
Séminaires & Congrès

15, 2007, p. 47–118
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Frédéric Hélein

Abstract. — Among all non-linear differential equations arising in Physics or in ge-
ometry, completely integrable systems are exceptional cases, at the concurrence of
miraculous symmetry properties. This text proposes an introduction to this subject,
through a list of examples (the sinh-Gordon, Toda, Korteweg-de Vries equations, the
harmonic maps, the anti-self-dual connections on the four-dimensional space). The
leading thread is the parameter lambda, which governs the algebraic structure of each
of these systems.

Résumé(Quatre histoires de lambda, une introduction aux systèmescomplètement inté-
grables)

Parmi toutes les équations différentielles non linéaires venant de la physique ou
de la géométrie, les systèmes complètement intégrables sont des cas exceptionnels,
où se conjuguent des propriétés de symétries miraculeuses. Ce texte propose une
introduction à ce sujet, à travers une liste d’exemples (les équations de sh-Gordon, de
Toda, de Korteweg-de Vries, les applications harmoniques, les connexions anti-auto-
duales sur l’espace de dimension quatre). Le fil conducteur est le paramètre lambda,
qui gouverne la structure algébrique de chacun de ces systèmes.

Introduction

Completely integrable systems are non linear differential equations or systems of

differential equations which possess so much symmetry that it is possible to con-

struct by quadratures their solutions. But they have something more: in fact the

appellation ‘completely integrable’ helps to summarize a concurrence of miraculous

properties which occur in some exceptional situations. Some of these properties are:

a Hamiltonian structure, with as many conserved quantities and symmetries as the

number of degrees of freedom, the action of Lie groups or, more generally, of affine

Lie algebras, a reformulation of the problem by a Lax equation. One should also add
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48 F. HÉLEIN

that, in the best cases, these non linear equations are converted into linear ones after

a transformation which is more or less the Abel map from a Riemann surface to a

Jacobian variety, and so on. Each one of these properties captures an essential feature

of completely integrable systems, but not the whole picture.

Hence giving a complete and concise definition of an integrable system seems to

be a difficult task. And moreover the list of known completely integrable systems is

quite rich today but certainly still not definitive. So in this introduction text I will

just try to present different examples of such systems, some are ordinary differential

equations, the other ones are partial differential equations from physics or from differ-

ential geometry. I will unfortunately neglect many fundamental aspects of the theory

(such as the spectral curves, the R-matrix formulation and its relation to quantum

groups, the use of symplectic reduction, etc.) and privilege one point of view: in

each of these examples a particular character, whose presence was not expected at

the beginning, appears and plays a key role in the whole story. Although the stories

are very different you will recognize this character immediately: his name is λ and he

is a complex parameter.

In the first section we outline the Hamiltonian structure of completely integrable

systems and expound the Liouville–Arnold theorem. In the second section we intro-

duce the notion of Lax equation and use ideas from the Adler–Kostant–Symes theory

to study in details the Liouville equation d2

dt2 q+4e2q = 0 and an example of the Toda

lattice equation. We end this section by a general presentation of the Adler–Kostant–

Symes theory. Then in the third section, by looking at the sinh–Gordon equation
d2

dt2 q + 2 sinh(2q) = 0, we will meet for the first time λ: here this parameter is intro-

duced ad hoc in order to converte infinite dimensional matrices to finite dimensional

matrices depending on λ.

The second λ story is about the KdV equation ∂u
∂t + ∂3u

∂x3 + 6u∂u∂x = 0 coming from

fluid mechanics. There λ comes as the eigenvalue of some auxiliary differential oper-

ator involved in the Lax formulation and hence is often called the spectral parameter.

We will see also how the Lax equation can be translated into a zero-curvature condi-

tion. A large part of this section is devoted to a description of the Grassmannian of

G. Segal and G. Wilson and of the τ -function of M. Sato and may serve for instance

as an introduction before reading the paper by Segal and Wilson [29].

The third λ story concerns constant mean curvature surfaces and harmonic maps

into the unit sphere. Although the discovery of the completely integrable structure of

these problems goes back to 1976 [27], λ was already observed during the ninetenth

century by O. Bonnet [7] and is related somehow to the existence of conjugate families

of constant mean curvature surfaces, a well-known concept in the theory of minimal

surfaces through the Weierstrass representation. This section is relatively short since

the Author already wrote a monograph on this subject [18] (see also [17]).
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The fourth λ story is part of the twistor theory developped by R. Penrose and his

group during the last 40 years. The aim of this theory was initially to understand

relativistic partial differential equations like the Einstein equation of gravity and the

Yang–Mills equations for gauge theory in dimension 4, through complex geometry.

Eventually this theory had also application to elliptic analogues of these problems

on Riemannian four-dimensional manifolds. Here λ has also a geometrical flavor. If

we work with a Minkowski metric then λ parametrizes the light cone directions or

the celestial sphere through the stereographic projection. In the Euclidean setting λ

parametrizes complex structures on a 4-dimensional Euclidean space. Here we will

mainly focus on anti-self-dual Yang–Mills connections and on the Euclidean version

of Ward’s theorem which characterizes these connections in terms of holomorphic

bundles.

A last general remark about the meaning of λ is that for all equations with Lax

matrices which are polynomial in λ, the characteristic polynomial of the Lax matrix

defines an algebraic curve, called the spectral curve, and λ is then a coordinate on

this algebraic curve. Under some assumptions (e.g. for finite gap solutions of the

KdV equation or for finite type harmonic maps) the Lax equation linearizes on the

Jacobian of this algebraic curve.

The Author hopes that after reading this text the reader will feel the strong simi-

larities between all these different examples. It turns out that these relationships can

be precised, this is for instance the subject of the books [22] or [21]. Again the aim

of this text is to present a short introduction to the subject to non specialists having

a basic background in analysis and differential geometry. The interested reader may

consult [10], [13], [14], [17], [19], [23] [24], [32] for more refined presentations and

further references.

1. Finite dimensional integrable systems: the Hamiltonian point of view

Let us consider the space R2n with the coordinates (q, p) = (q1, · · · , qn, p1, · · · , pn).
Many problems in Mechanics (and in other branches of mathematical science) can be

expressed as the study of the evolution of a point in such a space, governed by the

Hamilton system of equations





dqi

dt
=

∂H

∂pi
(q(t), p(t))

dpi
dt

= −∂H
∂qi

(q(t), p(t)),

where we are given a function H : R2n 7−→ R called Hamiltonian function.

For instance paths x : [a, b] −→ R3 which are solutions of the Newton

equation mẍ(t) = −∇V (x(t)) are critical points of the Lagrangian functional
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50 F. HÉLEIN

L[x] :=
∫ b
a
[m2 |ẋ(t)|2 − V (x(t))]dt. And by the Legendre transform they are converted

into solutions of the Hamilton system of equations in (R6, ω) forH(q, p) := |p|2

2m +V (q).

We can view this system of equations as the flow of the Hamiltonian vector field

defined on R2n by

ξH(q, p) :=
∑

i

∂H

∂pi
(q, p)

∂

∂qi
− ∂H

∂qi
(q, p)

∂

∂pi
.

A geometrical, coordinate free, characterization of ξH can be given by introducing the

canonical symplectic form on R2n

ω :=

n∑

i=1

dpi ∧ dqi.

Indeed ξH is the unique vector field which satisfies the relations

∀(q, p),R2n, ∀X =
∑

i

V i
∂

∂qi
+Wi

∂

∂pi
, ω(q,p)(ξH(q, p), X) + dH(q,p)(X) = 0.

A notation is convenient here: given a vector ξ ∈ R2n and for any (q, p) ∈ R2n, we

denote by ξ ω(q,p) the 1-form defined by ∀X ∈ R2n, ξ ω(q,p)(X) = ω(q,p)(ξ,X).

Then the preceding relation is just that ξH ω + dH = 0 everywhere.

We call (R2n, ω) a symplectic space. More generally, given a smooth manifold

M, a symplectic form ω on M is a 2-form such that: (i) ω is closed, i.e., dω = 0, and

(ii) ω is non degenerate, i.e., ∀x ∈ M, ∀ξ ∈ TxM, if ξ ωx = 0, then ξ = 0. Note

that the property (ii) implies that the dimension of M must be even. Then (M, ω)

is called a symplectic manifold.

1.1. The Poisson bracket. — We just have seen a rule which associates to each

smooth function f : R2n −→ R a vector field ξf (i.e., such that ξf ω + df = 0).

Furthermore for any pair of functions f, g : R2n −→ R we can define a third function

called the Poisson bracket of f and g

{f, g} := ω(ξf , ξg).

One can check easily that

{f, g} =
∑

i

∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
.

In classical (i.e., not quantum) Mechanics the Poisson bracket is important because

of the following properties:

1. if γ = (q, p) : [a, b] −→ R2n is a solution of the Hamilton system of equations

with the Hamiltonian H and if f : R2n −→ R is a smooth function, then

d

dt
(f(γ(t))) = {H, f}(γ(t)).
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This can be proved by a direct computation, either in coordinates:

d

dt
(f ◦ γ) =

∑

i

∂f

∂pi
(γ)

dpi
dt

+
∂f

∂qi
(γ)

dqi

dt

=
∑

i

∂f

∂pi
(γ)

(
−∂H
∂qi

(γ)

)
+
∂f

∂qi
(γ)

(
∂H

∂pi
(γ)

)

= {H, f} ◦ γ.
or by a more intrinsic calculation:

d

dt
(f ◦ γ) = dfγ(γ̇) = dfγ(ξH(γ)) = −ωγ(ξf (γ), ξH(γ)) = {H, f} ◦ γ.

A special case of this relation is when {H, f} = 0: we then say that H and f

are in involution and we find that f(γ(t)) is constant, i.e., is a first integral.

This can be viewed as a version of Noether’s theorem which relates a continuous

group of symmetry to a conservation law. In this case the vector field ξf is the

infinitesimal symmetry and ‘f(γ(t)) = constant’ is the conservation law.

2. The Lie bracket of two vector fields ξf and ξg is again a Hamiltonian vector

field, more precisely

[ξf , ξg] = ξ{f,g}.

This has the consequence that again if f and g are in involution, i.e., {f, g} = 0,

then the flows of ξf and ξg commute.

Both properties together implies the following: assume that {f,H} = 0 and that

(at least locally) df does vanish, which is equivalent to the fact that ξf does not

vanish. Then we can reduce the number of variable by 2. A first reduction is due

σ

y

ξ
H

ξ
f

φ

S

Figure 1. The symplectic reduction

to the first remark: the conservation of f along the integral curves of ξH can just be

reformulated by saying that each integral curve of ξH is contained in a level set of f ,

i.e., the hypersurface S = {m ∈ R2n| f(m) = C}. But also S is foliated by integral

curves of the flow of ξf (a consequence of {f, f} = 0). So for any point m0 ∈ S by the

flow box theorem we can find a neighborhood Sm0 of m0 in S and a diffeomorphism

ϕ : (−ε, ε) ×B2n−2(0, r) −→ Sm0

(σ, y) 7−→ m
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so that ∂ϕ
∂σ = ξf ◦ ϕ. Now the second remark comes in: in the coordinates (σ, y) ξf is

just ∂
∂σ and [ξf , ξH ] = 0 reads that the coefficients of ξH are independent of σ, so they

only depend on y. We conclude: locally the motion is equivalent to a Hamilton system

of equations in 2n− 2 variables, namely the variables y. This is called a symplectic

reduction.

1.2. The Liouville–Arnold theorem. — We can imagine a situation where we

have a collection of n smooth functions f1, · · · , fn on an open subset Ω of R2n which

satisfies the following properties

1. the functions f1, · · · , fn are independent, i.e., we have everywhere

(df1, · · · , dfn) is of rank n ⇐⇒ (ξf1 , · · · , ξfn) is of rank n

2. the functions f1, · · · , fn are in involution, i.e.,

∀i, j ∈ [[1, n]], {fi, fj} = 0.

3. there exists a function h of n real variables (a1, · · · , an) such that H =

h(f1, · · · , fn). Remark that this implies that

{H, fj} =

n∑

i=1

∂h

∂ai
(f1, · · · , fn){fi, fj} = 0, ∀j ∈ [[1, n]].

Then it is possible to operate the above symplectic reduction n times: we get a local

change of coordinates

Φ : (θi, Ii) 7−→ (qi, pi)

such that

Φ∗

(
n∑

i=1

dpi ∧ dqi
)

=

n∑

i=1

dIi ∧ dθi and fi ◦ Φ = Ii, ∀i ∈ [[1, n]]

And our Hamiltonian is now h(I1, · · · , In). It means that the Hamilton equations in

these coordinates read 



dθi

dt
=

∂h

∂Ii
(I) =: ci

dIi
dt

= − ∂h

∂θi
(I) = 0.

The second group of equation implies that the Ii’s are constant and so are the ci’s,

hence the first system implies that the θi’s are affine functions of time. This result is

the content of the Liouville theorem [3]. A more global conclusion can be achieved if

one assume for instance that the functions fi’s are proper: then one proves that the

level sets of f = (f1, · · · , fn) are tori, the coordinates transversal to the tori are called

the action variables Ii, the coordinates on the tori are called the angle variables θi.

This result is called the Liouville–Arnold theorem (see [3]) and can be generalized to

symplectic manifolds.
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A first possible definition of a so-called completely integrable system could be: an

evolution equation which can be described by a Hamiltonian system of equations for

which the Liouville–Arnold theorem can be applied. Indeed this theorem can then be

used to integrate such finite dimensional dynamical systems by quadratures. How-

ever the Liouville–Arnold property covers only partially the features of completely

integrable systems, which are also governed by sophisticated algebraic structures.

Moreover these extra algebraic properties are particularly useful for the integration of

infinite dimensional integrable systems: they will be expounded in the next sections

and they will play a more and more important role in our presentation.

2. The Lax equation

In this section we will address the following question: how to cook up the conserved

quantities? as a possible answer we shall see here a particular class of differential

equations which possess a natural family of first integrals.

Suppose that some ordinary differential equation can be written

(2.1)
dL

dt
= [L,M(L)],

where the unknown function is a C1 function

L : R −→ M(n,R)

t 7−→ L(t)

and

M : M(n,R) −→ M(n,R)

L 7−→ M(L)

is a C1 function on the set M(n,R) of n×n real matrices (note that one could replace

here R by C as well). Equation (2.1) is called the Lax equation. In the following

two examples the map M is a projection onto the set of n × n real skew-symmetric

matrices:

so(n) := {A ∈M(n,R)| At +A = 0}.

Example 1. — On R2 with the coordinates (q, p) and the symplectic form ω = dp ∧
dq, we consider the Hamiltonian function H(q, p) = |p|2/2 + 2e2q. The associated

Hamiltonian vector field is

ξH(q, p) = p
∂

∂q
− 4e2q

∂

∂p
.

Thus the corresponding Hamilton system of equations reads

(2.2)
dq

dt
= p ;

dp

dt
= −4e2q,
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54 F. HÉLEIN

which is equivalent to dq
dt = p plus the condition that t 7−→ q(t) is a solution of the

Liouville equation:

(2.3)
d2q

dt2
+ 4e2q = 0.

Then one can check that t 7−→ (q(t), p(t)) is a solution of (2.2) if and only if

(2.4)
d

dt

(
p/2 eq

eq −p/2

)
=

[(
p/2 eq

eq −p/2

)
,

(
0 eq

−eq 0

)]
.

The latter condition means that by choosing

L :=

(
p/2 eq

eq −p/2

)
and

M : M(2,R) −→ so(2)(
α β

γ δ

)
7−→

(
0 β

−β 0

)
,

then t 7−→ L(t) is a solution of the Lax equation (2.1).

Example 2. — A generalization of the previous example is the following: on R2n with

the coordinates (q1, · · · , qn, p1, · · · , pn) and the symplectic form ω = dp1 ∧ dq1 +

· · · + dpn ∧ dqn we consider the Hamiltonian function H(q, p) =
∑n
i=1(pi)

2/2 +∑n−1
i=1 e

2(qi−qi+1). The associated Hamilton system of equations for maps (q, p) 7−→
(q(t), p(t)) into R2n is the Toda lattice system of equations





q̇1 = p1

...

q̇i = pi
...

q̇n = pn

,





ṗ1 = −2e2(q
1−q2)

...

ṗi = 2e2(q
i−1−qi) −2e2(q

i−qi+1), ∀1 < i < n
...

ṗn = 2e2(q
n−1−qn)

Then this system is equivalent to the condition d
dt

(∑n
i=n q

i
)

=
∑n

i=n pi plus(1) the

Lax equation (2.1) by letting

(2.5) L =




p1 e(q
1−q2)

e(q
1−q2) p2

. . .

. . .
. . .

. . .

. . . pn−1 e(q
n−1−qn)

e(q
n−1−qn) pn




,

(1)Actually the Hamiltonian H is in involution with f(q, p) :=
Pn

i=1 pi = tr L, so that a symplectic

reduction can be done. The reduced symplectic space is the set of all trajectories of ξf contained in

a given level set of f and is symplectomorphic to R2n−2 with its standard symplectic form. Hence

the Lax equation is here equivalent to the image of the Toda system by this reduction.
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and

M : M(n,R) −→ so(n)


m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

...

mn1 mn2 · · · mnn


 7−→




0 m12 · · · m1n

−m12 0 · · · m2n

...
...

...

−m1n −m2n · · · 0




Note that the Hamiltonian function can also be written as

(2.6) H(q, p) =
1

2
tr L2.

In the case where n = 2 one recovers the Liouville equation by assuming q1 + q2 =

p1 + p2 = 0 and by posing q := q1 − q2 and p := p1 − p2.

Of course the dynamical systems which can be written in the form (2.1) are excep-

tions. Moreover given a possibly completely integrable Hamiltonian system, the task

of finding its formulation as a Lax equation may be nontrivial.

2.1. A recipe for producing first integrals

Theorem 1. — Let L ∈ C1(R,M(n,R)) be a solution of the Lax equation (2.1). Then

the eigenvalues of L(t) are constant.

Before proving this result we need the following

Lemma 1. — Let I ⊂ R be some interval and B : I −→ GL(n,R) be a C1 map. Then

(2.7)
d

dt
(detB(t)) = (detB(t)) tr

(
B(t)−1 dB

dt
(t)

)
.

Proof of Lemma 1. — Let C ∈ C1(I,GL(n,R)), then

detC =
∑

σ∈Σn

(−1)|σ|C
σ(1)
1 · · ·Cσ(n)

n

implies that

d

dt
(detC) =

∑

σ∈Σn

(−1)|σ|
n∑

j=1

dC
σ(j)
j

dt
C
σ(1)
1 · · · ̂

C
σ(j)
j · · ·Cσ(n)

n ,

where the symbol ·̂ just means that the quantity under the hat is omitted. Now

assume that for t = 0 we have C(0) = 1n. Then the above relation simplifies and

gives

(2.8)
d

dt
(detC)(0) =

n∑

j=1

dCjj
dt

(0) = tr
dC

dt
(0).
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Now consider B ∈ C1(I,GL(n,R)) and an arbitrary value of t, say t0, for which B(t0)

is not necessarily equal to 1n. We set

C(t) := B(t0)
−1B(t+ t0),

so that C(0) = 1n. Then on the one hand detC(t) = (detB(t0))
−1

detB(t0 + t)

implies that
d

dt
(detC)(0) = (detB(t0))

−1 d

dt
(detB)(t0).

And on the other hand

tr
dC

dt
(0) = tr

(
B(t0)

−1 dB

dt
(t0)

)
,

so by substitution in the relation (2.8) we exactly get relation (2.7) for t = t0.

Proof of Theorem 1. — Consider L : I −→ M(n,R), a solution of the Lax equation

(2.1) then, for any real or complex constant λ we obviously have [L − λ1n,M(L)] =

[L,M(L)] and so

d

dt
(L− λ1n) = [L− λ1n,M(L)].

Fix some time t0 and consider n distinct values λ1, · · · , λn which are not eigenvalues

of L(t0) (so that det(L(t0)−λj) 6= 0, ∀j = 1, · · · , n). Then, because of the continuity

of L there exists some ε > 0 such that det(L(t) − λj1n) 6= 0, ∀j = 1, · · · , n, ∀t ∈
(t0 − ε, t0 + ε). Hence we can apply the previous lemma to B = L − λj1n, for all j

and I = (t0 − ε, t0 + ε): we obtain

d

dt
(det(L− λj1n)) = det(L− λj1n) tr

(
(L− λj1n)

−1 d(L − λj1n)

dt

)

= det(L− λj1n) tr
(
(L− λj1n)

−1[L− λj1n,M(L)]
)

= det(L− λj1n) tr
(
M(L) − (L− λj1n)

−1M(L)(L− λj1n)
)

= 0.

So det(L(t) − λj1n) is constant on I. Since this is true for n distinct values λj , we

deduce that det(L(t) − λ1n) is constant on I, for all λ. Hence the characteristic

polynomial is constant for all times. This proves Theorem 1.

2.2. The search for a special ansatz. — This property leads us to the following.

Assume for instance that the eigenvalues of L(t) are all distinct. Then the matrix

L(t) is diagonalizable for all times, i.e., for all times t there exists an invertible matrix

P (t) such that

(2.9) L(t) = P (t)−1DP (t),

where D is a time independent diagonal matrix and the columns of P (t)−1 are the

eigenvectors of L(t).
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A related question (which makes sense even if L(t) is not diagonalizable) is to find

some map S into GL(n,R) such that

(2.10) L(t) = S(t)−1L0S(t),

where L0 := L(0). Note that in the case where L(t) is diagonalizable, i.e., if equation

(2.9) has a solution, then in particular we have also L(0) = P (0)−1DP (0), so that

L(t) = P (t)−1
(
P (0)L(0)P (0)−1

)
P (t),

and hence S(t) := P (0)−1P (t) is a solution to (2.10).

