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Abstract. Transient phenomena in quantum mechanics have been of interest to one of the
authors (MM) since long ago and, in this paper, we focus on the problem of a potential V−
which for negative times gives rise to bound states and is suddenly changed at t = 0 to
a potential V+ which includes V− plus a perturbed term. An example will be the deuteron
(where the proton and neutron are assumed to interact through an oscillator potential)
submitted to a sudden electrostatic field. The analysis for t > 0 can be carried out with the
help of appropriate Feynmann propagators and we arrive at the result that the separation
between the nucleons has an amplitude that depends on the intensity of the electrostatic
field, but its period continues to be related with the inverse of the frequency of the oscillator
proposed for the interaction. A general approximate procedure for arbitrary problems of
this type is also presented at the end.
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1 Introduction

The word “Transient” will mean for us here that the expectation values of measurable observable
or transition probabilities in quantum mechanics will be time dependent, in contrast with the
“stationary” case in which they are not. From the very origin of quantum mechanics, in the
ninety twenties, these transient phenomena could be discussed through the time dependent
versions of the equations of motion in the Heisenberg or Schrödinger picture.

The most natural way of discussing the transient phenomena is through the version of quan-
tum mechanics that Feynman [1] proposed in the ninety forties. For him the fundamental
concept was a propagator, also sometimes called Feynmans kernel, that relates an initial state
characterized by the wave function ψ(x′, t′) (where x′ is a notation for all the coordinates of the
system and t′ its time) with the final state ψ(x, t) with t > t′. This propagator was denoted by
K(x, t;x′, t′) and Feynman gives a procedure to calculate it starting from a Lagrangian formu-
lation (in terms of generalized coordinates and velocities) of the classical problem and summing
all paths suggested by the action principle between x′ and x. If the classical Lagrangian, is not
explicitly dependent on time, the propagator only depends on the difference of the times i.e.
t− t′ so, without loss of generality, we could take t′ = 0 and write

K(x, t;x′, 0) ≡ K(x, t;x′), ψ(x′, 0) ≡ ψ(x′)
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so that we have

ψ(x, t) =
∫
K(x, t,x′)ψ(x′)dx′ (1)

which implies that the propagator K(x, t,x′) satisfies a time dependent Schrödinger equation
with the initial condition

K(x, 0;x′) = δ(x− x′).

The use of the propagator concept has been enhanced by the appearance a few years ago
of a “Handbook of Feynman Path Integrals” [2], and the power of the concept, in the case of
a one dimensional free particle, is illustrated in the Appendix for a compact derivation of the
problem of “Diffraction in time”, which one of the authors (MM) [3] analyzed long ago by other
methods.

The general type of problems that we wish to discuss here is that of the potential V−(x)
which for negative times t < 0 is one that admits bound states and that at t = 0 is suddenly
changed to a potential V+(x) that contains V−(x) plus some type of external interaction given
by V+(x)−V−(x). If our vector x is given in cartesian coordinates the kinetic energy is a sum of
terms (msẋ

2
qs) where q = 1, . . . ,m is the index for the dimension m of our single particle vector

space and s = 1, . . . , n the index for the number of particles. Thus our classical Lagrangian is
well defined and we can look through the tables of reference [2] to see whether the propagator
is available. We thus proceed to analyze the following problem.

2 The deuteron subjected to a sudden electrostatic field

The first physical problem that came to our attention along the lines of the last paragraph of the
previous section, was the hydrogen atom in a sudden constant electrostatic field. Unfortunately
the propagator for the Coulomb problem alone is already quite complicated, and more so if
a linear electrostatic potential is added.

We thus wanted to focus on problems in which the propagator can be fully and simply
determined, and that led us to Lagrangians that are quadratic in the coordinate and velocities
variables, of which there is an extensive list of propagators in reference [2].

Why are quadratic Lagrangian (which imply also quadratic Hamiltonians in the coordinate
and momentum variables) give propagators of the Gaussian type [2]? One answer is given
in a paper by one of the authors (MM) and C. Quesne [4]. The time evolution associated
with a classical Lagrangian is given by a canonical transformation which conserves a symplectic
metric. For quadratic Lagrangians or Hamiltonian this canonical transformation is linear and
it provides the dynamical group of the problem. To translate it to quantum mechanics we have
to take its unitary representation and this gives a Gaussian propagator [4]. An example of this
problem is the Lagrangian or Hamiltonian of the harmonic oscillator.

