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Abstract. A classical (or quantum) superintegrable system on an n-dimensional Rieman-
nian manifold is an integrable Hamiltonian system with potential that admits 2n− 1 func-
tionally independent constants of the motion that are polynomial in the momenta, the
maximum number possible. If these constants of the motion are all quadratic, the system is
second order superintegrable. Such systems have remarkable properties. Typical properties
are that 1) they are integrable in multiple ways and comparison of ways of integration leads
to new facts about the systems, 2) they are multiseparable, 3) the second order symmetries
generate a closed quadratic algebra and in the quantum case the representation theory of the
quadratic algebra yields important facts about the spectral resolution of the Schrödinger op-
erator and the other symmetry operators, and 4) there are deep connections with expansion
formulas relating classes of special functions and with the theory of Exact and Quasi-exactly
Solvable systems. For n = 2 the author, E.G. Kalnins and J. Kress, have worked out the
structure of these systems and classified all of the possible spaces and potentials. Here I
discuss our recent work and announce new results for the much more difficult case n = 3.
We consider classical superintegrable systems with nondegenerate potentials in three dimen-
sions and on a conformally flat real or complex space. We show that there exists a standard
structure for such systems, based on the algebra of 3× 3 symmetric matrices, and that the
quadratic algebra always closes at order 6. We describe the Stäckel transformation, an in-
vertible conformal mapping between superintegrable structures on distinct spaces, and give
evidence indicating that all our superintegrable systems are Stäckel transforms of systems
on complex Euclidean space or the complex 3-sphere. We also indicate how to extend the
classical 2D and 3D superintegrability theory to include the operator (quantum) case.
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1 Introduction and examples

In this paper I will report on recent and ongoing work with E.G. Kalnins and J. Kress to uncover
the structure of second order superintegrable systems, both classical and quantum mechanical.
I will concentrate on the basic ideas; the details of the proofs can be found elsewhere. The
results on the quadratic algebra structure of 3D conformally flat systems with nondegenerate
potential have appeared recently. The results on the 3D Stäckel transform and multiseparability
of superintegrable systems with nondegenerate potentials are announced here.

Superintegrable systems can lay claim to be the most symmetric solvable systems in mathe-
matics though, technically, many such systems admit no group symmetry. In this paper I will
only consider superintegrable systems on complex conformally flat spaces. This is no restriction
at all in two dimensions. An n-dimensional complex Riemannian space is conformally flat if
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and only if it admits a set of local coordinates x1, . . . , xn such that the contravariant metric

tensor takes the form gij = δij/λ(x). Thus the metric is ds2 = λ(x)
( n∑

i=1
dx2

i

)
. A classical

superintegrable system H =
∑
ij

gijpipj + V (x) on the phase space of this manifold is one that

admits 2n− 1 functionally independent generalized symmetries (or constants of the motion) Sk,
k = 1, . . . , 2n − 1 with S1 = H where the Sk are polynomials in the momenta pj . That is,
{H,Sk} = 0 where

{f, g} =
n∑

j=1

(∂xjf∂pjg − ∂pjf∂xjg)

is the Poisson bracket for functions f(x,p), g(x,p) on phase space [1, 2, 3, 4, 5, 6, 7, 8]. It is
easy to see that 2n−1 is the maximum possible number of functionally independent symmetries
and, locally, such (in general nonpolynomial) symmetries always exist. The system is second
order superintegrable if the 2n − 1 functionally independent symmetries can be chosen to be
quadratic in the momenta. Usually a superintegrable system is also required to be integrable,
i.e., it is assumed that n of the constants of the motion are in involution, although I will not
make that assumption in this paper. Sophisticated tools such as R-matrix theory can be applied
to the general study of superintegrable systems, e.g., [9, 10, 11]. However, the most detailed
and complete results are known for second order superintegrable systems because separation
of variables methods for the associated Hamilton–Jacobi equations can be applied. Standard
orthogonal separation of variables techniques are associated with second-order symmetries, e.g.,
[12, 13, 14, 15, 16, 17] and multiseparable Hamiltonian systems provide numerous examples of
superintegrability. Thus here I concentrate on second-order superintegrable systems, on those
in which the symmetries take the form S =

∑
aij(x)pipj + W (x), quadratic in the momenta.

