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Abstract. The complex WKB–Maslov method is used to consider an approach to the
semiclassical integrability of the multidimensional Gross–Pitaevskii equation with an ex-
ternal field and nonlocal nonlinearity previously developed by the authors. Although the
WKB–Maslov method is approximate in essence, it leads to exact solution of the Gross–
Pitaevskii equation with an external and a nonlocal quadratic potential. For this equation,
an exact solution of the Cauchy problem is constructed in the class of trajectory concen-
trated functions. A nonlinear evolution operator is found in explicit form and symmetry
operators (mapping a solution of the equation into another solution) are obtained for the
equation under consideration. General constructions are illustrated by examples.
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1 Introduction

Experimental advances in the realization of Bose–Einstein condensation (BEC) in weakly inter-
acting alkali-metal atomic gases [1] have generated great interest in the theoretical study of the
BEC. Its states and evolution are described using the Gross–Pitaevskii equation (GPE) [2, 3] for
the wave function Ψ(~x, t) of the condensate confined by external field with potential Vext(~x, t)
at zero temperature:(

−i~∂t +
~̂p 2

2m
+ Vext(~x, t) + κ|Ψ(~x, t)|2

)
Ψ(~x, t) = 0. (1)

Here ~x ∈ Rn
x, ~̂p = −i~∂/∂~x, t ∈ R1, ∂t = ∂/∂t, |Ψ|2 = Ψ∗Ψ, Ψ∗ is complex conjugate to Ψ, κ is

a real nonlinearity parameter, |Ψ(~x, t)|2 is the condensate density, and N [Ψ] =
∫

Rn |Ψ(~x, t)|2d~x
is the number of condensate particles. Following quantum mechanics, we refer to the solutions
of the GPE as states.

Equation (1) is of nonlinear Schrödinger equation type with the local cubic nonlinearity
κ|Ψ(~x, t)|2 representing the boson interaction in the mean field approximation. Besides the
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BEC, equation (1) describes a wide spectrum of nonlinear phenomena such as instability of water
waves, nonlinear modulation of collisionless plasma waves, optical pulse propagation in nonlinear
media and others. In all these cases, space localized soliton-like solutions are of principal interest.
However, the wave packets described by equation (1) with Vext = 0 in multidimensional space
(n > 1) with focusing nonlinearity (κ < 0) are known to collapse, i.e. the situation where the
wave amplitude increases extremely and becomes singular within a finite time or propagation
distance (see, for example, [4] for reviews). To eliminate the collapse, which is considered as an
artifact of the theory, one has to consider some effects that would render collapse impossible.
The nonlocal form of nonlinearity is significant since it can, basically, eliminate collapse in
all physical dimensions (n = 2, 3) [5]. Meanwhile, in the derivation of the GPE (1), a nonlocal
nonlinearity term

∫
Rn V (~x, ~x′) |Ψ(~x′, t)|2d~x′ Ψ(~x, t) arises, and it is reduced to κ|Ψ(~x, t)|2Ψ(~x, t),

κ =
∫
V (~x)d~x if the potential V (~x, ~x′) = V (~x− ~x′) is short-range [2].

In view of this consideration, of fundamental interest is the study of both the properties
and the localized solutions of the nonlocal Gross–Pitaevskii equation. The integrability of the
GPE is a nontrivial problem. In the one-dimensional case (n = 1) with Vext = 0, equation (1)
(called the nonlinear Schrödinger equation (NLSE)) is known to be exactly integrable by the
Inverse Scattering Transform (IST) method [6, 7]. This is the only IST integrable case since
with Vext 6= 0 the IST fails even in the one-dimensional case. The same is true for both the
nonlocal GPE in all dimensions and the local GPE (1) in a multidimensional case (n > 1).
Direct application of symmetry analysis [8, 9, 10, 11, 12] to the nonlocal GPE is also hampered
by presence of the nonlocal term and external potential in the equation.

In [13, 14, 15, 16] a semiclassical integrability approach was developed for a generalized
nonlocal GPE named there a Hartree type equation:{

− i~∂t + Ĥκ(t)
}
Ψ(~x, t) =

{
− i~∂t + Ĥ(t) + κV̂ (t,Ψ(t))

}
Ψ(~x, t) = 0, (2)

Ψ(~x, t) ∈ L2(Rn
x), V̂ (t,Ψ(t)) =

∫
Rn

d~yΨ∗(~y, t)V (ẑ, ŵ, t)Ψ(~y, t). (3)

Here the linear operators Ĥ(t) = H(ẑ, t) and V (ẑ, ŵ, t) are Weyl-ordered functions [17] of time t
and of noncommuting operators

ẑ = (~̂p, ~x) = (−i~∂/∂~x, ~x), ŵ = (−i~∂/∂~y, ~y), ~x, ~y ∈ Rn,

with commutators

[ẑk, ẑj ]− = [ŵk, ŵj ]− = i~Jkj , [ẑk, ŵj ]− = 0, k, j = 1, 2n, (4)

J = ‖Jkj‖2n×2n is a identity symplectic matrix J =
(

0 −I
I 0

)
2n×2n

, I = In×n is an identity

(n× n)-matrix. This approach is based on the WKB–Maslov complex germ theory [18, 19] and
gives a formal solution of the Cauchy problem, asymptotic in formal small parameter ~ (~ → 0)
accurate to O

(
~N/2

)
, whereN is any natural number. The Cauchy problem was considered in the

Pt~ class of trajectory concentrated functions (TCFs) introduced in [13, 14]. Being approximate
one in essence, the semiclassical approach results in some cases in exact solutions.