Thus we were led to the deuteron which we can consider, as is usually done in nuclear physics,
as a system of neutron and proton, of essentially the same mass m and interacting through an
harmonic oscillator potential of frequency ω.

With units in which ~ = m = c = 1 (c being the velocity of light so that everything will be
dimensionless) and if we apply suddenly at t = 0 an electrostatic field, in the direction z, acting
solely on the proton, the Lagrangian will be

L =
1
2
(
ṙ1 + ṙ2

2

)
− 1

2
ω2(r1 − r2)2 − Ez1,

where the indexes 1 and 2 will correspond respectively to the proton and neutron and E is in
our units the intensity of a linear potential between the plates of a condenser multiplied by the
charge of the proton.
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We proceed now to consider an orthogonal transformation leading essentially to relative and
center of mass coordinates

r =
1√
2
(r1 − r2), R =

1√
2
(r1 + r2)

which transforms L to

L =
(

1
2
ṙ2 − 1

2
ω2r2 − E√

2
z

)
+

(
1
2
Ṙ

2 − E√
2
Z

)
, (2)

where the components of the vectors r and R are indicated respectively as

r = ix+ jy + kz, R = iX + jY + kZ

with i, j, k being unit vectors in the directions indicated.
If a Lagrangian can be expressed as a sum of two terms depending on different observables

the propagator is given by the product of the propagators associated with these two terms.
Furthermore, as the squares of the vectors r, Ṙ are given by

r2 = x2 + y2 + z2, Ṙ2 = Ẋ2 + Ẏ 2 + Ż2

it is convenient to express our problem in cartesian coordinates where the Lagrangian (2) be-
comes

L =
[
1
2
(
ẋ2 − ω2x2

)
+

1
2
(
ẏ2 − ω2y2

)
+

1
2
(
ż2 − ω2z2 −

√
2Ez

)]
+

[
1
2
Ẋ2 +

1
2
Ẏ 2 +

1
2
(
Ż2 −

√
2EZ

)]
. (3)

Thus, from the observation at the beginning of the previous paragraph, the propagator as-
sociated with L will be the product of the one dimensional propagators associated with the six
terms appearing in (3). For 1

2(ẋ2−ω2x2) the propagator is given in [2, p. 178, formula (6.2.33)]
as [ ω

2πi sinωt

] 1
2 exp

{
− ω

2i

[(
x2 + x′2

)
cotωt− 2xx′

sinωt

]}
. (4)

For 1
2(ẏ2 − ω2y2) the propagator is again of the form (4) but x, x′ replaced by y, y′. For

1
2(ż2 − ω2z2 −

√
2Ez) we complete the square introducing the variable z̄ by

z̄ = z +
(
E/
√

2ω2
)

(5)

and thus the one dimensional Lagrangian becomes

1
2
(
˙̄z2 − ω2z̄2

)
+

E2

4ω2
(6)

as ˙̄z = ż. Furthermore for the constant term (E2/4ω2) we can apply the relation between
propagators and Green functions of the time dependent Schrödinger equation, mentioned in p. 2
of reference [2], to see that it contributes the phase term exp[−i(E2/4ω2)t] while the remainder
in (6) is just the one-dimensional Lagrangian of the oscillator for the propagator of which we
can use equation (4) replacing x, x′ by z̄, z̄′. It is convenient to express the propagator involving
the relative coordinates in terms of only barred variables if we add the definitions

x̄ = x, ȳ = y
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as in these coordinates we have only the oscillator potential for x and y. With the definitions

r̄2 = x̄2 + ȳ2 + z̄2, r̄ = ix̄+ jȳ + kz̄

and the previous discussion concerning the phase factor associated with (E2/4ω2) we obtain then
that the part of the propagator related to the relative coordinate r̄ becomes

exp
[
−i

(
E2/4ω2

)
t
] [ ω

2πi sinωt

]3/2
exp

{
− ω

2i

[(
r̄2 + r̄′2

)
cotωt− 2r̄ · r̄′

sinωt

]}
. (7)

Turning now to the expression (3) with capital letters we start with 1
2Ẋ

2 which from refe-
rence [2, p. 174, formula (6.2.10)] becomes

1

(2πit)
1
2

exp
[
i

2t
(X −X ′)2

]
. (8)

