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ELLIPTIC EQUATIONS
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Dong Ye

Abstract. — The objective of this mini-course is to take a look at a standard semilinear
partial differential equation −∆u = λf(u) on which we show the use of some basic
tools in the study of elliptic equation. We will mention the maximum principle, barrier
method, blow-up analysis, regularity and boot-strap argument, stability, localization
and quantification of singularities, Pohozaev identities, moving plane method, etc.

Résumé(Quelques situations limites pour les équations semi-linéaires elliptiques)
L’objectif de ce mini-cours est de jeter un coup d’œil sur une équation aux dérivées

partielles standard −∆u = λf(u), avec laquelle nous allons montrer quelques outils
de base dans l’étude des équations elliptiques. Nous mentionnerons le principe du
maximum, la méthode de barrière, l’analyse de blow-up, la régularité, l’argument de
boot-strap, la stabilité, la localisation et quantification de singularités, les identités
de Pohozaev, la méthode du plan mobile, etc.

1. Introduction

We consider the following semilinear partial differential equation:

(Pλ)






−∆u = λf(u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain and f is a smooth positive, nondecreasing
and convex function over R+. For getting a positive solution u, necessarily λ is
positive.

The convexity of f implies that

– limt→∞ f(t)/t = a ∈ R+ ∪ {∞} exists.
– If a ∈ R+, then limt→∞ f(t) − at = l ∈ R ∪ {−∞} exists.
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Since the case a = 0 is trivial (f ≡ constant), we will suppose that a > 0. Thus we
can divide the study of problem (Pλ) into two different situations: the quasilinear case
when a ∈ (0,∞) and superlinear case when a = ∞. We will see that the first case is
rather well understood, while many questions are remained open for the second one.

In the following, ‖ · ‖p denotes the standard Lp norm for 1 ≤ p ≤ ∞. W 1,p(Ω) is
the Sobolev space of functions f such that f and ∇f ∈ Lp(Ω). When p = 2, we use
for simplicity H1(Ω) to denote W 1,2(Ω), H1

0 (Ω) is the space of functions f ∈ H1(Ω)
verifying f = 0 on ∂Ω. The symbol C means always a positive constant independent
of λ.

2. Quasilinear situation

We begin with the quasilinear case where a ∈ (0,∞). Many results presented here
are obtained by Mironescu & Rǎdulescu in [27].

2.1. Minimal solution and stability. — Since f(u) ≤ au + f(0) in this case,
then if u ∈ L1(Ω) is a weak solution of (Pλ) in the sense of distribution, we get easily
that u is always a classical solution by standard boot-strap argument.

Lemma 2.1. — For λ > 0, if (Pλ) is resolvable, then a minimal solution uλ exists
in the sense that any solution v of (Pλ) verifies v ≥ uλ in Ω. Moreover, (Pλ′ ) is
resolvable for any λ′ ∈ (0, λ).

Proof. — We will use the barrier method. Remark that for λ > 0, w0 ≡ 0 is a sub
solution of (Pλ) since f(0) > 0. Now we define for any n ∈ N,

(1) −∆wn+1 = λf(wn) in Ω, wn+1 = 0 on ∂Ω.

Using maximum principle, w1 > w0 ≡ 0 in Ω. On the other hand, let v be any
solution of (Pλ), by monotonicity of f , we obtain

−∆(w1 − v) = λ [f(0) − f(v)] ≤ 0 in Ω, w1 − v = 0 on ∂Ω.

Thus w1 ≤ v in Ω. We can prove by induction that the sequence {wn} verifies
wn ≤ wn+1 ≤ v in Ω for any n, so uλ = limn→∞ wn is well defined, and uλ is a
solution of (Pλ) by passing to the limit in (1). Moreover, uλ ≤ v. Notice that the
definition of uλ is independent of the choice of v, it is the minimal solution claimed.

If (Pλ) has a solution u, it is a super solution for (Pλ′ ) when 0 < λ′ < λ. As ω0 ≡ 0
is always a sub solution, the barrier method will solve as above (Pλ′ ).

Let λ1 be the first eigenvalue of −∆ on Ω with the Dirichlet boundary condition,
we define ϕ0 to be the first eigenfunction such that ϕ0 > 0 in Ω and ‖ϕ0‖2 = 1.

Lemma 2.2. — If we denote r0 = inft>0 f(t)/t, then (Pλ) has no solution for λ >
λ1/r0. On the other hand, (Pλ) is resolvable for λ > 0 small enough.
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Proof. — Let ξ ∈ H1
0 (Ω) ∩ L∞(Ω) be the solution of −∆ξ = 1 in Ω. It is easy to see

that ξ is a super solution of (Pλ) for λ ≤ f(‖ξ‖∞)−1. Applying the barrier method,
we get a solution of (Pλ) for such λ.

Now we suppose that u is a solution of (Pλ) for some λ > 0, using ϕ0 as test
function and integrating by parts, we get

λ1

∫

Ω

ϕ0udx = −
∫

Ω

u∆ϕ0dx = −
∫

Ω

ϕ0∆udx = λ

∫

Ω

f(u)ϕ0dx.

As f(u) ≥ r0u in Ω, we have then

(λ1 − λr0)

∫

Ω

ϕ0udx ≥ 0.

Recalling that ϕ0 and u are positive in Ω, the lemma is proved.

Combining these two lemmas, we can claim

Theorem 2.3. — There exists a critical value λ∗ ∈ (0,∞) for the parameter λ, such
that for any λ > λ∗, no solution exists for the problem (Pλ) while for any λ ∈ (0, λ∗),
a unique minimal solution uλ exists for (Pλ). Furthermore the mapping λ 7→ uλ is
increasing with λ.

It is natural to ask if we can determine the exact value of λ∗ and what happens when
λ = λ∗. Before considering these two questions, we show another characterization of
the minimal solution uλ, its stability. A solution u of (Pλ) is called stable if and only
if the linearized operator associated to the equation, −∆ − λf ′(u) is nonnegative.
More precisely,

(2) λ

∫

Ω

f ′(u)ϕ2dx ≤
∫

Ω

|∇ϕ|2dx, for any ϕ ∈ H1
0 (Ω).

Theorem 2.4. — Let λ ∈ (0, λ∗), the minimal solution uλ is the unique stable solution
of (Pλ).

Proof. — First we prove that uλ is stable. If it is not true, the first eigenvalue η1 of
−∆ − λf ′(uλ) is negative, then there exists an eigenfunction ψ ∈ H1

0 (Ω) such that

−∆ψ − λf ′(uλ)ψ = η1ψ in Ω, ψ > 0 in Ω.

Consider uε = uλ − εψ, a direct calculation gives

−∆uε − λf(uε) = −η1εψ − λ [f(uλ − εψ) − f(uλ) + εf ′(uλ)ψ] = εψ [−η1 + oε(1)] .

Since η1 < 0, then −∆uε −λf(uε) ≥ 0 in Ω for ε > 0 small enough. Otherwise, using
Hopf’s lemma, we know that uλ ≥ Cψ in Ω for some C > 0. Thus uε ≥ 0 is a super
solution of (Pλ) for ε > 0 small enough. As before, we can get a solution u such that
u ≤ uε in Ω, which contradicts the minimality of uλ. So η1 ≥ 0.