There is an analogous definition for second-order quantum superintegrable systems with
Schrödinger operator

H = ∆ + V (x), ∆ =
1
√

g

∑
ij

∂xi

(√
ggij

)
∂xj ,

the Laplace–Beltrami operator plus a potential function [12]. Here there are 2n−1 second-order
symmetry operators

Sk =
1
√

g

∑
ij

∂xi

(√
gaij

(k)

)
∂xj + W (k)(x), k = 1, . . . , 2n− 1

with S1 = H and [H,Sk] ≡ HSk − SkH = 0. Again multiseparable systems yield many
examples of superintegrability, though not all multiseparable systems are superintegrable and
not all second-order superintegrable systems are multiseparable.

The basic motivation for studying superintegrable systems is that they can be solved explicitly
and in multiple ways. It is the information gleaned from comparing the distinct solutions and
expressing one solution set in terms of another that is a primary reason for their interest.

Two dimensional second order superintegrable systems have been studied and classified by
the author and his collaborators in a recent series of papers [18, 19, 20, 21]. Here we concentrate
on three dimensional (3D) systems where new complications arise. We start with some simple
3D examples to illustrate some of the main features of superintegrable systems. (To make clearer
the connection with quantum theory and Hilbert space methods we shall, for these examples
alone, adopt standard physical normalizations, such as using the factor −1

2 in front of the free
Hamiltonian.) Consider the Schrödinger equation HΨ = EΨ or (~ = m = 1, x1 = x, x2 = y,
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x3 = z)

HΨ = −1
2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Ψ + V (x, y, z)Ψ = EΨ.

The generalized anisotropic oscillator corresponds to the 4-parameter potential

V (x, y, z) =
ω2

2
(
x2 + y2 + 4(z + ρ)2

)
+

1
2

[
k2

1 − 1
4

x2
+

k2
2 − 1

4

y2

]
.

(This potential is “nondegenerate” in a precise sense that I will explain later.) The corre-
sponding Schrödinger equation has separable solutions in five coordinate systems: Cartesian
coordinates, cylindrical polar coordinates, cylindrical elliptic coordinates, cylindrical parabolic
coordinates and parabolic coordinates. The energy eigenstates for this equation are degenerate
and important special function identities arise by expanding one basis of separable eigenfunc-
tions in terms of another. A second order symmetry operator for this equation is a second order
linear differential operator S such that [H,S] = 0, where [A,B] = AB − BA. A basis for these
operators is

M1 = ∂2
x − ω2x2 +

k2
1 − 1

4

x2
, M2 = ∂2

y − ω2y2 −
k2

2 − 1
4

y2
,

P = ∂2
z − 4ω2(z + ρ)2, L = L2

12 −
(

k2
1 −

1
4

)
y2

x2
−
(

k2
2 −

1
4

)
x2

y2
− 1

2
,

S1 = −1
2
(∂xL13 + L13∂x) + ρ∂2

x + (z + ρ)

(
ω2x2 −

k2
1 − 1

4

x2

)
,

S2 = −1
2
(∂yL23 + L23∂y) + ρ∂2

y + (z + ρ)

(
ω2y2 −

k2
2 − 1

4

y2

)
,

where Lij = xi∂xj − xj∂xi . It can be verified that these symmetries generate a “quadratic
algebra” that closes at level six. Indeed, the nonzero commutators of the above basis are

[M1, L] = [L,M2] = Q, [L, S1] = [S2, L] = B, [Mi, Si] = Ai, [P, Si] = −Ai.

Nonzero commutators of the basis symmetries with Q (4th order symmetries) are expressible in
terms of the second order symmetries:

[Mi, Q] = [Q,M2] = 4{M1,M2}+ 16ω2L, [S1, Q] = [Q,S2] = 4{M1,M2},
[L,Q] = 4{M1, L} − 4{M2, L}+ 16

(
1− k2

1

)
M1 − 16

(
1− k2

2

)
M2.

There are similar expressions for commutators with B and the Ai. Also the squares of Q, B,
Ai and products such as {Q,B}, (all 6th order symmetries) are all expressible in terms of 2nd
order symmetries. Indeed

Q2 =
8
3
{L,M1,M2}+ 8ω2{L,L} − 16

(
1− k2

1

)
M2

1 − 16
(
1− k2

2

)
M2

2

+
64
3
{M1,M2} −

128
3

ω2L− 128ω2
(
1− k2

1

) (
1− k2

2

)
,

{Q,B} = −8
3
{M2, L, S1} −

8
3
{M1, L, S2}+ 16

(
1− k2

1

)
{M2, S2}+ 16

(
1− k2

2

)
{M1, S1}

− 64
3
{M1, S2} −

64
3
{M2, S1}.



