section with the proof of the horizontal confinement to the left.

Proof of Theorem 7.3. — LetD3 andD4 be as above. If need be increase the values of

D3 and D4 to show that any trajectory which reaches the region {x1 ≤ −D4(t log t)
1
2 }

does not have enough horizontal velocity to go past the line x1 = −2D4(t log t)
1
2 .

This proves that every trajectory lies in the region {x1 ≥ −2D4(t log t)
1
2 } (with D4

depending on the initial position of the trajectory); in particular, the support of the

evolved vorticity stays in that region.

7.2. The exterior domain case. — Let us now consider the case of an exterior

domain. In this setting, the moment of inertia and the center of mass are no longer

conserved so a loss of 2 in the final result is to be expected. Indeed, known estimates

on the Biot-Savart kernel and a similar proof as in section 6 or sub-subsection 7.1.1

imply that the propagation of vorticity’s support is not faster than O
[
(t log t)

1
2

]
, see

Marchioro [26]. Furthermore, using the conservation of logarithmic moments of the

vorticity, it is possible to improve this estimate up to O
[(

t
log t

) 1
2
]

in some cases.

Depending on the shape of the obstacle, further improvements can be obtained.

For instance, if the obstacle is the ball B(0, 1), the Biot-Savart kernel can be explicitly

expressed as

K(x, y) =
1

2π
∇⊥

x log
|x− y|
|x− y∗||y| , y∗ =

y

|y|2 .

As a consequence, it can be checked that the moment of inertia is conserved. However,

the center of mass is not conserved, it rather turns around the origin. As remarked
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in [26], it is easy to prove in this situation that the propagation of vorticity’s support

is not faster than O
[
(t log t)

1
3

]
.

7.3. Other extensions. — We simply note here that other extensions and im-

provements include unbounded initial vorticity and velocity [22, 15], slightly viscous

flows [27] and axisymmetric flows, [4, 24].

PART IV

ASYMPTOTICS FOR UNSIGNED VORTICITY

Let ω0 be a compactly supported function in Lp(R2), with p > 2, and let ω = ω(x, t)

be the vorticity associated to a weak solution of the incompressible two-dimensional

Euler equations in the full plane, with initial vorticity ω0. Recall that in vorticity

form, the Euler equations may be written as an active scalar transport equation:

(29)

{
ωt + (K ∗ ω) · ∇ω = 0,

ω(x, 0) = ω0,

with K the Biot-Savart vector kernel for the full plane, given by

(30) K(x) = K(x1, x2) =
1

2π|x|2 (−x2, x1) =
x⊥

2π|x|2 .

We are interested in obtaining information on the behavior of the solution ω(·, t) as

t→∞, particularly with regards to the spatial distribution of vorticity. We consider

a self-similar rescaling of vorticity of the form:

ω̃α(x, t) ≡ t2αω(tαx, t),

with α ∈ (0, 1]. This scaling preserves the integral of vorticity and its L1 norm. The

large time behavior of ω̃α carries information on the distribution of vorticity, focusing

on a certain asymptotic scale determined by the parameter α. The purpose of this

part is to prove three results. The first result is that, for any initial data ω0 and

parameter α > 1/2, we have ω̃α ⇀mδ0, where m =
∫
ω0 and δ0 is the Dirac measure

at the origin. The second result analyzes the behavior in a case when only steady

vortex pairs are present, the case of nonnegative vorticity in the half-plane. This result

can be formulated as a full plane theorem stating that, if: (i) the initial vorticity ω0 is

odd with respect to the horizontal axis, (ii) its restriction to the upper half-plane has

a distinguished sign and (iii) α = 1, then the hypothesis that |ω̃1(x, t)| ⇀ µ, where

µ is a measure (which must be supported in {|x1| ≤ M} × {x2 = 0} for confinement

reasons), implies that µ must consist of an at most countable sum of Dirac masses

whose supports may only accumulate at the origin. Our last result in this part is an
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extension to the full plane case of what we prove in the half-plane case. We remove

conditions (i) and (ii) on ω0, keeping the same conclusion.

The confinement results from the previous part basically control the rate at which

vorticity is spreading. Now we would like to go beyond controlling this rate, actually

describing the way in which vorticity is spreading.

If the initial vorticity does not have a distinguished sign, the best confinement one

may expect in general is at the rate a = 1, as we saw in subsections 5.1 and 5.2. This

means that the self-similar scale of interest is α = 1, and the time asymptotic behavior

of |ω̃1| is what would give a reasonably complete description of vorticity scattering in

this case.

The remainder of this part is divided into four sections. In the next section we

discuss the result on the asymptotic behavior of ω̃α. The following section contains

the result for nonnegative vorticity in the half-plane. The third section deals with the

theorem on |ω̃1|. We end this part with some final conclusions.

All the results from this part can be found in [16, 17].

8. Confinement of the net vorticity

Let ω0 ∈ Lp
c(R

2), for some p > 2 and consider ω = ω(x, t) a solution of (29)

with initial data ω0. Our basic problem is to describe the spatial distribution of

the vorticity ω(·, t) for large t. Clearly, if ω0 is single-signed, the known results on

confinement tell us that, for any α > 1/4, the support of ω̃α is contained in a disk

centered at the origin whose radius vanishes as t → ∞. What happens when the

vorticity is allowed to change sign?

Let ũα ≡ K ∗ ω̃α, with K given by (30). It is a straightforward calculation to verify

that ω̃α and ũα satisfy the equation

(31)
∂ω̃α

∂t
− α

t
div (xω̃α) +

1

t2α
div (ũαω̃α) = 0.

We are now ready to state and prove our first result.

Theorem 8.1. — Let α > 1/2 and set m =
∫
ω0(x) dx. Then ω̃α(·, t) ⇀ mδ0 weak-∗

in BM(R2) as t→∞.

Proof. — We will begin by considering the linear part of the evolution equation (31)

with initial condition at t = 1:





∂f

∂t
− α

t
div (xf) = 0

f(x, 1) = g(x).
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The solution f is given by the (multiplicative) semi-group f(x, t) = St[g](x) ≡
t2αg(tαx), interpreted in the sense of distributions. We then write (31) as an in-

homogeneous version of this linear equation, with source term given by

h(x, t) ≡ − 1

t2α
div (ũαω̃α).

With this we can write the solution ω̃α of (31), with initial data ω̃α(x, 1) = ω(x, 1) ≡
g(x), using Duhamel’s formula:

(32) ω̃α(x, t) = St[g](x) +

∫ t

1

St/s[h](x, s) ds.

(In the integral above the semi-group is acting in the spatial variable only.) Of course

(32) must be interpreted in the sense of distributions. We now turn to the analysis of

each term in (32). Let ϕ ∈ C∞
c (R2). We then have:

∫

R2

ϕ(x)ω̃α(x, t) dx =

∫

R2

ϕ
( y

tα

)
g(y) dy +

∫ t

1

∫

R2

ϕ

(
sαy

tα

)
h(y, s) dy ds ≡ I1 + I2.

First note that, as t→∞,

I1 →
(∫

R2

g(y) dy

)
ϕ(0),

by the Lebesgue Dominated Convergence Theorem. Next, recall that the total integral

of vorticity is conserved and hence the proof will be concluded once we establish that

I2 → 0. We compute directly, integrating by parts and using the relation between ũα

and ω̃α:

I2 = −
∫ t

1

∫

R2

ϕ

(
sαy

tα

)
1

s2α
div (ũαω̃α)(y, s) dy ds

=

∫ t

1

∫

R2

1

sαtα
∇ϕ

(
sαy

tα

)
· (ũαω̃α)(y, s) dy ds

=

∫ t

1

1

sαtα

∫

R2

∫

R2

∇ϕ
(
sαy

tα

)
·K(y − z)ω̃α(z, s)ω̃α(y, s) dz dy ds.

We now use the antisymmetry of the Biot-Savart kernel K to obtain:

I2 =
1

2

∫ t

1

1

sαtα

∫

R2

∫

R2

Hϕ(s, t, z, y)ω̃α(z, s)ω̃α(y, s) dz dy ds,

where

Hϕ(s, t, z, y) ≡
(
∇ϕ

(
sαy

tα

)
−∇ϕ

(
sαz

tα

))
·K(y − z).

Let us observe that

|Hϕ| ≤
sα

tα
‖D2ϕ‖L∞ |y − z||K(y − z)| ≤ C(ϕ)

sα

tα
.

Hence we arrive finally at

|I2| ≤ C(ϕ)

(∫

R2

|ω0|
)2

t− 1

t2α
,

which clearly converges to 0 as t→∞ as long as 2α > 1. This concludes the proof.
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Remark 8.2. — Surprisingly, this result seems to be optimal in the sense that it is

false for α = 1
2 . This is suggested by the discrete example from subsection 4.5 where

the vortices have non-vanishing total mass and stay in a region exactly like O(t
1
2 ).