Now we prove that (Pλ) has at most one stable solution. Suppose the contrary,
there exists another stable solution v 6= uλ. Define ϕ = v − uλ, we get

λ

∫

Ω

f ′(v)ϕ2dx ≤
∫

Ω

|∇ϕ|2dx = −
∫

Ω

ϕ∆ϕdx = λ

∫

Ω

[f(v) − f(uλ)]ϕdx,
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so ∫

Ω

[f(v) − f(uλ) − f ′(v)(v − uλ)]ϕdx ≥ 0.

By maximum principle, we know that ϕ > 0 in Ω. The convexity of f yields that
the term in the bracket is non positive, so the only possibility is f(v) − f(uλ) −
f ′(v)(v−uλ) ≡ 0 in Ω, which means f is affine over [uλ(x), v(x)] for any x ∈ Ω. Thus
f(x) = āx+ b in [0,maxΩ v] and we get two solutions u and v of −∆w = āw+ b. This
implies that

0 =

∫

Ω

uλ∆v − v∆uλdx = b

∫

Ω

(v − uλ)dx = b

∫

Ω

ϕdx,

which is impossible since b = f(0) > 0 and ϕ is positive in Ω. So we are done.

An immediate consequence of Theorem 2.4 is

Proposition 2.5. — For any λ ∈ (0, λ1/a), (Pλ) has one and unique solution uλ.

Proof. — Remark first a = supR+
f ′(t) by convexity of f . Thanks to the definition of

λ1, it is clear that each solution is stable if λ ∈ (0, λ1/a), so we get the uniqueness by
that for stable solution. For the existence, we can consider the minimization problem
minH1

0 (Ω) J(u) where

J(u) =
1

2

∫

Ω

|∇u|2dx− λ

∫

Ω

F (u)dx

with

F (u) =

∫ u+

0

f(s)ds, u+ = max(u, 0).

If λ ∈ (0, λ1/a), there exist ε, A > 0 depending on λ such that 2λF (t) ≤ (λ1−ε)t2+A
over R. Thus J(u) is coercive, bounded from below and weakly lower semi-continuous
in H1

0 (Ω), the infimum of J is reached then by a function u ∈ H1
0 (Ω), so also by

u+ ∈ H1
0 (Ω) since J(u+) ≤ J(u). This critical point u ≥ 0 of J gives a solution of

(Pλ).

2.2. Estimate of λ∗. — By Proposition 2.5, we know that λ∗ ≥ λ1/a. The follow-
ing result in [27] gives us more precise information for λ∗.

Theorem 2.6. — We have three equivalent assertions:

(i) λ∗ = λ1/a.
(ii) No solution exists for (Pλ∗).
(iii) limλ→λ∗ uλ = ∞ u.c. in Ω. (u.c. means “uniformly on each compact set”)

Proof. — (i) implies (ii). If (Pλ∗) has a solution u, then uλ ≤ u in Ω for any λ ∈
(0, λ∗), using the monotonicity of uλ, u∗ = limλ→λ∗ uλ is well defined and u∗ is clearly
a stable solution of (Pλ∗) by limit. Consider the operator G(u, λ) = −∆u− λf(u), if
the first eigenvalue η1 of −∆ − λ∗f ′(u∗) is positive, then we can apply the Implicit
Function Theorem to get a solution curve in a neighborhood of λ∗, but this contradicts
the definition of λ∗, so η1 = 0. Thus, there exists ψ ∈ H1

0 (Ω) satisfying

(3) −∆ψ − λ∗f ′(u∗)ψ = 0 and ψ > 0 in Ω.
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Using ϕ0 as test function and integrating by parts, we get
∫

Ω

[λ1 − λ∗f ′(u∗)]ψϕ0dx = 0.

As λ1 − λ∗f ′(u∗) ≥ 0, we get f ′(u∗) ≡ a in Ω so that f(t) = at + b in [0,maxΩ u
∗].

But b > 0 deduces that no positive solution in H1
0 (Ω) can exist for the equation

−∆u = λ1u+ bλ1/a (we can use again ϕ0), so the hypothesis is not true.

(ii) implies (iii). Here we mention a result of Hörmander (see [22]) as follows: For a
sequence of nonnegative super-harmonic functions {vn} in Ω, either vn converges u.c.
to ∞; or there exists a subsequence which converges in L1

loc(Ω). We need just to prove
that the second case cannot occur for uλ. Suppose the contrary, there exist uk = uλk

which converges in L1
loc(Ω) to u∗ with λk → λ∗. We claim that ‖uk‖2 ≤ C. If it is

false, we define uk = lkwk with ‖wk‖2 = 1 and limk→∞ lk = ∞ (up to subsequence).
Since f(t) ≤ at+ f(0),

−∆wk =
λkf(uk)

lk
≤ aλkwk +

λkf(0)

lk
≤ aλkwk + C in Ω,

it is easy to see that wk is bounded in H1
0 (Ω), so that up to a subsequence, wk

converges weakly in H1
0 and strongly in L2 to some w ∈ H1

0 . Meanwhile, −∆wk tends
to zero in L1

loc(Ω) since f(uk) ≤ auk + b and lk tends to ∞, this implies −∆w = 0
in Ω. Hence w ≡ 0, which is impossible because ‖w‖2 = limk→∞ ‖wk‖2 = 1. So {uk}
is bounded in L2(Ω), hence in H1

0 (Ω) by equation. We prove readily that u∗ is a
solution of (Pλ∗) which contradicts (ii).

(iii) implies (ii). Any solution u of (Pλ∗) should satisfy u ≥ uλ, ∀ λ < λ∗.

(ii)⊕(iii) implies (i). Clearly limλ→λ∗ ‖uλ‖2 = ∞. Take uλ = lλwλ with ‖wλ‖2 = 1,
then we have a subsequence wk which converges weakly in H1

0 , strongly in L2 and
almost everywhere to w ≥ 0. Moreover, in the sense of distribution,

−∆w = − lim
D′(Ω)

∆wk = lim
λkf(lkwk)

lk
= λ∗aw ≥ λ1w a.e.

Taking again ϕ0 as test function, we see that the last inequality must be an equality,
so λ∗ = λ1/a.

Remark that when f(t) ≥ at in R+, we cannot get a solution for λ = λ1/a since
f(t) > at in a neighborhood of 0 (using always ϕ0 as test function), we obtain an
important consequence of Theorem 2.6 and Proposition 2.5.

Corollary 2.7. — If we have limt→∞ f(t) − at = l ≥ 0, then λ∗ = λ1/a, and a unique
solution uλ exists for (Pλ) for λ ∈ (0, λ∗) while no solution exists for λ ≥ λ∗.

Moreover, the following result is established in [27].

Proposition 2.8. — If limt→∞ f(t) − at = l < 0, then λ1/a < λ∗ < λ1/r0. A unique
solution u∗ = limλ→λ∗ uλ exists for (Pλ∗). Furthermore, for any λ ∈ (λ1/a, λ

∗), we
have a second solution vλ for (Pλ), such that vλ tends u.c. to ∞ in Ω when λ ↓ λ1/a.
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Sketch of Proof. — A second solution vλ is obtained by the standard Mountain-pass
theory. We check here just λ∗ < λ1/a and the uniqueness of solution for (Pλ∗). If
λ∗ = λ1/a, by Theorem 2.6, uλ → ∞ u.c. to ∞ as λ tends to λ∗. Taking the first
eigenfunction ϕ0, for λ < λ∗, as λa ≤ λ1

0 =

∫

Ω

ϕ0 [∆uλ + λf(uλ)] dx =

∫

Ω

ϕ0 [λf(uλ) − λ1uλ] dx ≤ λ

∫

Ω

ϕ0 [f(uλ) − auλ] dx.