In the present work we construct an exact solution of the Cauchy problem in the Pt~ class for
equation (2) with the linear operators H(ẑ, t) and V (ẑ, ŵ, t) being quadratic in ẑ, ŵ:

H(ẑ, t) =
1
2
〈ẑ,Hzz(t)ẑ〉+ 〈Hz(t), ẑ〉, (5)

V (ẑ, ŵ, t) =
1
2
〈ẑ,Wzz(t)ẑ〉+ 〈ẑ,Wzw(t)ŵ〉+

1
2
〈ŵ,Www(t)ŵ〉. (6)
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Here, Hzz(t), Wzz(t), Wzw(t), Www(t) are 2n × 2n matrices, Hz(t) is a 2n-vector; 〈·, ·〉 is an

Euclidean scalar product of vectors: 〈~p, ~x〉 =
n∑
j=1

pjxj ; ~p, ~x ∈ Rn, 〈z, w〉 =
2n∑
j=1

zjwj , z, w ∈ R2n.

By solving the Cauchy problem, we obtain a nonlinear evolution operator in explicit form.
With the evolution operator obtained, we formulate a nonlinear superposition principle for the
solutions of the nonlocal GPE in the class of TCFs. Also, we give symmetry operators in general
form that map each solution of the GPE into another solution. The general constructions are
illustrated by examples.

2 Cauchy problem

Here we give a brief account of the solution of the Cauchy problem for equations (2), (3), (5),
and (6), following [13, 14, 15].

The class of trajectory concentrated functions

To set the Cauchy problem for equations (2), (3), (5), and (6), following [13, 14, 15], we define
a class of functions Pt~ via its generic element Φ(~x, t, ~):

Pt~ =
{

Φ : Φ(~x, t, ~) = ϕ

(
∆~x√

~
, t, ~

)
exp

[
i

~
(S(t, ~) + 〈~P (t, ~),∆~x〉)

]}
. (7)

Here, the function ϕ(~ξ, t, ~) belongs to the Schwartz space S(Rn) with respect to ~ξ ∈ Rn,
smoothly depends on t, and is regular in

√
~ for ~ → 0, ∆~x = ~x − ~X(t, ~). The real function

S(t, ~) and the 2n-dimensional vector function Z(t, ~) = (~P (t, ~), ~X(t, ~)) define the Pt~ class,
regularly depend on

√
~ in the neighborhood of ~ = 0, and are to be determined. The functions

of the Pt~ class are normalizable with respect to the norm ‖Φ(t)‖2 = 〈Φ(t)|Φ(t)〉, where

〈Ψ(t)|Φ(t)〉 =
∫

Rn

d~xΨ∗(~x, t, ~)Φ(~x, t, ~) (8)

is a scalar product in the space L2(Rn
x). At any time t ∈ R1 the function Φ(~x, t, ~) ∈ Pt~ is

localized in the limit ~ → 0 in the neighborhood of a point of the phase curve z = Z(t, 0). For
this reason we call Pt~ the class of trajectory concentrated functions.

For t = 0 the Pt~ class transforms to the P0
~ class of functions

ψ(~x, ~) = exp
{
i

~
[S(0, ~) + 〈~P0(~), (~x− ~X0(~))〉]

}
ϕ0

(
~x− ~X0(~)√

~
, ~

)
,

ϕ0(~ξ, ~) ∈ S(Rn
ξ ), (9)

where Z0(~) = (~P0(~), ~X0(~)) is a point of the phase space R2n
px, and the constant S0(~) can be

omitted without loss of generality. The Cauchy problem is formulated for equations (2), (3),
(5), and (6) in the Pt~ class of trajectory concentrated functions as

Ψ(~x, t, ~)|t=0 = ψ(~x, ~), ψ ∈ P0
~ . (10)

Hamilton–Ehrenfest system

To solve the Cauchy problem (2), (3), (5), (6), and (10), we first obtain the Hamilton–Ehrenfest
system (HES) of equations in the moments of the solution Ψ(~x, t, ~) ∈ Pt~ of equation (2).
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The operators H(ẑ, t), equation (5), and V (ẑ, ŵ, t), equation (6), are self-adjoint, respectively,
to the scalar product (8) and to scalar product

〈Ψ(t)|Φ(t)〉R2n =
∫

R2n

d~xd~yΨ∗(~x, ~y, t, ~)Φ(~x, ~y, t, ~)

in the space L2(R2n
xy).

Define the mean value 〈Â〉 for a linear operator Â(t) = A(ẑ, t) and a state Ψ(~x, t, ~) as

〈Â〉 =
1

‖Ψ(t)‖2
〈Ψ(t)|Â|Ψ(t)〉 = AΨ(t, ~). (11)

From (2), (3) we have

d

dt
〈Â(t)〉 =

〈∂Â(t)
∂t

〉
+
i

~
〈[Ĥ, Â(t)]−〉

+
iκ
~

〈∫
d~yΨ∗(~y, t, ~)[V (ẑ, ŵ, t), Â(t)]−Ψ(~y, t, ~)

〉
, (12)

where [Â, B̂]− = ÂB̂−B̂Â is the commutator of the operators Â and B̂. We refer to equation (12)
as the Ehrenfest equation for the operator Â and function Ψ(~x, t, ~) as in quantum mechanics [20].