4 W. Miller

Here {C1, . . . , Cj} is the completely symmetrized product of operators C1, . . . , Cj . (For complete
details see [22].) The point is that the algebra generated by products and commutators of the
2nd order symmetries closes at order 6. This is a remarkable fact, and ordinarily not the case
for an integrable system.

A counterexample to the existence of a quadratic algebra in Euclidean space is given by the
Schrödinger equation with 3-parameter extended Kepler–Coulomb potential:(

∂2Ψ
∂x2

+
∂2Ψ
∂y2

+
∂2Ψ
∂z2

)
+

[
2E +

2α√
x2 + y2 + z2

−

(
k2

1 − 1
4

x2
+

k2
2 − 1

4

y2

)]
Ψ = 0.

This equation admits separable solutions in the four coordinates systems: spherical, sphero-
conical, prolate spheroidal and parabolic coordinates. Again the bound states are degenerate
and important special function identities arise by expanding one basis of separable eigenfunctions
in terms of another. However, the space of second order symmetries is only 5 dimensional and,
although there are useful identities among the generators and commutators that enable one to
derive spectral properties algebraically, there is no finite quadratic algebra structure. The key
difference with our first example is, as we shall show later, that the 3-parameter Kepler–Coulomb
potential is degenerate and it cannot be extended to a 4-parameter potential.

In [20, 21] there are examples of superintegrable systems on the 3-sphere that admit a quadra-
tic algebra structure. A more general set of examples arises from a space with metric

ds2 = λ(A,B, C, D, x)
(
dx2 + dy2 + dz2

)
,

where

λ = A(x + iy) + B

(
3
4
(x + iy)2 +

z

4

)
+ C

(
(x + iy)3 +

1
16

(x− iy) +
3z

4
(x + iy)

)
+ D

(
5
16

(x + iy)4 +
z2

16
+

1
16
(
x2 + y2

)
+

3z

8
(x + iy)2

)
.

The nondegenerate classical potential is V = λ(α, β, γ, δ, x)/λ(A,B, C, D, x). If A = B = C =
D = 0 this is a nondegenerate metric on complex Euclidean space. The quadratic algebra always
closes, and for general values of A, B, C, D the space is not of constant curvature. As will be
apparent later. This is an example of a superintegrable system that is Stäckel equivalent to
a system on complex Euclidean space.

Observed common features of superintegrable systems are that they are usually multisepara-
ble and that the eigenfunctions of one separable system can be expanded in terms of the eigen-
functions of another. This is the source of nontrivial special function expansion theorems [23].
The symmetry operators are in formal self-adjoint form and suitable for spectral analysis. Also,
the quadratic algebra identities allow us to relate eigenbases and eigenvalues of one symmetry
operator to those of another. The representation theory of the abstract quadratic algebra can be
used to derive spectral properties of the second order generators in a manner analogous to the
use of Lie algebra representation theory to derive spectral properties of quantum systems that
admit Lie symmetry algebras, [23, 24, 25, 26]. (Note however that for superintegrable systems
with nondegenerate potential, there is no first order Lie symmetry.)

Another common feature of quantum superintegrable systems is that they can be modified by
a gauge transformation so that the Schrödinger and symmetry operators are acting on a space of
polynomials [27]. This is closely related to the theory of exactly and quasi-exactly solvable sys-
tems [28, 29]. The characterization of ODE quasi-exactly solvable systems as embedded in PDE
superintegrable systems provides considerable insight into the nature of these phenomena [30].

The classical analogs of the above examples are obtained by the replacements ∂xi → pxi and
modification of the potential by curvature terms. Commutators go over to Poisson brackets.
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The operator symmetries become second order constants of the motion. Symmetrized operators
become products of functions. The quadratic algebra relations simplify: the highest order terms
agree with the operator case but there are fewer nonzero lower order terms.