Passing λ to λ∗, we get

0 ≤ λl

∫

Ω

ϕ0dx < 0,

which is absurd, hence λ∗ > λ1/a if l < 0.

As we have λ∗ > λ1/a, a solution v exists for (Pλ∗) by Theorem 2.6. By the proof
of Theorem 2.6 (see step (i) implies (ii)), we can claim that u∗ = limλ→λ∗ uλ is a
solution of (Pλ∗), u∗ ≤ v and η1(−∆−λ∗f ′(u∗)) = 0. If v 6= u∗, consider w = v− u∗,
we have w > 0 in Ω and

−∆w = λ∗
[
f(v) − f(u∗)

]
≥ λ∗f ′(u∗)w in Ω.

Using the eigenfunction ψ verifying (3) (with η1 = 0),

0 =

∫

Ω

(
ψ∆w − w∆ψ

)
dx ≤ λ∗

∫

Ω

[
f ′(u∗)wψ − f ′(u∗)ψw

]
dx = 0.

Therefore, we must have the equality f(v)−f(u∗) = f ′(u∗)w in Ω, which yields that f
is linear in [0,maxΩ v] and leads to a contradiction as in the proof of Theorem 2.4.

It is also proved in [27] that if l ≥ 0, the normalized family wλ = uλ/‖uλ‖2

converges to ϕ0 in H1
0 (Ω) as λ ↑ λ∗ = λ1/a. In the case l > 0 or some special cases for

l = 0, they showed a first order expansion of the norm ‖uλ‖2 in function of (λ∗ − λ).
If l < 0, similar results were obtained for vλ when λ ↓ λ1/a. In conclusion, all these
results give us a rather clear schema of solutions for the quasilinear case.

3. Superlinear situation

From now on, we suppose that

f is a positive, smooth, nondecreasing and convex function such that

lim
t→∞

f(t)

t
= ∞.

(4)

With minor changes, Theorems 2.3 and 2.4 hold still, so we can ask always the ques-
tions as how to determinate λ∗ or how to understand the asymptotic behavior of uλ

when λ tends to λ∗. In quasilinear case, we can prove by standard regularity theory
that any weak solution in L1(Ω) is a classical solution, and when λ tends to λ∗, either
uλ tends to infinity on each point of Ω, or uλ tends to a classical solution for the
limiting problem (Pλ∗). We will see that it is no longer true for the superlinear case,
unbounded weak solutions can exist. In [7], Brezis et al. have proposed the following
definition.
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Definition 3.1. — A function ξ ∈ L1(Ω) is called a weak solution of (Pλ), if
f(ξ)d(x, ∂Ω) ∈ L1(Ω) and

−
∫

Ω

ξ∆ϕdx = λ

∫

Ω

f(ξ)ϕdx(5)

for any ϕ ∈ C2(Ω) ∩ {ϕ|∂Ω = 0}.

They proved then

Theorem 3.2. — u∗ = limλ→λ∗ uλ is always a weak solution of (Pλ∗).

Proof. — For any λ ∈ [λ∗/2, λ∗), taking ϕ0 as test function,

(6) λ1

∫

Ω

ϕ0uλdx = λ

∫

Ω

f(uλ)ϕ0dx ≥ λ∗

2

∫

Ω

f(uλ)ϕ0dx.

Since f is superlinear, there exists C > 0 such that λ1t ≤ λ∗f(t)/4 + C in R+.
Using (6), we get

∫

Ω

f(uλ)ϕ0dx ≤ C, for any
λ∗

2
≤ λ < λ∗.

Now let −∆ξ = 1 in Ω and ξ = 0 on ∂Ω, we have
∫

Ω

uλdx = −
∫

Ω

uλ∆ξdx = λ

∫

Ω

f(uλ)ξdx ≤ C1λ
∗

∫

Ω

f(uλ)ϕ0dx ≤ C2.

We have used the fact ξ ≤ Cϕ0 (by Hopf’s lemma) to get the first inequality. Tending
λ to λ∗, we obtain u∗ ∈ L1(Ω) and f(u∗)d(x, ∂Ω) ∈ L1(Ω), since ϕ0 ≥ Cd(x, ∂Ω).
Now it is easy to verify (5) for u∗.

On the other hand, it is proved in [7] that for any λ > λ∗, no weak solution exists
for (Pλ). Later on, Martel proved in [25] that u∗ is the unique weak solution for
(Pλ∗), so u∗ is really the extreme solution on the right in the schema (λ, u), we call
it the extremal solution.

3.1. Regularity of u∗. — By classical examples, we know that u∗ can be either a
classical solution or not. The most well known cases are exponential and polynomial
situations (see [19], [23], [11], [26] and [9]).

– For f(u) = eu, u∗ is smooth when N ≤ 9. If N ≥ 10 and Ω is the unit ball
B1(0), u∗ = −2 log |x| is the extremal solution, hence no longer bounded.

– For f(u) = (u+ 1)p with p > 1, if

N < Np = 6 +
4

p− 1
+

4
√
p(p− 1)

p− 1
,

u∗ is smooth, and for N ≥ Np, u
∗ = |x|− 2

p−1 − 1 is the extremal solution on
B1(0). An immediate consequence is that for any p > 1 and N ≤ 10, u∗ is a
smooth solution.
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When f(u) = eu and N ≥ 3, we can verify that U(x) = −2 log |x| is always a weak
solution of (Pλ) with Ω = B1(0) ⊂ RN and λ = 2(N−2). So not all unbounded weak
solutions are extremal solutions u∗. Two natural questions are raised.

– For general superlinear nonlinearity f satisfying (4), when is the extremal solu-
tion u∗ smooth?

– How can we know whether an unbounded weak solution is just u∗?

The key of the second question is the stability of u∗. Since uλ are stable, passing
to the limit, we know that (2) holds always for u∗. We look at the example where
f(u) = eu and Ω = B1(0). Consider U(x) = −2 log |x|, a necessary condition to have
U(x) = u∗ is then the positivity of the operator −∆−2(N −2)r−2 where r = |x|. On
the other hand, we have Hardy’s inequality for H1

0 (Ω), which is optimal:
∫

Ω

|∇ϕ|2dx ≥ (N − 2)2

4

∫

Ω

ϕ2

r2
dx, ∀ ϕ ∈ H1

0 (Ω).

Thus we need to have 2(N − 2) ≤ (N − 2)2/4 which is just equivalent to N ≥ 10.

Brezis & Vázquez showed the following general result, whose proof is similar to
that for the uniqueness of stable solution in Theorem 2.4.

Theorem 3.3. — If v ∈ H1
0 (Ω) is an unbounded solution for (Pλ) such that the stability

condition (2) is satisfied, then λ∗ = λ and u∗ = v.

For the regularity of extremal solution u∗, we can remark that u∗ is smooth for low
dimensions in general. By standard boot-strap argument, in order to show that u∗ is
a classical solution, it is sufficient to prove u∗ ∈ L∞(Ω), therefore it suffices to prove
that ‖uλ‖∞ remains uniformly bounded. The first result was obtained by Crandall &
Rabinowitz [11]:

Theorem 3.4. — Let f verify (4). Suppose moreover there exist t0, β, µ > 0 such that
µ ≤ β < 2 +

√
µ + µ and βf ′2(t) ≥ f(t)f ′′(t) ≥ µf ′2(t) for t ≥ t0. Then ‖uλ‖∞ is

uniformly bounded in (0, λ∗) if N < 4 + 2µ+ 4
√
µ.