Our approach here will be based on solving directly (2.10). For that purpose we

will look for a differential equation on S which will be a sufficient condition for (2.10)

to be true. We derivate L:

dL

dt
=

dS−1

dt
L0S + S−1L0

dS

dt

=

(
−S−1dS

dt
S−1

)
L0S + S−1L0

dS

dt

= −
(
S−1 dS

dt

)(
S−1L0S

)
+
(
S−1L0S

)(
S−1dS

dt

)

=

[
S−1L0S, S

−1 dS

dt

]
=

[
L, S−1dS

dt

]
.

A comparison with the Lax equation (2.1) shows that relation (2.10) holds for all

times if and only if
[
L,M(L) − S−1 dS

dt

]
= 0 for all times. The simplest choice is to

take the unique solution of

(2.11)





dS

dt
= SM(L), ∀t

S(0) = 1n.

Conversely we have

Proposition 1. — Let L ∈ C1(I,M(n,R)) be a solution of (2.1). Consider S ∈
C1(I,GL(n,R)) the solution of (2.11). Then, denoting L0 := L(0), we have

(2.12) L(t) = S(t)−1L0S(t), ∀t.

Proof. — We just compute by using first (2.11) and then (2.1) that

d

dt

(
SLS−1

)
= S

(
dL

dt
+ [M(L), L]

)
S−1 = 0.

So SLS−1 is constant. Since it is equal to L0 for t = 0, the conclusion follows.

The method to solve equation (2.1) that we are going to see (under some further

hypotheses) is based on the study of the system (2.1) and (2.11). Even more we will

adjoin to these two systems a third one:

(2.13)





dT

dt
= (L −M(L))T, ∀t

T (0) = 1n.
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Then we have the following tricky computation. Start with the identity

L = M(L) + L−M(L),

true for all times. Multiply on the left by S and on the right by T :

SLT = SM(L)T + S(L−M(L))T

and use (2.12) on the left hand side and (2.11) and (2.13) and the right hand side

S
(
S−1L0S

)
T =

dS

dt
T + S

dT

dt

to obtain

L0(ST ) =
d

dt
(ST ).

Hence we deduce, using the fact that S(0)T (0) = 1n, that

S(t)T (t) = etL0.

So we observe that if we were able to extract the factor S(t) from etL0 we would

be able to deduce L(t) by using (2.12). Fortunately it is possible in many examples

(actually it corresponds to cases where the theory of Adler–Kostant–Symes can be

applied, see below).

2.3. The decomposition of etL0. — Let us first consider Example 1. Then

M

(
α β

γ δ

)
=

(
0 β

−β 0

)
and (Id−M)

(
α β

γ δ

)
=

(
α 0

β + γ δ

)
,

and we see that the two maps M and Id −M are linear projection onto two sup-

plementary subspaces of M(2,R), namely so(2) and the subset of lower triangular

matrices

t−(2,R) :=

{
t =

(
t11 0

t21 t22

)
| t11, t21, t22 ∈ R

}
.

Since M(2,R) = so(2) ⊕ t−(2,R) there are indeed two natural projection maps πL
(onto so(2)) and πR (onto t−(2,R)) and M = πL and 12 −M = πR. This has the

following consequences. First equation (2.11) and the fact that πL(L(t)) = M(L(t))

takes values in so(2) implies that S(t) takes values in the rotation group SO(2) :=

{R ∈M(2,R)| RtR = RRt = 12}. Indeed, by using πL(L) + πL(L)t = 0,

d

dt

(
SSt

)
=
dS

dt
St + S

dSt

dt
= SπL(L)St + SπL(L)tSt = 0.

Second equation (2.13) and the fact that πR(L(t)) = L(t) −M(L(t)) takes values in

t−(2,R) implies that T (t) takes values in the group of lower triangular matrices with

positive diagonal

T−(2,R) :=

{
T =

(
T 1

1 0

T 2
1 T 2

2

)
| T 1

1 , T
2
2 ∈ (0,∞), T 2

1 ∈ R

}
.
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Indeed by writing L−M(L) =

(
α 0

γ δ

)
then one can check that (2.13) implies that

T (t) =

(
A(t) 0

D(t)
∫ t
0 γ(s)

A(s)
D(s)ds D(t)

)
, ∀t,

where A(t) := e
R

t
0
α(s)ds and D(t) := e

R

t
0
δ(s)ds. Lastly we observe that det etL0 > 0,

i.e., etL0 takes values in the subgroup GL+(2,R) of matrices with positive determi-

nants (we even have det etL0 = ettrL0 , a consequence of Lemma 1).

Now we see that extracting S(t) from etL0 just consists in solving the problem

(2.14)





S(t)T (t) = etL0 ∈ GL+(2,R)

S(t) ∈ SO(2)

T (t) ∈ T−(2,R)

, ∀t.

Standard results from linear algebra tell us indeed that for each time t there is a unique

solution (S(t), T (t)) to (2.14): it is given by the Gram–Schmidt orthonormalisation

process. For 2 × 2 matrices we can easily write it explicitly: assume that for some t

etL0 =

(
a b

c d

)
,

then

S(t) =
1√

b2 + d2

(
d b

−b d

)
, T (t) =

1√
b2 + d2

(
ad− bc 0

ab+ cd b2 + d2

)
.

Example 3(Example 1 continued). — We solve here the system (2.2) by using that

method. Let q0 and p0 denote the initial value of q and p respectively at t = 0 and

consider the matrix

L0 :=

(
p0/2 eq0

eq0 −p0/2

)
.

The first task is to compute etL0 and, for that purpose, we need to diagonalize L0:

L0 =
1

2eq0ε0

(
eq0 eq0

ε0 − p0/2 −ε0 − p0/2

)(
ε0 0

0 −ε0

)(
ε0 + p0/2 eq0

ε0 − p0/2 −eq0
)
,

where ε0 :=
√

(p0)2/4 + e2q0 . Then

etL0 =

(
cosh(ε0t) + p0

2ε0
sinh(ε0t)

eq0

ε0
sinh(ε0t)

eq0

ε0
sinh(ε0t) cosh(ε0t) − p0

2ε0
sinh(ε0t)

)
.

We now compute S(t) such that the decomposition etL0 = S(t)T (t) holds:

S(t) =
1√
∆(t)

(
cosh(ε0t) − p0

2ε0
sinh(ε0t)

eq0

ε0
sinh(ε0t)

− eq0

ε0
sinh(ε0t) cosh(ε0t) − p0

2ε0
sinh(ε0t)

)
,
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where ∆(t) := cosh(2ε0t) − p0
2ε0

sinh(2ε0t). Lastly we compute L(t) = S(t)−1L0S(t):

L(t) =
1

∆(t)

( p0
2 cosh(2ε0t) − ε0 sinh(2ε0t) eq0

eq0 − p0
2 cosh(2ε0t) + ε0 sinh(2ε0t)

)

and deduce: 



q(t) = q0 − ln

(
cosh(2ε0t) −

p0

2ε0
sinh(2ε0t)

)

p(t) =
p0 cosh(2ε0t) − 2ε0 sinh(2ε0t)

cosh(2ε0t) − p0
2ε0

sinh(2ε0t)
.

We remark that q(t) = q0 − ln ∆(t) and p(t) = − ∆̇(t)
∆(t) .

A straightforward generalization of the preceding method works for solving Exam-

ple 2, as follows. Let t−(n,R) be the set of n×n real lower triangular matrices. Then

the splitting M(n,R) = so(n) ⊕ t−(n,R) leads us to a pair of projection mappings

πL : M(n,R) −→ so(n) and πR : M(n,R) −→ t−(n,R). Let t 7−→ L(t) be a C1 map

which is a solution of dL
dt (t) = [L(t), πL(L(t))]. Then set L0 := L(0) and consider the

system

(2.15)





∀t, dL
dt

(t) = [L(t), πL(L(t))] and L(0) = L0

∀t, dS
dt

(t) = S(t)πL(L(t)) and S(0) = 1n

∀t, dT
dt

(t) = πR(L(t))T (t) and T (0) = 1n.

Then by the same calculation as above one proves that

1. ∀t ∈ R, L(t) = S(t)−1L0S(t)

2. ∀t ∈ R, S(t)T (t) = etL0

3. S(t) takes values in SO(n) and T (t) takes values in T−(n,R), where T−(n,R)

is the group of lower diagonal matrices with positive coefficients on the diagonal

4. etL0takes values in GL+(n,R), where GL+(n,R) is the subgroup of matrices in

GL(n,R) with positive determinant

5. the map

SO(n) × T−(n,R) −→ GL+(n,R)

(R, T ) 7−→ RT,

is a diffeomorphism. Actually the inverse of this map can be computed alge-

braically by using the Gram–Schmidt orthonormalization process.

So again we can compute the solution L(t) by first computing etL0, second by using

Step 5 extracting from that matrix its SO(n) part, namely S(t) and third use the

relation L(t) = S(t)−1L0S(t).
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2.4. Lie algebras and Lie groups. — The preceding method can actually be

generalized to other group of matrices, or more generally in the framework of Lie

groups. This can be seen by analyzing the five properties used in the previous sub-

section. Properties 1 and 2 just come from the equations, i.e., from system (2.15).

Properties 3 and 4 have natural generalizations in the framework of Lie algebras.

A (real or complex) Lie algebra is (real or complex) vector space g endowed with

a bilinear map

[·, ·] : g × g −→ g

(ξ, η) 7−→ [ξ, η]

called Lie bracket which is skewsymmetric, i.e., which satisfies [ξ, η] + [η, ξ] = 0 and

which satisfies the Jacobi identity [ξ, [η, ψ]] + [ψ, [ξ, η]] + [η, [ψ, ξ]] = 0. For simplicity

the reader may consider that Lie algebras are vector spaces of matrices, i.e., subspaces

of M(n,R) or M(n,C), which are endowed with the Lie bracket [ξ, η] := ξη − ηξ and

stable under this bracket.

A Lie group is a group and a manifold in a compatible way. It means that if G

is a Lie group then it is a smooth manifold endowed with a group law

G × G −→ G

(a, b) 7−→ ab

which is a smooth map. Here also the reader can figure out Lie groups as set of

matrices, i.e., subgroups of GL(n,R) or GL(n,C). If e ∈ G is the unity then the

tangent space to G at e, g = TeG, has a natural structure of Lie algebra. Indeed first

we can associate to each g ∈ G the adjoint map

Adg : G −→ G

a 7−→ gag−1.

Since Adg is smooth we can consider its differential d (Adg)e at e which maps linearly

g = TeG to itself, since Adg(e) = e. We will simply denote this map by Adg : g −→ g.

For matrices we can write Adgη = gηg−1. Now if we assume that t 7−→ g(t) is a

smooth curve such that g(0) = e and dg
dt (0) = ξ ∈ TeG we can consider the differential

adξ := (dAdg(t)/dt)(0) of Adg(t) at t = 0 and set

adξ : g −→ g

η 7−→ adξη =
dAdg(t)η

dt (0).

Then it turns out that the bilinear map

g × g −→ g

(ξ, η) 7−→ [ξ, η] := adξη

is skewsymmetric and satisfies the Jacobi identity and so is a Lie bracket. The Lie

algebra (g, [·, ·]) encodes in a concise way the lack of commutativity of the Lie group

and the Jacobi identity is the infinitesimal expression of the associativity of the group

law on G. As an exercise the reader can check by himself that when dealing with
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subgroup of matrices we have adξη = ξη − ηξ, so that we recover the standard Lie

bracket on matrices.

Lastly, for any g ∈ G, consider the smooth left action map Lg−1 : G −→ G,

h 7−→ g−1h. Its differential at g is a linear map d
(
Lg−1

)
g

: TgG −→ g, and, for

ξ ∈ TgG, we will simply denote d
(
Lg−1

)
g
(ξ) by g−1ξ, since it is exactly the expression

that we obtain for matrix groups. We define an analogous map TgG −→ g by using

the right action of g−1, that we denote by ξ 7−→ ξg−1. Then, for any α ∈ C1(R, g), we

can consider the equation S(t)−1 dS
dt (t) = α(t), where S ∈ C1(R,G), it is easy to show

that this equation has a unique solution if we are given an initial condition S(0) = S0.

Similarly, for any β ∈ C1(R, g) and given some T0 ∈ G there exists a unique solution

T ∈ C1(R,G) to the equation dT
dt (t)T (t)−1 = β(t) with the initial condition T (0) = T0.

Now assume that we are given Lie group G with its Lie algebra g and that g =

gL⊕gR, where gL and gR are the Lie algebras of respectively some Lie subgroups

GL and GR. We then define the projections mappings πL and πR onto the two factors

and we consider the system (2.15). Automatically the analogues of Conditions 1, 2, 3

and 4 are satisfied (replacing SO(n) by GL, T−(n,R) by GR and GL+(n,R) by G).

Hence if the analogue of Condition 5, i.e., that

GL × GR −→ G

(R, T ) 7−→ RT
is a diffeomorphism,

is satisfied, we can solve the equation dL
dt = [L, πL(L)] by the same method as before,

due to W. Symes [31]. Note that this last condition can be seen as the nonlinear

version for groups of the splitting g = gL⊕gR. In most examples one of the two sub Lie

algebras, say gR is solvable: it means that if we consider [gR, gR] := {[ξ, η]| ξ, η ∈ gR}
and then [[gR, gR], [gR, gR]] := {[ξ, η]| ξ, η ∈ [gR, gR]}, etc. then these subspaces will

be reduced to 0 after a finite number of steps. The basic example of a solvable Lie

algebra is the set of lower (or upper) triangular matrices t−(n,R). If so the splitting

G = GL · GR is called an Iwasawa decomposition.

2.5. The Adler–Kostant–Symes theory. — The Hamiltonian structure was ab-

sent in our presentation. In order to understand how it is related to the previous

method one needs the deeper insight provided by the Adler–Kostant–Symes theory

[1, 20, 31]. The key ingredients are:

1. a Lie algebra g which admits the vector space decomposition g = gL⊕gR, where

gL and gR are Lie subalgebras ;

2. an ad∗
g-invariant function on the dual space g∗ of g.

The first ingredient provides us with the phase space: the Poisson manifold g∗R (see

below), whereas the second one helps us to build the Hamiltonian function. However

we first need to introduce some extra notions in particular to clarify the meaning of

the second assumption.
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2.5.1. Poisson manifolds. — A Poisson manifold M is a smooth manifold endowed

with a skew-symmetric bilinear map

{·, ·} : C∞(M) × C∞(M) −→ C∞(M)

(f, g) 7−→ {f, g}
which satisfies the Leibniz rule {fg, h} = f{g, h} + g{f, h} and the Jacobi identity

{f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0. Then {·, ·} is called a Poisson bracket.

Symplectic manifolds endowed with the bracket {f, g} = ω(ξf , ξg) are examples of

Poisson manifolds. Another important example, which goes back to S. Lie, is the dual

space g∗ of a Lie algebra g: for any functions f, g ∈ C∞(g∗) we let {f, g}g∗ ∈ C∞(g∗)

be defined by

∀α ∈ g∗, {f, g}g∗(α) := (g∗

α, [Cgdfα, Cgdgα])g,

where (g∗ ·, ·)g : g∗ × g −→ R is the duality product and Cg : g∗∗ −→ g is the canon-

ical isomorphism. In most cases we shall drop Cg and simply write {f, g}g∗(α) :=

(g∗

α, [dfα, dgα])g. The co-adjoint action of g on g∗ is defined by associating to all

ξ ∈ g the linear map ad∗
ξ : g∗ −→ g∗ such that

∀α ∈ g∗, ∀η ∈ g, (g∗

ad∗
ξα, η)g := (g∗

α, adξη)g = (g∗

α, [ξ, η])g.

Note that g∗ is not a symplectic manifold, however a result of A. A. Kirillov asserts

that the integral manifolds of the distribution spanned by the vector fields α 7−→ ad∗
ξα,

for ξ ∈ g, (in fact the orbits of the co-adjoint action of a Lie group G whose Lie algebra

is g) are symplectic submanifolds. The symplectic structure on these orbits induces a

Poisson bracket which coincides with the restriction of the Poisson bracket {f, g}g∗ .

2.5.2. Embedding g∗R in g∗. — As announced the phase space is the Poisson manifold

g∗R. However we will use the decomposition g = gL ⊕ gR to embedd g∗R in g∗. Let us

define

g⊥L := {α ∈ g∗| ∀ξ ∈ gL, (
g∗

α, ξ)g = 0} ⊂ g∗

and similarly

g⊥R := {α ∈ g∗| ∀ξ ∈ gR, (
g∗

α, ξ)g = 0} ⊂ g∗.

We first observe that g∗R ' g∗/g⊥R and the quotient mapping Q : g∗ −→ g∗R coincides

with the restriction mapping α 7−→ α|gR . Furthermore g∗ = g⊥R ⊕ g⊥L , so that we can

define the associated projection mappings π⊥
R : g∗ −→ g⊥R ⊂ g∗ and π⊥

L : g∗ −→ g⊥L ⊂
g∗. However the restriction of π⊥

L to each fiber of Q is constant, hence there exists a

unique map σ : g∗R −→ g⊥L ⊂ g∗ such that the factorization π⊥
L = σ ◦ Q holds: σ is

the embedding of g∗R that we shall use.

A second task is to characterize the image {·, ·}g⊥

L
of the Poisson bracket {·, ·}g∗

R

by σ, defined by:

(2.16) ∀ϕ, ψ ∈ C∞(g⊥L ), {ϕ, ψ}g⊥

L
◦ σ = {ϕ ◦ σ, ψ ◦ σ}g∗

R
.

Note that any functions ϕ, ψ ∈ C∞(g⊥L ) can be considered as restrictions to g⊥L of

respectively functions f, g ∈ C∞(g∗) and it is convenient to have an expression of

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



64 F. HÉLEIN

{ϕ, ψ}g⊥

L
in terms of f and g. For that purpose we first need to precise the relationship

between d(ϕ ◦ σ)α and dfσ(α), for all α ∈ g∗R, if f ∈ C∞(g∗) and ϕ := f |g⊥

L
: for any

α ∈ g∗R,

d(ϕ ◦ σ)α ◦Q = d(f ◦ σ)α ◦Q = dfσ(α) ◦ σ ◦Q = dfσ(α) ◦ π⊥
L =

(
π⊥
L

)∗
dfσ(α).

Now let us introduce the two projection mappings πL : g −→ gL ⊂ g and πR : g −→
gR ⊂ g associated to the splitting g = gL ⊕ gR. Observe that π⊥

L : g∗ −→ g∗ is the

adjoint map of πR : g −→ g, thus

d(ϕ ◦ σ)α ◦Q = π∗∗
R dfσ(α).

Hence, since Q : g∗ −→ g∗R is dual to the inclusion map ι : gR −→ g,

ι ◦ CgR (d(ϕ ◦ σ)α) = Cg (d(ϕ ◦ σ)α ◦Q) = Cg

(
π∗∗
R dfσ(α)

)
= πRCgdfσ(α),

or more simply, by dropping tautological maps, d(ϕ ◦ σ)α = πRdfσ(α). Hence,

∀α ∈ g∗R, {ϕ ◦ σ, ψ ◦ σ}g∗

R
(α) := (g∗

Rα, [d(ϕ ◦ σ)α, d(ψ ◦ σ)α])gR

= (g∗

Rα, [πRdfσ(α), πRdgσ(α)])gR

= (g∗

σ(α), [πRdfσ(α), πRdgσ(α)])g.

Thus in view of (2.16) we are led to set:

(2.17) ∀α ∈ g⊥L , {ϕ, ψ}g⊥

L
(α) := (g∗

α, [πRdfα, πRdgα])g

Then given a function ϕ ∈ C∞(g⊥L ), its Hamiltonian vector field is the vector field ξϕ
on g⊥L such that ∀ψ ∈ C∞(g⊥L ), dψ(ξϕ) = {ϕ, ψ}g⊥

L
. If ϕ is the restriction of some

f ∈ C∞(g∗) then one computes by using again the identity π⊥
L = π∗

R that

(2.18) ∀α ∈ g⊥L , ξϕ(α) = π⊥
L ad∗

πRdfα
α.

2.5.3. The ad∗g-invariant functions on g∗. — Our Hamiltonian functions on g⊥L shall

be restrictions of functions f ∈ C∞(g∗) which are invariant under the co-adjoint action

of g, i.e., such that

(2.19) ∀α ∈ g∗, ∀ξ ∈ g, dfα(ad∗
ξα) = 0.

However this relation means that ∀α ∈ g∗, ∀ξ ∈ g,

0 = (g∗

ad∗
ξα, dfα)g = (g∗

α, [ξ, dfα])g = −(g∗

α, [dfα, ξ])g = −(g∗

ad∗
dfα
α, ξ)g,

and hence that

(2.20) ∀α ∈ g∗, ad∗
dfα
α = ad∗

πLdfα
α+ ad∗

πRdfα
α = 0.

Thus in view of (2.18) and (2.20), for an ad∗
g-invariant function f ,

(2.21) ∀α ∈ g⊥L , ξϕ(α) = −π⊥
L ad∗

πLdfα
α = −ad∗

πLdfα
α,

where we used the fact that πLdfα ∈ gL and α ∈ g⊥L imply that ad∗
πLdfα

α ∈ g⊥L .

All that can be translated if we are given a symmetric nondegenerate bilinear form
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〈·, ·〉 : g × g −→ R which is adg-invariant (i.e., such that 〈[ξ, η], ζ〉 + 〈η, [ξ, ζ]〉 = 0):

this induces an isomorphism g −→ g∗, ξ 7−→ ξ] defined by (g∗

ξ], η)g = 〈ξ, η〉 and:

(g∗

ad∗
ξη
], ζ)g = (g∗

η], [ξ, ζ])g = 〈η, [ξ, ζ]〉 = −〈[ξ, η], ζ〉 = −(g∗

[ξ, η]], ζ)g.