Many examples of 3D superintegrable systems are known, although they have not been clas-
sified [31, 32, 33, 34, 35, 36]. Here, we employ a theoretical method based on integrability
conditions to derive structure common to all such systems, with a view to complete classifica-
tion, at least for classical systems with nondegenerate potentials. We show that for systems
with nondegenerate potentials there exists a standard structure based on the algebra of 3 × 3
symmetric matrices, and that the quadratic algebra closes at level 6. For 2D nondegenerate
superintegrable systems we earlier showed that the 3 = 2(2) − 1 functionally independent con-
stants of the motion were (with one exception) also linearly independent, so at each regular
point we could find a unique constant of the motion that matches a quadratic expression in
the momenta at that point. However, for 3D systems we have only 5 = 2(3) − 1 functionally
independent constants of the motion and the quadratic forms span a 6 dimensional space. This
is a major problem. However, for nondegenerate potentials we prove the “5 implies 6 Theorem”
to show that the space of second order constants of the motion is in fact 6 dimensional: there is
a symmetry that is functionally dependent on the symmetries that arise from superintegrability,
but linearly independent of them. With that result established, the treatment of the 3D case
can proceed in analogy with the nondegenerate 2D case treated in [18]. Though the details are
quite complicated, the spaces of truly 2nd, 3rd, 4th and 6th order constants of the motion can
be shown to be of dimension 6, 4, 21 and 56, respectively and we can construct explicit bases
for the 4th and 6th order constants in terms of products of the 2nd order constants. This means
that there is a quadratic algebra structure.

Using this structure we can show that all 3D superintegrable systems with nondegenerate
potential are multiseparable. We study the Stäckel transform, or coupling constant metamor-
phosis [37, 38], for 3D classical superintegrable systems. This is a conformal transformation of
a superintegrable system on one space to a superintegrable system on another space. We give
evidence that all nondegenerate 3D superintegrable systems are Stäckel transforms of constant
curvature systems, just as in the 2D case, though we don’t completely settle the issue. This
provides the theoretical basis for a complete classification of 3D superintegrable systems with
nondegenerate potential, a program that is underway. Finally we indicate the quantum analogs
of our results for 3D classical systems.

2 Conformally flat spaces in three dimensions

We assume that there is a coordinate system x, y, z and a nonzero function λ(x, y, z) =
expG(x, y, z) such that the Hamiltonian is

H =
p2
1 + p2

2 + p2
3

λ
+ V (x, y, z).

A quadratic constant of the motion (or generalized symmetry)

S =
3∑

k,j=1

akj(x, y, z)pkpj + W (x, y, z) ≡ L+ W, ajk = akj

must satisfy {H,S} = 0, i.e.,

aii
i = −G1a

1i −G2a
2i −G3a

3i,

2aij
i + aii

j = −G1a
1j −G2a

2j −G3a
3j , i 6= j,
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aij
k + aki

j + ajk
i = 0, i, j, k distinct

and

Wk = λ
3∑

s=1

askVs, k = 1, 2, 3. (1)

(Here a subscript j denotes differentiation with respect to xj .) The requirement that ∂x`
Wj =

∂xjW`, ` 6= j leads from (1) to the second order Bertrand–Darboux partial differential equations
for the potential.

3∑
s=1

[
Vsjλas` − Vs`λasj + Vs

(
(λas`)j − (λasj)`

)]
= 0. (2)

For second order superintegrabilty in 3D there must be five functionally independent con-
stants of the motion (including the Hamiltonian itself). Thus the Hamilton–Jacobi equation
admits four additional constants of the motion:

Sh =
3∑

j,k=1

ajk
(h)pkpj + W(h) = Lh + W(h), h = 1, . . . , 4.

We assume that the four functions Sh together with H are functionally independent in the six-
dimensional phase space. (Here the possible V will always be assumed to form a vector space
and we require functional independence for each such V and the associated W (h). This means
that we require that the five quadratic forms Lh, H0 are functionally independent.) In [20] it
is shown that the matrix of the 15 Bertrand–Darboux equations for the potential has rank at
least 5, hence we can solve for the second derivatives of the potential in the form

V22 = V11 + A22V1 + B22V2 + C22V3,

V33 = V11 + A33V1 + B33V2 + C33V3,

V12 = A12V1 + B12V2 + C12V3,

V13 = A13V1 + B13V2 + C13V3,

V23 = A23V1 + B23V2 + C23V3. (3)