Recently, Nedev proved a remarkable result in [31]:

Theorem 3.5. — Let f verify (4), then if N = 2 or 3, u∗ is smooth solution for (Pλ∗).
Furthermore, if N ≥ 4, u∗ ∈ Lq(Ω) for any q < N

N−4 and f(u∗) ∈ Lq(Ω) for all

q < N
N−2 .

The main idea is always to make use of the stability of uλ. Let ϕ, ψ be two smooth
functions satisfying ϕ(0) = ψ(0) = 0 and ψ′ = ϕ′2, take ϕ(uλ) as test function in (2),
we get

λ

∫

Ω

f ′(uλ)ϕ2(uλ)dx ≤
∫

Ω

|∇ϕ(uλ)|2dx =

∫

Ω

ψ′(uλ)∇uλ∇uλdx

= λ

∫

Ω

f(uλ)ψ(uλ)dx.

(7)
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Thus for any λ ∈ (0, λ∗),

(8)

∫

Ω

f ′(uλ)ϕ2(uλ)dx ≤
∫

Ω

f(uλ)ψ(uλ)dx.

Now we need to choose suitable ϕ which leads to some interesting estimates of f(uλ)
or uλ. For example, Nedev used just the test function ϕ(t) = f(t) − f(0).

We look again at the exponential case f(u) = eu, let ϕ(u) = eαu − 1 with α > 0,
then ψ(u) = α(e2αu − 1)/2. The inequality (8) gives

∫

Ω

euλ (eαuλ − 1)2 dx ≤
∫

Ω

αeuλ

2

(
e2αuλ − 1

)
dx,

hence
(
1 − α

2

)∫

Ω

e(2α+1)uλdx ≤
∫

Ω

2e(α+1)uλ +
(
1 − α

2

)
euλdx ≤ ε

∫

Ω

e(2α+1)uλdx + Cε

for any ε > 0. So if we take α < 2 and ε < 1 − α/2, we obtain
∫

Ω

e(2α+1)uλdx ≤ Cα.

This means that ‖f(uλ)‖p ≤ Cp for any p < 5, so ‖uλ‖W 2,p is bounded for any p < 5.
We know that W 2,p(Ω) ⊂ L∞(Ω) for p > N/2, which means ‖uλ‖∞ ≤ C if N ≤ 9.

In [36], we have proved a general result under a weak additional condition on f .

Theorem 3.6. — Let f satisfy (4), rewrite f(t) = f(0)+teg(t). Then limt→∞ t2g′(t) =
∞. Assume in addition that there exists t0 > 0 such that t2g′(t) is nondecreasing in
[t0,∞), we have then u∗ is a smooth solution, for all Ω ⊂ RN with N ≤ 9.

This result is almost optimal, since by the example of eu, we see that the result
fails in general for N ≥ 10. Moreover, our result is valid for any usual superlinear
nonlinearity f , because the corresponding function t2g′ will not change infinitely its
variation near ∞, so it works for weak superlinear functions as f(t) = t log log . . . log t

(for t near ∞), or for strong nonlinearities as f(t) = ee...et

.

Conversely, the worst situation is when f looks like piecewise affine. In other words,
when f ′ changes infinitely its speed of acceleration, then we could never verify the
condition required for g.

Proof. — Using (4), we can prove that limt→∞(tf ′ − f)/f ′ = ∞. So we get

t2g′ =
t [tf ′ − f + f(0)]

f − f(0)
≥ tf ′ − f

f ′
−→ ∞.

To prove the regularity of u∗, we need the following lemma, whose proof is given by
boot-strap argument (see [36]).

Lemma 3.7. — Assume that for p > 1, σ ∈ [1, p), there exists C > 0 satisfying
∫

Ω

f(uλ)dx+

∫

Ω

f̃p(uλ)

up−σ
λ

dx ≤ C, ∀ λ ∈ (0, λ∗)(9)
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where f̃(t) = f(t) − f(0). Then

– if p > N/2, uλ is uniformly bounded in L∞(Ω);
– if p ≤ N/2, ‖uλ‖q ≤ C, ∀ q < σN

N−2p and ‖f(uλ)‖q ≤ C, ∀ q < σN
N−2p+2σ .

Take now ϕ(t) = teαg(t) (α ≥ 0) and

ψ(t) =

∫ t

0

ϕ′2(s)ds,

Using integration by parts and the monotonicity of t2g′ in [t0,∞), we may claim

ψ(t) ≤ C +
[
t+

α

2
t2g′(t)

]
e2αg(t), ∀ t ∈ R+(10)

Inserting this estimate in (8), we get
(
1 − α

2

)∫

Ω

u3g′(u)e(2α+1)g(u)dx ≤
∫

Ω

[
C + Cueg(u) + ue2αg(u) +

α

2
u2g′(u)e2αg(u)

]
dx.

Since limt→∞ eg(t) = limt→∞ t2g′(t) = ∞, for any ε > 0, there exists Cε > 0 such
that (

1 − α

2
− ε

)∫

Ω

u3g′(u)e(2α+1)g(u)dx ≤ Cε.

Thus for any α < 2, there exists C > 0 such that
∫

Ω

f̃(uλ)2α+1

u2α
λ

dx =

∫

Ω

u3g′(u)e(2α+1)g(u)dx ≤ C, for all λ ∈ (0, λ∗).

By Lemma 3.7, the extremal solution u∗ is bounded if N ≤ 9.

When u∗ is just a weak solution, it is interesting to have its regularity in some
Sobolev spaces, one motivation comes also from Theorem 3.3. In [36], we prove

Theorem 3.8. — Let f verify (4) and rewrite f = eg, assume that

(11) lim sup
t→∞

−g′′(t)
g′2(t)

= 1 − µ

for µ ∈ (0, 1). Then u∗ is bounded if N < 6 + 4
√
µ. Furthermore, if N ≥ 6 + 4

√
µ,

we have

u∗ ∈ Lq(Ω), ∀ q < 2(1 +
√
µ)N

N − 6 − 4
√
µ

and f(u∗) ∈ Lq(Ω), ∀ q < 2(1 +
√
µ)N

N − 2
.

The condition (11) is equivalent to lim inft→∞ ff ′′/f ′2 = µ, which is a little bit
stronger than the convexity of f , but much less restrictive than conditions in Theo-
rem 3.4, since we do not need any upper bound for ff ′′/f ′2. Remark also that under
the condition (11), we have always u∗ ∈ H2(Ω) since f(u∗) belongs to L2(Ω), so we
can apply Theorem 3.3.

Furthermore, Theorem 3.8 shows also that if f is strongly nonlinear such that
µ > 9/16, then u∗ is a classic solution when N ≤ 9.

Another interesting question on the regularity of extremal solution u∗ is to under-
stand if it depends only on topological properties of the domain Ω or it depends also
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on geometrical properties of Ω. For example, the following question appeared in [9]:
Let f(u) = eu and Ω be arbitrary smooth bounded domain in RN with N ≥ 10, do
we have always ‖u∗‖∞ = ∞? Recently, Davila & Dupaigne have given a negative
answer in [14].