Remark 8.3. — The particular way in which we use the antisymmetry of the Biot-

Savart kernel together with the bilinearization of the nonlinearity of the Euler equa-

tions is due to J.-M. Delort, who used it in his proof of existence of weak solutions

for 2D Euler with vortex sheet initial data, see [11].

Remark 8.4. — This result does not say anything new if the initial vorticity has a

distinguished sign. As we mentioned in the introduction, if the vorticity has a distin-

guished sign, the support of vorticity is contained in a ball whose radius grows like

O(tα), with 1/4 < α. From that, Theorem 8.1 follows immediately.

Remark 8.5. — What new information is contained in the conclusion of Theorem 8.1?

Imagine that we are given initial vorticity ω0 = ω+
0 − ω−

0 , which are the positive and

negative parts of the initial vorticity. Let ω = ω+ − ω− be the solution of 2D Euler

with initial vorticity ω0. Due to the nature of vortex dynamics, both ω+ and ω− are

time-dependent rearrangements of ω+
0 and ω−

0 respectively, and hence their integrals,

which we may call m+ and m−, are constant in time. Additionally, a consequence of

Theorem 8.1 is that the integral of vorticity in a ball of radius tα converges tom+−m−,

for any α > 1/2. This is weak confinement of the imbalance between the positive and

negative parts of vorticity in a ball of sublinear radius. This weak confinement is

consistent with the conjectural picture that the only way for the support of vorticity

to grow fast is through the shedding of vortex pairs.

9. Asymptotic behavior of nonnegative vorticity in the half-plane

Let ω = ω(t, x) be the vorticity associated to a solution of the incompressible

two-dimensional Euler equations on the upper half-plane with an initial vorticity ω0

which is bounded, compactly supported and nonnegative. We consider a rescaling

ω̃ = ω̃(t, x) = t2ω(t, tx), whose time-asymptotic behavior encodes information on the

scattering of ω into traveling wave solutions of the 2D Euler system on the half-plane.

This choice of rescaling was also made in view of the fact that the horizontal velocity

of the center of vorticity is bounded away from zero from below (see Theorem 5.1).

The rescaling ω̃ is weakly compact as a time-dependent family of measures. The main

purpose of this section is to present a structure theorem, stating that if the rescaling

ω̃ is actually weakly convergent to a measure then this measure must be of the form∑
miδ(x1 −αi)⊗ δ(x2), with mi > 0, αi a discrete set of points on an interval of the

form [0,M ] whose only possible accumulation point is x1 = 0, and where δ denotes

the one-dimensional Dirac measure centered at 0.
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Results on confinement of vorticity are rigorous actualizations of the rough idea

that single signed 2D vorticity tends to rotate around, but not to spread out. This

is false if the vorticity is not single signed, which can be seen by considering the

behavior of vortex pairs, vorticity configurations that tend to translate to infinity

with constant speed due to their self-induced velocity, see subsection 5.1. Due to the

traveling wave behavior of vortex pairs, vorticity scattering in two dimensions may

become complicated, and interesting, when vorticity is allowed to change sign. In the

previous section we have proved confinement, in a weak sense, of the net vorticity

in a region with roughly square-root in time growth in its diameter. From the point

of view of scattering, this result accounts for the behavior of the net vorticity, but

says very little about the behavior of vortex pairs, because these tend to be weakly

self-canceling when looked at from a large spatial scale. It one wants to study vortex

scattering, the relevant information is the large-time behavior of |ω̃a(t, ·)|, mainly

in the case a = 1. The present section is directed precisely at this problem, with

the simplifying assumption that the vorticity be odd with respect to a straight line,

single-signed on each side of the symmetry line. Another way of expressing this is to

say that in this section we will study the scattering of co-axial, unidirectional vortex

pairs.

Let ω = ω(t, x) be the solution of the half-plane problem defined for all time,

associated to initial data ω0, which we assume, for simplicity, to be smooth, compactly

supported and nonnegative. The confinement results proved in subsection 7.1 implies

that the support of ω(t, ·) is contained in a rectangle of the form (a1 − b1tα, ct) ×
(0, a2 + b2t

β), with ai real constants, bi, c > 0 and 0 ≤ α, β < 1. We wish to examine

the asymptotic behavior of the vorticity on the linearly growing horizontal scale that

is naturally associated with the motion of vortex pairs. The approach we use is

inspired on work on the asymptotic behavior of solutions of systems of conservation

laws due to G. Q. Chen and H. Frid, see [9]. Let ω̃(t, x) ≡ t2ω(t, tx). The function

ω̃ has bounded L1 norm and will be shown to have support in a rectangle of the

form (−b1tα−1, c) × (0, b2t
β−1). Hence the family of measures { ω̃(t, ·)}t>0 is weak-∗

precompact and any weak limit of subsequences of this family is of the form µ⊗ δ0,
with µ a nonnegative measure supported on the interval [0, c]. We will refer to such

a measure µ as an asymptotic velocity density. Our main result may be stated in the

following way.

Theorem 9.1. — Suppose that the initial data ω0 for the half-plane problem is such

that there exists a unique asymptotic velocity density µ, i.e., ω̃(t, ·) ⇀ µ⊗ δ0 when

t→∞. Then µ is the sum of an at most countable set of Diracs whose supports may

only accumulate at zero.

The proof involves writing the PDE for the evolution of ω̃ and using the a priori

estimates available and the structure of the nonlinearity in a way that is characteristic

of weak convergence methods, see [14]. We will briefly discuss the physical meaning
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of both the hypothesis that ω̃(t, ·) converges weakly and the conclusion regarding the

structure of µ.

The study of the wavelike behavior of vortex pairs goes back to Pocklington in [37],

with more recent interest going back to work of Norbury, Deem and Zabusky and

Pierrehumbert, see [10, 33, 36]. The existence (and abundance) of steady vortex

pairs, which are traveling wave solutions of the 2D incompressible Euler equations,

i.e. vorticity shapes which propagate with constant speed without deforming, has

been established in the literature in several ways, see [6, 43, 33]. Steady vortex

pairs have been object of an extensive literature, from asymptotic studies, see [44]

and numerical studies, see [38] and even experimental work, see [32]. Although some

analytical results (see [31]) and numerical evidence, [34], point to the orbital stability

of steady vortex pairs under appropriate conditions, this stability is an interesting,

largely open problem, see [39].

Compactly supported vortex pairs interact in a way such that the intensity of the

interaction decays with the inverse of the square of the distance between them. Hence,

vortex pairs moving with different speeds tend to behave like individual particles,

decoupling after a large time. This is what makes the study of vortex scattering

interesting in this context. Let us illustrate the point of view we want to pursue with

the example of the Korteweg-deVries equation. Nonlinear scattering for the KdV is

well-understood, as solutions of KdV with smooth, compactly supported initial data

are expected to resolve into a scattering state composed of an N -soliton plus a slowly

decaying dispersive tail. This fact was first formulated as a conjecture by P. Lax

in [21] and broadly explored through the method of inverse scattering since then.

The conclusion of Theorem 9.1 may be regarded as a weak, or averaged form of Lax’s

conjecture for vortex pair dynamics. Note that steady vortex pairs correspond to

classical solitons in this analogy, but no existence for the multibump solutions that

would be associated to the classical N-solitons has been rigorously established.

Let us call shape space the space of smooth compactly supported vorticity config-

urations, identifying configurations which are related through horizontal translations.

Steady vortex pairs correspond to stationary shapes with respect to Euler dynamics.

There are solutions of the two-dimensional incompressible Euler equations that de-

scribe periodic loops in shape space. Two examples of this behavior are: 1) a pair of

like-signed point vortices on a half plane, which orbit one another periodically as they

translate horizontally, called leapfrogging pairs, and 2) Deem and Zabusky’s trans-

lational V -states, which are vortex patches with discrete symmetry, see [10]. From

the point of view of scattering such solutions represent another kind of asymptotic

state or, in other words, another kind of particle. Furthermore, one may well imagine

solutions with quasiperiodic or chaotic behavior in shape space. Although there is no

example of either case in the literature, the passive tracer dynamics of the leapfrogging

pair is known to be chaotic, see [35]. Possible chaotic shapes represent an interesting
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illustration of Theorem 9.1, as both the hypothesis of weak convergence and the con-

clusion are clearly related to the ergodicity of shape dynamics and the self-averaging

of the velocity of the center of vorticity of such generalized vortex pairs. Finally,

we must mention the work of Overman and Zabusky [34], where they do numerical

experiments on the short term scattering of pairs of translational V -states, the first

(and only) study to date on the interaction of coaxial vortex pairs, which is the main

point of the present work.