If the matrix has rank > 5 then there will be additional conditions of the form D1
(s)V1 +D2

(s)V2 +
D3

(s)V3 = 0. Here the Aij , Bij , Cij , Di
(s) are functions of x that can be calculated explicitly. For

convenience we take Aij ≡ Aji, Bij ≡ Bji, Cij ≡ Cji.
Suppose now that the superintegrable system is such that the rank is exactly 5 so that the

relations are only (3). Further, suppose the integrability conditions for system (3) are satisfied
identically. In this case we say that the potential is nondegenerate. Otherwise the potential is
degenerate. If V is nondegenerate then at any point x0, where the Aij , Bij , Cij are defined and
analytic, there is a unique solution V (x) with arbitrarily prescribed values of V1(x0), V2(x0),
V3(x0), V11(x0) (as well as the value of V (x0) itself.) The points x0 are called regular. The points
of singularity for the Aij , Bij , Cij form a manifold of dimension < 3. Degenerate potentials
depend on fewer parameters. For example, it may be that the rank of the Bertrand–Darboux
equations is exactly 5 but the integrability conditions are not satisfied identically. This occurs
for the generalized Kepler–Coulomb potential.

From this point on we assume that V is nondegenerate. Substituting the requirement for
a nondegenerate potential (3) into the Bertrand–Darboux equations (2) we obtain three equa-
tions for the derivatives ajk

i , the first of which is(
a11

3 − a31
1

)
V1 +

(
a12

3 − a32
1

)
V2 + (a13

3 − a33
1 )V3
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+ a12
(
A23V1 + B23V2 + C23V3

)
−
(
a33 − a11

) (
A13V1 + B13V2 + C13V3

)
− a23

(
A12V1 + B12V2 + C12V3

)
+ a13

(
A33V1 + B33V2 + C33V3

)
=
(
−G3a

11 + G1a
13
)
V1 +

(
−G3a

12 + G1a
23
)
V2 +

(
−G3a

13 + G1a
33
)
V3,

and the other two are obtained in a similar fashion.
Since V is a nondegenerate potential we can equate coefficients of V1, V2, V3, V11 on each side

of the conditions ∂1V23 = ∂2V13 = ∂3V12, ∂3V23 = ∂2V33, etc., to obtain integrability conditions,
the simplest of which include

A23 = B13 = C12, B12 −A22 = C13 −A33,

B23 = A31 + C22, C23 = A12 + B33,

A12
1 + B12A12 + A33

2 + A33A12 + B33A22 + C33A23 = A23
3 + B23A23 + C23A33,

A13
2 + A13A12 + B13A22 + C13A23 = A23

1 + B23A12 + C23A13

= A12
3 + A13A12 + B12A23 + C12A33.

Using the nondegenerate potential condition and the Bertrand–Darboux equations we can
solve for all of the first partial derivatives ajk

i of a quadratic symmetry to obtain

a11
1 = −G1a

11 −G2a
12 −G3a

13, (4)