Thus ad∗
ξη
] = −[ξ, η]]. Hence the vector field defined by (2.21) is equivalent to:

Xf (ξ) = [πL∇fξ, ξ],
so that its flow is a Lax equation!

Moreover the whole family of ad∗
g-invariant functions on g∗ gives by re-

striction on g⊥L functions in involution, as we will see(2). This is a consequence of

the following identity, valid for any functions f, g ∈ C∞(g∗) which are ad∗
g-invariant:

(2.22) ∀α ∈ g∗, ∆f,g(α) := (g∗

α, [πRdfα, πRdgα])g − (g∗

α, [πLdfα, πLdgα])g = 0.

This can be proved by a direct computation:

∆f,g(α) = (g∗

α, [πRdfα, πRdgα])g + (g∗

α, [πLdgα, πLdfα])g

= (g∗

ad∗
πRdfα

α, πRdgα)g + (g∗

ad∗
πLdgα

α, πLdfα)g

(2.20)
= −(g∗

ad∗
πLdfα

α, πRdgα)g − (g∗

ad∗
πRdgα

α, πLdfα)g

= −(g∗

α, [πLdfα, πRdgα])g − (g∗

α, [πRdgα, πLdfα])g

= 0.

Hence we deduce from (2.22) that if f, g ∈ C∞(g∗) are ad∗
g-invariant and if α ∈ g⊥L ,

then

∀α ∈ g⊥L , {f, g}g⊥

L
(α) = (g∗

α, [πRdfα, πRdgα])g = (g∗

α, [πLdfα, πLdgα])g = 0.

2.5.4. Integration by the method of Symes. — We assume that gL, gR and g are

respectively the Lie algebras of Lie groups GL, GR and G and consider functions

f ∈ C∞(g∗) which are Ad∗
G-invariant, i.e., such that

(2.23) ∀g ∈ G, ∀α ∈ g∗ f(Ad∗
gα) = f(α),

where Ad∗
g : g∗ −→ g∗ is defined by (g∗

Ad∗
gα, ξ)g = (g∗

α,Adgξ)g, ∀α ∈ g∗, ∀ξ ∈ g.

Note that (2.23) is equivalent to (2.19) if G is connected. We will use the following

two observations. First if f ∈ C∞(g∗) is Ad∗
G-invariant, then

(2.24) ∀g ∈ G, ∀α ∈ g∗ dfα = AdgdfAd∗

gα
.

This is proved by deriving the relation (2.23) with respect to α, which gives

dfα = dfAd∗

gα
◦ Ad∗

g = C−1
g ◦ Adg ◦ Cg ◦ dfAd∗

gα
' Adg ◦ dfAd∗

gα
.

Second for any g ∈ C1(R,G) and α ∈ C1(R, g∗), if we let α0 := α(0), then

(2.25) ∀t ∈ R, α̇(t) = ad∗
g−1(t)ġ(t)α(t) =⇒ ∀t ∈ R, α(t) = Ad∗

g(t)α0.

(2)In fact ad∗
g -invariant functions on g∗ are in involution for the Poisson structure {·, ·}g∗ on g∗, but

their flows are trivial and, hence, are not interesting. The point here is that they induced non-trivial

flows on g⊥L .
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The proof of (2.25) is left to the reader (hint: prove that, for all ξ0 ∈ g,

(g∗

α(t),Adg−1(t)ξ0)g is time independent), note that the converse is also true.

Now let f ∈ C∞(g∗) be an Ad∗
G-invariant and consider a solution α ∈ C1(R, g∗) of

the flow of (2.21), i.e.,

(2.26) α̇ = ξf (α) = −ad∗
πLdfα

α, α(0) = α0.

We associate to α the solutions S ∈ C1(R,GL) and T ∈ C1(R,GR) of the following

two equations:

(2.27) S−1Ṡ = −πLdfα, S(0) = 1G,

and

(2.28) Ṫ T−1 = −πRdfα, T (0) = 1G.

Then by (2.26) and (2.27), α̇ = ad∗
S−1Ṡ

α, which implies thanks to (2.25) that α =

Ad∗
Sα0. Hence by using successively (2.24), (2.27) and (2.28), we deduce that:

dfα0 = AdSdfAd∗

Sα0
= AdSdfα = −AdS(S−1Ṡ + Ṫ T−1)

= −ṠS−1 − AdS(Ṫ T−1) = − ˙(ST )(ST )−1.

Thus ST = e−tdfα0 . Hence we can deduce the solution to (2.26) if the splitting

GR · GR = G holds.

2.5.5. An example. — We let g = sl(n,R), the set of n×n real matrices with vanishing

trace, gL = so(n) and gR = st−(n,R), the set of n× n real lower triangular matrices

with vanishing trace (i.e., st−(n,R) := t−(n,R) ∩ sl(n,R)). Note that sl(n,R) is the

Lie algebra of SL(n,R), so(n) is the Lie algebra of SO(n) and st−(n,R) is the Lie

algebra of ST−(n,R), the subgroup of SL(n,R) of lower triangular matrices with

positive entries on the diagonal. We identify g∗ with M(n,R)/R1n, with the duality

product

∀α ∈M(n,R), ∀ξ ∈ sl(n,R), (g∗

α, ξ)g := tr (αtξ).

Then g⊥L = so(n)⊥ can be identified with sym(n,R)/R1n (sym(n,R) is the set of real

n × n symmetric matrices) and g⊥R = st−(n)⊥ with t+0 (n,R)/R1n, where t+0 (n,R) is

the set of n×n real upper triangular matrices with vanishing entries on the diagonal.

The co-adjoint action of G on g∗ can be computed: ∀α ∈ g∗, ∀ξ ∈ g, ∀g ∈ G,

(g∗

Ad∗
gα, ξ)g = (g∗

α,Adgξ)g = tr (αtgξg−1) = tr ((gtα(gt)−1)tξ) = (g∗

gtα(gt)−1, ξ)g.

Hence

Ad∗
gα = gtα(gt)−1.

In particular all functions of the form α 7−→ tr αk, for k ∈ N∗, are AdG-invariant.

Moreover, through the identification st−(n,R)∗ ' sym(n,R)/R1n the co-adjoint ac-

tion of GR = ST−(n,R) on st−(n,R)∗ reads ∀g ∈ ST−(n,R),

sym(n,R) 3 L0 7−→ Ad∗
gL0 ' πsym(n,R)

(
gtL0(g

t)−1
)
,
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where the projection mapping πsym(n,R) has the kernel t+0 (n,R). For instance if

L0 =




0 1 0 0

1 0
. . .

0
. . .

. . .
. . . 0

. . . 0 1

0 0 1 0




∈ sym(n,R),

and if

gt =




e−q
1

a1 ∗ ∗
0 e−q

2

a2

. . .
. . .

. . . ∗
0 e−q

n−1

an−1

0 0 e−q
n




∈ ST−(n,R),

then gtL0(g
t)−1 = L with

L =




−eq2a1 ∗ ∗ ∗

eq
2−q1 a1e

q2 − a2e
q3 . . .

0
. . .

. . .
. . . ∗

. . . an−2e
qn−1 − an−1e

qn ∗
0 0 eq

n−qn−1

an−1e
qn




.

Hence by taking the image by πsym(n,R) of this matrix we obtain a matrix of the type

(2.5) with
∑n
i=1 pi = 0.

3. The sinh–Gordon equation

We now consider another example of equation, the sinh–Gordon equation

(3.29)
d2q

dt2
+ 2 sinh(2q) = 0.

By setting p := dq
dt we can see easily that (3.29) is equivalent to the Hamiltonian

system of equations

dq

dt
= p,

dp

dt
= −2 sinh(2q),

corresponding to the Hamiltonian function H(q, p) = p2

2 + cosh(2q). Equation (3.29)

can be solved by using quadratures and more precisely by inverting an elliptic integral

on a Riemann surface of genus one. Indeed first observe that H(q, q̇) = q̇2/2+cosh(2q)
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is a constant, say ε. From that we deduce that dt = dq/
√

2(ε− cosh(2q)). By posing

z = cosh(2q) we obtain

t1 − t0 =

∫ cosh(2q1)

cosh(2q0)

dz√
P (z)

,

where P (z) := 8(z2−1)(ε−z). The right hand side of this relation is an elliptic integral.

The natural framework to understand it is tho consider the (compactification of the)

Riemann surface {(x, y) ∈ C2| y2 = P (x)}. The inverse map to this integral can then

be constructed by using theta functions. All these methods go back to Jacobi, Abel

and Riemann. Note that the analogous method for Equation (2.3) d2q
dt2 + 4e2q = 0

gives dt = dq/2
√
σ2 − e2q, where σ2 := p2/4 + e2q and by posing z = eq/σ we get

dt = dz/2σz
√

1 − z2 = − 1
2σdArg cosh(1/z). Thus in particular we do not need elliptic

integral in this case. Hence Equation (3.29) is both similar to and more involved than

the Liouville equation (2.3), so one should expect that it can be solved by similar

method. This is true as we will see, but this requires a more general framework.

Here it turns out that (3.29) can be written as Lax equation by using infinite

matrices! namely (3.29) is equivalent to L̇ = [L,M(L)], where

L =
1

2




. . .
. . .

. . . p eq

eq −p e−q

e−q p eq

eq −p . . .

. . .
. . .




and

M(L) =
1

2




. . .
. . .

. . . 0 eq

−eq 0 e−q

−e−q 0 eq

−eq 0
. . .

. . .
. . .




.

We see that the linear map M is the projection onto skewsymmetric matrices parallel

to lower triangular matrices, just as before. Such matrices are difficult to handle.

One can represent them by constructing the linear operators acting on the Hilbert

space `2(Z) whose matrices in the canonical base (· · · , e−2, e−1, e0, e1, e2, · · · ) are L

and M(L) respectively. Using the same notations for the matrices and the operators
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we have 



Le2n =
1

2

(
e−qe2n−1 + pe2n + eqe2n+1

)

Le2n+1 =
1

2

(
eqe2n − pe2n+1 + e−qe2n+2

) ,





M(L)e2n =
1

2

(
e−qe2n−1 − eqe2n+1

)

M(L)e2n+1 =
1

2

(
eqe2n − e−qe2n+2

) .

One then check that dL
dt em = [L,M(L)]em, ∀m ∈ Z if and only if q and p are solutions

of the Hamilton equations.

3.1. Introducing a complex parameter. — An alternative way is to iden-

tify the Hilbert space `2(Z) with (a subspace of the) loops in C2, L2(S1,C2),

through the Fourier transform. In the following we denote by S1 := {λ ∈
C∗| |λ| = 1}, for any v ∈ L2(S1,C2) we denote by vλ the value of v at λ ∈ S1

and (ε1, ε2) is the canonical basis of C2. The subspace of L2(S1,C2) that

we are going to consider is the space of even loops(3), L2
even(S1,C2) := {v ∈

L2(S1,C2)| v−λ = vλ, ∀λ ∈ S1}. This is done by the Fourier decomposition isomor-

phism

Φ : `2(Z) −→ L2
even(S1,C2)

v 7−→ Φ(v),

where Φ is defined by




Φ(e2n)λ = λ2n−2

(
0

1

)
= λ2n−2ε2

Φ(e2n+1)λ = λ2n

(
1

0

)
= λ2nε1.

Then it turns out that through the diffeomorphism Φ the action of the linear operators

L and M(L) translates into relatively simple operators.

Lemma 2. — ∀v ∈ L2
even(S1,C2), ∀λ ∈ S1, we have

(
Φ ◦ L ◦ Φ−1

)
(v)λ =

1

2

(
−p e−q + λ2eq

λ−2eq + e−q p

)
vλ =: L̃λvλ,

(
Φ ◦M(L) ◦ Φ−1

)
(v)λ =

1

2

(
0 e−q − λ2eq

λ−2eq − e−q 0

)
vλ =: M̃(L̃)λvλ.

Proof. — Just compute.

(3)We shall see later on the reason for choosing even maps.
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The operators Φ ◦ L ◦ Φ−1 and Φ ◦M(L) ◦ Φ−1 are very particular instances of

operators acting on L2
even(S1,C2) since they are characterized by mappings S1 3

λ 7−→ L̃λ ∈ sl(2,C) and S1 3 λ 7−→ M̃(L̃)λ ∈ sl(2,C) in such a way that the action

on a given vector in LC2 is given by pointwise multiplication by these matrix valued

maps.

Now we can deduce from the previous facts that the sinh–Gordon equation is

equivalent to the Lax equation

dL̃λ
dt

=
[
L̃λ, M̃(L̃)λ

]
, ∀λ ∈ S1.

Actually we will not use this formulation since it causes some difficulties to use the

Adler–Kostant–Symes method. We shall instead use the matrices

Lλ := P−1
λ L̃λPλ and M(L)λ := P−1

λ M̃(L̃)λPλ,

where(4)

Pλ :=

(
λ1/2 0

0 λ−1/2

)
.

This gives us

Lλ =
1

2

(
−p λ−1e−q + λeq

λ−1eq + λe−q p

)
,

and

M(L)λ =
1

2

(
0 λ−1e−q − λeq

λ−1eq − λe−q 0

)
.

And (3.29) is equivalent to the Lax equation dLλ

dt = [Lλ,M(L)λ].

3.2. Loop algebras and loop groups. — We now have to think about the objects

L̃λ, Lλ, etc. They defined maps into (matrix) Lie algebras. We can observe indeed

that each of these maps takes values into sl(2,C) := {M ∈M(2,C)| trM = 0} which

is the Lie algebra of SL(2,C) := {M ∈ GL(2,C)| detM = 1}. We will denote

Lsl(2,C) := {ξ : S1 3 λ 7−→ ξλ ∈ sl(2,C)}.
We need to fix some regularity and some topology on this space in order to be able

to define a Lie bracket on Lsl(2,C) by the rule

∀ξ, η ∈ Lsl(2,C), ∀λ ∈ S1, [ξ, η]λ = [ξλ, ηλ] .

One instance of a topology which ensures us that [ξ, η] ∈ Lsl(2,C) is the L∞ topology

(on the set of continuous loops). With these preliminaries Lsl(2,C) has now the

structure of an (infinite dimensional) Lie algebra, called a (Lie) loop algebra. So

we will now think of L and M(L) as maps into the loop algebra Lsl(2,C).

(4)The reader will observe that Pλ is only defined up to sign. However the conjugate matrices

P−1
λ

eLλPλ and P−1
λ

fM(eL)λPλ are unambiguously defined.
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We will also be able to interpret M(L)λ as the image of Lλ by a suitable projection

mapping of Lsl(2,C). We first remark (using in particular that if λ ∈ S1 then λ−1 is

the complex conjugate of λ) that

∀λ ∈ S1, M(L)†λ +M(L)λ = 0,

where A† := A
t
. So M(L)λ ∈ su(2), ∀λ ∈ S1, where su(2) := {α ∈M(2,C)|α† +α =

0}. Hence we are led to introduce

Lsu(2) := {ξ : S1 3 λ 7−→ ξλ ∈ su(2)} ⊂ sl(2,C),

which is itself a loop (sub)algebra. We need to find a complementary vector subspace

in Lsl(2,C) which will be another loop subalgebra. This rests on two constructions.

a) Finite dimensional splitting of sl(2,C)

We let

b :=

{(
t 0

s −t

)
| t ∈ R, s ∈ C

}
⊂ sl(2,C),

and we then observe that sl(2,C) = su(2) ⊕ b and that b is the Lie algebra of the

group

B :=

{(
τ 0

σ 1/τ

)
| τ ∈ (0,∞), σ ∈ C

}
⊂ SL(2,C).

b) Infinite dimensional splitting in Lsl(2,C)

Any loop ξλ =
∑
k∈Z

ξ̂kλ
k can be decomposed as

ξλ =

(
∑

k<0

ξ̂kλ
k −

∑

k>0

ξ̂†−kλ
k

)
+ ξ̂0 +

(
∑

k>0

(
ξ̂k + ξ̂†−k

)
λk

)
.

Here the first term on the right hand side takes values in su(2) (by again using the

fact that λ ∈ S1 ⇐⇒ λ = λ−1) and the last term involves only positive powers of λ.

Now we shall use the first decomposition a) in order to deal with the middle term

ξ̂0 ∈ sl(2,C) in the second decomposition b). Namely we split it according to the

decomposition sl(2,C) = su(2) ⊕ b: ξ̂0 =
(
ξ̂0

)
su(2)

+
(
ξ̂0

)
b
. This leads us to the

decomposition

ξλ =

(
∑

k<0

ξ̂kλ
k −

∑

k>0

ξ̂†−kλ
k +

(
ξ̂0

)
su(2)

)
+

((
ξ̂0

)
b

+
∑

k>0

(
ξ̂k + ξ̂†−k

)
λk

)
,

where the first term is a loop in Lsu(2). The second one belongs to

L+
b sl(2,C) := {ξ : S1 3 λ 7−→ ξλ ∈ sl(2,C)| ξλ =

∞∑

k=0

ξ̂kλ
k, ξ̂0 ∈ b}.

The previous computation shows that

Lsl(2,C) = Lsu(2) ⊕ L+
b sl(2,C),

so that we can define two projection mappings πL and πR to respectively Lsu(2) and

L+
b sl(2,C). But the nice thing is that L+

b sl(2,C) is also a Lie algebra!
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As this point if we wish to extend the method described in the previous section we

need to know whether the loop algebras that we have defined are the Lie algebras of

Lie groups. This turns out to be true: we define the loop (Lie) groups

LSL(2,C) := {g : S1 3 λ 7−→ gλ ∈ SL(2,C)},
LSU(2) := {g : S1 3 λ 7−→ gλ ∈ SU(2)} ⊂ SL(2,C),

(where SU(2) := {g ∈M(2,C)| g†g = 12}) and

L+
BSL(2,C) :=

{
g : S1 3 λ 7−→ gλ ∈ SL(2,C)| gλ =

∞∑

k=0

ĝkλ
k, ĝ0 ∈ B

}
.

These set are endowed with the product law

∀g, h ∈ LSL(2,C), ∀λ ∈ S1, (gh)λ = (gλ) (hλ) .

So LSL(2,C), LSU(2) and L+
BSL(2,C) are Lie groups whose Lie algebras are respec-

tively Lsl(2,C), Lsu(2) and L+
b sl(2,C).

3.3. The solution of the sinh–Gordon equation by using the Adler–

Kostant–Symes method. — We now summarize the previous steps. A map

q : R −→ R is a solution of the sinh–Gordon equation (3.29) if and only if the map

L : R −→ Lsl(2,C) defined by

∀t ∈ R, ∀λ ∈ S1, Lλ(t) =
1

2

(
−p(t) λ−1e−q(t) + λeq(t)

λ−1eq(t) + λe−q(t) p(t)

)

(where p(t) = q̇(t)) is a solution of the Lax equation

dLλ
dt

(t) = [Lλ(t), πL(L(t))λ] ,

where πL is the projection on the first factor of Lsl(2,C) = Lsu(2) ⊕ L+
b sl(2,C). We

then consider πR to be the projection on the second factor of this splitting and the

two extra equations

dSλ
dt

(t) = Sλ(t)πL(L(t))λ, Sλ(0) = 1,

dTλ
dt

(t) = πR(L(t))λTλ(t), Tλ(0) = 1.

Then we know that automatically S(t) ∈ LSU(2) and T (t) ∈ L+
BSL(2,C), ∀t ∈ R.

Moreover by repeating the previous computation we can prove that

Lλ(t) = (Sλ(t))
−1
Lλ(0)Sλ(t),

Lλ(0) (Sλ(t)Tλ(t)) =
d

dt
(Sλ(t)Tλ(t)) .

So

Sλ(t)Tλ(t) = etLλ(0), ∀t ∈ R.

The computation of etLλ(0) is basically not very much complicated than the kind of

computations done in the previous section (without the parameter λ). The key step
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is then to extract Sλ(t) from Sλ(t)Tλ(t). This step is now much harder: this is the

content of the following result.

Theorem 2(Iwasawa decomposition). — The mapping

LSU(2) × L+
BSL(2,C) −→ LSL(2,C)

(S, T ) 7−→ ST

is a diffeomorphism.

In fact this result, which is proved in [28], requires a choice of a topology on

LSL(2,C) stronger than L∞(S1). We may for instance use the Hs-topology for s >

1/2, induced by the norm ||ξ||Hs := (
∑

k∈Z
(1 + k2s)|ξ̂k|2)1/2, where ξλ =

∑
k∈Z

ξ̂kλ
k

is the Fourier decomposition of ξ. Once we have this result we know that, for any

time t, there exists a unique S(t) in LSU(2) and a unique T (t) in L+
BSL(2,C) such

that Sλ(t)Tλ(t) = etLλ(0), ∀λ ∈ S1. We deduce hence L(t) by using the relation

Lλ(t) = (Sλ(t))
−1
Lλ(0)Sλ(t). Note also that this method is more theoretical than

practical since unfortunately there is no way to write down explicitly the Iwasawa

decomposition. However one can recover the algebro-geometric solution obtained by

quadratures by working on the complex curve det(Lλ − µ12) = µ2 − 1
4 (λ−2 + λ2) −

1
2H(p, q) = 0, which encodes the constants of motion.

4. The Korteweg–de Vries equation

The most famous example of an infinite dimensional completely integrable system

is the Korteweg–de Vries (KdV) equation

(4.30)
∂u

∂t
+
∂3u

∂x3
+ 6u

∂u

∂x
= 0,

where
u : R2 −→ R

(x, t) 7−→ u(x, t).

4.1. The Lax formulation. — We first view this partial differential equation as

a mechanical problem in an infinite dimensional configuration space: we associate to

each time t ∈ R the function

u(·, t) : R −→ R

x 7−→ u(x, t)

and the two operators defined by

Lu(·,t) := − ∂2

∂x2
− u(·, t),

P3;u(·,t) := −4
∂3

∂x3
− 3

(
u(·, t) ∂

∂x
+

∂

∂x
u(·, t)

)
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



74 F. HÉLEIN

These operators act on C∞(Rx) by the rule: ∀ϕ ∈ C∞(Rx),

Lu(·,t)ϕ(x) = −ϕ′′(x) − u(x, t)ϕ(x)

P3;u(·,t)ϕ(x) = −4ϕ′′′(x) − 3 (u(x, t)ϕ′(x) + (u(x, t)ϕ(x))′) .