For Â = 1, equation (12) gives ‖Ψ(t)‖2 = ‖Ψ(0)‖2 = ‖Ψ‖2. This implies that the norm of
a solution of equations (2) and (3) does not depend on time, and we can use the parameter
κ̃ = κ‖Ψ‖2 instead of κ in (2).

Assume that

∆Ψα(t, ~) =
〈Ψ(t)|{∆ẑ}α|Ψ(t)〉

‖Ψ‖2
, α ∈ Z2n

+ , (13)

are the moments of order |α| of the function Ψ(~x, t) centered with respect to zΨ(t, ~) = (~pΨ(t, ~),
~xΨ(t, ~)). Here {∆ẑ}α is an operator with a Weyl symbol (∆zΨ)α,

∆zΨ = z − zΨ(t, ~) = (∆~pΨ,∆~xΨ), ∆~pΨ = ~p− ~pΨ(t, ~), ∆~xΨ = ~x− ~xΨ(t, ~).

Along with (13) we use the following notation for the variances of coordinates, momenta, and
correlations:

∆Ψ2(t, ~) = ‖∆Ψjk(t, ~)‖2n×2n =
1

2‖Ψ‖2
‖〈Ψ(t)|{∆ẑj∆ẑk + ∆ẑk∆ẑj}|Ψ(t)〉‖2n×2n

=
(
σpp(t, ~) σpx(t, ~)
σxp(t, ~) σxx(t, ~)

)
,

σxp(t, ~) =
1
2
‖〈{∆xj∆p̂k + ∆p̂k∆xj}〉‖n×n,

σxx(t, ~) = ‖〈∆xj∆xk〉‖n×n, σpp(t, ~) = ‖〈∆p̂j∆p̂k〉‖n×n. (14)

The Ehrenfest equations (12) in mean values can be obtained for the operators ẑj , {∆ẑ}α and
trajectory concentrated functions (7) (see [13, 14] for details). However, for solving the equations
under consideration, equations (2), (3), (5), and (6), we need only equations for the first-order
and second-order moments

żΨ = J{Hz(t) + [Hzz(t) + κ̃(Wzz(t) +Wzw(t))]zΨ},
∆̇Ψ2 = J [Hzz(t) + κ̃Wzz(t)]∆Ψ2 −∆Ψ2[Hzz(t) + κ̃Wzz(t)]J. (15)
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We call the system (15) the Hamilton–Ehrenfest system (HES) of the second order for equations
(3), (5), and (6). Following [13, 14], we equate the functional vector-parameter Z(t, ~) of the
Pt~ class of TCFs (7) with zΨ(t, ~), i.e. ~pΨ(t, ~) = ~P (t, ~), ~xΨ(t, ~) = ~X(t, ~). This relates the
ansatz (7) to an exact solution of equation (2).

Consider a phase space MN , dimMN = N = 3n+ 2n2, of points g ∈MN with coordinates

g = (z,∆)ᵀ, z ∈ R2n, z = (~p, ~x)ᵀ,

∆ = (∆ij)ᵀ, ∆ij = ∆ji, ∆ ∈ Rn+2n2
, i, j = 1, . . . , 2n.

Here Aᵀ is a matrix transposed to A. The coordinates of g ∈MN are written as matrix columns.
The HES (15) can be considered a dynamic system in MN :

ż = J{Hz(t) + [Hzz(t) + κ̃(Wzz(t) +Wzw(t))]z}, (16)

∆̇ = J [Hzz(t) + κ̃Wzz(t)]∆−∆[Hzz(t) + κ̃Wzz(t)]J. (17)

With the substitution

∆(t) = A(t)∆(0)A+(t),

equation (17) is rewritten in equivalent form:

Ȧ = J [Hzz(t) + κ̃Wzz(t)]A, A(0) = I. (18)

We call equation (18) a system in variations.
Denote by g(t,C) the general solution of equations (16), (17):

g(t,C) =
(
~P (t, ~,C), ~X(t, ~,C),∆11(t, ~,C),∆12(t, ~,C), . . . ,∆2n2n(t, ~,C)

)ᵀ (19)

and by ĝ — the operator column

ĝ =
(
~̂p, ~x, (∆p̂1)2,∆p̂1∆p̂2, . . . , (∆xn)2

)ᵀ
. (20)

Here

C =
(
C1, . . . , CN

)ᵀ ∈ R3n+2n2
(21)

are arbitrary constants. Given constants C, equation (19) describes a trajectory of a point in
the phase space MN .

Lemma 1. Let Ψ(~x, t) be a partial solution of the GPE (2), (3), (5), (6) with an initial solution
Ψ(~x, t)

∣∣
t=0

= ψ(~x). Define the constants C(Ψ(t)) by the condition

g(t,C) =
1

‖Ψ‖2
〈Ψ(t)|ĝ|Ψ(t)〉, (22)

and the constants C(ψ) by the condition

g(0,C) =
1

‖ψ‖2
〈ψ|ĝ|ψ〉. (23)

Then,

C(Ψ(t)) = C(ψ), (24)

i.e., C(Ψ(t)) are integrals of motion for equations (2), (3), (5), and (6).