We now turn to our main concern in this section, the rigorous study of the asymp-

totic behavior of flows with nonnegative vorticity in the half-plane. We divide this

section in several subsections. In the first one we introduce the self-similar rescaling

of the flow which encodes the scattering information we wish to study, we write an

evolution equation for the rescaled vorticity and we interpret the vortex confinement

information obtained in the previous section in terms of the new scaling. The second

subsection is the technical heart of this section, where we study the behavior of the

nonlinearity in the equations with respect to the self-similar scaling. In the third sub-

section we use the information obtained to prove our main result. We then end this

half-plane parenthesis with a discrete example and some comments and conclusions.

9.1. Rescaled vorticity and asymptotic densities. — One key feature of vortex

dynamics in a half-plane is nonlinear wave propagation. In order to examine wave

propagation it is natural to focus on a self-similar rescaling of physical space, as has

been performed by Chen and Frid in the context of systems of conservation laws,

see [9]. Let us fix, throughout this section, a nonnegative function ω0 ∈ Lp
c(H), p > 2,

and ω = ω(t, ·), u = u(t, ·), solutions with initial vorticity ω0. Set

(33) ω̃(t, y) = t2ω(t, ty) and ũ(t, y) = tu(t, ty),

the rescaled vorticity and velocity, respectively. The scaling above respects the elliptic

system relating velocity and vorticity so that we still have
{

div ũ = 0

curl ũ = ω̃.

It is immediate that ũ2(t, x1, 0) = 0 and therefore we can recover ũ from ω̃ by means

of the Biot-Savart law for the half-plane:

(34) ũ(t, x) =

∫

H

K(x, y) ω̃(t, y) dy,

with K defined in (22).

Let M = ‖u‖L∞(R+×H). Then the confinement estimates for vorticity in the half-

plane, in particular Theorems 7.3 and 7.1 and the fact that the vorticity ω is trans-

ported by the velocity u, imply that there exists a constant C > 0 such that:

suppω(t, ·) ⊂
[
−C(t log t)

1
2 , C0 +Mt

]
×

[
0, C(t log t)

1
3

]
for all t ≥ 2,
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where C0 = sup{x1 ; x ∈ suppω0}. This in turn implies an asymptotic localization

of supp ω̃(t, ·) = 1
t suppω(t, ·), namely:

(35) supp ω̃(t, ·) ⊂
[
−C

( log t

t

) 1
2 ,
C0

t
+M

]
×

[
0, C

( log t

t2
) 1

3

]
.

Next, from the vorticity equation one may derive a transport equation for the

evolution of ω̃(t, y), which takes the form:

(36) ∂t ω̃(t, y)− 1

t
div

[
y ω̃(t, y)

]
+

1

t2
div

[
ũ(t, y) ω̃(t, y)

]
= 0.

Using the scaling (33) we find

(37) ‖ ω̃(t, ·)‖Lq = t2(1−
1
q )‖ω(t, ·)‖Lq ≤ t2(1− 1

q )‖ω0‖Lq ∀q ∈ [1, p].

Furthermore, the L1-norm of ω̃ is conserved in time. We wish to treat ω̃ as

a bounded L1-valued function of time, possessing nonnegative measures as weak-∗
limits for large time. The confinement estimate (35) implies that any weak-∗ limit of

ω̃ must have the structure µ⊗ δ0(x2), with the support of µ contained in the interval

[0,M ].

It is in the nature of the self-similar rescaling (33) that much of the scattering

behavior of the flow is encoded in the measure µ. This measure is the main subject

of the remainder of this section, and, as such, deserves an appropriate name.

Definition 9.2. — Let µ ∈ BM([0,M ]) be a nonnegative measure such that there

exists a sequence of times tk →∞ for which

ω̃(tk, ·) ⇀ µ⊗ δ0 in the weak-∗ topology of bounded measures, as tk →∞.

Then we call µ an asymptotic velocity density associated to ω0.

It can be readily checked that, if ω(t, x) = ω0(x1 − σt, x2), then there exists a

unique asymptotic velocity density µ, which is a Dirac delta at position (σ, 0) with

mass given by the integral of ω0. For a general flow an asymptotic velocity density

encodes information on typical velocities with which different portions of vorticity are

traveling.

9.2. The key estimate. — Our purpose in this part is to understand the structure

of the asymptotic velocity densities. To do so we make use of the evolution equation

(36) for ω̃ and we examine the behavior for large time of each of its terms. The main

difficulty in doing so is understanding the behavior of the nonlinear term div (ũ ω̃),

which is our goal in this subsection.

We begin with two general measure-theoretical results that are standard exercises

in real analysis. Recall that a measure is called continuous if it attaches zero mass to

points.
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Lemma 9.3. — Let µ be a finite nonnegative measure on R. Then µ is the sum of

a nonnegative continuous measure ν and a countable sum of positive Dirac measures

(the discrete part of µ). Moreover, for every ε > 0 there exists δ > 0 such that, if I

is an interval of length less than δ, then ν(I) ≤ ε.

Proof. — Let A = {x ; µ({x}) 6= 0}. Then A is countable; indeed, A =
⋃

nAn and

each An = {x ; µ({x}) ≥ 1/n} must be finite because µ is finite. Hence we may write

A = {x1, x2, . . .} and mj = µ({xj}). Of course, ν = µ −∑
j mjδxj is a continuous,

nonnegative measure.

To conclude the proof of this Lemma it suffices to observe that F (x) = ν((−∞, x]),
the distribution function of the measure ν, is continuous, goes to 0 at −∞ and to

ν(R) at +∞ so it must necessarily be uniformly continuous.

Lemma 9.4. — Let γn be a sequence of nonnegative Radon measures on H, converging

weakly to some measure γ, and having the supports uniformly bounded in the vertical

direction. Then, for every compact interval [a, b] one has that

lim sup
n→∞

γn([a, b]× R+) ≤ γ([a, b]× R+).

Proof. — Fix ε > 0. Since

γ([a, b]× R+) = lim
δ→0

γ([a− δ, b+ δ]× R+),

there exists δ > 0 such that

γ([a− δ, b+ δ]× R+) < γ([a, b]× R+) + ε.

Let ϕ be a continuous function supported in (a − δ, b + δ) and such that 0 ≤
ϕ ≤ 1 and ϕ

∣∣
[a,b]

= 1. According to the hypothesis, we have that
〈
γn(y), ϕ(y1)

〉
→〈

γ(y), ϕ(y1)
〉
, so there exists N such that

〈
γn(y), ϕ(y1)

〉
≤

〈
γ(y), ϕ(y1)

〉
+ε ∀n ≥ N.

From the hypothesis on the test function ϕ it follows that, for all n ≥ N ,

γn([a, b]× R+) ≤
〈
γn(y), ϕ(y1)

〉
≤

〈
γ(y), ϕ(y1)

〉
+ε

≤ γ([a− δ, b+ δ]× R+) + ε ≤ γ([a, b]× R+) + 2ε.

We deduce that

lim sup
n→∞

γn([a, b]× R+) ≤ γ([a, b]× R+) + 2ε.

The desired conclusion follows by letting ε→ 0.

We now go to the study of the asymptotic behavior of vorticity. Let ω0 ≥ 0 be a

fixed function in Lp
c(H), for some p > 2, and let u, ω be solutions of the half-plane

problem, with ũ, ω̃ defined in (33). Let µ be an asymptotic velocity density associated
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to ω0. Then µ is a nonnegative measure in BM([0,M ]), with M = ‖u‖L∞([0,∞)×H),

and by Lemma 9.3, µ can be written as

(38) µ = ν +
∞∑

i=1

miδαi ,

where ν is the continuous part of µ and αi ∈ [0,M ]. As ω0 ≥ 0 it follows that mi ≥ 0

and, as µ is a bounded measure,
∑∞

i=1mi <∞. Furthermore we can assume without

loss of generality that αi 6= αj in the decomposition (38).

Let {tk} be a sequence of times approaching infinity such that

ω̃(tk, ·) ⇀ µ⊗ δ0(x2),

as k → ∞, weak-∗ in BM(H). The following proposition is what we refer to as the

key estimate in the title of this subsection.

Proposition 9.5. — Let ψ ∈ C0(R). Then there exists a constant D > 0, depending

only on p, such that the following estimate holds:

(39) lim sup
k→∞

∣∣∣∣
∫

H

ψ(y1)
ũ1(tk, y)

tk
ω̃(tk, y)dy

∣∣∣∣ ≤ D‖ω0‖
p′

2

Lp

∞∑

i=1

m
2− p′

2

i |ψ(αi)|.

Before giving the proof of Proposition 9.5, let us motivate the statement with the

following example. Consider a steady vortex pair with vorticity given by ω(t, x) =

ω0(x1 − σt, x2) and velocity u(t, x) = u0(x1 − σt, x2). Then it is easy to see that

the rescaled nonlinear term eu1

t ω̃ converges to σmδσ ⊗ δ0 where m =
∫
ω0 dx. Based

on this example, one would expect the right-hand side of (39) to be
∑

i αimi|ψ(αi)|
instead. On the other hand, for the steady vortex pair, it can be easily checked that

σ =
1∫
ω0 dx

∫
(u0)1ω0 dx ≤ ‖u0‖L∞ .