4. Blow up analysis

When u∗ is smooth, we know by Crandall-Rabinowitz’s theory that (λ∗, u∗) is a
turning point in the solution schema (λ, u), that is for λ < λ∗ but near λ∗, a second
solution exists. We are interested in the behavior of this branch of unstable solutions.
In this direction, no general conclusion can be obtained, since the behavior depends
strongly on the nonlinearity f , on the topological or/and geometrical properties of
the domain Ω.

We will concentrate our attention for the case f(u) ∼ eu near ∞, which has many
applications in geometry and physics. In fact, the equation −∆u = λeu relates to
the geometric problem of Riemannian surfaces with constant Gaussian curvature in
dimension two. In higher dimension (whenN ≥ 3), it arises in the theory of thermionic
emission, isothermal gas sphere, gas combustion and many other physical problems.

4.1. Exponential case in dimension two. — Consider (λ > 0)

(12) −∆u = λeu in Ω ⊂ R2, u = 0 on ∂Ω.

We know that the Moser-Trudinger inequality holds: there exists C > 0 such that
∫

Ω

e4πu2/‖∇u‖2
2dx ≤ C, for any u ∈ H1

0 (Ω).

Consequently, eku ∈ L1(Ω) for all k > 0 if u ∈ H1
0 (Ω). Applying Mountain-pass

theory, we can prove then for any λ ∈ (0, λ∗), a second unstable solution vλ exists.
Moreover, the family vλ satisfies

(13) lim
λ→0

‖vλ‖∞ = ∞ and λ

∫

Ω

evλdx ≤ C.

We would like to understand the blow-up of vλ when λ → 0. As −∆vλ is uniformly
bounded in L1(Ω), the standard regularity theory for elliptic equation (see [21]) shows
that {vλ} is bounded in W 1,p(Ω), for any p ∈ [1, 2). Then up to a subsequence, vλ

converges weakly in W 1,p(Ω) (1 < p < 2) to a limit function v0. We would like
to determine the function v0, which will permit us to understand more clearly the
asymptotic behavior of vλ. A first step was obtained by Brezis & Merle in [8], they
proved the following ε−regularity result.

Theorem 4.1. — Let vλ be a family of functions satisfying −∆vλ = λevλ in Ω ⊂ R2,
if for some η > 0, B2η(x0) ⊂ Ω and ‖λevλ‖L1(B2η(x0)) ≤ ε < 4π, then ‖vλ‖L∞(Bη(x0))

is uniformly bounded.
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Proof. — For simplicity, we omit the index λ and we use Br to denote Br(x0). Define
E(x) = λev(x) and

w1(x) = − 1

2π

∫

B2η

log |x− y| × E(y)dy.

So −∆w1 = λev in B2η. Apply Jensen’s inequality,
∫

B2η

eαw1dx ≤
∫∫

B2η×B2η

|x− y|−αQ
2π
E(y)

Q
dydx, for any α > 0,

where Q = ‖λev‖L1(B2η). Thus eαw1 ∈ L1(B2η) if αQ < 4π. Define

−∆w2 = 0 in B2η, w2 = v − w1 on ∂B2η.

Obviously v = w1+w2 in B2η. Using the well known properties for harmonic functions
(see [21]), we have

‖w2‖L∞(B3η/2) ≤ C‖w2‖L1(B2η) ≤ C
[
‖v‖L1(B2η) + ‖w1‖L1(B2η)

]

If Q ≤ ε < 4π, we can choose α ∈ (1, 4π/ε), then ev = ew1+w2 is uniformly bounded
in Lα(B3η/2). Now we decompose v as w′

1 + w′
2 in B3η/2 with

{
−∆w′

1 = λev in B3η/2

w′
1 = 0 on ∂B3η/2

and

{
−∆w′

2 = 0 in B3η/2

w′
2 = v on ∂B3η/2.

We get easily that ‖w′
1‖W 2,α(B3η/2) and ‖w′

2‖L∞(Bη) are uniformly bounded. Using

the fact W 2,α ⊂ L∞ in dimension two for α > 1, the proof is completed.

Now for a family of solutions verifying (12) and (13), we define the blow-up set S
as the set where vλ is not uniformly bounded, that is

S = {x ∈ Ω | ∃ λk → 0, xk → x such that vλk
(xk) → ∞} .(14)

Theorem 4.1 yields that if the L1 norm of λevλ is locally smaller then 4π, then λevλ

tends locally to zero and no blow-up can occur. Thus we can claim that S = Σ where

(15) Σ =
{
x ∈ Ω | ∀ η > 0, lim sup

λ→0
‖λevλ‖L1(Bη(x)∩Ω) ≥ 4π

}
.

From the boundedness of ‖λevλ‖1, up to a subsequence, we obtain

#(S) <∞, λevλ →
∑

xi∈S

miδxi in the sense of measures

where mi ≥ 4π and δx denotes the Dirac measure over the point x. Therefore,

Proposition 4.2. — Let vλ be a family of functions satisfying (12) and (13), there
exists a finite set S ⊂ Ω and mj ≥ 4π such that up to a subsequence,

vλ → v0 =
∑

xj∈S

mjG(x, xj) in W 1,p(Ω), ∀ 1 ≤ p < 2

where G(x, xj) is the Green function

−∆xG(x, y) = δy(x) in Ω and G(x, y) = 0 if x ∈ ∂Ω.

Moreover, vλ converges to v0 in Ck
loc(Ω \ S) for any k ∈ N.
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In fact, as indicated in [30], using the moving plane argument proved by Gidas,
Ni & Nirenberg (see Proposition 4.6 and Appendix), we can show the existence of a
fixed neighborhood U of ∂Ω such that no blow-up occurs in U (under the assumptions
‖λevλ‖L1(Ω) = O(1) and Ω ⊂ R2). The last assertion of Proposition comes from the
fact that no blow-up appears out of S or near ∂Ω, so vλ are uniformly bounded locally
in Ω \ S, which leads to the higher order convergence by boot-strap arguments.

The next step is to determine the quantities mj and to localize the blow-up set S.
For that, we will use the local analysis and Pohozaev identities.

Lemma 4.3. — Let Ω be a smooth bounded domain in RN , if −∆u = f(u) in Ω, then
∫

Ω

[
NF (u) − N − 2

2
uf(u)

]
dx

=

∫

∂Ω

[
(x · ∇u)∂u

∂ν
− (x · ν) |∇u|

2

2
+ (x · ν)F (u) +

N − 2

2
u
∂u

∂ν

]
dσ

(16)

where ν denotes the unit external normal vector on ∂Ω and F (t) =

∫ t

0

f(s)ds.

Return to our problem, let x0 be any point in S, by translation, we can assume
that x0 = 0. Taking now N = 2, f(u) = λeu and Ω = Bη = Bη(0) in (16), we get

2

∫

Bη

λ(evλ − 1)dx =

∫

∂Bη

[
η

(
∂vλ

∂ν

)2

− η|∇vλ|2
2

+ ηλ(evλ − 1)

]
dσ.(17)

We fix η0 > 0 small enough such that Bη0
∩ S = {0}. By Proposition 4.2, for any

η ∈ (0, η0] fixed, when λ→ 0,

λ(evλ − 1)χBη → m0δ0 and vλ → −m0

2π
log r +R0(x) in C1(∂Bη)

where r = |x| and R0 ∈ C1(Bη0
). Thus, the l.h.s. of (17) is equal to 2m0 + oλ(1)

while

r.h.s. =
m2

0

4π
+O(η) + oλ(1), ∀ η ≤ η0 fixed.