Then it turns out that u is a solution of (4.30) if and only if

(4.31)
dLu(·,t)

dt
= [P3;u(·,t), Lu(·,t)].

Historically it was for the KdV equation that such an equation was written(5) by Peter

Lax (see [12]).

Let us think on the operator Lu(·,t) as being formally diagonalizable, then the Lax

equation can be interpreted as the integrability condition of the following overdeter-

mined system: find λ ∈ C and ϕλ : R2 −→ R s.t.

(4.32)





∂ϕλ
∂t

= P3;u(·,t)ϕλ

Lu(·,t)ϕλ =
λ2

4
ϕλ.

Here an evolution equation is coupled with an eigenvalue equation. In other words we

look for trajectories t 7−→ [x 7−→ ϕλ(x, t)] in C∞(R) which are integral curves of the

time dependant vector field P3;u(·,t), but in such a way that at any time x 7−→ ϕλ(x, t)

is also an eigenvector of the operator Lu(·,t) for the eigenvalue λ2

4 . For that reason

the complex parameter λ is called the spectral parameter.

In the following we will restrict ourself to a class of functions u ∈ C∞(Rx) which

decay to 0 at ±∞. A consequence of that is that the equations (4.32) can be approx-

imated by




∂ϕ

∂t
+ 4

∂3ϕ

∂x3
= 0

∂2ϕ

∂x2
+
λ2

4
ϕ = 0.

in the neighborhood of ±∞. Hence in particular any solution ϕ is asymptotic to

αe
1
2i (λx+λ3t) + βe−

1
2i (λx+λ3t) when x → −∞. In the following we shall consider

the normalized solution ϕλ such that ϕλ is asymptotic to e
1
2i (λx+λ3t) when x→ −∞.

Then any solution of (4.32) will be a linear combination of ϕλ and ϕ−λ. This function

ϕλ is called the Baker–Akhiezer function. Note that similar theories were developped

for the study of periodic in space variable solutions to the KdV equation [24] or for

algebraic solutions with singularities [2].

(5)As pointed out to us by the Referee the first known apparition of a ‘Lax equation’ with a spectral

parameter λ is due to R. Garnier [15] in 1919.
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4.2. A formulation as a first order system. — In the following we want to

rewrite the system (4.32) with more symmetry between the space and time variables.

A first step is to write down it as a first order condition.

Lemma 3. — By posing

ψλ(x, t) :=

(
ϕλ(x, t)

∂ϕλ

∂x (x, t) + iλ2ϕλ(x, t)

)
,

the system (4.32) is equivalent to

(4.33)





∂ψλ
∂x

(x, t) = Uλ(x, t)ψλ(x, t) (spectral constraint)

∂ψλ
∂t

(x, t) = Vλ(x, t)ψλ(x, t) (evolution)

where, by denoting ux := ∂u
∂x , uxx := ∂2u

∂x2 , etc.

(4.34) Uλ(x, t) :=

(
−iλ2 1

−u iλ2

)
,

(4.35) Vλ(x, t) :=

(
ux + iλu− iλ

3

2 −2u+ λ2

(uxx + 2u2) + iλux − λ2u −ux − iλu+ iλ
3

2

)
.

Proof. — Assume that ϕλ is an arbitrary smooth function on R2 and pose

Dλ :=
∂

∂x
+ i

λ

2
, and ψλ =

(
ϕλ

Dλϕλ

)
.

We also define:

Tλ :=
∂ϕλ
∂t

− P3;uϕλ and Sλ := Luϕλ − λ2

4
ϕλ,

and remark that ϕλ is a solution of the system (4.32) if and only if Tλ = Sλ = 0. Thus

the equivalence between (4.32) and (4.33) lies on the following identities, obtained

through a lengthy but straightforward computation:

∂ψλ
∂x

= Uλψλ +

(
0

−Sλ

)
,

∂ψλ
∂t

= Vλψλ +

(
Tλ + 4∂Sλ

∂x

DλTλ − (λ2 − 2u)Sλ + 4Dλ
∂Sλ

∂x

)
.

As a consequence we can anticipate that a map u will be a solution of the KdV

equation if and only if there exist nontrivial solutions to the system (4.33) for suffi-

ciently enough different values of λ. This system is again overdetermined. We will

see in the next paragraph a necessary and sufficient condition on Uλ and Vλ in order

that (4.33) has nontrivial solutions.
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4.3. The zero curvature condition. — Here we address the following question:

given two C1 maps U, V : R2 −→ M(n,C) what are the necessary and sufficient

conditions on U and V in order that the system

(4.36)
∂g

∂x
= Ug,

∂g

∂t
= V g

have solutions g : R2 −→ GL(n,C)?

Let us start by a very special and simple case, when n = 1: then U and V are

just complex valued functions and we look for a map g : R2 −→ C∗ such that dg =

Ugdx+ V gdt. Since R2 is simply connected any map g : R2 −→ C∗ can be written

g(x, t) = ef(x,t), ∀(x, t) ∈ R2,

where f : R2 −→ C. Then the equation on g is

efdf = Uefdx+ V efdt ⇐⇒ df = Udx+ V dt.

By Poincaré lemma, and still because R2 is simply connected, such an equation has

a solution if and only if d(Udx+ V dt) = 0 or

∂U

∂t
− ∂V

∂x
= 0.

We shall see that a similar condition is necessary and sufficient for the general

case where n is arbitrary. Let us first look for a necessary condition. Assume that

g : R2 −→ GL(n,C) is a solution of (4.36). Then, by using two times (4.36),

0 =
∂

∂t

(
∂g

∂x

)
− ∂

∂x

(
∂g

∂t

)
=
∂(Ug)

∂t
− ∂(V g)

∂x

=
∂U

∂t
g + U

∂g

∂t
− ∂V

∂x
g − V

∂g

∂x

=

(
∂U

∂t
− ∂V

∂x

)
g + U(V g) − V (Ug)

=

(
∂U

∂t
− ∂V

∂x
+ [U, V ]

)
g.

Since g takes values in GL(n,C) this forces

(4.37)
∂U

∂t
− ∂V

∂x
+ [U, V ] = 0.

(Equation (4.37) is often called a zero curvature condition because the left hand side

can be interpreted as the curvature of the connection form −Udx−V dt.) The converse

is true as claims the following.

Lemma 4. — Let U, V ∈ C1(R2,M(n,C)). Then for any g0 ∈ GL(n,C), there exists

a unique map g ∈ C2(R2, GL(n,C)) such that
{

dg = Ug dx+ V g dt, on R2

g(0) = g0.

if and only if U and V satisfy (4.37).
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Proof. — It is a consequence of Frobenius’ theorem, see [18], Appendix 5.1.

Now we observe that if g is a solution of (4.36) any column vector of g is a nontrivial

solution of the system

(4.38)
∂ψ

∂x
= Uψ,

∂ψ

∂t
= V ψ,

where ψ ∈ C2(R2,Cn). Thus the preceding result can be formulated in a slightly

different way: the system (4.38) has n linearly independent solutions if and only if

relation (4.37) is satisfied.

4.4. Back to the KdV equation: the inverse scattering method. — As

suggested by the preceding considerations the following is true: a smooth function

u : R2 −→ R is a solution of the KdV equation (4.30) if and only if the maps Uλ and

Vλ defined respectively by (4.34) and (4.35) satisfy

(4.39)
∂Uλ
∂t

− ∂Vλ
∂x

+ [Uλ, Vλ] = 0, ∀λ ∈ C∗.

We are now going to describe the principle of a method for solving the KdV equation

which works assuming that u(x, t) and its derivatives tends to zero sufficiently quickly

when |x| → ∞. For simplicity we will assume a strongest hypothesis, namely that u

vanishes outside the strip SR := {(x, t) ∈ [−R,R] × R}. (This hypothesis is actually

not valid since, even if we assume that for the time t = 0 the spatial support of u is

contained in a compact interval then this will be non longer true for all other times in

general, because the KdV equation is dispersive.) Then it turns out that on R2 \ SR,

Left Right

x

− R R

t

Figure 2. The support of u
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Uλ and Vλ have very simple expressions:

Uλ(x, t) :=

(
−iλ2 1

0 iλ2

)
, ∀(x, t) ∈ R2 \ SR,

Vλ(x, t) :=

(
−iλ3

2 λ2

0 iλ
3

2

)
= λ2Uλ(x, t), ∀(x, t) ∈ R2 \ SR.

Hence it is possible to integrate the overdetermined system

(4.40)
∂ψλ
∂x

= Uλψλ,
∂ψλ
∂t

= Vλψλ,

explicitly on each connected component of R2 \ SR (the left and the right ones): for

any value of λ there exist (left) constants aLλ , bLλ and (right) constants aRλ , bRλ such

that

ψλ(x, t) =

(
1 −iλ
0 1

)(
aLλe

1
2i (λx+λ3t)

bLλe
− 1

2i (λx+λ3t)

)
, ∀(x, t) ∈ (−∞,−R] × R,

ψλ(x, t) =

(
1 −iλ
0 1

)(
aRλ e

1
2i (λx+λ3t)

bRλ e
− 1

2i (λx+λ3t)

)
, ∀(x, t) ∈ [R,∞) × R.

This shows that ψλ behaves in a very rigid way on each connected component of

R2 \ SR: the value of ψλ on each connected component is completely determined by

the value on a single point of it.

4.4.1. The inverse scattering method. — This leads us to the following method to

solve the KdV equation. Suppose that we know the value of u for t = 0. Then we can

relate in principle the value of ψλ on the point (x, t) = (R, 0) in terms of its values

on the point (x, t) = (−R, 0), for all values of λ. This is done by

(4.41) ψλ(R, 0) = G0
λ(R)ψλ(−R, 0),

whereG0
λ : [−R,R] −→ SL(2,C) is the unique solution ofG0

λ(−R) = 12 and
dG0

λ

dx (x) =

Uλ(x, 0)G0
λ(x). Observe that Relation (4.41) holds because χλ(x) := G0

λ(x)ψλ(−R, 0)

satisfies the same equation dχλ

dx = Uλχλ on [−R,R] and has the same initial condition

χλ(−R) = ψλ(−R) as the restriction of ψλ on [−R,R] × {0}. Moreover G0
λ takes

values in SL(2,C) because the matrices Uλ(x, t) and Vλ(x, t) take values in sl(2,C).

Hence using the scattering matrix G0
λ(R) we can relate the left data (aLλ , b

L
λ) to the

right data (aRλ , b
R
λ ) by a linear relation(6).Dans la note : y?

Since on the other hand ψλ is completely rigid on the left and the right connected

components, knowing G0
λ(R) it is very simple to deduce the analogue Gtλ(R) of G0

λ(R)

for an arbitrary value of t. Thus if we are able to deduce the restriction of u on

[−R,R]×{t} from the knowledge ofGtλ(R) we can in principle solve the KdV equation.

(6)y the normalization on ϕλ introduced previously we can assume without loss of generality that

(aL
λ

, bL
λ
) = (1, 0).
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This last task, known as the inverse scattering problem is quite delicate but can be

done (see for instance [12] for details).

Left Right

x

− R R

t

t

Figure 3. The inverse scattering method: the scattering of u|[−R,R]×{0} is

encoded by G0
λ
(R) and the scattering of u|[−R,R]×{t} is encoded by Gt

λ
(R).

To conclude this paragraph let us stress out again the fact that the proof that

we briefly expounded was not correct, because we assumed that the support of u is

contained in a strip bounded. The realistic situation is when u decreases to 0 when

|x| tends to ∞. Then ψλ does not have the rigid behavior that we did exploit here

outside a strip but asymptotically, when x tends to ±∞, and the parameters aLλ , bLλ ,

aRλ and bRλ encode the asymptotic behavior of ψλ.

4.5. An alternative point of view on the inverse scattering method. — Let

us come back to the first formulation of the KdV equation, based on the overdeter-

mined system (4.32). In the following we consider a solution u to the KdV equation

which decays to 0 when x→ −∞. Then one can show (under reasonable assumptions

on u) that for any λ ∈ C there exists a unique Baker–Akhiezer function ϕλ (i.e., a

solution of (4.32) asymptotic to e
1
2i (λx+λ3t) when x→ −∞).

4.5.1. A formal development of ϕλ. — We start by trying to write the Baker–

Akhiezer function as the product of its (left) asymptotic value e
1
2i (λx+λ3t) by an

asymptotic expansion in powers of λ−1:

(4.42) ϕλ(x, t) = e
1
2i (λx+λ3t)

∞∑

k=0

ak(x, t)

(
2i

λ

)k
.

A straightforward computation gives, denoting by D = ∂
∂x :

Luϕλ − λ2

4
ϕλ = e

1
2i (λx+λ3t)

(
iλDa0 +

∞∑

k=0

(Luak − 2Dak+1)

(
2i

λ

)k)
.
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Hence this ansatz will give us a formal solution to our question if and only if Da0 = 0

and Luak = 2Dak+1, ∀k ∈ N. Because of the asymptotic condition at −∞ it is natural

to choose a0 = 1 and then to construct all ak recursively: each ak+1 is a primitive of
1
2Luak. In order to ensure the asymptotic condition it is also natural to assume that

for all k ≥ 1, ak tends to 0 at −∞. Thus we see that, if it exists (a condition that we

will assume in the following), a solution to (4.32) of the form (4.42) and asymptotic

to e
1
2i (λx+λ3t) at −∞ is unique.

4.5.2. The construction of the Grassmannian of Sato. — We now look at the family

of maps (ϕλ)λ∈C∗ as a single map from R2 with values in the loop space L2(S1,C) by

restricting λ to S1 (like before, for the sinh–Gordon equation). Then intuitively the

idea will consist in considering the Frenet framing of the curve [x 7−→ (ϕλ(x, t))λ] in

the infinite dimensional space L2(S1,C). Imagine that we fix some point (x, t) ∈ R2

and consider the (a priori) infinite dimensional subspace

W (x, t) := SpanC

(
ϕλ(x, t), Dϕλ(x, t), D

2ϕλ(x, t), · · · , Dkϕλ(x, t), · · ·
)
.

It turns out that there is a simple way to construct this space, based on the observation

that:

D2ϕλ(x, t) =

(
−λ

2

4
− u(x, t)

)
ϕλ(x, t).

Hence one can show by recursion that ∀k ∈ N,

Dkϕλ(x, t) = Ak(x, t)(λ
2)ϕλ(x, t) +Bk(x, t)(λ

2)Dϕλ(x, t),

where Ak and Bk are polynomials whose coefficients are functions of (x, t) (of degree

[k2 ] and [k−1
2 ] respectively). These coefficients can be computed in principle: they are

complicated algebraic functions of u,Du,D2u, · · · . But the precise expression of Ak
and Bk has no importance for us. What is relevant is that we can propose a more

tractable definition of W :

W (x, t) := {α(λ2)ϕλ(x, t) + β(λ2)Dϕλ(x, t)|α, β ∈ L2
+(S1,C)},

where L2
+(S1,C) ⊂ L2(S1,C) is the subspace of loops which have a holomorphic exten-

sion inside the unit disk in C (or in other words which has the expansion
∑∞

k=0 α̂kλ
k).

Now it is simple to see that W (x, t) does not depend on x: if we derivate any map

x 7−→ ξλ(x) ∈ L2(S1,C) which satisfies ξλ(x) ∈ W (x, t) for all x (for the moment we

still fix t), then one sees immediately that dξλ

dx ∈ W (x, t). But actually the same is

also true when we derivate with respect to t. This follows from the extra condition
∂ϕλ

∂t = P3;uϕλ, since P3;u is a differential operator in x. So W is independent of (x, t).

Note also that W is stable by the map f(λ) 7−→ λ2f(λ) from L2(S1,C) to itself. We

write λ2W ⊂W for this property.
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We need now to define the setGr of all subspaces of L2(S1,C) which are comparable

in some sense with the subspace

H+ := L2
+(S1,C) =

{
ξ ∈ L2(S1,C)|ξλ =

∞∑

k=0

ξ̂kλ
k

}
.

For that purpose let us also define

H− :=

{
ξ ∈ L2(S1,C)|ξλ =

−1∑

k=−∞

ξ̂kλ
k

}
,

so that L2(S1,C) = H+ ⊕ H−. We can therefore define the projections π+ and

π− on the first and the second factor of this splitting respectively. Then the

Grassmannian manifold Gr is the set of subspaces W ⊂ L2(S1,C) such that

π+|W : W −→ H+ is a Fredholm operator (i.e., has finite dimensional kernel and

cokernel) and π−|W : W −→ H− is a compact operator. We will denote also by Gr(2)

the subset of Gr of subspaces W which satisfies λ2W ⊂W .

4.5.3. Linearizing the KdV equation. — Inspired by the work of M. Sato, G. Segal

and G. Wilson have constructed an elegant way to picture a solution u to the KdV

equation under the extra hypothesis that e−
1
2i (λx+λ3t)W ∈ Gr(2), ∀(x, t), where W is

‘spanned’ by ϕλ and Dϕλ. In the following we denote

`λ(x, t) :=
1

2i
(λx + λ3t),

and

wλ(x, t) :=
∞∑

k=1

ak(x, t)

(
2i

λ

)k
,

so that ϕλ(x, t) = e`λ(x,t) (1 + wλ(x, t)). We assume further that

– ∀(x, t), e−`λ(x,t)W ∩H− = {0}
– the index of the restriction of π+ to e−`λ(x,t)W is 0.

The main consequence of these two hypotheses is that the restriction of π+ to

e−`λ(x,t)W is an isomorphism to H+.

Two elementary but crucial observations are that for any (x, t) ∈ R2 we have

– e−`λ(x,t)ϕλ(x, t) ∈ e−`λ(x,t)W

– e−`λ(x,t)ϕλ(x, t) = 1 + wλ(x, t).

Since [λ 7−→ wλ(x, t)] ∈ H− the second property implies in particular that

e−`λ(x,t)ϕλ(x, t) ∈ 1 +H−,

where 1 ∈ H+ is the constant loop and 1+H− := {1+fλ|f ∈ H−}. In a more geomet-

rical language we can say that e−`λ(x,t)ϕλ(x, t) lies at the intersection of e−`λ(x,t)W

and 1 +H−. But because of our hypotheses this intersection is reduced to a point:

the unique one in e−`λ(x,t)W which is the inverse image of 1 by π+.
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H+

H−

H++ +

H−

1

W W

e W
(x,t)λl−

w λ (x,t)

w λw λ (0, 0)(0, 0)

1

Figure 4. How the KdV flow arises from the action of a linear flow on the Grassmannian.

This leads us to a geometrical construction of solutions to the KdV equation.

We start with some ’initial condition’ u0 ∈ C∞(Rx) which decays at infinity and

we associate to u0 the subspace W . We assume that u0 is so that W satisfies the

preceding hypotheses. Then for any (x, t) ∈ R2 we consider the unique point in

e−`λ(x,t)W ∩ (1 + H−): it has the form 1 + wλ(x, t). The expansion of wλ(x, t)

in powers of λ−1 gives us the coefficients ak(x, t). Lastly because of the recursion

relations between the ak’s we have 2Da1 = −Lua0 = u. So u is obtained by

u(x, t) = 2
∂a1

∂x
(x, t).

4.6. Working with operators. — We now want to exploit the Lax equation in

a way similar to the method expounded for finite dimensional integrable systems in

section 2. Here a preliminary clarification will be useful: the variable x seems to play

two different roles in the Lax formulation of the KdV equation. On the one hand x is a

(spatial) dynamical variable and on the other hand x is used to construct the function

space on which act Lu and Pu or the subspace W in the Sato Grassmannian. In order

to remove this ambiguity we shall give two different names to this variable: t1 for the

dynamical variable and (still) x for the dumb variable used for the representation of

the operators. We shall also denote t3 := t (we will see the reasons for these notations

later on). We introduce the operator

P1 :=
∂

∂x

acting on C∞(Rx). We will work with maps

R × R −→ C∞(Rx)

(t1, t3) 7−→ v(t1, t3),

and we denote

v(t1, t3;x) = v(t1, t3)(x).
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We are interested in maps which are solutions of

(4.43)





∂Lv(t1,t3)

∂t1
=

[
P1, Lv(t1,t3)

]

∂Lv(t1,t3)

∂t3
=

[
P3;v(t1,t3), Lv(t1,t3)

]
.

The first equation is just

−∂v(t1, t3)
∂t1

' ∂Lv(t1,t3)

∂t1
= −P1v(t1, t3)

and implies that v(t1, t3;x) = u(x+ t1, t3) for some function u. This is the reason for

the identification of t1 with x. The second equation is then again the familiar Lax

formulation of the KdV equation on u: ∂u
∂t3

+ ∂3u
∂x3 + 6u∂u∂x = 0.

A straightforward generalization of the ideas encountered in section 2 is to look for

a map (t1, t3) 7−→ Kv(t1,t3) into the space of invertible operators acting on C∞(Rx)

such that

(4.44) Lv(t1,t3) = Kv(t1,t3)Lu0K
−1
v(t1,t3)

,

where u0 could be the value of v for a particular value of (t1, t3). This is the analogue

for operators of equation (2.10). Note that it is actually more suitable to choose u0

to be the asymptotic value of v when t1 → ±∞, i.e., u0 = 0. So we will just let

Lu0 = L0 := − ∂2

∂x2 . Now let us analyze equation (4.44): it implies (denoting a = 1 or

3, Lv = Lv(t1,t3) and Kv = Kv(t1,t3)) that

∂Lv
∂ta

=
∂Kv

∂ta
L0K

−1
v −KvL0K

−1
v

∂Kv

∂ta
K−1
v =

[
∂Kv

∂ta
K−1
v , Lv

]
.