6 A. Shapovalov, A. Trifonov and A. Lisok

Proof. By construction, the vector

g(t) =
1

‖Ψ‖2
〈Ψ(t)|ĝ|Ψ(t)〉 = g(t,C(Ψ(t))) (25)

is a partial solution of the system (16), (17), which coincides with g(t,C(ψ)) at the initial time
t = 0. In view of uniqueness of the solution of the Cauchy problem for the system (16) and (17),
the equality

g(t,C(ψ)) = g(t,C(Ψ(t))), (26)

is valid. The proof is complete. �

Linear associated Schrödinger equation

Let us substitute (5), (6) into (2), (3) and replace the operators ẑ = (~̂p, ~x) and ŵ by ∆ẑ =
ẑ − z(t, ~,C) = (∆~̂p,∆~x) = (~̂p − ~P (t, ~,C), ~x − ~X(t, ~,C)) and ∆ŵ = ŵ − z(t, ~,C). Then we
have

{−i~∂t + Ĥ(t,Ψ(t))}Ψ = 0, (27)

Ĥ(t,Ψ(t)) = H(t,Ψ(t)) + 〈Hz(t,Ψ(t)),∆ẑ〉+
1
2
〈∆ẑ,Hzz(t,Ψ(t))∆ẑ〉, (28)

H(t,Ψ(t)) =
1
2
〈zΨ(t, ~), [Hzz(t) + κ̃(Wzz(t) + 2Wzw(t) +Www(t))]zΨ(t, ~)〉

+ 〈Hz(t), zΨ(t, ~)〉+
1
2

κ̃Sp(Www(t)∆Ψ2),

Hz(t,Ψ(t)) = Hz(t) + (Hzz(t) + κ̃Wzz(t) + κ̃Wzw(t))zΨ(t, ~), (29)
Hzz(t,Ψ(t)) = Hzz(t) + κ̃Wzz(t). (30)

Let us replace the mean values zΨ(t, ~), ∆ψ(t, ~) in the nonlinear GPE (28) by the respective
terms of the general solution (19) of the system (16), (17). As a result, we obtain a linear
equation:

{−i~∂t + Ĥ(t, g(t,C))}Φ(~x, t, ~,C) = 0, (31)

Ĥ(t, g(t,C)) = H(t, ~,C) + 〈Hz(t, ~,C),∆ẑ〉+
1
2
〈∆ẑ,Hzz(t)∆ẑ〉, (32)

H(t, ~,C) =
1
2
〈z(t, ~,C), [Hzz(t) + κ̃(Wzz(t) + 2Wzw(t) +Www(t))]z(t, ~,C)〉

+ 〈Hz(t), z(t, ~,C)〉+
1
2

κ̃Sp(Wzz(t)∆(t, ~,C)),

Hz(t, ~,C) = Hz(t) + (Hzz(t) + κ̃Wzz(t) + κ̃Wzw(t))z(t, ~,C),

Hzz(t) = Hzz(t) + κ̃Wzz(t), z(t, ~,C) = (~P (t, ~,C), ~X(t, ~,C)).

We call equation (31) the linear associated Schrödinger equation (LASE) for the nonlinear Gross–
Pitaevskii equation (28). More precisely, equation (31) is to be considered as a family of equa-
tions parametrized by the constants C of the form (21). Each element of the family (31) is
a linear Schrödinger equation with a quadratic Hamiltonian with respect to operators of coor-
dinates and momenta. Such an equation is well known to be solvable in explicit form (see, for
example, [21, 22]). In particular, partial solutions can be found as Gaussian wave packets and
a Fock basis of solutions, and Green function can be constructed.
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LASE solutions and GPE solutions

Consider a relationship between the solutions of the LASE and GPE. Let Φ(~x, t, ~,C) be the
solution of the Cauchy problem for the LASE (31)

Φ(~x, t, ~,C)|t=0 = ψ(~x, ~), ψ ∈ P0
~ . (33)

The function Φ(~x, t, ~,C) depends on arbitrary parameters C which appear in the LASE (31).
Let C are subject to the condition (23) and are functionals C(ψ).

Theorem 1. The solution of the Cauchy problem (10) for the GPE (2) is

Ψ(~x, t, ~) = Φ(~x, t, ~,C(ψ)). (34)

Proof. The function Φ(~x, t, ~,C(ψ)) satisfies equation (31) for arbitrary C and also for C = C(ψ).
According to equation (24), in Lemma 1 we do not violate the equality in (31) if we replace C(ψ)
by C(Ψ(t)). In view of equations (25), (26), one can see that Φ(~x, t, ~,C(ψ)) = Φ(~x, t, ~,C(Ψ(t)))
and the operator Ĥ(t, g(t,C)) in (31) becomes to Ĥ(t,Ψ(t)) in (27). This implies that the function
Φ(~x, t, ~,C(ψ)) satisfies equation (27) and the initial condition (33), which correlates with (10).
Consequently, equation (34) is valid, and the theorem is proved. �

The relationship between the steps described above can be shown diagrammatically:

{−i~∂t + Ĥκ(t)}Ψ(~x, t) = 0,
Ψ(~x, 0) = ψ(~x)

+3 Class Pt~of TSFs +3 HES, general
solution g(t,C)

��

Ψ(~x, t) = Φ(~x, t,C(ψ))

KS

Algebraic system
g(t,C) = 〈ĝ〉ψ
⇒ C(ψ)

ks

Family of LASE
{−i~∂t+ Ĥ(t,C)}Φ = 0;

Cauchy problem
Φ(~x, t,C)|t=0 =ψ(~x)

ks

Theorem 1 makes it possible to obtain a nonlinear evolution operator for the GPE (27) in the
Pt~ class of TCFs (7). The evolution operator can be written as a nonlinear integral operator
using the Green function of the LASE (31) with constants C changed by C(ψ) according to
relation (34).