Tending first λ to 0 and then η to 0, we get 2m0 = m2
0/4π, that is m0 = 8π.

For the localization of xj , we give here just the proof of single blow-up situation.
The general case can be obtained in a similar way. Multiplying −∆u = f(u) by ∇u
and integrating by parts over Ω, we obtain a Pohozaev type identity:

∫

∂Ω

F (u)νdσ =

∫

∂Ω

[ |∇u|2
2

ν − ∂u

∂ν
∇u

]
dσ.(18)

In our case, vλ = 0 on ∂Ω, so that ∇vλ = (∂νvλ)ν on ∂Ω. Hence

∫

∂Ω

(
∂vλ

∂ν

)2

νdσ = 0R2 .(19)
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If S = {x0}, passing to the limit λ→ 0, we get

∫

∂Ω

[
∂G

∂ν
(x, x0)

]2

νdσ = 0R2 .(20)

We claim that x0 is a critical point of the Robin function H̃ associated to the Green
function G. Thus the blow-up set S is localized by the Green function of the domain
Ω. Indeed, this is a direct consequence of

Lemma 4.4. — For any x0 ∈ Ω, the left hand side of (20) is just −∇H̃(x0).

Proof. — This lemma and the idea of its proof here are valid in any dimension, but
we consider only the case of dimension two for simplicity. If Ω ⊂ R2, we know that

G(x, y) = − log |x− y|
2π

+H(x, y)(21)

where H is a smooth symmetric function in Ω × Ω and H̃(x) = H(x, x). Using (18)
with −∆xG(x, x0) = 0 on Ωη = Ω \Bη(x0) (η > 0 is small) and G(x, x0) = 0 on ∂Ω,
so

−1

2

∫

∂Ω

(
∂G

∂ν

)2

νdσ +

∫

∂Bη

|∇G|2
2

ν − ∂G

∂ν
∇Gdσ = 0.

Noticing that the unit normal vector ν on ∂Bη is just −(x− x0)/η, we get

∫

∂Bη

|∇G|2
2

νdσ =

∫

∂Bη

[
ν

8π2η2
+

(x− x0) · ∇H
2πη2

ν +
|∇H |2

2
ν

]
dσ

= −
∫

∂Bη

∂νH

2πη
νdσ +O(η).

Moreover,
∫

∂Bη

∂G

∂ν
∇Gdσ =

∫

∂Bη

(
1

2πη
+ ∂νH

) [
(x− x0)

2πη2
+ ∇H

]
dσ

= −
∫

∂Bη

∂νH

2πη
νdσ +

1

2πη

∫

∂Bη

∇xH(x, x0)dσ +O(η).

Finally

∫

∂Ω

(
∂G

∂ν

)2

νdσ = − 1

πη

∫

∂Bη

∇xH(x, x0)dσ +O(η) = −2∇xH(x0, x0) +O(η).

In conclusion, by passing η to 0, we obtain

∫

∂Ω

[
∂G

∂ν
(x, x0)

]2

νdσ = −∇H̃(x0).(22)

Here we used ∇H̃(x0) = 2∇xH(x0, x0) by the symmetry of H .
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SOME LIMITING SITUATIONS FOR SEMILINEAR ELLIPTIC EQUATIONS 323

We can also get (22) by the Pohozaev identity. Using (16) for vλ,

1

2

∫

∂Ω

(x · ν)
(
∂vλ

∂ν

)2

dσ =

∫

Ω

2F (vλ)dx.

But if we translate the domain Ω and consider vλ(x + x0) for any x0 ∈ R2, we have
also

1

2

∫

∂Ω

(x− x0) · ν
(
∂vλ

∂ν

)2

dσ =

∫

Ω

2F (vλ)dx.

By difference, we obtain

∫

∂Ω

(x0 · ν)
(
∂vλ

∂ν

)2

dσ = 0, ∀ x0 ∈ R2

which is just equivalent to (19). We remark that the exact form of f or F is not used,
that’s why for autonomous partial differential equation with −∆ and the Dirichlet
boundary condition, the single blow-up lies often on the critical point of the Robin
function.

In general, we have the following result proved in [30].

Theorem 4.5. — Let vλ be a family of solutions of (12) such that

lim
λ→0

∫

Ω

λevλdx = ` ∈ R+ ∪ {∞} exists.

Then we have the following alternatives:

(i) ` = ∞, then vλ tends to ∞ u.c. in Ω;
(ii) ` = 0, vλ tends to zero uniformly in Ω;
(iii) ` = 8πm with m ∈ N∗. Up to a subsequence, there exists S = {x1, ..., xm} ⊂ Ω

such that vλ blows up on S, vλ converges to 8π
∑

j G(x, xj) in W 1,p(Ω) for

any 1 < p < 2. Moreover, λevλdx → 8π
∑

j δxj in the sense of measure and

x = (x1, ..., xm) is a critical point of

Ψ(x) =
m∑

j=1

H(xj , xj) +
∑

i6=j

G(xi, xj).

For the proof of (i), we need a remarkable result which is proved in [20] by moving
plane method (see Appendix), and which is only valid in dimension two.

Proposition 4.6. — Let Ω ⊂ R2 be a smooth bounded domain, there exists ε0 > 0
depending only on Ω such that for any C1 function f and u ∈ C2(Ω) solution of

−∆u = f(u), u > 0 in Ω ⊂ R2, u = 0 on ∂Ω,

then u has no stationary point in the Dε0
, where Dε = {x ∈ Ω, d(x, ∂Ω) < ε} denotes

the open ε-neighborhood of ∂Ω.
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Associated to Hopf’s lemma, we get then vλ is decreasing with respect to d(x, ∂Ω)
in a small neighborhood of the boundary independent of λ. This implies that if ` = ∞,
there exists ε1 > 0 satisfying

lim
λ→0

∫

Ω\Dε1

λevλdx = ∞.

Therefore for any compact set K ⊂ Ω, using the uniform positivity of the Green
function G over K × (Ω \Dε1

), there exists C > 0 such that for any x ∈ K,

vλ(x) =

∫

Ω

G(x, y)λevλdy ≥
∫

Ω\Dε1

G(x, y)λevλdy ≥
∫

Ω\Dε1

Cλevλdy → ∞.

The case (ii) comes from Theorem 4.1. The case (iii) can be proved by similar calculus
as for the single bubble case using local analysis and Pohozaev’s identities.

Now a natural question is to understand the quantity 8π. Indeed, a gauge trans-
formation will give us the answer. Take xλ which realizes maxΩ vλ(x), define Aλ =
vλ(xλ), ξ2λ = e−Aλ−log λ and wλ(x) = vλ(xλ + ξλx) + logλ+ 2 log ξλ. It is easy to see
that

−∆wλ = ewλ in Ωλ =
{
y ∈ R2, xλ + ξλy ∈ Ω

}
, wλ(0) = 0 and wλ(x) ≤ 0 in Ωλ.

Moreover ∫

Ω

λevλdx =

∫

Ωλ

ewλdx.

For vλ verifying (13), we have ξλ tends to zero, otherwise vλ is uniformly bounded
and no blow-up occurs. Using wλ ≤ 0, 0 < ewλ ≤ 1 and Harnack’s inequality, we
can prove that up to a subsequence, wλ converges locally uniformly to a function w,
solution of

(23) −∆w = ew in R2,

∫

R2

ewdx <∞,

and maxR2 w(x) = w(0) = 0. Chen & Li proved in [10] that any solution of (23)
satisfies ∫

R2

ewdx = 8π.