For 1
2 Ẏ

2 it is the same formula (8) but with X, X ′ replaced by Y , Y ′. For (1
2 Ż

2 − E√
2
Z) we

use reference [2, p. 175, formula (6.2.18)] to get

1

(2πit)
1
2

exp
{
i

[
(Z − Z ′)2

2t
− Et

2
√

2
(Z + Z ′)− E2t3

48

]}
. (9)

Multiplying (8), the corresponding expression for Y , Y ′, and (9) we get for the center of mass
part of the Lagrangian the expression

1
(2πit)3/2

exp
{
i

[
(R−R′)2

2t
− Et

2
√

2
(Z + Z ′)− E2t3

48

]}
. (10)

Now the full propagator associated with the Lagrangian (3) will be the product of (7) and (10).
For a deuteron at t > 0 the ground state is

A exp
(
−1

2
ωr2

)
exp(iK ·R), (11)

where A is the normalization of the Gaussian term given by

A = (ω/π)3/4.

If we want to know these wave function at time t we have to apply the propagator associated
to (3) to the initial state (11) which we proceed to do in the next section.

3 The wave function for the deuteron at t > 0
in a suddenly applied electrostatic field

As we have obtained now the propagator (7), (10) associated with the Lagrangian (3), we can
apply it to the state (11) to get through equation (1) the state at a given time t > 0.

The calculation involves integrals of exponentials of quadratic expressions in the variables r̄′

and R′ which can be carried out by completing squares in the exponents. We will calculate
explicitly one example and then give the final result for ψ(r,R, t) when t > 0.

Remembering that for the x component of the relative vector r we have the propagator (4),
when we apply it to the part of the initial wave function exp(−1

2ωx
2) of (11) we have to evaluate

the integral∫ ∞

−∞
A1/3

( ω

2πi sinωt

)1/2
exp

{
iω

2
[(
x2 + x′2

)
cotωt− 2xx′(sinωt)−1

]}
e−

1
2
ωx′2

dx′

= A1/3
( ω

2πi sinωt

) 1
2 exp

(
iω

2
x2 cotωt

) ∫ ∞

−∞
e−βx′2+αx′

dx′, (12)
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where

β =
ω

2
(1− i cotωt), α = −ixω(sinωt)−1 (13)

and the real part of β is positive. From reference [5] we have that∫ ∞

−∞
exp

(
− βx′2 + αx′

)
dx′ = (π/β)

1
2 exp

(
α2/4β

)
(14)

and from (13) we obtain

β =
ω

2i
(sinωt)−1 exp(iωt),

α2

4β
= i

ω

2
x2 cotωt− 1

2
ωx2

so that replacing in (14) and then in (12) we obtain

A1/3 exp
(
−1

2
ωx2

)
exp

(
− iωt

2

)
(15)

which, as we should expect is, in our units, the phase term associated with the energy (ω/2) of
the ground state of the oscillator.

The same result holds for the y variable and both x, y can be replaced by x̄, ȳ, as the
electrostatic potential is applied only in the z direction.

For the case when our initial wave function is A1/3 exp(−ωz2/2), it is best to replace in it z
by [z̄− (E/

√
2ω2)], as indicated in (5), and use for the variable z̄ the propagator of the oscillator

to which only a time dependent phase factor is multiplied as discussed after equation (6).
With transition to the center of mass coordinates of the deuteron, denoted by capital let-

ters, the propagator is just that of the free particle when we have X, Y so applying it to the
corresponding part of the plane wave exp(iKX), exp(iKyY ) they will only give the phase factor

exp(iKxX) exp
(
− iK2

xt/2
)
, exp(iKyY ) exp

(
− iK2

y t/2
)
.

For the Z center of mass coordinate we have to apply to exp(iKzZ) the propagator (9) and the
evaluation of the integral again follows procedures similar to those indicated in equations (12)
to (15).