3 Nonlinear evolution operator

The Green function Gκ
(
~x, ~y, t, s, g(t,C), g(s,C)) for the Cauchy problem (31), (33) is defined by

the conditions

[−i~∂t + Ĥ(t, g(t,C))]Gκ
(
~x, ~y, t, s, g(t,C), g(s,C)

)
= 0, (35)

lim
t→s

Gκ
(
~x, ~y, t, s, g(t,C), g(s,C)

)
= δ(~x− ~y). (36)

Here the operator Ĥ(t, g(t,C)), given by (32), is quadratic in coordinates and momenta.
We shall seek for the required Green function under the simplifying assumption

det Hpp(s) 6= 0. (37)

Following, for example, [21, 22], we obtain

Gκ
(
~x, ~y, t, s, g(t,C), g(s,C)) =

1√
det(−i2π~λ3(t, s))
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× exp

{
i

~

[
S(t, ~, g(t,C))− S(s, ~, g(s,C)) + 〈~P (t, ~,C),∆~x〉 − 〈~P (s, ~,C),∆~y〉

−1
2
〈∆~y, λ1(t, s)λ−1

3 (t, s)∆~y〉+ 〈∆~x, λ−1
3 (t, s)∆~y〉 − 1

2
〈∆~x, λ−1

3 (t, s)λ4(t, s)∆~x〉

]}
.(38)

Here, ∆~y = ~y− ~X(s, ~,C), n×n matrices λk(t, s), k = 1, 4, are blocks of the block matrix A(t, s)
of the system in variations:

Ȧ = JHzz(t, ~)A, A
∣∣∣
t=s

= I2n×2n, (39)

A(t, s) =
(
λᵀ

4(t, s) −λᵀ
2(t, s)

−λᵀ
3(t, s) λᵀ

1(t, s)

)
, (40)

and

S(t, ~, g(t,C)) =
∫ t

0

{
〈~P (t, ~,C), ~̇X(t, ~,C)〉 − H(t, ~,C)

}
dt. (41)

Then, the following theorem is true:

Theorem 2. Let an operator Ûκ
(
t, s, ·

)
act on a given function ψ(~x), taken at an initial time s,

as follows:

Ûκ
(
t, s, ψ

)
(~x) =

∫
Rn

Gκ
(
~x, ~y, t, s, g(t,C(ψ)), g(s,C(ψ))ψ(~y) dny. (42)

Here Gκ
(
~x, ~y, t, s, g(t,C(ψ), g(s,C(ψ)))

)
is determined by (38), (41), and the parameters C(ψ)

are obtained from

g(t,C)
∣∣∣
t=s

= g0(ψ) =
1

‖ψ‖2
〈ψ|ĝ|ψ〉. (43)

Then, the function

Ψ(~x, t) = Ûκ
(
t, s, ψ

)
(~x) (44)

is an exact solution of the Cauchy problem for equations (27), (28) with the initial condition
Ψ(~x, t)

∣∣
t=s

= ψ(~x), and the operator Ûκ
(
t, s, ·

)
is the evolution operator for the GPE (27) that

acts on the class of trajectory concentrated functions (7).

For the evolution operator (42), the following properties can be verified by direct computation.

Theorem 3. The operator Û−1
κ
(
t, s, ·

)
,

Û−1
κ
(
t, s, ψ

)
(~x) =

∫
Rn

G−1
κ
(
~x, ~y, t, s, g(t, (ψ)), g(s,C(ψ))

)
ψ(~y) dny

=
∫

Rn

Gκ
(
~x, ~y, s, t, g(s,C(ψ)), g(t, (ψ))

)
ψ(~y) dny, (45)

is the left inverse operator to Ûκ
(
t, s, ·

)
of (42), so that

Û−1
κ
(
t, s, Ûκ

(
t, s, ψ

))
(~x) = ψ(~x), ψ ∈ P0

~ . (46)

Corollary 1. For a partial solution Ψ(~x, t) of the GPE (27), we have

Ûκ
(
t, s, Û−1

κ
(
t, s,Ψ(t)

))
(~x) = Ψ(~x, t). (47)
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Proof. Indeed, according to Theorem 2 we have Ψ(~x, t) = Ûκ
(
t, s, ψ

)
(~x), ψ(~x) = Ψ(~x, t)

∣∣
t=s

.
In view of (46), the left-hand side of equation (47) can be written as

Ûκ
(
t, s, Û−1

κ
(
t, s,Ψ(t)

))
(~x) = Ûκ

[
t, s, Û−1

κ
(
t, s, Ûκ

(
t, s, ψ

))]
(~x) = Ûκ

(
t, s, ψ

)
(~x) = Ψ(~x, t).