More precisely, w is a radial function

w(x) = −2 log

(
1 +

|x|2
8

)
in R2.

The same analysis can be done near any blow-up point, which means that the function
vλ looks like locally as the concentration of a standard solution over R2 near each
xi ∈ S.
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4.2. Further results and comments. — By Theorem 4.5, we know that the be-
havior of blow-up solutions of (12) is controlled by the Green function of the domain
Ω. Conversely, we may ask if all configurations in Theorem 4.5 can really appear.
Indeed, the answer depends on topological or/and geometrical properties of the do-
main Ω.

For simply connected domain, Mizoguchi & Suzuki proved that the case (i) can
never happen. For example, when Ω = B1 ⊂ R2, we know that all solutions are
radially symmetric (see Theorem 5.1 in Appendix), moreover u is decreasing along
the radius by maximum principle, so the only possibility is the blow-up at the origin,
thus only the case m = 1 occurs.

More generally, Baraket & Pacard showed in [4] that if (xi) ∈ Ωm is a nondegen-
erate critical point of Ψ, then there exists a family of solutions vλ such that vλ blows
up exactly on these points xi. But it is rather difficult to verify the nondegeneracy
condition for a general critical point (xi). Very recently, Del Pino, Kowalczyk &
Musso prove that if the domain Ω is not simply connected, than for any m ∈ N∗, we
may construct a family of solutions which makes m bubbles, in particular, by diag-
onal process, we can find a family of solutions such that the case (i) of Theorem 4.5
appears.

On the other hand, Theorem 4.5 works for more general exponential like nonlinear-
ities f . In fact, we need just to suppose that limt→∞ f(t)e−t = 1, and similar result
holds also for the equation −∆u = λV (x)eu with a function V ∈ C1(Ω) (see [34, 24]).
The result in [4] was also generalized to functions like f(u) = eu + Ceγu with γ < 1
in [5], the case f(x, u) = V (x)eu and multiplicity result for blow-up solutions are
obtained in [16].

In contrast with the situation in dimension two, the behavior of unstable solutions
for −∆u = λeu is far away to be understood for higher dimension cases (N ≥ 3). The
only situation well known is the case with Ω = B1, for which we can take advantage
of the radial symmetry of solutions. For example, when Ω = B1(0) ⊂ R3, Gel’fand
showed in [19] that the curve of solutions will make a form of corkscrew near another
critical value λ∗∗ ∈ (0, λ∗), so the configuration is quite different from the case with
B1 ⊂ R2.

In [35] and [33], we have considered the following problem:

−div(ζ(x)∇u) = λζ(x)eu in Ω ⊂ R2, u = 0 on ∂Ω(24)

where ζ is a positive smooth function over Ω. Our motivation are two fold. First,
when we work with rotational symmetric solutions of −∆u = λeu in dimensionN ≥ 3,
we can find that the equation is reduced to (24). Fore example, let the torus be

T =
{
(xi) ∈ RN , (‖x̂‖ − 1)2 + x2

N ≤ R2
}

where R < 1 and x̂ = (x1, . . . , xN−1). If we look for solutions in the form u(x) =
u(r, xN ) with r = ‖x̂‖, a direct calculus shows that the problem −∆u = λeu in Ω is
transformed to

−div(rN−2∇u) = λrN−2eu in ΩT = {(r, z) : (r − 1)2 + z2 < R2}, u = 0 on ∂ΩT.
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This is just a special case of (24). On the other hand, equation (24) is similar to (12),
we may expect that similar results will hold. But this is not true.

It is not difficult to see the existence of critical value λ∗ and that of minimal
solutions uλ for (24). In [35], we studied the asymptotic behavior of bubbling or
unstable solutions vλ of (24) when λ→ 0. We proved that if

∫

Ω

λζ(x)evλdx→ ` and lim
λ→∞

‖vλ‖∞ = ∞,

then ` ∈ 8πN∗. Furthermore, up to a subsequence, there exists a finite set S =
{x1, ..., xk} ⊂ Ω such that vλ → v0 in W 1,p for any p ∈ (1, 2), where v0 satisfies

div(ζ(x)∇v0) + 8π
∑

i

miζ(xi)δxi = 0 in Ω, v0 = 0 on ∂Ω.

Here mi ∈ N∗ and each xi must be a critical point of ζ. This is similar to the case (ii)
in Theorem 4.5, but the blow-up set is determined now by the function ζ instead of
the Green function.

We proved also that if x ∈ S is a nondegenerate minimum point of ζ, then the
corresponding m must be equal to 1, and a single bubble example (k = m1 = 1) is
constructed for the symmetric case Ω = B1 with radial ζ. However, we were not able
to determine if each mi is always equal to 1 in general, and we did not give a method
to construct bubbling solutions for general ζ or Ω.

We give the answer to these questions in a very recent work [33].

Theorem 4.7. — Let x̄ ∈ Ω be a strict local maximum point of ζ, i.e. there exists
δ > 0 such that

ζ(x) < ζ(x̄), ∀ x ∈ Bδ(x̄)\{x̄}.
Then for any m ∈ N∗, equation (24) has a family of solutions vλ such that

λ

∫

Ω

ζ(x)evλdx→ 8πmζ(x̄), vλ → v0 in C2
loc(Ω\{x̄})

where v0 satisfies

−∇(ζ(x)∇v0) = 8πmζ(x̄)δx̄ in Ω, v0 = 0 on ∂Ω.

Thus near a strict maximum point of ζ, we obtain a family of multi-bubble solutions
with any m ∈ N∗. Therefore by diagonal process, we may have a family of solutions
for (24), such that

(25) lim
λ→0

∫

Ω

λζ(x)evλdx = ∞,

even for simply connected domain. This is unexpected and new, comparing to the
result in [28] for isotropic case or to the case of local minimum point for ζ for (24).

Furthermore, we can give precise expansion of blow-up solutions vλ near x̄ and show
that near x̄, the flatter the anisotropic coefficient ζ is, the larger are the distances
between the bubbles. We prove also that if x0 is a topologically non trivial critical
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point of ζ (see definition in [15]), we have always a family of single bubble solution
which blows up at this point.

However, if we look at the problem on the torus with rotational symmetry, we see
that the function ζ(x) = xN−2

1 does not have any critical point in ΩT. Thus, a new
situation occurs, the bubble must go to the boundary, while the boundary bubbles do
not appear in the isotropic case, thanks to Proposition 4.6.

In this case, we show in a forthcoming work [32] some analysis of boundary blow-up
for (24). For example, we show that the bubbles will be localized near critical points
of ζ|∂Ω, i.e. at x ∈ ∂Ω verifying ∂τ ζ(x) = 0. We prove that no bubble can exist near
a nondegenerate maximum of ζ on ∂Ω, and also the existence of solutions such that
λζ(x)evλdx converges to 8πδx0

when λ → 0, if x0 ∈ ∂Ω is a strict local minimum of
ζ such that ∂νζ(x0) < 0.

Returning to the situation on T, this result will enable us to get a new family
of solutions for −∆u = λeu which blows up on a (N − 2) dimensional submanifold
on ∂T.