Using Lemma 5.2 we infer that

|σ| ≤ D‖ω0‖p
′/2

Lp m1−p′/2.

which then implies that the weak limit in the sense of measures of eu1

t ω̃ is less than

D‖ω0‖p
′/2

Lp m2−p′/2δσ ⊗ δ0. Hence, in light of this example we see that estimate (39)

is weaker than what might be expected, but nevertheless it is consistent with the

behavior of steady vortex pairs.

Proof of Proposition 9.5. — Let us denote the integral we wish to estimate by Bk, so

that

(40) Bk ≡
∫

H

ψ(y1)
ũ1(tk, y)

tk
ω̃(tk, y)dy.
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Fix ε > 0 throughout. Since
∑∞

i=1mi <∞ there exists N = N(ε) such that
∑

i>N

mi <
ε

4
.

Additionally, it is easy to find δ = δ(ε) > 0 such that, if I is an interval, |I| ≤ δ,

then

(41) ν(I) <
ε

4
,

by using Lemma 9.3, and also

(42) µ([αi − 2δ, αi + 2δ]) < mi(1 + ε), i = 1, . . . , N,

(43) [αi − δ, αi + δ] ∩ [αj − δ, αj + δ] = ∅, i 6= j ∈ {1, . . . , N},

(44) |ψ(y1)− ψ(αi)| < ε ∀ y1 ∈ [αi − δ, αi + δ], i = 1, . . . , N.

In view of Lemma 9.4 and relation (42), there exists K0 such that, if k > K0 then

(45)

∫

[αi−2δ,αi+2δ]×R+

ω̃(tk, y) dy < mi(1 + ε) ∀i = 1, . . . , N.

Consider now an interval I ⊂ R\
N⋃

i=1

(αi− δ
2 , αi +

δ
2 ) of length at most δ. According

to relation (41)

ν(I) <
ε

4
.

On the other hand µ − ν, the discrete part of µ, restricted to I avoids the Diracs at

α1, . . . , αN so that

(µ− ν)(I) ≤
∑

i>N

mi <
ε

4
.

Therefore

(46) µ(I) <
ε

2
.

Given a compact interval J ⊂ R \
N⋃

i=1

(αi − δ
2 , αi + δ

2 ) of length at most δ we can

use (46) and Lemma 9.4 together with the fact that ω̃(tk, ·) ⇀ µ⊗ δ to find K0 large

enough so that, in addition to (45), we have
∫

J×R+

ω̃(tk, y) dy <
ε

2
,

for any k > K0. We wish to show that this K0 can be chosen independently of J ,

but we shall have to pay a price, namely the estimate above will hold with ε on the

right-hand-side, instead of ε/2.

Let J be a compact interval such that J × R+ contains the support of ω̃(t, ·) for

all t. We write the set J \
N⋃

i=1

(αi − δ
2 , αi + δ

2 ) as a finite disjoint union of intervals
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Ij , each of which we subdivide into intervals of length exactly δ, together with an

interval of size at most δ, this being the right-most subinterval of Ij . This way the

set J \
N⋃

i=1

(αi − δ
2 , αi + δ

2 ) can be written as the union of intervals J1, . . . , Jl of length

precisely δ plus some remaining intervals Jl+1, . . . , JL of length strictly less than δ.

According to (46), we have that

µ(Ji) <
ε

2
∀i = 1, . . . , L.

Next we apply Lemma 9.4 and use the fact that ω̃(t, ·) ⇀ µ ⊗ δ, to obtain K0 such

that (45) is satisfied together with:

(47)

∫

Ji×R+

ω̃(tk, y) dy <
ε

2
∀i = 1, . . . , L, k > K0.

Let I be a subinterval of R \
N⋃

i=1

(αi − δ
2 , αi + δ

2 ) of length less than δ. It is easy to

see that I can intersect at most two of the intervals Ji as otherwise, by construction,

this would imply it had to contain an interval of length precisely δ. According to (47)

we deduce that
∫

I×R+
ω̃(tk, y) dy < ε for all k > K0. We have just shown that, if I is

an interval of length at most δ, I ⊂ R \
N⋃

i=1

(αi − δ
2 , αi + δ

2 ) then

(48)

∫

I×R+

ω̃(tk, y) dy < ε, ∀k > K0.

Let k > K0 and set

Ei = [αi − δ, αi + δ]× R+, Fi = [αi − 2δ, αi + 2δ]× R+, E = E1 ∪ · · · ∪ EN .

According to (43), the sets E1, . . . , EN are disjoint, so we can write Bk, defined in

(40), as:

Bk =

N∑

i=1

∫

Ei

ψ(y1)
ũ1(tk, y)

tk
ω̃(tk, y) dy

︸ ︷︷ ︸
Bk1

+

∫

Ec

ψ(y1)
ũ1(tk, y)

tk
ω̃(tk, y) dy

︸ ︷︷ ︸
Bk2

.

We will estimate separately Bk1 and Bk2. Note that both estimates rely in an

essential way on the Biot-Savart law and the fact that the kernel can be estimated by

|x − y|−1 (see (24)). In the remainder of this proof we will denote by C a constant

which is independent of ε and t.
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Estimate of Bk1. Using the Biot-Savart law (34) and relation (24), one can bound

Bk1 as follows:

|Bk1| ≤
N∑

i=1

∫∫

x∈H

y∈Ei

|ψ(y1)|
π|x− y|

ω̃(tk, x)

tk
ω̃(tk, y) dxdy

=
1

tk

N∑

i=1

∫∫

|x−y|≥δ
x∈H,y∈Ei

|ψ(y1)|
π|x− y| ω̃(tk, x)ω̃(tk, y) dxdy

+
1

tk

N∑

i=1

∫∫

|x−y|<δ
x∈H,y∈Ei

|ψ(y1)|
π|x− y| ω̃(tk, x)ω̃(tk, y) dxdy

≤ sup |ψ|
πtkδ

‖ ω̃‖L1

N∑

i=1

∫

Ei

ω̃(tk, y) dy +
1

tk

N∑

i=1

∫∫

|x−y|<δ
x∈H,y∈Ei

|ψ(y1)|
π|x− y| ω̃(tk, x)ω̃(tk, y) dxdy

≤ C

δtk
+

N∑

i=1

∫∫

|x−y|<δ
x∈H,y∈Ei

|ψ(y1)|
πtk|x− y|

ω̃(tk, x)ω̃(tk, y) dxdy.

According to (44), for y ∈ Ei we have that |ψ(y1) − ψ(αi)| < ε. We therefore

deduce that

|Bk1| ≤
C

δtk
+

N∑

i=1

|ψ(αi)|+ ε

πtk

∫∫

|x−y|<δ
x∈H,y∈Ei

1

|x− y| ω̃(tk, x)ω̃(tk, y) dxdy.

Applying Lemma 5.2 yields
∫∫

|x−y|<δ
x∈H,y∈Ei

1

|x− y| ω̃(tk, x)ω̃(tk, y) dxdy ≤
∫

Ei

( ∫

[y1−δ,y1+δ]×R+

ω̃(tk, x)

|x− y| dx
)
ω̃(tk, y) dy

≤ D1,p

∫

Ei

( ∫

[y1−δ,y1+δ]×R+

ω̃(tk, x) dx
)1− p′

2 ‖ ω̃‖
p′

2

Lp ω̃(tk, y) dy.

Now, if y ∈ Ei then [y1−δ, y1+δ] ⊂ [αi−2δ, αi+2δ], so that [y1−δ, y1+δ]×R+ ⊂ Fi.

Hence
∫∫

|x−y|<δ
x∈H,y∈Ei

1

|x− y| ω̃(tk, x)ω̃(tk, y) dxdy ≤ D1,p

(∫

Fi

ω̃(tk, x) dx
)1− p′

2

tk‖ω0‖
p′

2

Lp

(∫

Ei

ω̃(tk, y) dy

)

≤ tkD1,p

[
mi(1 + ε)

]2− p′

2 ‖ω0‖
p′

2

Lp ,

SÉMINAIRES & CONGRÈS 15
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where we have used (37) and (45). We conclude that

(49) |Bk1| ≤
C

δtk
+ C1

N∑

i=1

(|ψ(αi)|+ ε)
[
mi(1 + ε)

]2− p′

2 ,

with C1 = D1,p‖ω0‖
p′

2

Lpπ−1.

Estimate of Bk2. We estimate directly, similarly to what was done with Bk1:

|Bk2| ≤
C

δtk
+

∫∫

|x−y|<δ/3
x∈H,y∈Ec

|ψ(y1)|
πtk|x− y|

ω̃(tk, x)ω̃(tk, y) dxdy

≤ C

δtk
+
‖ψ‖L∞

πtk

∫∫

|x−y|<δ/3
x∈H,y∈Ec

1

|x− y| ω̃(tk, x)ω̃(tk, y) dxdy.