Thus, the statement is proven. �

Theorem 4. The operators Ûκ
(
t, ·
)

= Ûκ
(
t, 0, ·

)
possess the group property

Ûκ
(
t+ s, ψ

)
(x) = Ûκ

(
t,Ψ(s)

)
(~x), Ψ(~x, s) = Ûκ

(
s, ψ

)
(~x). (48)

Proof. The functions Ψ(~x, t) = Ûκ
(
t + s, ψ

)
(~x) and Ψ(~x, t) of (44) are partial solutions of

equation (31) with the same trajectory g(t,C) in the extended phase space, and (48) is valid
for the evolution operator of the linear equation (31). Then, it is also valid for g(t,C(ψ))
corresponding to the nonlinear evolution operator (42).

Substituting t+ s→ t in (48), we find

Ûκ
(
t, ψ
)
(~x) = Ûκ

(
t− s,Ψ(s)

)
(~x), (49)

Ψ(~x, s)
∣∣∣
s=0

= ψ(~x) (50)

for a solution Ψ(~x, t) of the Cauchy problem for the GPE (27) with the initial condition (50). �

4 Symmetry and nonlinear superposition

Symmetry operators

A symmetry operator, by definition, maps a solution of an equation into another solution of this
equation. Direct finding of symmetry operators for a given nonlinear equation is an intricate
problem because of the nonlinearity of the determining equations.

It is rare for this problem to be solved (see, for example, [23]). The symmetry analysis
of differential equations deals mainly with generators of one-parametric families of symmetry
operators (symmetries of an equation) determined by linear equations [8, 9, 11, 12, 10]. Using
the evolution operator Ûκ(t, s, ·) given by (42), we can formulate a general form for symmetry
operators of the Gross–Pitaevskii equation (27).

Let â be an operator acting in P0
~ , (â : P0

~ → P0
~) and Ψ(~x, t) is an arbitrary function of the

Pt~ class (Ψ(~x, t) ∈ Pt~). Consider an operator Â(·), such that

Φ(~x, t) = Â
(
Ψ(t)

)
(~x) = Ûκ

(
t, â Û−1

κ
(
t,Ψ(t)

))
(~x). (51)

If Ψ(~x, t) is a solution of the GPE (27), then Φ(~x, t) is also a solution of equation (27). This
follows immediately from Theorems 2 and 3, and Corollary 1.

Thus, the operator Â(·) determined by (51) is a symmetry operator for the GPE (27).
Assume now that operator b̂ and its operator exponent exp(αb̂) act in the P0

~ class, i.e.,
b̂ : P0

~ → P0
~ and exp(αb̂) : P0

~ → P0
~ , where α is a parameter.

Define a one-parametric family of operators B̂(α, ·) via their action on an arbitrary function
Ψ(~x, t) ∈ Pt~ as

B̂
(
α,Ψ(t)

)
(~x) = Ûκ

(
t, exp{αb̂}Û−1

κ
(
t,Ψ(t)

))
(~x). (52)

By analogy with the aforesaid, the operators B̂(α, ·) constitute a one-parametric family of the
symmetry operators of equation (27).



10 A. Shapovalov, A. Trifonov and A. Lisok

It is easy to verify the group property

B̂
(
α+ β,Ψ(t)

)
(~x) = B̂

(
α, B̂

(
β,Ψ(t)

))
(~x), ∀ Ψ(~x, t) ∈ Pt~. (53)

Differentiating (52) with respect to the parameter α, we obtain for α = 0

Ĉ
(
Ψ(t)

)
(~x) =

d

dα
B̂
(
α,Ψ(t)

)
(~x)
∣∣∣
α=0

=
d

dα
Ûκ
(
t, exp{αb̂}Û−1

κ
(
t,Ψ(t)

))
(~x)
∣∣∣
α=0

. (54)

The operator Ĉ(·) determined by (54) is a generator of the one-parametric family of symmetry
operators (52).

Note that the operator Ĉ(·) is not a symmetry operator for equation (27) since the parame-
ters C in the evolution operator Ûκ(t, ·) (42) depend on α. Indeed, the parameters (C) found
from equation (43)

g(t,C)
∣∣∣
t=0

= 〈exp{αb̂}φ|ĝ| exp{αb̂}φ〉, φ(~x) = Û−1
κ
(
t,Ψ(t)

)
(~x), Ψ(~x, t) ∈ Pt~

include the parameter α explicitly. Therefore, equation (54) includes the derivatives of the
evolution operator Ûκ(t, ·) with respect to the parameters C, and (54) is different in form from
the symmetry operator (51).

Nonlinear superposition

The nonlinear superposition principle for the GPE (27) can be formulated in terms of the
evolution operator

Let

Ψ1(~x, t) = Ûκ
(
t, ψ1

)
(~x), Ψ2(~x, t) = Ûκ

(
t, ψ2

)
(~x) ∈ Pt~ (55)

be two partial solutions to the GPE (27) corresponding to the initial functions ψ1(~x), ψ2(~x)
∈ P0

~ , respectively.
Then, the function

Ψ(~x, t) = Ûκ
(
t, c1ψ1 + c2ψ2

)
(~x)

is a solution of equation (27) which corresponds to the initial function c1ψ1(~x) + c2ψ2(~x),
c1, c2 ∈ R1. Therefore,

Ψ(~x, t) = Ûκ
(
t, c1Û

−1
κ
(
t,Ψ1(t)

)
+ c2Û

−1
κ
(
t,Ψ2(t)

))
(~x) (56)

is a solution of equation (27) which corresponds to the solutions Ψ1(~x, t), Ψ2(~x, t) of the
form (55), and equation (56) is the superposition principle for the GPE (27).