5. Appendix : Moving plane method

The moving plane method goes back to Alexandrov’s famous paper on constant
mean curvature hypersurface. It has known a great development in the study of
partial differential equations since the work of Gidas, Ni & Nirenberg [20]. The main
idea is to move a hyperplane Σq = {x · n = q} following a fixed direction n from far
away, it will reach for a first time some points of ∂Ω, then cut a little domain Tq; we
will try to compare the value of solution over Tq with that in the reflecting domain of
Tq by the hyperplane Σq, and we hope to push the hyperplane as far as we can.

5.1. Classical method. — We consider a solution u of

−∆u = f(u), u > 0 in B1 ⊂ RN , u = 0 on ∂B1(26)

where B1 = B1(0) is the unit ball. The classical method suppose that u is a C1

solution and f is locally Lipschitz. Then by Hopf’s lemma, we know that ∂νu < 0
on the boundary, in particular, ∂1u(e1) < 0 where e1 = (1, 0, . . . , 0). Hence ∂1u is
negative in a neighborhood of e1, which means that u is decreasing in the x1 direction
near e1. Therefore, if we denote Σq the hyperplane defined by {x = (xi) ∈ RN | x1 =
q}, Tq = {x ∈ B1, x1 > q}, then there exists ε > 0 such that

u(x) < u(2q − x1, x̃), for any x ∈ Tq and q ∈ (1 − ε, 1).

Here x̃ = (x2, . . . , xN ), so (2q − x1, x̃) is just the reflecting point of x with respect to
Σq. Consider now

q0 = inf {q > 0, s.t. u(x) ≤ u(2b− x1, x̃) in Tb, ∀ b ∈ (q, 1)} .
Clearly such q0 is well defined.

We claim then q0 = 0. If it is not the case, by continuity, we get u(x) ≤ vq0
(x) =

u(2q0 − x1, x̃) in Tq0
, and u 6≡ vq0

since u(x) = 0 for x ∈ ∂B1 ∩ ∂Tq0
while the
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reflecting point of such x lies in B1. Thus by the invariance of Laplacian under
reflection, wq0

= vq0
− u is a nontrivial solution of

−∆wq0
= f(vq0

) − f(u) = c(x)wq0
, wq0

≥ 0 in Tq0
; wq0

= 0 on ∂Tq0
∩ Σq0

.

Using the strong maximum principle, we obtain wq0
> 0 in Tq0

and ∂1wq0
> 0 on

∂Tq0
∩Σq0

. Moreover, if we look at wq(x) = vq(x)− u(x) = u(2q− x1, x̃)− u(x), it is
easy to see that

∂wq

∂x1
= −2

∂u

∂x1
on ∂Tq ∩ Σq.

So we get ∂1u(x) < 0 on ∂Tq0
∩ Σq0

. The same argument works for all b ∈ [q0, 1],

finally ∂1u(x) < 0 in T q0
. This implies that we can push a little bit the hyperplane Σq

for some q < q0, and we still have u(x) − u(2q − x1, x̃) < 0, which is a contradiction
with the definition of q0. Thus q0 = 0.

Finally, q0 = 0 means u(x) ≤ u(−x1, x̃) for any x ∈ B1 and x1 ≤ 0. But if we
do the same work with the opposite direction, the inverse inequality is also true, so
u(x) = u(−x1, x̃) in B1, i.e. we obtain the symmetry of u with respect to x1. Now,
as we can proceed with any direction, we conclude that u is a radial function in B1.

We remark that the central argument is the invariance of Laplacian under reflection
and the strong maximum principle. But we need here a nice regularity of u.

5.2. Idea of Berestycki & Nirenberg. — In [6], Berestycki & Nirenberg weak-
ened a lot the condition on u by remarking that the first eigenvalue of −∆ is large for
a domain with small Lebesgue measure. They used also the Harnack type inequalities
to replace the classical strong maximum principle.

More precisely, let u be a solution of (26) in C0(Ω) ∩H1(Ω), we fix A > 0 large
enough such that g(x) = f(x)−Ax is decreasing in [0,maxΩ u]. We know that λ1(−∆)
associated to the Dirichlet boundary condition tends to ∞ when |Ω′|, the Lebesgue
measure of Ω′, goes to zero. Therefore, there exists ε0 > 0 such that the operator
L = −∆−A is coercive in H1

0 (Ω′), if |Ω′| ≤ ε0. It is the case for Tq when q is near 1.
Using the same notation as above, we get

Lwq = g(vq) − g(u) in Tq, w−
q = min(0, wq) = 0 on ∂Tq.

Using w−
q as test function, we get

0 ≤
∫

Tq

[
|∇w−

q |2 −A(w−
q )2

]
dx =

∫

Tq

w−
q L(wq)dx =

∫

Tq

[g(vq) − g(u)]w−
q dx ≤ 0.

(27)

Hence w−
q ≡ 0 which means u(x) ≤ u(2q − x1, x̃) in Tq for q near 1.

Moreover, as g(u) − g(vq) = c(x)wq with c uniformly bounded, using the equation
for the nonnegative H1 function wq, we have the following Harnack inequality:

∃ r0, p, C > 0 s.t. ‖wq‖Lp(Br(x)) ≤ C inf
B2r(x)

wq, ∀ r ≤ r0, B2r(x) ⊂ Tq.(28)

As Tq is connected, either wq ≡ 0 or wq > 0 in Tq.
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Now we define q0 as above, we claim again q0 = 0. Suppose the contrary, we have
wq0

≥ 0 in Tq0
and wq0

> 0 on ∂B1 ∩ ∂Tq0
, so wq0

> 0 in T q0
\ Σq0

. We cut then the
domain Tq0

into two parts

K1 = Tq0
∩

{
x ∈ RN , x1 ∈ (q0, q0 + η)

}
, K2 = Tq0

\K1

where η > 0 is small enough such that |K1| ≤ ε0/2. It is easy to see that minK2
wq0

>
0. By the continuity of u, minK2

wq > 0 for q near q0. Otherwise, for q near q0 such

that |Tq \K2| ≤ ε0, we have w ≥ 0 on ∂(Tq \K2). Similarly as in (27), we obtain then
wq ≥ 0 in Tq \K2. Finally we conclude that wq ≥ 0 in Tq for q less than, but near q0.
We reach again a contradiction, which leads to

Theorem 5.1. — Let f be a locally Lipschitz function in R+, let u be a solution of (26)
in C0(Ω) ∩H1(Ω). Then u is radially symmetric.

5.3. Further remarks. — The moving plane method is based essentially on the
invariance of elliptic operator with respect to some symmetry transformation, Beresty-
cki & Nirenberg’s idea takes advantage of small domain to begin this method, and
the Harnack type estimates lead to push the hyperplane to the limiting position.

So the idea of moving plane method can be generalized to many other situations,
it can be applied with other symmetric domains and manifolds, with other transfor-
mations or hypersurfaces (for example moving sphere under Kelvin transformation),
with more general elliptic operators provided their invariance under the corresponding
transformation, or work with the whole space under suitable condition on the behav-
ior of solution at infinity. We refer the readers to [3, 2, 17] and references therein for
some recent developments.

The idea of weak regularity required for u is very important, since it incites us
to generalize the method to other type of degenerate operators as p-Laplacian, or
some degenerate operators in Carnot-Caratheodory spaces, for which the solutions
are generally less smooth than for −∆, see for example [12, 13, 18].
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SÉMINAIRES & CONGRÈS 15
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