Lemma 5.2 implies in the same way that

|Bk2| ≤
C

δtk
+
D1,p

πtk
‖ψ‖L∞

∫

Ec

( ∫

[y1− δ
3

,y1+
δ
3
]×R+

ω̃(tk, x) dx
)1− p′

2 ‖ ω̃‖
p′

2

Lp ω̃(tk, y) dy

≤ C

δtk
+
D1,p

π
‖ψ‖L∞‖ω0‖

p′

2

Lp‖ω0‖L1 sup
y∈Ec

( ∫

[y1− δ
3

,y1+
δ
3
]×R+

ω̃(tk, x) dx
)1− p′

2

.

For y ∈ Ec, the interval [y1 − δ
3 , y1 + δ

3 ] is of length less than δ and included in

R \
N⋃

i=1

(αi − δ
2 , αi + δ

2 ). We deduce from (48) that

∫

[y1− δ
3
,y1+

δ
3
]×R+

ω̃(tk, x) dx < ε.

which implies that

(50) |Bk2| ≤
C

δtk
+ C2ε

1−p′

2 ,

with C2 = C1‖ψ‖L∞‖ω0‖L1 .

Collecting the estimates for Bk1 and Bk2 (relations (49) and (50)) yields the fol-

lowing bound for Bk:

(51) |Bk| ≤
C

δtk
+ C1

{
‖ψ‖L∞‖ω0‖L1ε1−

p′

2 +

N∑

i=1

(|ψ(αi)|+ ε)
[
mi(1 + ε)

]2− p′

2

}
.

Take the lim sup as k→∞ above to obtain:

lim sup
k→∞

|Bk| ≤ C1

{
‖ψ‖L∞‖ω0‖L1ε1−

p′

2 +

∞∑

i=1

(|ψ(αi)|+ ε)
[
mi(1 + ε)

]2− p′

2

}
.

Next, send ε→ 0 in order to reach the desired conclusion.
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9.3. Large time asymptotics. — We will now make use of the equation for ω̃

given in relation (36) together with Proposition 9.5 to deduce an inequality for the

limit measure µ, given by (55). Surprisingly, this estimate alone will be sufficient to

deduce the main result of this part, Theorem 9.8. Let us begin with an outline of the

proof of (55). One begins with the equation for the evolution for ω̃ (36), taking the

product with a fixed test function and integrating in space. The resulting equation

has three terms. The first one, when integrated from 0 to t, is uniformly bounded in t.

Now, if div
[
y ω̃(t, y)

]
is weakly convergent as t→∞, then the integral in time of the

second term will, in principle, diverge like log t as t→∞. As for the third term, it is

not difficult to see that it is O(1/t). The dominant part of the third term must balance

the logarithmic blow-up in time of the second term. The aim of Proposition 9.5 is

precisely to estimate this dominant part of the third term.

We will begin with a lemma, relating asymptotics on the linear part of the evolution

equation for ω̃ (36) to the nonlinear part. To this end fix ψ ∈ C0(R) and define the

quantities

(52) A[t;ψ] ≡
∫

H

ψ(y1)y1ω̃(t, y) dy,

and

(53) B[t;ψ] ≡
∫

H

ψ(y1)
ũ1(t, y)

t
ω̃(t, y) dy.

Note that, as the support of ω̃ is contained in a compact set independent of t, it will

not matter whether the support of ψ is compact.

Lemma 9.6. — The following estimate holds:

(54) lim sup
t→∞

(B[t;ψ]−A[t;ψ]) ≥ 0.

Proof. — Let ϕ ∈ C1(R) be a primitive of ψ so that ϕ′ = ψ. Define

f(t) ≡
∫

H

ϕ(y1) ω̃(t, y) dy,

a bounded function, since ω̃(t, ·) is bounded in L1. Differentiating f with respect to

t and using the equation (36) for ω̃ we get, after integration by parts,

f ′(t) =

∫
ϕ(y1)∂t ω̃(t, y) dy =

1

t

∫
ϕ(y1) div(y ω̃) dy − 1

t2

∫
ϕ(y1) div(ũ ω̃) dy

=
1

t

∫
ψ(y1)

ũ1

t
ω̃ dy − 1

t

∫
ψ(y1)y1 ω̃ dy ≡ 1

t
B[t;ψ]− 1

t
A[t;ψ].

Integrating from t to t2 we obtain:

f(t2)− f(t) =

∫ t2

t

B[s;ψ]−A[s;ψ]

s
ds.

Let L = lim sups→∞(B[s;ψ] − A[s;ψ]). Recall that ‖ũ(t, ·)/t‖L∞ and ‖ ω̃(t, ·)‖L1

are bounded independently of t, and ω̃(t, ·) has compact support uniformly in t, so
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that L < ∞. Then, for any ε > 0, there exists M > 0 such that, if s > M then

B[s;ψ]−A[s;ψ] < L+ ε. In particular, if t > M above then

f(t2)− f(t) < (L+ ε) log t,

so that

0 = lim
t→∞

f(t2)− f(t)

log t
≤ L+ ε.

The result follows by taking ε→ 0.

Remark 9.7. — Note that, exchanging ψ by −ψ above gives the estimate:

lim inf
t→∞

(B[t;ψ]−A[t;ψ]) ≤ 0.

We will not use this inequality in what follows.

Let us now impose a major hypothesis on the flow, namely that there exists a

unique asymptotic velocity density, so that

ω̃(t, ·) ⇀ µ⊗ δ(x2),

as t→∞. We use Lemma 9.3 to write

µ = ν +

∞∑

i=1

miδαi .

Then, for any ψ ∈ C0(R), it follows that

A[t;ψ]→
〈
y1µ, ψ(y1)

〉
,

as t→∞. Next use Proposition 9.5 to deduce that

lim sup
t→∞

|B[t;ψ]| ≤ D‖ω0‖
p′

2

Lp

∞∑

i=1

m
2−p′

2

i |ψ(αi)|.

We therefore deduce from Lemma 9.6 that:

〈
y1µ, ψ(y1)

〉
≤ D‖ω0‖

p′

2

Lp

∞∑

i=1

m
2− p′

2

i |ψ(αi)|.

Exchanging ψ for −ψ yields:

(55)
∣∣〈y1µ, ψ(y1)

〉∣∣ ≤ D‖ω0‖
p′

2

Lp

∞∑

i=1

m
2− p′

2

i |ψ(αi)|.

The relevant fact is that the exponent 2− p′

2 > 1.

Let δP denote the Dirac delta measure at position P . We are now ready to re-state

our main result, giving a more precise formulation of Theorem 9.1.
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Theorem 9.8. — Suppose that the nonnegative initial vorticity ω0 ∈ Lp
c(H) is such

that there exists a unique asymptotic velocity density µ associated to ω0. Then µ

must be of the form:

µ =
∞∑

i=1

mi δαi

where:

(a) αi 6= αj if i 6= j and αi → 0 as i→∞;

(b) the masses mi are nonnegative and verify
∞∑

i=1

mi = ‖ω0‖L1;

(c) for all i, αi ∈ [0,M ], where M = ‖u‖L∞([0,∞)×H);

(d) there exists a constant D > 0, depending solely on p, such that, for all i with

mi 6= 0 we have

αi ≤ D‖ω0‖
p′

2

Lp m
1−p′

2

i .

Furthermore, there exists i0 such that αi0 6= 0 and mi0 6= 0.

We will need two intermediate results before giving the proof of Theorem 9.8.

Lemma 9.9. — Let miδαi be a Dirac from the discrete part of µ. The following in-

equality holds true:

αi ≤ D‖ω0‖
p′

2

Lpm
1− p′

2

i .

Proof. — Eventually changing the order in the summation of the Diracs, we can

assume that i = 1. Furthermore, the conclusion is trivial if α1 = 0, so we can assume

that α1 > 0 as well. Let ε > 0 be fixed. We follow the same construction as in the

beginning of the proof of Proposition 9.5, using Lemma 9.3, to conclude that there

exists δ ∈ (0, α1) such that the following inequality holds:

µ([α1 − δ, α1 + δ]) ≤ m1 + ε.

If αi ∈ [α1 − δ, α1 + δ], i ≥ 2, then m1δα1
+miδαi ≤ µ on [α1 − δ, α1 + δ], so we

must have that mi ≤ ε.
Let ψ ∈ C0(R) be a nonnegative function supported in (α1−δ, α1 +δ) ⊂ R+ which

attains its maximum at α1. By (55) and using the nonnegativity of µ and y1ψ(y1) we

find

m1α1ψ(α1) ≤
〈
µ, y1ψ(y1)

〉
≤ D‖ω0‖

p′

2

Lp

[
ψ(α1)m

2− p′

2

1 +

∞∑

i=2

ψ(αi)m
2− p′

2

i

]
.