5 Examples

3D case

Consider equations (2) and (3) in a 3-dimensional space with operators Ĥ(t), V̂ (t,Ψ) of the form

Ĥ(t) =
1

2m

(
~̂p− e

c
~A(~x, t)

)2
− e〈 ~E(t), ~x〉+

k

2
~x2, (57)

V (ẑ, ŵ, t) = V (~x− ~y) = V0

(
1− 1

2γ2
(~x− ~y)2

)
. (58)
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The external field in the linear operator (57) is the superposition of a constant magnetic field
~H = (0, 0,H) with vector potential ~A = 1

2
~H × ~x, an electric field ~E(t) = (E cosωt,E sinωt, 0)

periodic in time with frequency ω, and the field of an isotropic oscillator with potential k
2~x

2,
k > 0. The operator Ĥ(t) is the same as in [15], and V (~x − ~y) is obtained from the Taylor
expansion of the Gaussian potential V (~x − ~y) = V0 exp

[
− (~x−~y)2

2γ2

]
. In notations (27)–(30), we

have

Hzz =
(
Hpp Hpx

Hxp Hxx

)
, Hpp =

1
m

I3×3, Hxx = diag
{
mω2

1,mω
2
1,mω

2
2

}
;

Hz = ( ~Hp, ~Hx)ᵀ, ~Hp = 0, ~Hx = −e ~E(t); (59)

the nonzero elements of the 3 × 3 matrix Hpx(= Hᵀ
xp) are: Hp1x2 = −Hp2x1 = 1

2ωH . Here,
ωH = eH

mc is a cyclotron frequency, ωnl(v)2 = |κ̃v|
m is a “nonlinear frequency”, ω2

0 = k
m , ω2

1 =
ω2

0 +
(
ωH
2

)2 − ζ(V0)ωnl(η)2, ω2
2 = ω2

0 − ζ(V0)ωnl(η)2, ζ(a) = sign(κ̃a), a ∈ R1, η = V0
γ2 . The

nonzero matrices in (6) are: Wxx = Wyy = −Wxy = − 1
γ2V0I3×3.

For the block matrix A(t) of the form (40), the matrices λ1, λ2, λ3, λ4 are of order 3× 3 and
they can be written as

λ1 = λ4 =
dr̂(t)
dt

û(t), λ2 = −md2r̂(t)
dt2

û(t), λ3 = − 1
m

r̂(t)û(t),

where

r̂(t) = diag
{

sin(ω1t)
ω1

,
sin(ω1t)
ω1

,
sin(ω2t)
ω2

}
, û(t) =

 cos(1
2ωHt) − sin(1

2ωHt) 0
sin(1

2ωHt) cos(1
2ωHt) 0

0 0 1

 .

Here û(t) is an SO(3) matrix, ûᵀ(t)û(t) = û(t)ûᵀ(t) = I3×3. Denote by (~P (t, ~,C), ~X(t, ~,C))
the general solution of the system (16) with (59), for which we use for short the notation
(~P (t), ~X(t)). We use similar notation for (41), S(t, ~, g(t,C)) = S(t).

Let us introduce the functions

G(∆x,∆y, t, s, P (t), P (s), ω, ωH ,C) =
√

mω

2iπ~ sin(ω(t− s))
exp

{
i

~
(P (t)∆x− P (s)∆y)

}
× exp

{
iωm

2~ sin(ω(t− s))

(
cos(ω(t− s))(∆x2 + ∆y2)− 2 cos(

ωH
2

(t− s))∆x∆y
)}

(60)

and

G(∆x,∆y, t, s, P (t), P (s), ω,C) = G(∆x,∆y, t, s, P (t), P (s), ω, ωH ,C)|ωH=0. (61)

Then, the Green function (38) reads

Gκ
(
~x, ~y, t, s, g(t,C), g(s,C)) = G(∆x1,∆y1, t, s, P1(t), P1(s), ω1, ωH ,C)
× G(∆x2,∆y2, t, s, P2(t), P2(s), ω1, ωH ,C)G(∆x3,∆y3, t, s, P3(t), P3(s), ω2,C)

× exp
{
i

~
[S(t)− S(s)]

}
exp

{
i

~

(
−mω1

sin(ωH
2 (t− s))

sin(ω1(t− s))
(∆x1∆y2 −∆x2∆y1)

)}
. (62)

The nonlinear evolution operator (42) is constructed with the use of (62) in which C are
determined by (43).
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1D case

To demonstrate symmetry operators in explicit form consider the one-dimensional case of the
GPE (27) following [16].

The operators (57) and (58) for n = 1 take the form

H(ẑ, t) =
p̂2

2m
+
kx2

2
− eEx cosωt, V (ẑ, ŵ, t) =

1
2
[
ax2 + 2bxy + cy2

]
. (63)

Here, ~x = x ∈ R1, ~y = y ∈ R1; k > 0, m, e, E, a, b, and c are parameters of the potential.
In notations (27)–(30), we have H(t, ~, g(t,C)) = 1

2mP
2(t,C)+ 1

2kX
2(t,C)− eEX(t,C) cosωt+

κ̃
2 cσxx(t,C)+ κ̃

2 (a+ 2b+ c)X2(t,C),

Hz(t, g(t,C)) =
(

1
mP (t,C)

mΩ̃2X(t,C)− eE cosωt

)
, Hzz(t, g(t,C))) =

(
1
m 0
0 mΩ2

)
.