Combining then all our results we can say that for t > 0 our wave function ψ(r,R, t) will
become

ψ(r,R, t) = A
(
e−

1
2
mωr2

e−i3/2ωt
)

exp
[
i

(
K ·R− 1

2
K2t

)]
exp

(
− iE

2t

4ω2

)
× exp

{
E√
2ω

(e−iωt − 1)z +
E2

2ω3

[
e−iωt − 1

2
(1 + cos2 ωt)

]
+
i sin 2ωt

4

}
× exp

{
−i

[
Et3

12
+Kz

Et2

2
√

2
− ZEt√

2

]}
. (16)

4 The probability density for the deuteron
in a suddenly applied electrostatic field

If we turn to the “Diffraction in time” problem discussed in the Appendix, we note that to get
information on its time dependent behavior we need not the wave function but its absolute value
squared i.e. the probability density. Once we have this we can discuss the behavior in time with
the help of the Cornu spiral [3]. This of course is a general procedure in quantum mechanics
and thus starting from the wave function in (16) we need to write down |ψ(r,R, t)|2.
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We see immediately that all part associated with the center of mass coordinates, i.e. capital
X, Y , Z, disappears, as it would also disappear for the wave function at time t = 0 given by (11).

For the relative coordinates we have to keep in the exponent of (16) only the terms that are
real multiplied by 2, so we get

|ψ(r,R, t)|2 = A2 exp
{
−ωr2 − 2E√

2ω
(1− cosωt)− E2

2ω3

[
− 2 cosωt+

(
1 + cos2 ωt

)]}
= A2 exp

[
− ω

(
x2+ y2

)]
exp

{
−ω

[
z2+

2E√
2ω

(1− cosωt)z +
E2

2ω4
(1− cosωt)2

]}
= A2 exp

[
− ω

(
x2 + y2

)]
exp

{
−ω

[
z +

E√
2ω

(1− cosωt)
]2

}

= A2 exp
[
− ω

(
x2 + y2

)]
exp

−ω

[
z +

√
2E
ω

sin2(ωt/2)

]2
 ,

where used a trigonometric relation for the last expression.
We have thus a very simple transient behavior that depends only on the relative coordinates

and in which x, y have the standard Gaussian behavior of range ω−1/2 in our units, while z
oscillates around this range with an amplitude (

√
2E/ω2) sin2(ωt/2). The period of oscillation

is

(ωT/2) = π or T = (2π/ω)

while the amplitude is (
√

2E/ω2).
Note that coordinates of proton and neutron, in the direction of the electrostatic field, are

given respectively by

z1 =
1√
2
(Z + z), z2 =

1√
2
(Z − z)

so if we take our origin at the position of the center of mass, the distance between proton and
neutron goes as

√
2z and thus the deuteron is vibrating with an amplitude proportional to

(2E/ω2) sin2(ωt/2) and it could radiate for strong electrostatic fields.
Clearly for very strong electrostatic fields the deuteron could desintegrate and this information

can be obtained also from the discussion of the classical version of the problem.
The information available for propagators in reference [2] would allow us to discuss also the

problem of a time dependent electrostatic field which reflect more the physical situation. The
formulas we could use (6.2.42) is in p. 180 of reference [2].

For a constant electromagnetic field given by a vector potential A we could use formula
(6.2.17) of p. 175 of reference [2].

In general Feynman procedure gives a powerful tool for analyzing transient phenomena when
external fields are applied to bound systems.

5 General procedure for dealing with transient phenomena
caused by a sudden perturbation

While the propagator K(x, t;x′) is very useful for the discussion of transient phenomena, it is
not usually available for the general potential V+(x). It is thus useful to develop an approximate
procedure that is always available.
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Denoting for H± the Hamiltonians associated with the potential V± we have that

H− = T + V−, H+ = T + V+ = H− + (V+ − V−)

where T is the kinetic energy.
We shall assume that H− has only a discrete spectrum. In the case it also has a continuous

spectrum we can reduce it to the previous case by inserting the whole system into a box. We
shall denote the energies and eigenfunctions of H− as

H−φn = Enφn,

where

E0 ≤ E1 ≤ E2 ≤ · · · ≤ En−1 ≤ En ≤ En+1 · · · .

For H+ we are in search of a solution ψ(x, t) of the time dependent equation (in c.g.s. units)

i~
∂ψ

∂t
= H+ψ = [H− + (V+ − V−)]ψ (17)

with the initial value

ψ(x, 0) = φν(x),

where ν is some integer.
We define the Laplace transform of ψ(x, t) by

ψ̄(x, s) =
∫ ∞

0
e−stψ(x, t)dt.