So because of the equation ∂Lv

∂ta
= [Pa;v, L] (where Pa;v = Pa;v(t1,t3)) we should have[

∂Kv

∂ta
K−1
v − Pa;v, Lv

]
= 0. By multiplying by K−1

v on the left and by Kv on the right

this equation we get

(4.45)

[
K−1
v

∂Kv

∂ta
−K−1

v Pa;vKv, L0

]
= 0.

At first glance the simplest choice would be to assume that ∂Kv

∂ta
= Pa;vKv. But there

are other possibilities since L0 commutes with all differential operators in the variable

x with constant coefficients. And it will be more suitable in the following to look at

Kv such that

K−1
v

∂Kv

∂ta
−K−1

v Pa;vKv = −Pa;0,

(where here P1;0 = ∂
∂x and P3;0 = −4 ∂3

∂x3 ) which is equivalent to

(4.46)
∂Kv

∂ta
= Pa;vKv −KvPa;0.

Indeed in the inverse scattering method one is interested in Baker–Akhiezer func-

tions which are in our new setting (t1, t3)-dependant eigenvectors ϕλ of Lv(t1,t3) for
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the eigenvalue λ2

4 , which satisfy ∂ϕλ

∂ta
= Pa;v(t1,t3)ϕλ and with the normalization

ϕλ(x) ' e`λ(x+t1,t3) when x → −∞. We use again the notation `λ(x + t1, t3) :=
1
2i(λ(x+ t1) + λ3t3). It is natural to try to construct the Baker–Akhiezer function of

the form

(4.47) ϕλ(t1, t3;x) = K(t1, t3)e
`λ(x+t1,t3),

where K(t1, t3) is an operator which preserves the asymptotic condition. Since
∂
∂ta

e`λ = Pa;0e
`λ , a substitution of the above expression for ϕλ in ∂ϕλ

∂ta
= Pa;vϕλ gives

us

∂K

∂ta
e`λ +KPa;0e

`λ = Pa;vKe
`λ ⇐⇒

(
∂K

∂ta
+KPa;0 − Pa;vK

)
e`λ = 0.

So we are led to the relation (4.46). To summarize: if we assume that v is a solution

of (4.43), if Kv satisfies (4.44) for some value of (t1, t3), say (0, 0), and if if Kv is a

solution of (4.46) then Kv is a solution of (4.44) for all values of (t1, t3) (because one

can compute that (4.46) implies
∂(K−1

v LvKv)
∂ta

=
[
Pa;0,K

−1
v LvKv

]
; hence the identity

K−1
v LvKv = L0, obviously true for (t1, t3) = (0, 0), is actually true ∀(t1, t3)).

4.7. The KdV hierarchy. — In the following we shall be very formal and ignore

all analytical subtleties. We construct an operator Kv(t1,t3) which satisfies (4.44) as

a pseudo-differential operator with the asymptotic expansion

(4.48) Kv(t1,t3) =
∞∑

k=0

ak(t1, t3)D
−k,

where the coefficients ak(t1, t3) are functions of x, D = ∂
∂x and we adopt the conven-

tion D0 = Id. For details see [29]. Observing that Lv = −D2 − v and L0 = −D2,

a substitution of the above expression of Kv in equation (4.44) gives us (−D2 −
v)(Kvϕ) = Kv(−D2ϕ), ∀ϕ, which is equivalent to

2Da0Dϕ+

∞∑

k=0

(2Dak+1 − Lvak)D
−kϕ = 0, ∀ϕ.

Hence we find that Da0 := 0 (we choose a0 = 1) and 2Dak+1 = Lvak, ∀k ≥ 0, so the

coefficients ak satisfy exactly the same conditions as the coefficients of the expansion

of the Baker-Akhiezer function and hence are the same. Thus

(4.49) Kv(t1,t3)e
`λ(x+t1,t3) = e`λ(x+t1,t3)

(
1 +

∞∑

k=1

ak(x+ t1, t3)

(
2i

λ

)k)

and we recover the same expression for the Baker–Akhiezer function.
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The fact that the expression (4.48) is a solution of (4.46) has other interesting

consequences. Indeed we can rewrite (4.46) as

(4.50)

KvPa;0K
−1
v = Pa;v − ∂Kv

∂ta
K−1
v

i.e.,

a∑

k=−∞

( · )Dk =

a∑

k=0

( · )Dk −
−1∑

k=−∞

( · )Dk.

In the second line we have stressed out the powers of D used in the expansion of

each pseudo-differential operator. It is clear that this relation coincides with the

splitting T = T+ + T− of a pseudo-differential operator T =
∑a
k=−∞ TkD

k into the

sum of a differential operator T+ =
∑a

k=0 TkD
k and of a pseudo-differential operator

of negative order T− =
∑−1
k=−∞ TkD

k. Hence we can write

Pa;v =
(
KvPa;0K

−1
v

)
+
.

This relation was discovered by L. A. Dikki and I. M. Gel’fand [9]. It suggests us

that P1;v and P3;v are actually two members of a whole family of differential operators.

For any a ∈ N we set

Pa;0 := (2i)a−1Da and Pa;v :=
(
KvPa;0K

−1
v

)
+
.

We remark that for a even, i.e., a = 2p, we have

P2p;v =
(
KvP2p;0K

−1
v

)
+

= (2i)2p−1
(
Kv

(
D2
)p
K−1
v

)
+

= (2i)2p−1
((

−KvL0K
−1
v

)p)
+

= (−1)p(2i)2p−1 (Lpv)+ = −22p−1iLpv,

where we have used the relation (4.44) in the fourth line. In particular P2;v = −2iLv.

Moreover if we set:

Q := KvDK
−1
v = KvP1;0K

−1
v ,

then −Q2 = −KvD
2K−1

v = KvL0K
−1
v = Lv, i.e., Q is a square root of −Lv. And

more generally Pa;v = (2i)a−1 (Qa)+. So we can associate an infinite countable family

of differential equations (called the KdV hierarchy) to the KdV equation: we let v to

be a function of an infinite number of variables t1, t2, t3, t4, · · · , with values in C∞(Rx)

and we write the system

(4.51)
∂Lv
∂ta

= [Pa;v, Lv] , ∀a ∈ N.

Note that all equations with respect to even variables t2p are trivial since [P2p;v, Lv] =

−22p−1i [Lpv, Lv] = 0. This is the reason why we do not write down the t2p vari-

ables. One can show that it is possible to integrate all these equations simultaneously,

i.e., that all these flows commute (see for instance [36]). The beautiful thing is that

all the previous constructions can be extended to these flows (although the concrete
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expression of the operators Pa for large a’s can be very complicated). In particular

the Baker–Akhiezer function can be expanded as

ϕλ(t1, t3, t5, · · · ) = e`λ(t1,t3,t5,··· )

(
1 +

∞∑

k=0

ak(t1, t3, t5, · · · )
(

2i

λ

)k)
,

where

`λ(t1, t3, t5, · · · ) =
1

2i

(
λt1 + λ3t3 + λ5t5 + · · ·

)
.

And the flow can be pictured geometrically through the action of the operator of

multiplication by e−`λ(t1,t3,t5,··· ) on an element W of the Grassmannian Gr(2).

Lastly we can remark that each equation of the system (4.51), which can also be

written as ∂Lv

∂ta
= (2i)a−1

[(
(−Lv)a/2

)
+
, Lv

]
, can be understood by using the Adler–

Kostant–Symes theory. Here the Lie algebra of pseudo-differential operators is splitted

as a sum of two Lie subalgebras according to the decomposition (4.50).

4.8. The τ-function. — An alternative method to construct the Baker–Akhiezer

function out of the action of the operator of multiplication by e−`λ on the Grassman-

nian has been developed by Sato. It is based on the so-called τ -function. To explain

this object imagine first that we are looking at a finite dimensional complex vector

space E with the splitting E = E+ ⊕ E−, where dimE+ = p and dimE− = q. We

denote by Gr the Grassmannian manifold of p-dimensional subspaces W of E and

Gr∗ := {W ∈ Gr|W ∩H− = {0} }
the open dense subset of Gr of p-dimensional subspaces which are transverse to H−.

Then if we denote by π+ : E −→ E+ the projection parallel to E−, for any W ∈ Gr∗,

the restriction of π+ to W , (π+)|W : W −→ H+, is an isomorphism. Let G be the

subgroup of GL(E) which preserves H+, i.e.,

G := {g ∈ GL(E)| gH+ ⊂ H+}.
Now if we fix someW ∈ Gr∗, we define GW := {g ∈ G| g−1W ∈ Gr∗}. The τ -function

associated to W is a map

τW : GW −→ C,

defined as follows. Let (e+1 , · · · , e+p ) and (e−1 , · · · , e−q ) be bases of respectively E+ and

E−. Let (α1
+, · · · , αp+, α1

−, · · · , αq−) be the dual basis to (e+1 , · · · , e+p , e−1 , · · · , e−q ) and

α+ := α1
+ ∧ · · · ∧ αp+. Lastly let (u1, · · · , up) be a basis of W . Then

∀g ∈ GW , τW (g) :=
α+(g−1u1, · · · , g−1up)

α+(g−1(π+u1), · · · , g−1(π+up))
.

It is clear that this expression is independent from the choice of the basis of W . For

instance if p = 2 and q = 1, one could imagine that E+ represents the surface of

the (approximatively flat) earth, E− represents the vertical direction. The sun is at

the vertical and we imagine a piece of surface C contained in W : its shadows is just

π+(C). When we let g−1 act on the space E the body is moved and its shadow also.
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The value of τW at g is then the ratio between the area of the shadow of g−1(C) by

the area of the image by g−1 of the shadow of C, i.e., areaπ+(g−1(C))
areag−1(π+(C)) .

e

Ae +

g   Ae +

+

−1

g   e+−1

− −

+
+E

EE

E

Figure 5. A picture of the τ -function

The τ -function has the following property which will be useful later.

Proposition 2. — We have the relation

(4.52) ∀g ∈ GW , ∀γ ∈ Gg−1W , τg−1W (γ) =
τW (gγ)

τW (g)
.

Proof. — Let (u1, . . . up) be a basis of W . Then (g−1u1, · · · , g−1up) is a basis of

g−1W , hence

τg−1W (γ) =
α+(γ−1g−1u1, · · · , γ−1g−1up)

α+(γ−1π+g−1u1, · · · , γ−1π+g−1up)
= AB,

where

A :=
α+((gγ)−1u1, · · · , (gγ)−1up)

α+((gγ)−1π+u1, · · · , (gγ)−1π+up)
= τW (gγ),

and

B :=
α+(γ−1g−1π+u1, · · · , γ−1g−1π+up)

α+(γ−1π+g−1u1, · · · , γ−1π+g−1up)
.

In the expression for B we can simplify by det
(
(γ−1)|E+

)
in the numerator and the

denominator to get

B =
α+(g−1π+u1, · · · , g−1π+up)

α+(π+g−1u1, · · · , π+g−1up)
=
α+(g−1π+u1, · · · , g−1π+up)

α+(g−1u1, · · · , g−1up)
=

1

τW (g)
,

where we have used the fact that (π+)∗α+ = α+. Hence the result follows.

It will be useful to give an algebraic expression of that by using the matrix
(
a b

0 d

)

of g−1 in the basis (e+1 , · · · , e+p , e−1 , · · · , e−q ). Here the 0 is due to the fact that

g−1H+ = H+ and, by using an identification between operators and matrices we
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have a ∈ GL(E+), b ∈ L(E−, E+) and d ∈ GL(E−). We also describe W as the

graph of some linear map A : H+ −→ H−. Then we can choose uj = e+j + Ae+j ,

∀j = 1, · · · , p and compute

τW (g) =

det
(

1p 0
)( a b

0 d

)(
1p
A

)

det
(

1p 0
)( a b

0 d

)(
1p
0

) =
det(a+ bA)

det a
= det(1p + a−1bA).

Let us now go to the infinite dimensional case and replace E = E+ ⊕ E− by H =

H+ ⊕ H−, where H = L2(S1,C). Our discussion will be mainly formal, our scope

being to give an intuitive idea of the theory. In particular we will not study the

conditions in order to guarantee that all the determinants written here make sense,

we just point out that the determinant of an operator T exists if and only if T − Id

is of trace class and we refer to [29] for details. We will be particularly concerned

with the group of linear maps obtained by multiplication by a nonvanishing function

in H+ (with the standard product law on the set of functions on S1). We define

G := {f ∈ L2(S1,C)| [λ 7−→ fλ] has a holomorphic extension inside D(0, 1),

∀λ ∈ D(0, 1) fλ 6= 0 and f0 = 1} ⊂ H+.

This set has a structure of Abelian group for the multiplication of functions.

It also occurs naturally in the KdV hierarchy since the map (t1, t2, t3, · · · ) 7−→
e

1
2i (t1λ+t2λ

2+t3λ
3+··· ) is a parametrization of G.

To each element g ∈ G we associate the linear operator

[g] : H −→ H

ϕ 7−→ [g]ϕ,

where

∀λ ∈ S1 ⊂ C∗, ([g]ϕ)λ := gλϕλ.

Note that we need in principle to assume further regularity conditions in the definition

of G, for instance in order that the operator [g] be continuous(7) on H . We denote

[G] := {[g]| g ∈ G}. Observe that, as for the finite dimensional case, ∀[g] ∈ [G],

[g]H+ ⊂ H+.

We can give a matrix representation of operators in [G] by introducing

en = [λ 7−→ λn] ∈ H,

the vectors which compose the Hilbertian basis of H given by the Fourier transform.

Then any map g ∈ G can be decomposed as g =
∑∞
n=0 ĝnen (which is equivalent to

(7)The assumption that g ∈ L∞(S1, C) is necessary and sufficient to guarantee the continuity of [g].

But one need to assume actually stronger hypotheses, like for instance g ∈ Hs(S1, C), for s > 1
2

in

order that the properties that π+ : H −→ H+ is Fredholm and π− : H −→ H− is Hilbert–Schmidt

be preserved by the action of [g], see [28].
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gλ =
∑∞
n=0 ĝnλ

n), where ĝn = g0 = 1. And the matrix of [g] in the basis (en)n∈Z
has

the form

[g] =




. . .
. . .

. . .
. . .

. . . 1 ĝ1 ĝ2 ĝ3

. . . 0 1 ĝ1 ĝ2
. . .

. . . 0 0 1 ĝ1
. . .

0 0 0 1
. . .

. . .
. . .

. . .
. . .




,

where the block decomposition has the meaning
(

H+
→H+ H−

→H+

H+
→H− H−

→H−

)
. Now we define

the τ -function as follows: for any W ∈ Gr, let A : H+ −→ H− be the unique operator

such that W is the graph of A, i.e., W = {(v,Av)| v ∈ H+}. Let [G]W := {[g] ∈
[G]| (π+)|[g−1]W : [g−1]W −→ H+ is an isomorphism}. Then ∀[g] ∈ [G]W

τW ([g]) := det(IdH+ + a−1bA), where [g−1] =

(
a b

0 d

)
.

4.8.1. The relation with the Baker–Akhiezer function. — We introduce an extra com-

plex parameter ζ ∈ C such that |ζ| > 1 and define for each value of ζ the map

q(ζ) : C −→ C

λ 7−→ 1 − λ
ζ .

We observe that, because of the condition |ζ| > 1, q(ζ) ∈ G.

Lemma 5. — Assume that W ∩ (e0 +H−) is reduced to one point, that we denote by

ψ = e0 +
∑∞

k=1 ak(2i)
ke−k (so that ψλ = 1 +

∑∞
k=1 ak

(
2i
λ

)k
). Then ∀ζ ∈ C such that

|ζ| > 1,

τW

([
q(ζ)
])

= 1 +
∞∑

k=1

ak

(
2i

ζ

)k
= ψζ .

Proof. — We need to compute τW
([
q(ζ)
])

= det(IdH+ + a−1bA), where
(
a b

0 d

)
=
[
q(ζ)
]−1

=

[(
q(ζ)
)−1

]
,

and W is the graph of A : H+ −→ H−. Observe that e0 + Ae0 is precisely the

intersection point of W with e0 + H−. Hence if we write Aen =
∑∞

k=1A
−k
n e−k,

∀n ∈ N or:

A =




· · · A−1
2 A−1

1 A−1
0

· · · A−2
2 A−2

1 A−2
0

...
...

...




then A−k
0 = (2i)kak, ∀k ∈ N∗.
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Computation of
[
q(ζ)
]−1

. — ∀ψ ∈ H ,
[
q(ζ)
]−1

ψ = ψ
q(ζ) or:

([
q(ζ)
]−1

ψ

)

λ

=
ψλ

q
(ζ)
λ

= ψλ

∞∑

k=0

λkζ−k.

In particular, ∀n ∈ Z,

([
q(ζ)
]−1

en

)

λ

= λn
∞∑

k=0

λkζ−k =

∞∑

k=n

λkζn−k =

(
∞∑

k=n

ζn−kek

)

λ

.

As a matrix,

[
q(ζ)
]−1

=




. . .
. . .

. . .
. . .

. . . 1 ζ−1 ζ−2 ζ−3

. . . 0 1 ζ−1 ζ−2 . . .

. . . 0 0 1 ζ−1 . . .

0 0 0 1
. . .

. . .
. . .

. . .
. . .




=

(
a b

0 d

)
.

Computation of b. — Its matrix is given by the preceding expression. Alternatively

it is possible to compute it as follows: ∀n ∈ Z, such that n ≤ −1,

(ben)λ =

(
∞∑

k=n

λkζn−k

)

+

=

∞∑

k=0

λkζn−k = ζn
∞∑

k=0

λkζ−k =
ζn

q
(ζ)
λ

.

This implies by linearity that ∀ψ ∈ H−,

(bψ)λ =
ψζ

q
(ζ)
λ

= evζ(ψ)
1

q
(ζ)
λ

,

where

evζ : H −→ C

ψ 7−→ ψζ

is the evaluation map at λ = ζ. Hence bψ = evζ(ψ) 1
q(ζ) . It means that b is a rank

one operator, whose image is the line C 1
q(ζ) . This can also be pictured by the matrix

product

b =




...

ζ−2

ζ−1

1



(
ζ−1 ζ−2 ζ−3 · · ·

)
.
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Computation of a−1. — Since q(ζ) ∈ H+, we have that ∀ψ ∈ H+,

aψ =

(
ψ

q(ζ)

)

+

=
ψ

q(ζ)
.

Hence a coincides with the restriction of
[
q(ζ)
]−1

on H+, so a−1 is just the restriction

of
[
q(ζ)
]

on H+, i.e., ∀ψ ∈ H+,

(
a−1ψ

)
λ

= q
(ζ)
λ ψλ =

(
1 − λ

ζ

)
ψλ.

Hence as a matrix

a−1 =




. . .
. . .

...
. . . 1 −ζ−1 0

0 1 −ζ−1

· · · 0 0 1



.

Computation of a−1b. — ∀ψ ∈ H−,

(
a−1bψ

)
λ

= q
(ζ)
λ

(
ψζ

q
(ζ)
λ

)
= ψζ = evζ(ψ).

Hence a−1b = e0 ⊗ evζ . As a matrix

a−1b =




. . .
. . .

...
. . . 1 −ζ−1 0

0 1 −ζ−1

· · · 0 0 1







...

ζ−2

ζ−1

1



(
ζ−1 ζ−2 ζ−3 · · ·

)

=




...

0

0

1



(
ζ−1 ζ−2 ζ−3 · · ·

)
=




...
...

...

0 0 0

0 0 0

ζ−1 ζ−2 ζ−3 · · ·



.

Conclusion. — We now have

a−1bA =




...
...

...

0 0 0 · · ·
0 0 0 · · ·
ζ−1 ζ−2 ζ−3 · · ·







· · · A−1
2 A−1

1 A−1
0

· · · A−2
2 A−2

1 A−2
0

...
...

...




=




...
...

...

· · · 0 0 0

· · · 0 0 0

· · ·
∑∞
k=1 A

−k
2 ζ−k

∑∞
k=1 A

−k
1 ζ−k

∑∞
k=1 A

−k
0 ζ−k



.
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Hence

τW

(
q(ζ)
)

= det(IdH+ + a−1bA) = 1 +
∞∑

k=1

A−k
0 ζ−k = 1 +

∞∑

k=1

ak

(
2i

ζ

)k
,

and the result follows.

Corollary 1. — Let ϕλ be the Baker–Akhiezer function, then

ϕζ(t) = e`ζ(t) τW
([
e`(t)

] [
q(ζ)
])

τW
([
e`(t)

]) ,

where t = (t1, t2, t3, · · · ) and e`(t) : λ 7−→ e`λ(t).

Proof. — We use the Proposition 2: the right hand side is equal to e`ζ(t)τ[e−`(t)]W
([
q(ζ)
])

,

which is equal to ϕζ(t) by the previous Lemma.

The preceding relation can be further transformed, since we have
[
e`(t)

] [
q(ζ)
]

=[
e`(t)q(ζ)

]
, with

q
(ζ)
λ = elog(1−

λ
ζ ) = e

“

−
P

∞

k=1
λk

kζk

”

,

which implies (
e`(t)q(ζ)

)
λ

= e

“

1
2i

P

∞

k=1

“

tk−
2i

kζk

”

λk
”

.

So by introducing the notation τW (t) := τW
([
e`(t)

])
, we can write

e−`ζ(t)ϕζ(t) =
τW

(
t1 − 2i

ζ , t2 − 2i
2ζ2 , t3 − 2i

3ζ3 , · · ·
)

τW (t1, t2, t3, · · · )
.

By expanding the left and the right hand sides in powers of 2i
ζ we obtain

1 +

∞∑

k=1

ak(t)

(
2i

ζ

)k
= 1 − 1

τW (t)

∂τW (t)

∂t1

(
2i

ζ

)
+ O

((
2i

ζ

)2
)
,

so that we have the following expression of the solution of the KdV equation:

u =
∂a1

∂x
= −∂

2 log τW
∂x2

.