The Green function of the linear associated Schrödinger equation (31) follows directly from (60)
and (62). It reads

Gκ
(
x, y, t, s, g(t,C), g(s,C)) = G(∆x,∆y, t, s, P (t), P (s),Ω,C) exp

{
i

~
[S(t)− S(s)]

}
. (64)

Here, ω0 =
√
k/m and Ω2 = ω2

0+ζ(a)ω
2
nl(a). The evolution operator Ûκ(t, s, ·) (42) is determined

by (64), where the constants C are changed by C(ψ) determined by equation (23): g(s,C) =
g(C) = 1

‖ψ‖2 〈ψ|ĝ|ψ〉, g(C) = (P (C), X(C), σpp(C), σpx(C), σxx(C)). The LASE (31), (32) is
known to have a partial solution in Gaussian form. For the operators (63), this solution can be
obtained as

Φ(0)
0 (x, t, g(t,C))= 4

√
mΩ
π~

e−iΩt/2 exp
{
i

~

(
S(t, ~, g(t,C))+P (t,C)∆x

)
−mΩ

2~
∆x2

}
.

Setting ψ(x) = Φ(0)
0 (x, 0, g(0,C)) ≡ Φ(0)

0 (x, 0) in (23), we can find the parameters C in the

form C(ψ) = C0 = C(Φ(0)
0 (0)) =

(
p0
mΩ̃

, x0, 0, 0, ~
2mΩ

)ᵀ

, where Ω̃2 = ω2
0 + ζ(a + b)ω2

nl(a + b),

p0 = 〈Φ(0)
0 |p̂|Φ(0)

0 〉/‖Φ(0)
0 ‖2, and x0 = 〈Φ(0)

0 |x|Φ(0)
0 〉/‖Φ(0)

0 ‖2. Then,

Ψ(0)
0 (x, t,C0) = Φ(0)

0 (x, t, g(t,C(ψ))) (65)

is a partial solution of the 1-dimensional GPE (27).
Let us change the operators â in relation (51) by the operators â+ and â of the form

â =
1√

2~mΩ

[
∆p̂0 − imΩ∆x0

]
, â+ =

1√
2~mΩ

[
∆p̂0 + imΩ∆x0

]
,

where ∆p̂0 = −i~∂x − p0 and ∆x0 = x − x0. Then, the operators Â(±)(·) determined by the
relations

Â(+)
(
Ψ(t)

)
(x) = Ûκ

(
t, â+ Û−1

κ
(
t,Ψ(t)

))
(x), Â(−)

(
Ψ(t)

)
(x) = Ûκ

(
t, â Û−1

κ
(
t,Ψ(t)

))
(x),

where Ψ(x, t) ∈ Pt~, are the symmetry operators of equation (27). With the operators Â(±)(·),
we obtain the set of solutions for the GPE

Ψ(0)
n (x, t, g(t,Cn)) =

1√
n!

(
Â(+)(·)

)nΨ(0)
0 (x, t, g(t,C0))
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=
in√
n!
e−inΩt

(
1√
2

)n
Hn

(√
mΩ
~

∆x
)

Ψ(0)
0 (x, t, g(t,Cn)), (66)

where n ∈ Z+, Hn(ξ) are Hermite polynomials and

CTn (ψ)=
(

0,
eE

m(Ω̃2 − ω2)
, 0, 0,

~(2n+ 1)
2mΩ

)ᵀ

.

It can be verified that

Â(+)
(
Ψ(0)
n (t, g(t,Cn))

)
(x) =

√
n+ 1 Ψ(0)

n+1(x, t, g(t,Cn+1)),

Â(−)
(
Ψ(0)
n (t, g(t,Cn))

)
(x) =

√
nΨ(0)

n−1(x, t, g(t,Cn−1))

and the operators Â(±)(·) are nonlinear analogs of “creation–annihilation” operators. It can be
noted that the functions Ψ(0)

n (x, t, g(t,Cn)) satisfy the quasi-periodic condition

Ψ(0)
n (x, t+ T,CTn ) = e−iEnT/~Ψ(0)

n (x, t,CTn ),

where En is the quasi-energy. The spectrum of quasi-energies is given by the relation

En = − e2E2

2m(Ω̃2 − ω2)
−
e2E2[ω2 − ω2

0 − ζ(a+ 2b+ c)ω2
nl(a+ 2b+ c)]

4m(Ω̃2 − ω2)2

+ ~
(
Ω +

κ̃c
2mΩ

)(
n+

1
2

)
.

6 Concluding remarks

The evolution operator (42) obtained in Section 3 in explicit form enables one to look in a new
fashion at the problem of construction of semiclassically concentrated solutions to the nonlocal
Gross–Pitaevskii equation (2). In particular, the semiclassical asymptotics constructed in [13, 14]
can be presented in more compact and visual form. In addition, the evolution operator leads to
the nonlinear superposition principle (56) and to the general form of symmetry operators (51).
The latter can be used for study of symmetries of the Gross–Pitaevskii equation under con-
sideration as long as direct finding of the symmetries by means of solution of the determining
equations is a nontrivial problem.
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