Applying the transform to equation (17) we get

i~
∫ ∞

0
e−st∂ψ

∂t
dt = i~

∫ ∞

0

∂

∂t
(e−stψ(x, t))dt+ i~sψ̄(x, s)

= −i~ψ(x, 0) + i~sψ̄(x, s) = [H− + (V+ − V−)]ψ̄(x, s). (18)

Now the eigenstates φn of H− are a complete orthonormal set so we can make the expansion

ψ̄(x, s) =
∞∑

n=0

an(s)φn(x)

so that equation (18) becomes

−i~φν(x) + i~s
∑

n

an(s)φn(x) = [H− + (V+ − V−)]
∑

n

an(s)φn(x).

Multiplying by ψ∗n′(x) and integrating over the variables x we get

−i~δn′ν + i~san′(s) = En′an′(s) +
∑

n

〈n′|V+ − V−|n〉an(s), (19)

where

〈n′|V+ − V−|n〉 =
∫
φ∗n′(x)[V+(x)− V−(x)]φn(x)dx.
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The equation (19) corresponds to an infinite set of linear algebraic equations for the coef-
ficients an(s). We can solve them with the usual assumption that after a given index N all
coefficients vanish, and then we get the an(s) for n = 0, 1, . . . , N from which we can write the
ψ̄(x, s) as

ψ̄(x, s) =
N∑

n=0

an(s)φn(x).

We want though to determine ψ(x, t) for which we need the reciprocal of the Laplace trans-
form

ψ(x, t) =
1

2πi

∫ c+i∞

c−i∞
ψ̄(x, s)estds =

1
2π~

∫ ∞+i~c

−∞+i~c
exp(−iEt/~)ψ̄(x,−iE/~)dE,

where we replace the variable s by

s = −i(E/~)

with E being integrated along a line above all poles of the function ψ̄(x,−iE~−1). Note that
the contour can be completed with a circle from below and get essentially the residues at values
of E given by the homogeneous set of linear equations

(E − En′)an′ =
∑

n

〈n′|V+ − V−|n〉an

or

Ean′ =
∑

n

〈n′|H+|n〉an

which essentially give us the energies associated with the levels of the Hamiltonian H+.

A Diffraction in time

Units

~ = m = c = 1,

u(l) = (~/mc), u(t) = (~/mc2), u(m) = m.

Free particle propagator

K(x, t;x′, 0) = (2πit)−
1
2 exp

[
(i/2t)(x− x′)2

]
.

The integral for diffraction in time is

M(x, k, t) =
∫ 0

−∞
K(x, t;x′, 0) exp(ikx′)dx′,

= (2πit)−
1
2 exp

{
i

(
kx− 1

2
k2t

)} ∫ 0

−∞
exp

{
i

2t
[x′ + (kt− x)]2

}
dx′,

where the last expression comes from completing the square for x′.
We introduce the variable u by the definition

(π/2)
1
2u = (2t)−

1
2 [x′ + (kt− x)]
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from which it follows that for x′ = 0, we have u = u0

u0 = (πt)−
1
2 (kt− x),

√
π/2du = (2t)−

1
2dx

and thus M(x, k, t) becomes

M(x, k, t) = e−iπ/4 exp
[
i

(
kx− 1

2
k2t

)] [∫ 0

−∞
exp(iπu2/2)du+

∫ u0

0
exp(iπu2/2)du

]
.

But we have [5]∫ 0

−∞
exp(iπu2/2)du =

(1 + i)
2

,

∫ u0

0
exp(iπu2/2)du = C(u0) + iS(u0)

with the definition of Fresnel integrals

C(u0) =
∫ u0

0
cos(πu2/2)du, S(u0) =

∫ u0

0
sin(πu2/2)du,

M(x, k, t) = e−iπ/4 exp
[
i

(
kx− 1

2
k2t

)] {[
1
2

+ C(u0)
]

+ i

[
1
2

+ S(u0)
]}

and

|M(x, k, t)|2 =

{[
1
2

+ C(u0)
]2

+
[
1
2

+ S(u0)
]2

}
(20)

for which the Cornu spiral can be used to show the difference between the quantum behavior
given by (20) and the classical one in which the probability density is 1 in the interval∞ ≤ x ≤ vt
and 0 for vt ≤ x ≤ ∞ [3].
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