For more developments on the τ -function see for instance [29] and [23].

5. Constant mean curvature surfaces and minimal surfaces

A completely different problem concerns the study of immersed surfaces in Eu-

clidean three-dimensional space. We know since Monge that at the infinitesimal scale

the shape of such a surface near any point is characterized by two principal curvature

numbers k1 ≤ k2. The product K = k1k2 is called the Gauss curvature and the quan-

tity H = (k1 + k2)/2 is the mean curvature. The surfaces which have an everywhere

vanishing constant mean curvature are the critical points of the area functional and

are called minimal surfaces. It is one of the oldest variational problem in several
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FOUR LAMBDA STORIES 93

variables (the first results are due to Euler and Meusnier, a student of Monge). The

surfaces which have a non-vanishing constant mean curvature are just called constant

mean curvature surfaces: we shall abreviate them by CMC surfaces. We shall study

these surfaces locally and view them as immersions of an open domain Ω of R2 in R3.

A result that we will use from the beginning is that any simply connected smoothly

immersed surface Σ can be parametrized by a conformal map

X : Ω −→ R3

(x, y) 7−→ X(x, y).

The conformality assumption means here that dX is of rank 2 and that
∣∣∂X
∂x

∣∣2 −∣∣∣∂X∂y
∣∣∣
2

= 2
〈
∂X
∂x ,

∂X
∂y

〉
= 0 everywhere. This can be expressed by the fact that the first

fundamental form of X

I :=




∣∣∂X
∂x

∣∣2
〈
∂X
∂x ,

∂X
∂y

〉

〈
∂X
∂x ,

∂X
∂y

〉 ∣∣∣∂X∂y
∣∣∣
2




satisfies everywhere

(5.53) I =

(
e2ω 0

0 e2ω

)
,

where ω : Ω −→ R is some function. Then for any (x, y) ∈ Ω the mean curvature at

X(x, y) is the unique real number H such that

(5.54) ∆X = 2H
∂X

∂x
× ∂X

∂y
,

where ∆ := ∂2

∂x2 + ∂2

∂y2 and × denotes the vector product in R3.

5.1. Minimal surfaces. — We see immediately that the case H = 0 is much

simpler, since X is then a harmonic map with values in R3. As a consequence it is

possible to solve locally the system (5.53) and (5.54) by some elementary complex

analysis: we set

f :=
∂X

∂z
=

1

2

(
∂X

∂x
− i

∂X

∂y

)
.

It defines a map f : Ω −→ C3. Then the conformality assumption (5.53) means

that f 6= 0 and f satisfies the constraint (f)2 := (f1)2 + (f2)2 + (f3)2 = 0, or in

a more geometrical language that f takes values into the pointed complex quadric

Q∗ := {Z ∈ C3 \ {0}|(Z)2 = 0}. And the Laplace equation (5.54) just means that f

is holomorphic: ∂f
∂z = 1

4∆X = 0. Hence f is a holomorphic curve into Q∗ and can be

constructed for instance by using the holomorphic parametrizationP : C2\{0} −→ Q∗

defined by

P (a, b) =




1
2 (a2 − b2)
i
2 (a2 + b2)

ab


 .
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Note that P is a two-sheeted covering and hence f can be obtained by choosing an

arbitrary holomorphic map (α, β) : Ω −→ C2 \ {0} and by letting f = P ◦ (α, β). The

last step is to build the immersionX knowing f : we just setX(z) = C+Re
∫ z
z0
f(ζ)dζ,

where we integrate along a path joining z0 to z = x+ iy in Ω and C ∈ R3. The final

result is the famous Enneper–Weierstrass representation formula:

X(z) = C + Re

∫ z

z0




1
2 (α2 − β2)
i
2 (α2 + β2)

αβ


 (ζ)dζ.

In the following we shall ignore the constant C, it just reflects the invariance of the

problem by translations. An interesting (and elementary) observation is that Q∗ is

invariant by transformations Z 7−→ λ−2Z, for λ ∈ C∗ (we shall see the reason for the

choice of λ−2 later on). As a consequence we can associate to X a family of minimal

immersions (Xλ)λ∈C∗ by the relation

Xλ(z) = Re

∫ z

z0

λ−2




1
2 (α2 − β2)
i
2 (α2 + β2)

αβ


 (ζ)dζ.

If λ−2 is real then the resulting surface is just the image of the original one by some

dilation in R3, which is not very interesting. So let us assume that |λ| = 1; then if

λ−2 6= ±1 the image Xλ is actually very different of the image of X . For instance if X

is the parametrization of an helicoid, then Xeiπ/4 is the parametrization of a catenoid!

We call (Xλ)λ∈C∗ the associated family of X .

5.2. Constant mean curvature surfaces. — We now look at the case where H

is a constant different from 0. It turns out that for any CMC immersion X one can

also construct an associated family: this result(8) was proved by O. Bonnet [7]. To

see where it comes from, we need to introduce further the Gauss map u : Ω −→ S2 of

the immersion X . Up to a sign this map is characterized by the fact that ∀(x, y) ∈ Ω,

u(x, y) is orthogonal to TX(x,y)Σ, the tangent space to the surface at X(x, y). If an

orientation is given on Σ then u is uniquely defined by requiring that (e1, e2, u)(x, y)

is an oriented basis of R3 if (e1, e2)(x, y) is an oriented basis of TX(x,y)Σ. Note that

the parametrization X induces automatically an orientation to Σ for which

u =

∂X
∂x × ∂X

∂y∣∣∣∂X∂x × ∂X
∂y

∣∣∣
.

We can now define the second fundamental form of the immersion X to be

II =



〈
∂2X
∂x2 , u

〉 〈
∂2X
∂x∂y , u

〉
〈
∂2X
∂x∂y , u

〉 〈
∂2X
∂x2 , u

〉

 .

(8)However we will see that the family will be parametrized by a variable λ in S1 instead of C∗.
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So II can be understood as the orthogonal projection of the Hessian of X on the

normal direction. It is easy to check that II is symmetric and that its trace is 2He2ω.

Hence there exist two real valued functions a, b on Ω such that

II := e2ω
(
H + a b

b H − a

)
.

The key to understand Bonnet’s result is to address the following question: we are

given a constant H ∈ R and three real valued functions ω, a, b on Ω and we consider

the two tensor fields on Ω

I =

(
e2ω 0

0 e2ω

)
and II = e2ω

(
H + a b

b H − a

)
.

Then we want to know whether there exists an immersion X : Ω −→ R3 such that

its first and second fundamental forms are respectively I and II. For simplicity we

assume that Ω is simply connected.

The answer is that such an immersion exists if and only if the two following

equations are satisfied on Ω:

(5.55) ∆ω + (H2 − a2 − b2)e2ω = 0,

(5.56)
∂

∂z

(
e2ω(a− ib)

)
= 0.

The first equation is the (specialization of the) Gauss equation and the second one

is the (specialization of the) Codazzi equation. If (H,ω, a − ib) satisfies these two

conditions then X exists and is unique up to rigid motions in R3.

The next observation is then that these two equations are invariant by the trans-

formation (H,ω, a − ib) 7−→ (H,ω, λ−2(a − ib)), where λ ∈ S1 ⊂ C∗. This has the

following consequence: take any CMC conformal immersion X . Then its first and

second fundamental forms provides us automatically with datas (H,ω, a− ib) which

satisfies (5.55) and (5.56). But then we have a whole family of datas (H,ω, λ−2(a−
ib))λ∈S1 which also satisfy (5.55) and (5.56) and hence for each λ ∈ S1 there ex-

ists a CMC immersion Xλ whose first and second fundamental forms correspond to

(H,ω, λ−2(a − ib)). This leads to the existence of the associated family (Xλ)λ∈S1 .

In the case where H = 0 we recover the family constructed through the Enneper–

Weierstrass representation.

5.3. Introducing Darboux framings. — The fact that (5.55) and (5.56) are in-

tegrability conditions becomes more transparent if one uses a Darboux moving frame.

We let e1, e2 : Ω −→ S2 be two smooth maps such that ∀(x, y) ∈ Ω, (e1, e2)(x, y) is

an orthonormal oriented basis of TX(x,y)Σ. Then (e1, e2) is called a Darboux framing

of X . Alternatively, ∀(x, y) ∈ Ω, (e1, e2, u)(x, y) is an orthonormal oriented basis of

R3. We can represent this moving frame by a map F : Ω −→ SO(3) whose columns

are e1, e2 and u. Then all the informations contained in I and II can be encoded in
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the expression of the derivatives of e1, e2, u and X in the moving frame (e1, e2, u).

These datas form the matrix valued 1-form

A :=




0 〈de2, e1〉 〈du, e1〉 〈dX, e1〉
〈de1, e2〉 0 〈du, e2〉 〈dX, e2〉
〈de1, u〉 〈de2, u〉 0 0

0 0 0 0


 .

Note that 〈dX, u〉 = 0 by definition of u and 〈du, u〉 = 0 because |u|2 = 1. This

matrix valued 1-form is also the Maurer–Cartan form

A := G−1dG,

where

G :=

(
F X

0 1

)
.

The nice point is that we have incorporated the symmetry group of the problem –

which is here the group SO(3) n R3 of rigid motions of the Euclidean three space –

in the formulation itself. Indeed G takes values in the Lie group
{(

R T

0 1

)
|R ∈ SO(3), T ∈ R3

}
' SO(3) n R3,

and A is a 1-form with coefficients in the Lie algebra of SO(3) n R3. In our case we

can compute that

(5.57) A =




0 − ∗ dω −α eωdx

∗dω 0 −β eωdy

α β 0 0

0 0 0 0


 ,

where

α+ iβ = eω (Hdz + (a+ ib)dz) .

Now the way to decide whether the datas (H,ω, a − ib) correspond to a conformal

immersion is simply to ask whether given A as in (5.57) there exists a map G : Ω −→
SO(3) n R3, such that dG = GA. But we know that this overdetermined equation

has a solution if and only if A satisfies the zero curvature equation

dA+A ∧A = 0.

And a straightforward computation shows that this condition is equivalent to (5.55)

and (5.56).

It is interesting to look at the effect of the substitution a − ib 7−→ λ−2(a − ib) in

this framework: the Maurer–Cartan form A is then transformed into another form

Aλ, which can be computed explicitly. Since the Gauss–Codazzi equations are still
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satisfied for the datas (H, eω, λ−2(a− ib)) and since these equations are equivalent to

the zero curvature equation we know a priori that Aλ should be a solution of

(5.58) dAλ +Aλ ∧Aλ = 0, ∀λ ∈ S1.

This of course indeed the case. And assuming that the domain Ω is simply connected,

relation (5.58) is the necessary and sufficient condition for the existence for all λ ∈ S1

of a map Gλ : Ω −→ SO(3) n R3 which is a solution of dGλ = GλAλ (it is unique if

we fix the value of Gλ at one point in Ω). By extracting the fourth column of Gλ we

obtain for all λ ∈ S1 a map Xλ : Ω −→ R3 which is the conformal parametrization of

a new CMC surface. We get hence the associated family (Xλ)λ∈S1 of CMC conformal

immersions.

The way Aλ depends on λ can be simplified if we do the gauge transformation

αλ := R−1
λ AλRλ,

where

Rλ :=




cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1


 and λ = eiθ.

Geometrically it just amounts to substitute Γλ := GλRλ to Gλ, since then dΓλ =

Γλαλ. This does not change Xλ but just rotates the Darboux framing of Xλ. Then

the gain is that the holomorphic extension to C∗ of the map S1 3 λ 7−→ αλ has the

form

(5.59) αλ = λ−1α′
1 + α0 + λα′′

1 ,

where the entries of α′
1, α0 and α′′

1 have the structure

α′
1, α

′′
1 :




0 0 ∗ ∗
0 0 ∗ ∗
∗ ∗ 0 0

0 0 0 0


 , α0 :




0 ∗ 0 0

∗ 0 0 0

0 0 0 0

0 0 0 0


 .

Moreover α′
1 is a (1, 0)-form (it means that α′

1(
∂
∂z ) = 0) and α′′

1 is a (0, 1)-form (it

means that α1(
∂
∂z ) = 0). This provide us with a simple method to build up αλ

knowing α = A: we split α = α0 + α1 according to the entries structure, where α0 is

the block-diagonal part and α1 is the off-block-diagonal part of α. Then we further

decompose α1 = α′
1 + α′′

1 , where α′
1 := α1(

∂
∂z )dz and α′′

1 := α1(
∂
∂z )dz. We deduce αλ

by (5.59).

The last observation is actually more than just a trick: the splitting α = α0 + α1

has a Lie algebra interpretation, it corresponds to the direct sum decomposition of

the complexification gC of the Lie algebra of SO(3) n R3

gC = gC

0 ⊕ gC

1 ,
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where ∀a ∈ {0, 1}, gC
a is the (−1)a-eigenspace of a linear involution τ : gC −→ gC

called the Cartan involution. Actually τ is simply M 7−→ PMP−1, where

P :=




−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


 = P−1.

The Cartan involution helps us to encapsulate the informations concerning the immer-

sion X into R3 and its Gauss map u into S2 inside the single map Γ into SO(3)n R3.

And when we further formulate this theory using loop groups the Cartan involution

plays again a crucial and similar role, by the introduction of twisted loop groups (see

paragraph 5.5).

Lastly we can remark that if we denote αλ = Uλdx + Vλdy, then the relation

dαλ + αλ ∧ αλ = 0 is equivalent to

∂Vλ
∂x

− ∂Uλ
∂y

+ [Uλ, Vλ ] = 0, ∀λ ∈ S1,

which is more or less the same condition as (4.39).

5.4. A reduction to the harmonic map problem. — A map u from a domain

Ω of R2 into the unit sphere S2 ⊂ R3 is called harmonic if it is a solution of the

system

∆u+ u|∇u|2 = 0 in R3,

where |∇u|2 := |∂u∂x |2 + |∂u∂y |2. Harmonic maps are actually the critical points of the

Dirichlet energy functional E(u) =
∫
Ω

1
2 |∇u|2dxdy with the constraint that u(x, y) ∈

S2 ⊂ R3, ∀(x, y) ∈ Ω. There are related to the CMC surfaces by the following

Theorem 3. — Let X : Ω −→ R3 be a conformal immersion and u : Ω −→ S2 its

Gauss map. Then the image of X is a CMC surface if and only if u is harmonic.

If furthermore Ω is simply connected we can also construct a weakly conformal

CMC immersion from any harmonic map u : Ω −→ S2. For that one observes that the

harmonic map equation implies that the R3-valued 1-form ψ := (u× ∂u
∂y )dx−(u× ∂u

∂x )dy

(where × is the vector product in R3) is closed and hence we can integrate it: ψ = dB,

where B is unique up to a constant in R3. Then the two maps B ± u are weakly

conformal CMC immersions.

Now harmonic maps into S2 can be characterized by a similar construction as for

CMC surfaces. For any map u : Ω −→ S2 we build a moving frame (e1, e2), i.e., such

that (e1(x, y), e2(x, y)) is an oriented orthonormal basis of Tu(x,y)S
2, ∀(x, y) ∈ S2.

Then we get a map F = (e1, e2, u) from Ω to SO(3) and its Maurer–Cartan form
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α := F−1dF . We split α = α0 + α1, where α0 and α1 have the structure

α1 :




0 0 ∗
0 0 ∗
∗ ∗ 0


 , α0 :




0 ∗ 0

∗ 0 0

0 0 0


 .

This corresponds to the eigenspace decomposition of the Lie algebra so(3) for the

automorphism τ : M 7−→ PMP−1 where P =




−1 0 0

0 −1 0

0 0 1


. And we further

decompose α1 = α′
1 + α′′

1 , where α′
1 is the (1, 0)-part of α1 and α′′

1 is its (0, 1)-part.

Then u is harmonic if and only if αλ := λ−1α′
1 +α0 +λα′′

1 satisfies the zero curvature

condition dαλ+αλ∧αλ = 0, ∀λ ∈ C∗. As a consequence the overdetermined equation

dϕλ = αλϕλ has a solution (unique if we prescribe the value of ϕλ at some point).

5.5. Construction of all harmonic maps into S2. — As an application we

describe here an algorithm for constructing all harmonic maps Ω −→ S2 (where Ω

is simply connected) starting with holomorphic data. This construction is due to J.

Dorfmeister, F. Pedit and H.Y. Wu [11]. For that purpose we need to introduce the

twisted loop group LSO(3)τ := {g : S1 3 λ 7−→ gλ ∈ SO(3) | τ(gλ) = g−λ} and its

complexification(9) LSO(3)C
τ := {g : S1 3 λ 7−→ gλ ∈ SO(3)C | τ(gλ) = g−λ}.

Step 1: choosing a potential

Let a, b : Ω −→ C be holomorphic maps, and define a matrix-valued (actually loop

algebra-valued) holomorphic 1-form

µλ = λ−1




0 0 a

0 0 b

−a −b 0


 dz

which we call the potential. Observe that this 1-form has its coefficients in Lso(3)C
τ ,

the Lie algebra of LSO(3)C
τ .

Step 2: integrating µλ
The potential trivially satisfies dµλ + µλ ∧ µλ = 0, which is the necessary and

sufficient condition for the existence of gλ : Ω −→ LSO(3)C
τ such that

dgλ = gλµλ.

Step 3: splitting

We write gλ as the product ϕλbλ, with ϕλ : Ω −→ LSO(3)τ and bλ : Ω −→
L+

BSO(3)C
τ , where L+

BSO(3)C
τ is the subgroup(10) of the loops bλ ∈ LSO(3)C

τ which

have a holomorphic extension (in λ) from the closed unit disk to SO(3)C. This step

(9)Here SO(3)C := {M ∈ M(3, C)| tMM = 13 and det M = 1}.
(10)An extra condition in the definition of L+

B
SO(3)C

τ is that ∀bλ ∈ L+
B

SO(3)C
τ , b0 ∈ B, where B is

a Borel subgroup of SO(3)C and the Iwasawa decomposition SO(3)C = SO(3) · B holds.
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rests on an Iwasawa decomposition result similar to Theorem 2, which states that any

loop gλ ∈ LSO(3)C
τ can be written uniquely as the product of ϕλ ∈ LSO(3)τ and

bλ ∈ L+
BSO(3)C

τ (hence the decomposition of maps is done pointwise in z).

Then the map ϕλ produced in this way is a lift of a harmonic map into the sphere,

i.e., the third column of ϕλ gives us the components of a harmonic map into S2 for

all λ ∈ S1.

Note that this algorithm accounts for the construction of almost all harmonic

maps. Actually J. Dorfmeister, F. Pedit and H.-Y. Wu show how to associate to

any harmonic map a unique such potential µλ where the data (a, b) is meromorphic,

albeit with non accumulating poles. This is based on solving the Riemann–Hilbert

problem of splitting ϕλ(z) = ϕ−
λ (z)ϕ+

λ (z) for each fixed z ∈ Ω, where ϕ−
λ takes values

in L−
∗ SO(3)C

τ , the sub loop group of loops g ∈ LSO(3)C
τ which admit a holomorphic

extension in λ outside the unit disk in PC ' C ∪ {∞} and such that g∞ = 13,

and where ϕ+
λ takes values in L+SO(3)C

τ . Again this decomposition follows from

results in [28]. Then the potential is given by µλ =
(
ϕ−
λ

)−1
dϕ−

λ . There are other

constructions along the same lines which avoid using meromorphic data (but µλ may

be more complicated).

Lastly one can remark that the algorithm parallels the Enneper–Weierstrass rep-

resentation formula (hence its name). Indeed µλ is the analog of

fλdz := λ−2




1
2 (α2 − β2)
i
2 (α2 + β2)

αβ


 (z)dz,

The map gλ obtained from µλ corresponds to the (standard) integral
∫ z
z0
fλdz. Finally

Iwasawa decomposition reduces to taking the real part. Notice that the analogy is not

only in spirit, but that under some conditions, the Dorfmeister–Pedit–Wu algorithm

deforms into the Enneper–Weierstrass representation formula.

A construction of harmonic maps by using the Adler–Kostant–Symes theory is

possible. One starts from the Lie algebra decomposition Lso(3)C
τ = Lso(3)τ ⊕

L+
b so(3)C

τ , which is in fact the linearization at the identity of the Iwasawa decom-

position LSO(3)C
τ = LSO(3)τ · L+

BSO(3)C
τ . Then for each odd positive integer d one

can construct a pair of ad∗-invariant functions on the dual space of Lso(3)C
τ which

induces a pair of commuting Hamiltonian vector fields on a suitable (finite dimen-

sional) subspace V d of the dual space of L+
b so(3)C

τ . Their flow equations read as Lax

equations and admit solutions which stay in V d. By integrating this pair of vector

fields one obtains harmonic maps, called finite type solutions (see [8]). Actually in

the Dorfmeister–Pedit–Wu description this finite type solution arises from a poten-

tial µλ = λd−1ηλ, where ηλ is a constant loop in Lso(3)τ with a Fourier expansion

ηλ =
∑d

k=−d η̂kλ
k, see [8, 17, 18, 14] for more details.
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6. Anti-self-dual curvature two-forms

6.1. The Hodge operator on forms. — Let (M, g) be a Riemannian manifold

of dimension n. We denote by (x1, · · · , xn) local coordinates on M and by gij =

g
(
∂
∂xi ,

∂
∂xj

)
the expression of the metric g in these coordinates. This allows us to

define a scalar product on each cotangent space: if a, b ∈ T ∗
mM and a = aidx

i and

b = bjdx
j , then 〈a, b〉 := gijaibj , where (gij) is the inverse matrix of (gij). We can

actually extend this scalar product to ΛpT ∗
mM for all 1 ≤ p ≤ n to be the unique

bilinear form such that if α = a1 ∧ · · · ∧ ap and β = b1 ∧ · · · ∧ bp (where the ai’s and

the bj’s are in T ∗
mM), then

〈α, β〉 := det
(
〈ai, bj〉

)
.