We observed that if αi ∈ (α1−δ, α1+δ), i ≥ 2, then mi ≤ ε. If αi 6∈ (α1−δ, α1+δ)

then ψ(αi) = 0. In both cases

ψ(αi)m
2− p′

2

i ≤ ψ(αi)ε
1− p′

2 mi ≤ ψ(α1)ε
1− p′

2 mi.

SÉMINAIRES & CONGRÈS 15
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We infer that

m1α1ψ(α1) ≤ D‖ω0‖
p′

2

Lpψ(α1)
[
m

2− p′

2

1 + ε1−
p′

2

∞∑

i=2

mi

]
,

that is

m1α1 ≤ D‖ω0‖
p′

2

Lp

[
m

2− p′

2

1 + ε1−
p′

2

∞∑

i=2

mi

]
.

Letting ε→ 0 we get that

m1α1 ≤ D‖ω0‖
p′

2

Lpm
2− p′

2

1

which implies the desired result.

Lemma 9.10. — Suppose that µ has no discrete part in some interval (a, b) ⊂ R\ {0},
then µ

∣∣
(a,b)

= 0.

Proof. — Let ψ ∈ C0(R) with support in (a, b). According to the hypothesis,

suppψ ∩ {α1, α2, . . .} = ∅

so that, for this choice of ψ, the right-hand side of (55) vanishes. Therefore (55)

implies 〈
µ(y1), y1ψ(y1)

〉
= 0

that is

y1µ
∣∣
(a,b)

= 0

which implies the desired conclusion by recalling that 0 6∈ (a, b).

We continue with the proof of Theorem 9.8.

Proof of Theorem 9.8.. — We begin by noting that Lemma 9.9 implies that αi
i→∞−−−→

0. Indeed,
∑∞

i=1mi < ∞ implies that mi
i→∞−−−→ 0. According to the conclusion of

Lemma 9.9 this immediately implies that αi
i→∞−−−→ 0.

Next, observe that the above Lemma 9.10 implies that the continuous part ν

vanishes. Indeed, supp ν ⊂ [0,∞) since suppµ ⊂ [0,M ]. If α > 0, as α is not

an accumulation point of the set {α1, α2, . . .}, there exists δ ∈ (0, α) such that

{α1, α2, . . .} ∩
[
(α − δ, α+ δ) \ {α}

]
= ∅. According to Lemma 9.10, the measure µ

vanishes in (α−δ, α) and (α, α+δ), so the same is true for ν. Since ν is continuous we

deduce that ν must vanish in (α− δ, α+ δ). We proved that ν vanishes in the neigh-

borhood of each point of (0,∞). This implies that ν vanishes on (0,∞). Therefore,

ν vanishes on R \ {0} and is continuous. We conclude that ν = 0.

We have just proved that

µ =

∞∑

i=1

mi δαi ⊗ δ0
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and also assertion (a) of Theorem 9.8. Assertion (b) follows from the positivity

of µ (as limit of positive measures) and from the fact that the total mass of µ

is ‖ω0‖L1 . Assertion (c) is a consequence of the support of µ being included in

[0,M ] and (d) is proved in Lemma 9.9. Finally, as previously noted, it was shown

in [18] that
∫
x1ω(t, x) dx ≥ Ct for some positive constant C. This implies that∫

x1ω̃(t, x) dx ≥ C, which in turn yields
∑

imiαi =
〈
µ, x1

〉
≥ C. This completes the

proof of Theorem 9.8.

9.4. Another discrete example: separation of two vortices above a flat

wall. — Steady vortex pairs provide smooth examples of vorticities for which the

corresponding asymptotic velocity densities consist of a single Dirac mass. We would

like to give such an example with at least two different Dirac masses in the asymptotic

velocity density. As we already pointed out, the existence of multibump solutions in

this situation is an interesting open problem, but we can offer a discrete example in

order to illustrate this issue. In this section we will give a sufficient condition for linear

separation of two vortices above a flat wall which will in turn give us an example of

unique asymptotic velocity density concentrating at two distinct Dirac masses.

Let z1 = (x1, y1) and z2 = (x2, y2) be two vortices above the wall {y = 0} of

positive masses m1, resp. m2. For notational convenience we will assume that we

start at time t = 1 instead of t = 0. Let L be defined by

(56) L = m1y1 +m2y2,

a quantity which is conserved by the motion of the vortices. We will prove the

following proposition.

Proposition 9.11. — Suppose there exists a positive constant M such that the following

relations hold true:

x2(1)− x1(1) > M,(57)

L > m2y2(1) +
L2

πM3
(58)

and

m2

2
(
y2(1) + L2

πm2M3

) − m2
1

2
(
L−m2y2(1)− L2

πM3

) − 2 max(m1,m2)

M
> 2πM.(59)

Then, the two vortices z1 and z2 linearly separate. More precisely,

(60) x2(t)− x1(t) > Mt

for all times t ≥ 1.
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Remark 9.12. — Let m1, m2 and L be some fixed arbitrary positive constants. Then

we can always find x1(1), y1(1), x2(1), y2(1) and M such that relations (56), (57),

(58) and (59) are satisfied. Indeed, we first choose x1(1) and x2(1) such that (57)

holds. We next note that (58) and (59) are satisfied for large enough M and small

enough y2(1). For example, if y2(1) = 0, then (59) has a left-hand side of order M3

so it is verified for M large enough; and since, for that choice of M , it is satisfied

for y2(1) = 0, it will be satisfied for small enough y2(1), too. Once y2(1) and M are

chosen, it remains to choose y1(1) such that (56) is satisfied for t = 1.

Proof of Proposition 9.11. — It is sufficient to prove that, as long as (60) holds, then

(61) (x2 − x1)
′(t) ≥M.

Indeed, the result then follows by a contradiction argument: if T is the first time

when x2(T )− x1(T ) = MT , then necessarily T > 1 and

MT = (x2 − x1)(T ) = x2(1)− x1(1) +

∫ T

1

(x2 − x1)
′ > M +M(T − 1) = MT

which is a contradiction.

We will therefore assume in the following that (60) holds and try to prove (61).

It follows from the method of images that the motion of these vortices can be

computed from the full plane flow due to these two vortices together with their images:

z3 = z1 = (x1,−y1) and z4 = z2 = (x2,−y2)

with masses m3 = −m1, resp. m4 = −m2. Therefore, the equations of motion are

given by:

2πz′1 =
(z1 − z2)⊥
|z1 − z2|2

m2 +
(z1 − z3)⊥
|z1 − z3|2

m3 +
(z1 − z4)⊥
|z1 − z4|2

m4,

i.e.,

2πz′1 = 2π(x′1, y
′
1)

=
(m1

2y1
, 0

)
+

m2

|z1 − z2|2
(y2 − y1, x1 − x2) +

m2

|z1 − z2|2
(y1 + y2, x2 − x1).

(62)

Interchanging the indexes 1 and 2 we also get

2πz′2 = 2π(x′2, y
′
2)

=
(m2

2y2
, 0

)
+

m1

|z1 − z2|2
(y1 − y2, x2 − x1) +

m1

|z1 − z2|2
(y1 + y2, x1 − x2).

(63)

Let us now estimate y2. From relation (63) it follows that

2πy′2 = m1(x2 − x1)
( 1

|z1 − z2|2
− 1

|z1 − z2|2
)

=
m1(x2 − x1)4y1y2
|z1 − z2|2|z1 − z2|2

.
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In view of (56), we can bound m1y1 ≤ L and y2 ≤ L/m2 so that, using also rela-

tion (60),

(64) |y′2| ≤
2L2

πm2|x1 − x2|3
≤ 2L2

πm2M3t3
.

We deduce that

|y2(t)− y2(1)| =
∣∣∣
∫ t

1

y′2

∣∣∣ ≤ L2

πm2M3

∫ t

1

2

s3
ds =

L2

πm2M3

(
1− 1

t2
)
≤ L2

πm2M3
,

which implies that

(65) y2(t) ≤ y2(1) +
L2

πm2M3
.

Next, from (62), (63) and (56) we have that

(x2 − x1)
′ =

1

2π

[m2

2y2
− m1

2y1
+

(m1 +m2)(y1 − y2)
|z1 − z2|2

+
(m1 −m2)(y1 + y2)

|z1 − z2|2
]

≥ 1

2π

[m2

2y2
− m2

1

2(L−m2y2)
− (m1 +m2)

|z1 − z2|
− |m1 −m2|
|z1 − z2|

]
.