Now let us assume that our manifold M and the coordinates (x1, · · · , xn) are oriented.

Then there is a uniquely defined volume form σ on M which has the local expression

σ =
√

det(gij)dx
1 ∧ · · · ∧ dxn.

All these ingredients allows us to define an operator which transforms any p-form on

M onto an (n− p)-form: it is the Hodge operator

∗ : ΛpT ∗
mM −→ Λn−pT ∗

mM
α 7−→ ∗α

which is characterized by the following property

∀α ∈ ΛpT ∗
mM, ∀β ∈ Λn−pT ∗

mM, α ∧ β = 〈∗α, β〉σ.

It is easy to observe that if we reverse the orientation, then ∗ is changed into −∗. Let us

study how ∗ is changed by a conformal deformation of the metric. Let g̃ij = e2fgij be

another metric (where f : M −→ R is any smooth function). Then the corresponding

scalar product on (n− p)-forms is transformed into:

〈α, β〉∼ = e−2(n−p)f 〈α, β〉

and the volume form is σ̃ = enfσ. So the corresponding Hodge operator ∗̃ is charac-

terized by

α ∧ β = 〈∗̃α, β〉∼ σ̃ = e−2(n−p)f〈∗̃α, β〉 enfσ = e(2p−n)f 〈∗̃α, β〉.

Hence we deduce that ∀α ∈ Γ(M,ΛpT ∗
mM),

∗̃α = e(n−2p)f ∗ α.

It is interesting to observe that if n is even and if 2p = n (which will be the case in

the following), then the Hodge operator does not depend on the metric, but only on

the conformal class of the metric and on the orientation.
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6.1.1. The Hodge operator on surfaces. — Let us consider the case where n = 2 and

(M, g) is R2 with the Euclidean metric(11). Then

α = α1dx
1 + α2dx

2 =⇒ ∗α = −α2dx
1 + α1dx

2.

So in particular ∗ ◦ ∗ is minus the identity, i.e., ∗ is a complex structure. At any

point x the action of ∗ on T ∗
xR2 can be diagonalized over C with eigenvalues −i and

i and the eigenvectors are just dz = dx1 + idx2 and dz = dx1 − idx2, i.e., we have

∗dz = −idz and ∗dz = idz. If we denote by T
∗,(1,0)
x R2 := {α ∈ T ∗

xR2| ∗ α = −iα}
and T

∗,(0,1)
x R2 := {α ∈ T ∗

xR2| ∗ α = iα} then we have the eigenspace decomposition(
T ∗
xR2

)C
= T

∗,(1,0)
x R2 ⊕ T

∗,(0,1)
x R2. This has the following consequence: we say that

a smooth 1-form α ∈ Γ(R2, T ∗R2) is harmonic if and only if

dα = 0 and d(∗α) = 0.

This definition is quite natural since, in particular one can check that the two compo-

nents of α should be harmonic functions. Now any 1-form α can be splitted according

to the eigenspace decomposition of
(
T ∗
xR2

)C
: α = α(1,0) + α(0,1), where

α(1,0) =
1

2
(α+ i ∗ α) and α(0,1) =

1

2
(α− i ∗ α) ,

and α is harmonic if and only if α(1,0) or α(0,1) is closed. If so it means that α(1,0)

is a holomorphic form, i.e., if we write α(1,0) = f(z, z)dz and α(1,0) = g(z, z)dz then

0 = dα(1,0) = ∂f
∂z dz ∧ dz so that f is holomorphic and similarly g is anti-holomorphic

(note that g = f).

Eventually we recover the following simple fact: let ϕ : R2 −→ R be a smooth

function. Then ϕ is harmonic if and only if α := dϕ is harmonic(12). If so we have

dϕ = f(z)dz + g(z)dz = d (F (z) +G(z)) ,

where F ′ = f and G′ = g. Hence up to some constant we have ϕ = F +G, where F

is holomorphic and G is antiholomorphic.

6.2. The dimension 4. — Let us now look at 2-forms on R4 with its standard

orientation and metric. Then any 2-form F ∈ Λ2T ∗
xR4 can be decomposed as F =∑

1≤i<j≤4 Fijdx
i ∧ dxj and its image by ∗ is

∗F = F34dx
1 ∧ dx2 − F24dx

1 ∧ dx3 + F23dx
1 ∧ dx4

+ F12dx
3 ∧ dx4 − F13dx

2 ∧ dx4 + F14dx
2 ∧ dx3.

In particular we see that ∗ is an involution (its square is the identity) so it has

eigenvalues ±1. Hence Λ2T ∗
xR4 splits as the sum of two eigenspaces: Λ2T ∗

xR4 =

Λ+T ∗
xR4 ⊕ Λ−T ∗

xR4, where Λ+T ∗
xR4 (resp. Λ−T ∗

xR4) is the space of self-dual (resp.

anti-self-dual) 2-forms.

(11)This situation is locally very general since any Riemannian surface is conformally flat.
(12)Since d(∗α) = ∆ϕ dx1 ∧ dx2.
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As for 1-forms on surfaces, we can consider harmonic 2-forms, which are sections

F of Γ(R4,Λ2T ∗R4) which satisfy

dF = 0 and d(∗F ) = 0.

This system may be seen as an Euclidean version of Maxwell equations in empty space.

Now we can decompose such an harmonic form into its self-dual and anti-self-dual

parts: F = F+ + F−, where(13)

F+ =
1

2
(F + ∗F ) , F− =

1

2
(F − ∗F ) .

And we see that F is harmonic if and only F+ and F− are closed. Hence we can

reduce the study of harmonic 2-forms to the study of closed self-dual or anti-self-dual

2-forms. In the following we will focus on anti-self-dual 2-forms (this is just a matter

of orientation). The key for understanding closed ASD (anti-self-dual) 2-forms is to

interpret the ASD condition in terms of complex structures.

6.3. Introducing complex structures on R4. — For any 2n-dimensional ori-

ented Euclidean space V , we call a compatible complex structure an oriented isometry

J of V such that J2 = −IdV . The set J2n of compatible complex structures on a 2n-

dimensional oriented Euclidean space is a homogeneous space (J2n ' SO(2n)/U(n)).

For n = 1, J2 is reduced to points. For n = 2, J4 ' S2∪S2: this can be seen precisely

by using the identification (that we systematically use in the following)

R4 −→ H

(x1, x2, x3, x4) 7−→ x1 + ix2 + jx3 + kx4 = x

and setting S2
H

:= {u ∈ ImH| |u| = 1}. Then ∀u ∈ S2
H

the linear maps Lu : H −→ H,

x 7−→ ux and Ru : H −→ H, x 7−→ xu are compatible complex structures and J4 =

{Lu|u ∈ S2
H
} ∪ {Ru|u ∈ S2

H
} =: JL ∪JR. In the following, beside the identification of

(13)Note that F+ and F− can also be expressed by using quaternion numbers H. For that purpose

we use the identification R4 −→ H, (x1, x2, x3, x4) 7−→ x1 + ix2 + jx3 + kx4 and we set

dx = dx1 + idx2 + jdx3 + kdx4 and dx = dx1 − idx2 − jdx3 − kdx4.

Then a basis of Λ+T x
x R4 is made of the three components of

dx ∧ dx = −2
ˆ
i

`
dx1 ∧ dx2 + dx3 ∧ dx4

´
+ j

`
dx1 ∧ dx3 − dx2 ∧ dx4

´
+ k

`
dx1 ∧ dx4 + dx2 ∧ dx3

´˜

and similarly a basis of Λ−T x
x R4 is made of the three components of

dx ∧ dx = 2
ˆ
i

`
dx1 ∧ dx2 − dx3 ∧ dx4

´
+ j

`
dx1 ∧ dx3 + dx2 ∧ dx4

´
+ k

`
dx1 ∧ dx4 − dx2 ∧ dx3

´˜

In particular if we denote

f+ := 1
4

[i (F12 + F34) + j (F13 − F24) + k (F14 + F23)]

f− := − 1
4

[i (F12 − F34) + j (F13 + F24) + k (F14 − F23)]

then F+ = Re(f+dx ∧ dx) and F− = Re(f−dx ∧ dx).
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R4 with H, we also sometime use the complex coordinates (X1, X2) on H defined by

R4 −→ C2 −→ H

(x1, x2, x3, x4) 7−→ (x1 + ix2, x3 + ix4) = (X1, X2) 7−→ X1 +X2j = x

But we will not privilege the particular complex structure associated with (X1, X2).

Instead we want to explore the ASD condition from the point of view of all complex

structures in JL. For that purpose consider the complex manifold T∗ := C2 × (C2 \
{0}) ⊂ C4 with coordinates Z = (z1, z2, α, β) and the smooth map

P : T∗ −→ H

(z1, z2, α, β) 7−→ x = (α+ βj)−1(z1 + z2j).

In terms of the coordinates (X1, X2), X1 +X2j = P (Z) reads(14)

X1 +X2j = (α+ βj)−1(z1 + z2j) ⇐⇒ (X1, X2) =

(
αz1 + βz2

|α|2 + |β|2 ,
−βz1 + αz2

|α|2 + |β|2

)
.

Note that for any fixed (α, β) ∈ C2 \ {0} the map P |(α,β) : C2 −→ H, (z1, z2) 7−→
P (z1, z2, α, β) is an isomorphism of real vector space, whose inverse is given by the

relation

(6.60) z1 +z2j = (α+βj)(X1 +X2j) ⇐⇒ (z1, z2) = (αX1−βX2, βX1 +αX2).

What is the meaning of the map P? answer: to each (α, β) it corresponds a complex

structure Lu(α,β) ∈ JL and then (z1, z2) are complex coordinates on H for the complex

structure Lu(α,β). It means that (abbreviating u = u(α, β)), ∀(ζ1, ζ2) ∈ T(z1,z2)C
2,

Lu ◦ dP(z1,z2)|(α,β)(ζ
1, ζ2) = dP(z1,z2)|(α,β)(iζ

1, iζ2).

This can be proved by the following: for any fixed (α, β),

dz1 + dz2j = (α + βj)(dX1 + dX2j)

implies that

idz1 + idz2j = i(α+ βj)(dX1 + dX2j) = (α + βj)u(α, β)(dX1 + dX2j),

where

u(α, β) = (α+ βj)−1i(α+ βj) = i
|α|2 − |β|2 + 2αβj

|α|2 + |β|2 .

In particular we see that u(tα, tβ) = u(α, β), ∀t ∈ C∗, so that u induces a map from

PC1 (with homogeneous coordinates [α : β]) to S2
H
, which is just the stereographic

projection.

(14)We use here constantly the basic property that for any complex quantity f , jf = fj.
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Now let us exploit the canonical complex structure on T∗. In general for any

complex manifold M, for any point Z ∈ M and for any integer p ≤ 2dimCM we have

the decomposition

(ΛpTZM)
C

=

p⊕

q=0

Λ(q,p−q)TZM,

where for any ψ ∈ Λ(q,p−q)TZM, ∀t ∈ C, ∀ζ1, · · · , ζp ∈ TZM, ψ(tζ1, · · · , tζp) =

tqt
p−q

ψ(ζ1, · · · , ζp). In other words if z1, · · · , zn are complex coordinates on M,

then any ψ in Λ(q,p−q)TZM writes
∑
ψi1···iqiq+1···ip

dzi1 ∧ · · · dziq ∧ dziq+1 ∧ · · · ∧ dzip .

Thus for instance any 2-form ψ on T∗ can be splitted according to the decomposition

of
(
Λ2TT∗

)C
:

ψ = ψ(2,0) + ψ(1,1) + ψ(0,2),

where, if ψ is real valued, ψ(0,2) = ψ(2,0). The key result is:

Theorem 4. — Let F ∈ Γ(H,Λ2T ∗H) be a 2-form on H. Then F is ASD if and only

if (P ∗F )
(0,2)

= 0.

Proof. — We write the equation of the graph of P in T∗×H: z1+z2j = (α+βj)(X1+

X2j) and derivate it:

dz1 + dz2j = (dα+ dβj)(X1 +X2j) + (α+ βj)(dX1 + dX2j).

This implies (by using (α+ βj)−1 = (α− βj)|α+ βj|−2)

(6.61)

dX1 + dX2j = (α+ βj)−1
[
dz1 + dz2j − (dα + dβj)(X1 +X2j)

]

= (α− βj)(θ1 + θ2j)

= (αθ1 + βθ2) + (αθ2 − βθ1)j,

where

θ1 :=
dz1 −X1dα+X2dβ

|α|2 + |β|2 =
dz1

|α|2 + |β|2 − αz1 + βz2

(|α|2 + |β|2)2 dα+
−βz1 + αz2

(|α|2 + |β|2)2 dβ,

θ2 :=
dz2 −X2dα−X1dβ

|α|2 + |β|2 =
dz2

|α|2 + |β|2 − −βz1 + αz2

(|α|2 + |β|2)2 dα− αz1 + βz2

(|α|2 + |β|2)2 dβ.

If we pull-back the relation (6.61) by the parametrization IdT∗ ×P : (z1, z2, α, β) 7−→
(z1, z2, α, β,X1 +X2j) we obtain

P ∗dX1 = αθ1 + βθ2 , P ∗dX2 = αθ2 − βθ1

and by complex conjugation

P ∗dX1 = αθ1 + βθ2 , P ∗dX2 = αθ2 − βθ1.
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The point here is that θ1 and θ2 are (1, 0)-forms whereas θ1 and θ2 are (0, 1)-forms.

Hence,

(6.62)

(
P ∗dX1

)(0,1)
= βθ2,

(
P ∗dX1

)(0,1)

= αθ1

(
P ∗dX2

)(0,1)
= −βθ1,

(
P ∗dX2

)(0,1)

= αθ2.

We now write F+ and F− by using coordinates(15) X1 and X2:

F+ = i
4 (F12 + F34) (dX1 ∧ dX1 + dX2 ∧ dX2)

+ 1
4 [(F13 − F24) − i(F14 + F23)] dX1 ∧ dX2

+ 1
4 [(F13 − F24) + i(F14 + F23)] dX1 ∧ dX2,

F− = i
4 (F12 − F34) (dX1 ∧ dX1 − dX2 ∧ dX2)

+ 1
4 [(F13 + F24) + i(F14 − F23)] dX1 ∧ dX2

+ 1
4 [(F13 + F24) − i(F14 − F23)] dX1 ∧ dX2.

And we express (P ∗F±)
(0,2)

: this accounts to compute terms like
(
P ∗dX1 ∧ dX2

)(0,2)
=
(
P ∗dX1

)(0,1) ∧
(
P ∗dX2

)(0,1)
= βθ2 ∧ (−βθ1) = β2θ1 ∧ θ2.

Proceeding this way we find

(P ∗F+)
(0,2)

= 1
4

[
i(F12 + F34)(−2αβ) + [(F13 − F24) − i(F14 + F23]β

2

+ [(F13 − F24) + i(F14 + F23)]α
2
]
θ1 ∧ θ2.

and (P ∗F−)
(0,2)

= 0. Hence we have (P ∗F )
(0,2)

= (P ∗F+)
(0,2)

and this quantity

vanishes if and only if F+ = 0.

6.4. The holomorphic twistor function. — Let A be a smooth 1-form on H

such that dA is ASD. Then the preceding result implies

(dP ∗A)
(0,2)

= (P ∗dA)
(0,2)

= 0.

This means somehow that P ∗A is closed with respect to half of the variables, (z1, z2,

α, β), so that we could think that P ∗A is also exact with respect to the same variables.

This is indeed the case except that we need not only to take care of the topology of

the domain, but also of its shape (polyconvexity assumption). For instance this is

true on a complex vector space:

Lemma 6. — For any smooth complex valued 1-form b on Cn such that

(db)(0,2) = 0,

there exists a 1-form a on Cn such that

(da)
(0,1)

= b(0,1) or d′′a = b′′.

(15)Alternatively we could compute P ∗dx ∧ dx (self-dual part) and P ∗dx ∧ dx (anti-self-dual part),

where dx = (α − βj)(θ1 + θ2j) and dx = (θ1 − θ2j)(α + βj).
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Remark 1. — Here we introduce the notations d′′a for (da)
(0,1)

and b′′ for b(0,1). Sev-

eral proofs(16) of this results exist, see for instance [30].

We can use this result on any complex hyperplane H ⊂ T∗. Indeed let jH : H −→
T∗ be the inclusion map, then ((P ◦ jh)∗dA)(0,2) = 0, so that by the preceding lemma

there exists a function f : H −→ C such that

d′′f + ((P ◦ jh)∗A)′′ = 0.

But we can then extend this solution on the cone C∗H := {tZ| t ∈ C∗, Z ∈ H}
(which fills almost all of T∗) by homogeneity. Indeed first remark that P is complex

homogeneous of degree 0: ∀t ∈ C∗, ∀Z ∈ T∗, P (tZ) = P (Z). Hence in particular,

if πH : C∗H −→ H denotes the radial projection onto H , then P = P ◦ jH ◦ πH on

C∗H , so that(17)

(P ∗A)
′′

= (π∗
H ((P ◦ jH)∗A))

′′
= π∗

H ((P ◦ jH)∗A)
′′

= −π∗
H(df)′′ = −d′′(f ◦ πH).

Hence f := f ◦ πH is a solution of

(6.63) f(tZ) = f(Z) and d′′f + (P ∗A)′′ = 0 on C∗H.

Note that f is not unique, since for any complex homogeneous holomorphic function g

on C∗H , f+g is also a solution of (6.63). We use this construction for the hyperplane

H1 of equation β = 1 and the hyperplane H2 of equation α = 1. Let f1 be a solution

of (6.63) on C∗H1 (the cone of equation β 6= 0), and f2 be a solution of (6.63) on

C∗H2 (the cone of equation α 6= 0). We then observe that, on C∗H1 ∩ C∗H2,

d′′f1 = − (P ∗A)
′′

= d′′f2,

so that d′′(f2−f1) = 0, i.e., h := f2−f1 is holomorphic on C∗H1∩C∗H2. The complex

homogeneous function h is called the twistor function: it encodes the 1-form A, up

to gauge transformations A 7−→ A+ dV .

6.4.1. The reality condition. — The fact thatA is a real valued 1-form can be encoded

in the construction of h. The complex antilinear map

τ : T∗ −→ T∗

(z1, z2, α, β) 7−→ (−z2, z1,−β, α)

(16)If we assume that b is C1 and that there exists s > 1 and C > 0 such that |z|s|b(z, z)| +

|z|s+1|db(z, z)| < C then a solution is

a(z, z) =

Z

C

1

π(1 − ζ)

nX

k=1

b
k
(ζz, ζz) zk

dζ ∧ dζ

2i
.

(17)Here we use the fact that π∗
h

and j∗H commute with the (0, 1)-projection because πh and jH are

complex maps.
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2

Figure 6. The hyperplanes H1 and H2

respects(18) the fibers of P : T∗ −→ H, i.e., P ◦ τ = P : this can be easily seen if

one observes that τ acts on (z1 + z2j, α + βj) by left multiplication by j and using

P (z1+z2j, α+βj) = (α+βj)−1(z1+z2j). This has the consequence that if f satisfies

d′′f = (P ∗A)′′ then

d′′
(
f ◦ τ

)
= d′(f ◦ τ) = τ∗d′′f = τ∗(P ∗A)′′ = ((P ◦ τ)∗A)′ = (P ∗A)′ = (P ∗A)′′,

where we have used the fact that A is real in the last equality. Hence f ◦ τ is also a

solution of (6.63). Note also that if we apply this to f1, which is defined on C∗H1,

then f1 ◦ τ is defined on C∗H2, so that we may choose f2 = f1 ◦ τ in the preceding

construction. Then the twistor function h satisfies the condition h ◦ τ = −h.

6.5. An alternative description of the twistor function. — We now translate

the previous construction on the original space H plus a further variable λ ' [λ : 1] ∈
PC, the complex projective line. Consider the map

Q : T∗ −→ H × PC

(z1, z2, α, β) 7−→ (P (z1, z2, α, β), [α : β]) = ((α + βj)−1(z1 + z2j), α/β).

The inverse image of (X1 + X2j, λ) by Q is the pointed complex line {(αX1 −
βX2, αX2 + βX1, α, β)|(α, β) ∈ C2 \ {0}, α = λβ}. Let H be an affine hyper-

plane of T∗ and f : C∗H −→ C be a complex homogeneous map. Then there ex-

ists a unique map ϕ : Q(C∗H) −→ C (note that Q(C∗H1) = H × (PC \ {∞}) and

Q(C∗H2) = H × (PC \ {0})) such that

ϕ ◦Q = f on C∗H.

In coordinates:

ϕ(X1 +X2j, λ) = f(αX1 − βX2, αX2 + βX1, α, β), with α = λβ

= f(λX1 −X2, λX2 +X1, λ, 1) if λ 6= ∞.

(18)One also remarks that τ maps the complex structure on H to the opposite one, i.e., τ maps

u(α, β) to −u(α, β).
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We first translate the relation d′′f + (P ∗A)′′ = 0 in terms of ϕ. For that purpose

write

dϕ =
∂ϕ

∂X1
dX1 +

∂ϕ

∂X2
dX2 +

∂ϕ

∂X1
dX1 +

∂ϕ

∂X2
dX2 +

∂ϕ

∂λ
dλ+

∂ϕ

∂λ
dλ.

Hence by using (6.62) (note that P ∗dXa = Q∗dXa)

d′′f = (Q∗dϕ)′′ = β

(
∂ϕ

∂X1
◦Q
)
θ2 − β

(
∂ϕ

∂X2
◦Q
)
θ1

+α

(
∂ϕ

∂X1
◦Q
)
θ1 + α

(
∂ϕ

∂X2
◦Q
)
θ2

+

(
∂ϕ

∂λ
◦Q
)
βdα − αdβ

β
2 .

Similarly we write A = A1dX
1 + A2dX

2 + A1dX
1 + A2dX

2, then the preceding

quantity should be opposite to

(P ∗A)′′ = β(A1 ◦Q)θ2 − β(A2 ◦Q)θ1 + α(A1 ◦Q)θ1 + α(A2 ◦Q)θ2.

Hence using the fact that (θ1, θ2, α, β) is a basis of T
∗,(0,1)
Z T∗,





α
∂ϕ

∂X1
◦Q− β

∂ϕ

∂X2
◦Q + αA1 ◦Q− βA2 ◦Q = 0

α
∂ϕ

∂X2
◦Q+ β

∂ϕ

∂X1
◦Q + αA2 ◦Q+ βA1 ◦Q = 0

∂ϕ

∂λ
◦Q = 0.

Thus dividing by β

(6.64)





λ
∂ϕ

∂X1
− ∂ϕ

∂X2
+ λA1 −A2 = 0

λ
∂ϕ

∂X2
+

∂ϕ

∂X1
+ λA2 +A1 = 0

∂ϕ

∂λ
= 0.

We observe in particular that, for any fixed (X1, X2), ϕ is holomorphic in λ ∈ CP .

We apply this to ϕ1 : H × C −→ C and ϕ2 : H × (C∗ ∪ {∞}) −→ C such that

ϕ1 ◦Q = f1 and ϕ2 ◦Q = f2. Note also that the reality condition f2 = f1 ◦ τ implies

that

∀x ∈ H, ∀λ ∈ C∗ ϕ2(x, λ) = ϕ1(x,−λ
−1

).

Hence ϕ1 and ϕ2 can be expanded as

ϕ1(x, λ) =

∞∑

n=0

an(x)λ
n and ϕ2(x, λ) =

∞∑

n=0

(−1)nan(x)λ
−n.
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Now let ψ : H×C∗ −→ C such that ψ ◦Q = h, i.e., ψ = ϕ2 −ϕ1 on H×C∗: it is the

twistor function in the variables (x, λ). It has the expansion

ψ(x, λ) =
∞∑

n=0

(−1)nan(x)λ
−n −

∞∑

n=0

an(x)λ
n.

Hence we can extract ϕ1 and ϕ2 by splitting the Laurent expansion of ψ into respec-

tively nonnegative and nonpositive powers of λ. The only ambiguity is that the λ0

coefficient of ψ gives us only a0(x) − a0(x) = −2iIm(a0(x)) and we cannot recover

the real part of a0. For this reason we will only be able to recover A modulo an exact

form, as we shall see later. This situation is actually characteristic of gauge theories.

6.5.1. How to recover A from its twistor function. — Assume now that we are given

a holomorphic complex homogeneous function h on C∗H1∩C∗H2 ⊂ T∗ which satisfies

h ◦ τ = −h. Let ψ be defined on H × C∗ by ψ ◦ Q = h. By computations similar to

the previous one on ϕ1 and ϕ2, the condition d′′h = 0 translates to

(6.65)

(
λ

∂

∂X1
− ∂

∂X2

)
ψ(x, λ) =

(
λ

∂

∂X2
+

∂

∂X1

)
ψ(x, λ) =

∂

∂λ
ψ(x, λ) = 0.

Hence in particular

ψ(x, λ) = −
∑

n∈Z

an(x)λ
n and ψ(x,−λ−1

) + ψ(x, λ) = 0.

(Note that this implies that a0 is imaginary). Let us choose an arbitrary smooth

function g : H −→ R and let

ϕ1(x, λ) := g(x) +
1

2
a0(x) +

∞∑

n=1

an(x)λ
n

and

ϕ2(x, λ) := ϕ2(x,−λ
−1

) = g(x) − 1

2
a0(x) +

∞∑

n=1

(−1)nan(x)λ
−n.

Then ψ = ϕ2 − ϕ1. By substitution of ψ = ϕ2 − ϕ1 in (6.65) we obtain that

(6.66)

(
λ

∂

∂X1
− ∂

∂X2

)
ϕ1(x, λ) =

(
λ

∂

∂X1
− ∂

∂X2

)
ϕ2(x, λ),

(6.67)

(
λ

∂

∂X2
+

∂

∂X1

)
ϕ1(x, λ) =

(
λ

∂

∂X2
+

∂

∂X1

)
ϕ2(x, λ).

The left hand side of (6.66) has the expansion
∑∞
n=0(·)nλn, whereas the right hand

side of (6.66) has the expansion
∑1

n=−∞(·)nλn. Hence both terms should be of the

form

(6.68)

(
λ

∂

∂X1
− ∂

∂X2

)
ϕ1(x, λ) =

(
λ

∂

∂X1
− ∂

∂X2

)
ϕ2(x, λ) = −λA1(x) +A2(x).
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A similar reasoning with (6.67) shows that

(6.69)

(
λ

∂

∂X2
+

∂

∂X1

)
ϕ1(x, λ) =

(
λ

∂

∂X2
+

∂

∂X1

)
ϕ2(x, λ) = −λA2(x) −A1(x).

We hence construct the 1-form A = A1dX
1 +A2dX

2 +A1dX
1 +A2dX

2 and we can

check that it has the desired properties:

– First A is real valued: for instance the relation involving ϕ2 in (6.68) implies

that A1 = − ∂

∂X1
(g − 1

2a0), whereas the relation involving ϕ1 in (6.69) implies

that A1 = − ∂
∂X1 (g + 1

2a0) and hence A1 = A1, since a0 is imaginary

– Second if we had choosed another value for g, say g + g̃, this would change A

into A− dg̃

– Lastly dA is ASD precisely because (6.68) and (6.69) mean that (P ∗A)′′ =

−d′′(ϕ1 ◦ P ) = −d′′(ϕ2 ◦ P ) and thus that (P ∗dA)(0,2) = 0.

6.6. The projective twistor space. — The reader certainly remarked that func-

tions used on T∗ were complex homogeneous of degree zero. Hence they can be

alternatively described by functions on open subsets of the complex projective space

PT := {[z1 : z2 : α : β]| (z1, z2, α, β) ∈ C4 \ {0} } ' PC3.

This space is called the projective twistor space (it is the projective version of the

twistor space T ' C4). By the canonical projection π : T −→ PT the image of the

cone T∗ is PT \ PC, where here PC = {[z1 : z2 : 0 : 0]}. And the map P induces

P : PT \ PC −→ H

[z1 : z2 : α : β] 7−→ (α+ βj)−1(z1 + z2j).

We remark also that this map can be extended to PT: we obtain

P : PT −→ PH

[z1 : z2 : α : β] 7−→ [z1 + z2j : α+ βj],

a map onto the projective quaternionic line PH ' S4, which is the compactification

of R4 ' H. Moreover τ induces an involution of PT without fixed points. It has

however fixed complex projective lines which are exactly the fibers of the fibration

PT −→ PH.

The homogeneous complex functions f1, f2, h on T∗ correspond to complex

functions on respectively U1 := {[z1 : z2 : α : 1]}, U2 := {[z1 : z2 : 1 : β]} and

U12 := U1 ∩ U2. So we can reformulate the previous result by saying that we have a

one to one correspondence between:

– 1-forms A on H such that dA is ASD, up to exact 1-forms, i.e., the cohomology

group corresponding to the sequence:

{functions on H} d−→{1-forms on H} d−→{ASD 2-forms on H}.
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– holomorphic functions h : U12 −→ C up to the addition of restrictions on U12

of holomorphic functions f1 : U1 −→ C and f2 : U2 −→ C (with the reality

condition h ◦ τ = −h).
The latter data can be reformulated in terms of sheaf theory. We do not go into

details and refer to [19] for an introduction to this topic and to [34] for more

details. Roughly the idea is to think the set of holomorphic functions on open

subsets of PT as a collection of commutative groups O|V , where V runs over all

possible open subsets of PT: each O|V is just the set of holomorphic functions,

called sections, on V . These groups are related together by restriction morphisms

ρV V ′ : O|V −→ O|V ′ (each time we have V ′ ⊂ V ) satisfying some natural axioms.

Hence we see that (ignoring reality conditions) the datas on PT consists in the quo-

tient

O|U12/ (ρU1U12 (O|U1) + ρU2U12 (O|U2)) .

One can then prove that this set is the Čech cohomology of sheaves group

H1(PT \ PC,O).

The previous construction admits generalizations if we replace the sheaf O by other

sheaves, namely the sheaves of sections of complex line bundles over PT. Interesting

examples of bundles over PT are the bundles Lm, for m ∈ Z: L0 is the trivial

bundle PT × C, L1 is the canonical bundle(19), for which the fiber at each point

[z1 : z2 : α : β] is the complex line in C4 spanned by (z1, z2, α, β), and for m ≥ 1, Lm

is the m-th tensorial product L ⊗ · · · ⊗ L; lastly for m < 0 L−m is the dual bundle

of Lm. The sheaf of holomorphic sections of Lm is denoted by O(−m) because its

sections can be identified with complex homogeneous functions on open cones in T

of degree −m. An example is for m = 2: then one can show that the cohomology

group H1(PT∗,O(−2)) corresponds to harmonic functions on H ' R4. This results

in the following representation formula: every harmonic function ϕ : H −→ C can be

written

ϕ(X1 +X2j) =

∫

S1

f(λX1 −X2, λX2 +X1, λ)dλ,

where f is holomorphic in the three variables (z1, z2, λ) ∈ C2 × C∗ and S1 is a path

around 0 in C∗. This formula was proved by H. Bateman in 1904 [6] (previously an

(19)The restriction of L on PT \ PC can be described as follows: PT \ PC is covered by the two

open subsets U1 (for which β 6= 0) and U1 (for which α 6= 0), with local charts ga : Ua −→ C3 (for

a = 1, 2) given by g1([z1 : z2 : α : β]) = ( z1

β
, z2

β
, α

β
) and g1([z1 : z2 : α : β]) = ( z1

α
, z2

α
, β

α
). On U1

we have the canonically defined section of L: σ1([z1 : z2 : α : β]) = ( z1

β
, z2

β
, α

β
, 1) ∈ C4 and on U2:

σ2([z1 : z2 : α : β]) = ( z1

α
, z2

α
, 1, β

α
) ∈ C4. These sections allows us to trivialize the inverse images by

the canonical fibration π : L −→ PT of U1 and U2 by Pga : π∗Ua −→ C3×C such that Pga([Z], Z) =

(ga(Z), Z/σa(Z)), where Z/σa(Z) is the complex number ka such that Z = kaσa(Z). Then on

Pg1(U12) we have the transition map ϕ = Pg2 ◦ Pg−1
1 given by ϕ((ζ1, ζ2, t), k) = (( ζ1

t
, ζ2

t
, 1

t
), tk).

For Lm the transition function becomes ϕ((ζ1, ζ2, t), k) = (( ζ1

t
, ζ2

t
, 1

t
), tmk).
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analogous formula in dimension 3 was obtained by E.T. Whitakker [35] in 1902) and

was rediscovered by R. Penrose [26] in 1969. Here f is not unique but represents a

unique cohomology class in H1(PT∗,O(−2)). Note that this formula may be proven

by hand by checking that it works for any harmonic homogeneous polynomial ϕ on

R4 by using some complex homogeneous function f .

All that is a part of a whole theory (named twistor theory) developped by R. Penrose

and its collaborators. An important geometrical construction is the Grassmannian

manifold M of complex projective lines in PT (or equivalentely of complex planes

in T): it is a 4-dimensional complex manifold which can be embedded in a natural

way in PC5 (Plücker embedding), its image being the Klein quadric. Now M is just

the complexification of S4 ' PH and the map P : PT −→ PH can be interpreted

in this context. But M is also the complexification of the compactification of the

Minkowski space-time and an analogous theory exists for relativistic equations. We

refer to [4], [19], [34] for more details.

6.7. Ward theorem. — The construction of a twistor function for 1-forms A on

R4 such that dA is ASD has a beautiful generalization for connections. Consider for

instance a complex Hermitian vector bundle E over H (or on an open ball of H).

By choosing a global section of E we can identify (trivialization) it with the product

H × Ck, where k is the dimension of the fiber and Ck has the standard Hermitian

metric (·, ·). A connection ∇ on this bundle is an object which allows us to make

sense of the derivative of a section ϕ of E with respect to some vector ξ ∈ TxH by

∇ξϕ = dξϕ+A(ξ)ϕ, where dξϕ = ξj ∂ϕ∂xj and A is a 1-form with coefficients in the Lie

algebra u(k) of U(k) (this then means that (∇ξϕ, ψ) + (ϕ,∇ξψ) = dξ(ϕ, ψ)). Basic

properties of connections follow:

– for any section ϕ of E, if ξ and ζ are commuting vector fields on H, i.e., if

[ξ, ζ] = 0, then

[∇ξ,∇ζ ] := ∇ξ (∇ζϕ) −∇ζ (∇ξϕ) = F∇(ξ, ζ)ϕ,

i.e., the right hand side is the product of the curvature F∇(ξ, ζ) by the value of

ϕ (in other words there are no derivatives of ϕ). The expression of the curvature

is

F∇(ξ, ζ) = dξ(A(ζ)) − dζ(A(ξ)) + [A(ξ), A(ζ)].

In particular F∇ is a 2-form with coefficients in u(k). If A =
∑4
µ=1 Aµdx

µ, then

F =
∑

1≤µ,ν≤4 Fµνdx
µ ∧ dxν with Fµν := ∂Aν

∂xµ − ∂Aµ

∂xν + [Aµ, Aν ].

– The curvature F∇ satisfies the Bianchi identity ∇F = 0, or equivalentely

∀µ, ν, λ, ∂Fνλ
∂xµ

+
∂Fµν
∂xλ

+
∂Fλµ
∂xν

+ [Aµ, Fνλ] + [Aλ, Fµν ] + [Aν , Fλµ] = 0,

which generalizes the identity ddϕ = 0 for forms.
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– if we had chosen another trivialization of the bundle E, then the connection ∇
would have another expression, still of the form ∇ = d+ Ãµ, but with

Ãµ = g−1Aµg + g−1dg,

where g is a smooth map into U(k) (a gauge transformation). However the

expression of the curvature in this trivialization is F̃µν = g−1Fµνg.

Now by using the Hermitian form 〈A,B〉 := tr(A†B) on u(k) we define the Yang–Mills

functional on the set of connections

YM[A] := −1

4

∫

H

|F∇|2d4x.

Critical points of YM satisfy the Yang–Mills equations

(6.70) ∇(∗F ) = 0 ⇐⇒ ∀µ,
4∑

ν=1

∂Fµν
∂xν

+ [Aν , Fµν ] = 0.

Note that these equations are in general non linear because of the commutator

[Aν , Fµν ], unless the group is Abelian, i.e., for U(1). In this case we precisely recover

the Maxwell equations. Also the Yang–Mills functional and its Euler–Lagrange

equations are invariant by gauge transformations.

We observe that if the curvature of ∇ is anti-self-dual, i.e., if ∗F = −F , then the

Bianchi identity immediately implies that ∇ is a solution of the Yang–Mills system

of equations. Hence a first order condition on ∇ (that F∇ is ASD) implies the second

order equation (6.70). Similarly connections with a self-dual curvature 2-form are also

Yang–Mills connections. We now have the following.

Theorem 5(R.S. Ward, [33]). — The gauge classes of connections on H (or on an

open ball in H) for the gauge group U(k) whose curvature is ASD are in one to one

correspondence with holomorphic complex vector bundles on PT \ PC (or in some

open subset of PT).

Remark 2. — The preceding statement is relatively vague, but we shall precise it at

the end of the proof. Also the result holds for connections on S4 ' PH: this case is

more interesting than in the linear case because there are nontrivial ASD Yang–Mills

fields on S4, called instantons, see [4] (whereas there are no nontrivial ASD Maxwell

fields on S4).

Sketch of the proof. — The idea of the proof is very similar to the preceding construc-

tion for 1-forms with an ASD differential. Let ∇ = d+ A be a connection such that

F∇ is ASD. Consider the pull-back P ∗∇ of ∇ by P : T∗ −→ H which acts on the pull-

back bundle P ∗E. Then the curvature of P ∗∇ is P ∗F∇, so it satisfies (P ∗F∇)′′ = 0.

This implies that the over-determined system

(6.71) (P ∗∇)′′f = d′′f + (P ∗A)′′f = 0
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has nontrivial solutions. This step is however harder than in the linear case: we may

either assume that the connection is analytic and use a result of A. Weil, as in [33], or

use the Newlander–Nirenberg theorem [25] valid locally for C2n connections forms(20),

and then glue together the local solutions by using results in [16] or [5] as in [5].

Hence on U1 and U2, which are respectively the images by the canonical fibration

π : T −→ PT of the hyperplanes H1 and H2, we can construct respectively the maps

f1 and f2 into GL(k,C), which are solutions of (6.71). We can moreover impose

the reality condition that f2 =
(
(f1 ◦ τ)†

)−1
. Then h := (f2)

−1f1 is holomorphic on

U12 = U1 ∩ U2: denoting A ' P ∗A,

d′′h = −(f2)
−1(d′′f2)(f2)

−1f1 + (f2)
−1(d′′f1) = (f2)

−1Af1 − (f2)
−1Af1 = 0.

So we obtain holomorphic datas, a twistor function. Again f1 and f2 (and hence h)

are not uniquely defined but only up to right multiplication by holomorphic maps on

respectively U1 and U2 into GL(k,C). (And the reality condition writes (h◦ τ)† = h.)

So the right interpretation is that h is a transition function defining a holomorphic

rank k complex vector bundle over PT \ PC. But because of the definition h :=

(f2)
−1f1 the restriction of this bundle on any complex projective line of the type

P−1(x), for x ∈ H, is trivial.

We can also represent f1 and f2 as respectively functions ϕ1 and ϕ2 of x ∈ H and

of λ ∈ PC by setting ϕa ◦Q = fa. Then relation (6.71) reads




(
λ

∂

∂X1
− ∂

∂X2

)
ϕa + (λA1 −A2)ϕa = 0

(
λ

∂

∂X2
+

∂

∂X1

)
ϕa + (λA2 +A1)ϕa = 0

∂ϕa

∂λ
= 0.

and ϕ1 and ϕ2 have the same expansions in powers of λ as before: ϕ1 involves non-

negative powers of λ whereas ϕ2 involves nonpositive powers of λ.

The construction of A starting from the twistor function h follows also the same

lines as for the linear case. We define ψ such that ψ ◦ Q = h, then we obtain that

ψ satisfies equation (6.65). Now in order to deduce ϕ1 and ϕ2 from ψ we need a

more sophisticated argument than just a Fourier splitting, namely the solution of the

following Riemann–Hilbert problem: for each fixed x ∈ H, find [λ 7→ ϕ1(x, λ)] ∈
L+GL(k,C) and [λ 7→ ϕ2(x, λ)] ∈ L−GL(k,C) such that

ψ(x, λ) = ϕ2(x, λ)
−1ϕ1(x, λ).

The fact that this problem has a solution precisely means that the restriction

of the holomorphic bundle to P−1(x) is trivial. This implies in particular that

(20)Here n = dimPT = 3.
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dψ = (ϕ2)
−1
(
−dϕ2(ϕ2)

−1 + dϕ1(ϕ1)
−1
)
ϕ1. Hence by substituting this identity in

(6.65) we obtain

(6.72)

[(
λ

∂

∂X1
− ∂

∂X2

)
ϕ1

]
(ϕ1)

−1 =

[(
λ

∂

∂X1
− ∂

∂X2

)
ϕ2

]
(ϕ2)

−1,

(6.73)

[(
λ

∂

∂X2
+

∂

∂X1

)
ϕ1

]
(ϕ1)

−1 =

[(
λ

∂

∂X2
+

∂

∂X1

)
ϕ2

]
(ϕ2)

−1.

A similar reasoning as for the linear case then allows us to reconstruct the connection

by identifying both sides of (6.72) with −λA1 + A2 and both sides of (6.73) with

−λA2−A1. Again the ambiguity in the Riemann–Hilbert decomposition corresponds

to gauge invariance, the reality conditions ensures us that A is a u(k)-valued 1-form

and the ASD condition on the curvature of d+A follows by the construction.

So we can now complete the statement of Theorem 5: a complex vector bundle

which corresponds to a connection with an ASD curvature has the further properties

that its restriction to any projective line of the form P−1(x), where x ∈ H, is trivial

and that the transition function h satisfies the reality condition h = (h ◦ τ)†.
As a conclusion note that anti-self-dual connections can be considered on the 4-

dimensional Minkowski space (i.e., R4 with a metric of signature + − −−) and on

the ultrahyperbolic space (i.e., R4 with a metric of signature + + −−). Real ASD

connections exist on the Euclidean and the ultrahyperbolic spaces whereas ASD con-

nections on the Minkowski space must be complex. This is due to the fact that the

Hodge operator has eigenvalues ±1 on the Euclidean and the ultrahyperbolic spaces,

whereas its eigenvalues are ±i on the Minkowski space. Moreover given a subgroup

H of the conformal group acting on the space, one can look at ASD connections

which are invariant under the action of this subgroup. If the quotient space R4/H

is a submanifold (which is the case if, for instance, H is composed of translations)

the coefficients of the connection descend to fields on R4/H which, in good cases,

are solutions of some interesting completely integrable system. This process, called

a reduction, was studied extensively by L. Mason and N. Woodhouse [22]. On the

ultrahyperbolic space and if H is a 2-dimensional group spanned by two commuting

translation vector fields X and Y , it gives particularly interesting examples whose

nature depends on the signature of the metric on the plane spanned by (X,Y ). If this

signature is ++, then one recovers 2-dimensional harmonic maps to a Lie group, if

however this metric is degenerate of rank 1, then one can obtain the KdV equation or

the non-linear Schrödinger equation by setting the gauge group of the ASD connection

to be SL(2,C) (and also by choosing a suitable gauge).
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