Both |z1 − z2| and |z1 − z2| are bounded from below by |x1 − x2| > Mt ≥ M . Fur-

thermore, the first two terms of the right-hand side of the last relation are decreasing

with respect to y2. We therefore deduce from (65) that

(x2 − x1)
′ ≥ 1

2π

[ m2

2
(
y2(1) + L2

πm2M3

)

− m2
1

2
(
L−m2y2(1)− L2

πM3

) − (m1 +m2)

M
− |m1 −m2|

M

]

=
1

2π

[ m2

2
(
y2(1) + L2

πm2M3

) − m2
1

2
(
L−m2y2(1)− L2

πM3

) − 2 max(m1,m2)

M

]

≥M,

where we have used (59). This completes the proof.

Remark 9.13. — The conclusion that x2(t) − x1(t) ≥ Mt, for some M > 0, always

implies the existence of a unique asymptotic velocity density which concentrates on

a pair of Dirac masses. In order to see this, first note that, from (64), we have that

|y′2| = O(1/t3), which implies that y2(t) converges as t → ∞ and similarly for y1.

From the conservation of energy we have that

2m1m2 log
|z1 − z2|
|z1 − z2|

−m2
1 log(2y1)−m2

2 log(2y2)

is constant in time. Since x2(t)−x1(t) ≥Mt we also know that |z1−z2|
|z1−z2| → 1 as t→∞.

We deduce that lim
t→∞

y2(t) 6= 0 and lim
t→∞

y1(t) 6= 0. Now, from relations (62) and (63)
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we immediately obtain that both x′1 and x′2 converge to a finite limit given by

α1 ≡ lim
t→∞

x′1(t) =
m1

4π lim
t→∞

y1(t)
and α2 ≡ lim

t→∞
x′2(t) =

m2

4π lim
t→∞

y2(t)
.

Observe next that lim
t→∞

x1(t)
t = lim

t→∞
x′1(t) = α1 and similarly for x2(t)

t . Finally, let us

remark that the rescaled vorticity is given in this case by m1δz1/t +m2δz2/t so that

it clearly converges weakly to
(
m1δα1

+m2δα2

)
⊗ δ0. Moreover, x2(t) − x1(t) ≥ Mt

implies that α2 − α1 ≥M > 0.

9.5. Extensions and Conclusions. — We end this section with some comments

regarding the results obtained here.

(a) The only instance of use of the energy estimate in this work is the observation

that, for any asymptotic velocity density µ we have
〈
µ, x1

〉
> C > 0, which

appears when proving the last part of Theorem 9.8. The constant C depends

on the kinetic energy of the initial data, as was derived in [18]. It would be

interesting to know whether kinetic energy partitions itself in a way that is

consistent with the partitioning of vorticity, but we were not able to prove

that, at least using only the hypothesis of uniqueness of the asymptotic velocity

density.

(b) We only used the hypothesis of uniqueness of the asymptotic velocity density

when we derived (55). The estimate on the behavior of the nonlinear term given

in Proposition 9.5 always holds, which raises the possibility of it being exploited

further.

(c) The hypothesis that the initial vorticity be p-integrable, with p > 2 is used to

ensure that the velocity is globally bounded. In principle, with vorticity in Lp,

p ≤ 2, we loose control over the loss of vorticity to infinity, and Lemma 5.2 is

no longer true. In fact, we do not even know the correct scaling to analyze in

this case.

We would like to add a remark on the choice of the scaling x = ty. If the scaling

x1 ≡ ty1 in the horizontal direction is motivated by the fact that the first component

of the center of vorticity behaves exactly like O(t), the scaling x2 ≡ ty2 is not justified

because the second component of the center of vorticity is constant. Ideally we should

not make any rescaling in the vertical direction but then we would have to assume that

tω(tx1, x2) converges weakly, which we found excessive because of the oscillations that

may appear in the vertical direction. We could also consider an intermediate scaling

of the form x2 ≡ f(t)y2 where f(t) → ∞ as t → ∞. This last problem is in fact

equivalent to the one we consider in this section. If f is such a function, then the

weak limits of ω̃f(t, y) = tf(t)ω
(
t, ty1, f(t)y2

)
are independent of f . Indeed, let νf
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be the weak limit of ω̃f (t, y) as t→∞ and choose a test function h ∈ C∞
0 (H). Then

〈
νf , h

〉
= lim

t→∞

∫

H

ω̃f (t, y)h(y) dy

= lim
t→∞

∫

H

ω(t, x)h
(x1

t
,
x2

f(t)

)
dx

= lim
t→∞

(∫

H

ω(t, x)h
(x1

t
, 0

)
dx+O

(‖∂2h‖L∞

f(t)

)∫

H

x2ω(t, x) dx
)

= lim
t→∞

∫

H

ω(t, x)h
(x1

t
, 0

)
dx

since we know that
∫

H
x2ω(t, x) dx = cst. and f(t) → ∞ as t → ∞. The last term

does not depend on f anymore.

Here, we have made the choice f(t) = t only for the sake of simplicity. This means

that we study the asymptotic behavior of solutions in horizontal direction but not in

the vertical one.

We would like to comment on a few problems that arise naturally from the work

presented here. The first is to remove the hypothesis of uniqueness of the asymp-

totic velocity profile, perhaps with weaker conclusions. Also, we can try to extend

this line of reasoning to other fluid dynamical situations with similar geometry, such

as flow on an infinite flat channel, axisymmetric flow (smoke ring dynamics), and

water wave problems. We may also ask the same questions with respect to full two-

dimensional scattering, allowing for vortex pairs moving off to infinity in different

directions. Finally, one might try to examine the issue of actually proving the unique-

ness of asymptotic velocity densities in special cases, for example, for point vortex

dynamics. The case of three point vortices on the half-plane is still open.

10. Vortex scattering

Let us now return to the case of an unsigned vorticity in the full plane. Let

ω = ω(x, t) be a solution of the incompressible 2D Euler equations (29) with initial

vorticity ω0 ∈ Lp
c(R

2), for some p > 2. The simplest picture consistent with what is

known regarding large-time vortex dynamics would have ω0 scattering into a confined

part, which would remain near the center of motion for all time, plus a number of

soliton-like vortex pairs, traveling with roughly constant speed. Denoting again

ω̃ = ω̃(x, t) ≡ ω̃1(x, t) = t2ω(tx, t),

the result in Section 8 implies that ω̃ ⇀ mδ0 when t → ∞, but the weak con-

vergence completely ignores the scattering of vortex pairs, due to their linear-scale

self-cancellation. The large-time behavior of |ω̃| provides a useful rough picture of

vortex scattering.

First note that |ω̃(·, t)| is a bounded one-parameter family in L1(R2). Since the

velocityK∗ω is a priori globally bounded, the family |ω̃(·, t)| has its support contained
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in a single disk D. One can therefore extract a sequence of times tk → ∞ such that

|ω̃(·, tk)| ⇀ µ, for some measure µ ∈ BM+(D). It follows from Theorem 8.1 that

µ ≥ |m|δ0, where m =
∫
ω0. Indeed, if ϕ is a nonnegative test function,

〈|m|δ0, ϕ〉 = lim
k→∞

∣∣∣∣
∫
ϕ(x)ω̃(x, tk)dx

∣∣∣∣ ≤ lim
k→∞

∫
ϕ(x)|ω̃(x, tk)|dx = 〈µ, ϕ〉.

Our purpose is to obtain more information about the measure µ. The result we will

present is a generalization of the previous result in the half-plane, which described the

structure of the measure µ in the situation of half-plane vortex scattering, and under

an important restriction, which we will have to impose in the present context as well.

We introduced above the terminology asymptotic velocity density for any measure µ

which is a limit of |ω̃(·, tk)| for some sequence tk →∞. In fact, due to a sign restriction,

the explicit use of the absolute value in the definition of asymptotic velocity densities

was not needed in the previous section, and because scattering in the half-plane is

a one-dimensional affair, the density µ in the previous section was a measure on the

real line, describing the asymptotic density only of the relevant component of velocity.

Our result about the structure of µ proved above and the result we will present here

only applies to initial vorticities which have a unique asymptotic velocity density, i.e.

those initial vorticities for which |ω̃|(·, t) converges weakly to a measure µ, rather than

being merely weakly compact.

Theorem 10.1. — Suppose that the initial vorticity ω0 ∈ Lp
c(R

2), p > 2 has a unique

asymptotic velocity density µ = lim
t→∞

|ω̃(t, ·)|. Then µ must be of the form:

µ =

∞∑

i=1

mi δαi

where:

(a) αi 6= αj if i 6= j and αi → 0 as i→∞;

(b) the masses mi are nonnegative and verify
∑∞

i=1mi = ‖ω0‖L1 ;

(c) for all i, |αi| ∈ [0,M ], where M = ‖u‖L∞([0,∞)×R2);

(d) there exists a constant D > 0, depending solely on p, such that, for all i with

mi 6= 0 we have

|αi| ≤ D‖ω0‖
p′

2

Lp m
1−p′

2

i .

Remark 10.2. — In the statement above, the masses mi are allowed to vanish only

to include the case when the limit measure contains a finite number of Diracs. For

notational convenience, in the case when there are only a finite number of Dirac

masses, we artificially added a countable number of Dirac masses with zero masses

and positions converging to 0.
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Proof. — The proof we will present here has much in common with the special case

done in Section 9, so that we will concentrate on the aspects of the proof which differ

from the original case, briefly outlining the remainder.

We first note that, since ω is transported by the velocity u, the same holds for |ω|.
This means that |ω| satisfies, in the weak sense, the equation

∂t|ω|+ div(u|ω|) = 0.

The equation for the absolute value of the rescaled vorticity is then given by

∂t| ω̃(y, t)| − 1

t
div

[
y| ω̃(t, y)|

]
+

1

t2
div

[
ũ(y, t)| ω̃(t, y)|

]
= 0,

where ũ(y, t) denotes the rescaled velocity ũ(y, t) = tu(ty, t).

Let us take the product with a test function ϕ ∈ C1(R2) and integrate in space:

(66) ∂t

∫
| ω̃(y, t)|ϕ(y) dy = −1

t

∫
| ω̃(y, t)| y · ∇ϕ(y) dy

+
1

t2

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy.

We now recall the following argument that was used above. The left-hand side of

(66), when integrated from 1 to t, is uniformly bounded in t. By hypothesis, we know

that

lim
t→∞

∫
| ω̃(y, t)| y · ∇ϕ(y) dy =

〈
yµ,∇ϕ

〉
,

so that the integral from 1 to t of the first term on the right-hand side of (66) behaves

like
〈
yµ,∇ϕ

〉
log t. As for the third term, it is not difficult to see that it is O(1/t). The

dominant part of the third term must balance the logarithmic blow-up in time of the

second term. This argument implies, adapting Lemma 9.6 to the present situation,

that the following inequality must hold:

(67) lim sup
t→∞

(1

t

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy

)
≥

〈
yµ,∇ϕ

〉
.

A straightforward adaptation of Lemma 9.3 to compactly supported nonnegative

finite measures on the plane yields a decomposition of µ into the sum of a discrete

part plus a continuous part, i.e.:

(68) µ = ν +
∞∑

i=1

miδαi .

On the other hand, it was also proved in Proposition 9.5 a key estimate that in the

present case reads

(69) lim sup
t→∞

∣∣∣
1

t

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy

∣∣∣ ≤ D‖ω0‖
p′

2

Lp

∞∑

i=1

m
2−p′

2

i |∇ϕ(αi)|

where
∑∞

i=1miδαi is the discrete part in the decomposition (68). The proof of Propo-

sition 9.5 valid in the case of the half-plane can be adapted in a straightforward
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manner to the full plane context due to the fact that the key estimate in the origi-

nal proof is the inequality below, which relates the rescaled velocity to the rescaled

vorticity:

|ũ(x, t)| ≤
∫

C

|x− y| | ω̃(y, t)| dy,

and this inequality holds in the case of the full space as well.

It follows from (67) and (69) that

〈
yµ,∇ϕ

〉
≤ D‖ω0‖

p′

2

Lp

∞∑

i=1

m
2− p′

2

i |∇ϕ(αi)|.

Substituting ϕ by −ϕ we obtain

(70) |
〈
yµ,∇ϕ

〉
| ≤ D‖ω0‖

p′

2

Lp

∞∑

i=1

m
2− p′

2

i |∇ϕ(αi)|.

Next we will use (70) to deduce that

(71) |αi| ≤ D‖ω0‖
p′

2

Lpm
1− p′

2

i .

To this end, let us fix i0 ∈ N and choose ϕ ∈ C∞
c (R2) such that ∇ϕ(0) = αi0 .

Define ϕε(x) = εϕ
(x−αi0

ε

)
and use it as test function in (70) to obtain

(72)
∣∣〈yµ,∇ϕ

(y − αi0

ε

)〉∣∣ ≤ D‖ω0‖
p′

2

Lp

∞∑

i=1

m
2− p′

2

i

∣∣∇ϕ
(αi − αi0

ε

)∣∣.

The series on the right-hand side converges uniformly for ε > 0 and hence, when

ε→ 0, it converges to

D‖ω0‖
p′

2

Lpm
2− p′

2

i0
|αi0 |.

As for the left-hand side, first we note that the functions ∇ϕ
(y−αi0

ε

)
converge

pointwise to αi0χ{αi0} (which does not vanish µ-almost everywhere, since µ attaches

positive mass to αi0). Also, these functions are bounded uniformly with respect to ε

and have supports contained in a single disk. The Lebesgue Dominated Convergence

Theorem therefore implies that

〈
yµ,∇ϕ

(y − αi0

ε

)〉
→

〈
yµ, αi0χ{αi0}

〉
= |αi0 |2mi0

as ε→ 0. Putting these arguments together yields (71) in the limit, as ε→ 0.

This proves part (d) of Theorem 10.1. Part (a) also follows at once by remarking

that we have mi → 0 so, by (71), αi → 0 as i → ∞ too. Part (c) is a trivial

consequence of the fact that the support of the vorticity is transported by the flow

of u. Finally, part (b) is a direct consequence of the nonnegativity of the measure µ

and also from the conservation of the L1 norm of | ω̃|, once we established that the

continuous part of µ vanishes.
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We now go to the last part of the argument, i.e. the proof that the continuous part

of the measure µ vanishes. Here is where the present proof requires a more substantial

modification of the original one.

Let D be a strip of the form D = {c ≤ ay1 + by2 ≤ d} disjoint with the set

A ≡ {0}
⋃

i≥1{αi}. We prove that the measure µ must necessarily vanish in the

interior of such a strip. First, since 0 /∈ D we must have that cd > 0. We assume

without loss of generality that c, d > 0. Let [c′, d′] a subinterval of (c, d) and choose

a smooth function h ∈ C∞(R) such that h′ ∈ C∞
c (c, d), h′ ≥ 0 and h′(s) = 1/s for

all s ∈ [c′, d′]. Choose now ϕ(y1, y2) = h(ay1 + by2) as test function in (70). Since

supp∇ϕ ⊂ D we have that supp∇ϕ ∩ A = ∅, which implies in turn that the right-

hand side of (70) vanishes for this choice of test function. Therefore the left-hand

side must vanish too:

(73) 0 =
〈
yµ,∇

(
h(ay1 + by2)

)〉
=

〈
µ, (ay1 + by2)h

′(ay1 + by2)
〉
.

The function y 7→ (ay1 + by2)h
′(ay1 + by2) is nonnegative and it is equal to 1 on

the strip {c′ ≤ ay1 + by2 ≤ d′}. Since the measure µ is nonnegative too, we deduce

from (73) that µ vanishes on the strip {c′ ≤ ay1 + by2 ≤ d′}. Also, since [c′, d′] was

an arbitrary subinterval of (c, d), we finally deduce that µ vanishes in the interior of

the strip D.

In order to conclude the proof of Theorem 10.1, we only need to show that the

measure µ vanishes in the neighborhood of each point of Ac. Let y0 ∈ Ac. Since the

only possible accumulation point of the set A is 0, there exists a line {ay1 + by2 = c}
passing through y0 and which does not cross A. A continuity argument using again

that the points αi can only accumulate at {0} shows that there exists a strip {c− ε ≤
ay1 + by2 ≤ c + ε} disjoint of A. But we proved that the measure µ must vanish

on such a strip. This implies that µ vanishes in the neighborhood of y0 and this

completes the proof of Theorem 10.1.

11. Conclusions

First we observe that Theorem 8.1 does not require that the initial vorticity ω0

belong to Lp. The argument works just as well if the initial vorticity is a bounded

(signed) Radon measure, as long as the existence of a (global in time) weak solution

is provided. The estimate itself only depends on the total mass of the initial vorticity.

We note also that Theorem 10.1 draws a much stronger conclusion than Theo-

rem 8.1, but it relies on the hypothesis that the initial vorticity ω0 ∈ Lp
c , with p > 2

have a unique asymptotic velocity density. This hypothesis clearly deserves further

scrutiny.

One natural question arising from this work is the role of the critical exponent

α = 1/2 in Theorem 8.1. This exponent is far from the known critical exponent
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α = 1/4 for the vorticity confinement in the distinguished sign case. In the vortex

confinement literature, the critical exponent α = 1/2 appears naturally when one

does not have a priori control over moments of vorticity, see [26], whereas the sharper

estimates are obtained when using the conserved moments of vorticity. Using just the

moment of inertia one obtains critical exponent α = 1/3, in the case of the full plane,

see [25], and in the case of the exterior of a disk, see [26]. Using both the moment

of inertia and the center of vorticity, we obtain, in the case of the full plane, the

critical exponent α = 1/4, see Section 6. It is therefore reasonable to expect that we

might improve the condition on α in Theorem 8.1 by using the conserved moments of

vorticity, but this would require a new approach.

References
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