a22
2 = −G1a

12 −G2a
22 −G3a

23,

a33
3 = −G1a

13 −G2a
23 −G3a

33,

3a12
1 = a12A22 −

(
a22 − a11

)
A12 − a23A13 + a13A23

+ G2a
11 − 2G1a

12 −G2a
22 −G3a

23,

3a11
2 = −2a12A22 + 2

(
a22 − a11

)
A12 + 2a23A13 − 2a13A23

− 2G2a
11 + G1a

12 −G2a
22 −G3a

23,

3a13
3 = −a12C23 +

(
a33 − a11

)
C13 + a23C12 − a13C33

−G1a
11 −G2a

12 − 2G3a
13 + G1a

33,

3a33
1 = 2a12C23 − 2

(
a33 − a11

)
C13 − 2a23C12 + 2a13C33

−G1a
11 −G2a

12 + G3a
13 − 2G1a

33,

3a23
2 = a23(B33 −B22)−

(
a33 − a22

)
B23 − a13B12 + a12B13

−G1a
13 − 2G2a

23 −G3a
33 + G3a

22,

3a22
3 = −2a23

(
B33 −B22) + 2(a33 − a22

)
B23 + 2a13B12 − 2a12B13

−G1a
13 + G2a

23 −G3a
33 − 2G3a

22,

3a13
1 = −a23A12 +

(
a11 − a33

)
A13 + a13A33 + a12A23

− 2G1a
13 −G2a

23 −G3a
33 + G3a

11,

3a11
3 = 2a23A12 + 2

(
a33 − a11

)
A13 − 2a13A33 − 2a12A23

+ G1a
13 −G2a

23 −G3a
33 − 2G3a

11,

3a33
2 = −2a13C12 + 2

(
a22 − a33

)
C23 + 2a12C13 − 2a23

(
C22 − C33

)
−G1a

12 −G2a
22 + G3a

23 − 2G2a
33,

3a23
3 = a13C12 −

(
a22 − a33

)
C23 − a12C13 − a23

(
C33 − C22

)
−G1a

12 −G2a
22 − 2G3a

23 + G2a
33,

3a12
2 = −a13B23 +

(
a22 − a11

)
B12 − a12B22 + a23B13
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−G1a
11 − 2G2a

12 −G3a
13 + G1a

22,

3a22
1 = 2a13B23 − 2

(
a22 − a11

)
B12 + 2a12B22 − 2a23B13

−G1a
11 + G2a

12 −G3a
13 − 2G1a

22,

3a23
1 = a12

(
B23 + C22

)
+ a11

(
B13 + C12

)
− a22C12 − a33B13

+ a13
(
B33 + C23

)
− a23

(
C13 + B12

)
− 2G1a

23 + G2a
13 + G3a

12.

3a12
3 = a12

(
−2B23 + C22

)
+ a11

(
C12 − 2B13

)
− a22C12 + 2a33B13

+ a13
(
−2B33 + C23

)
+ a23

(
−C13 + 2B12

)
− 2G3a

12 + G2a
13 + G1a

23.

3a13
2 = a12

(
B23 − 2C22

)
+ a11

(
B13 − 2C12

)
+ 2a22C12 − a33B13

+ a13
(
B33 − 2C23

)
+ a23

(
2C13 −B12

)
− 2G2a

13 + G1a
23 + G3a

12,

plus the linear relations

A23 = B13 = C12, B23 −A31 − C22 = 0,

B12 −A22 + A33 − C13 = 0, B33 + A12 − C23 = 0.

Using the linear relations we can express C12, C13, C22, C23 and B13 in terms of the remaining
10 functions.

Since the above system of first order partial differential equations is involutive the general
solution for the 6 functions ajk can depend on at most 6 parameters, the values ajk(x0) at a fixed
regular point x0. For the integrability conditions we define the vector-valued function

h(x, y, z) =
(
a11 a12 a13 a22 a23 a33

)
and directly compute the 6× 6 matrix functions A(j) to get the first-order system

∂xjh = A(j)h, j = 1, 2, 3.

The integrability conditions for this system are are

A(j)
i h−A(i)

j h = A(i)A(j)h−A(j)A(i)h ≡ [A(i),A(j)]h. (5)

In terms of the 6× 6 matrices

S(1) = A(3)
2 −A(2)

3 − [A(2),A(3)], S(2) = A(1)
3 −A(3)

1 − [A(3),A(1)],

S(3) = A(2)
1 −A(1)

2 − [A(1),A(2)],

the integrabilty conditions are

S(1)h = S(2)h = S(3)h = 0. (6)

3 The 5 =⇒ 6 Theorem

Now assume that the system of equations (4) admits a 6-parameter family of solutions ajk. (The
requirement of superintegrability appears to guarantee only a 5-parameter family of solutions.)
Thus at any regular point we can prescribe the values of the ajk arbitrarily. This means that (5)
or (6) holds identically in h. Thus S(1) = S(2) = S(3) = 0. This would be the analog of
what happens in the 2D case where there are 3independent terms in the quadratic form and
3 functionally (and linearly) independent symmetries. However, in the 3D case there are only
5 functionally independent symmetries, so we can’t guarantee that the symmetry equations
admit a 6-parameter family of solutions. Fortunately, by careful study of the integrability
conditions of these equations and use of the requirement that the potential is nondegenerate,
we can prove the 5 =⇒ 6 theorem [20].
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Theorem 1 (5 =⇒ 6). Let V be a nondegenerate potential corresponding to a conformally
flat space in 3 dimensions that is superintegrable, i.e., suppose V satisfies the equations (3)
whose integrability conditions hold identically, and there are 5 functionally independent con-
stants of the motion. Then the space of second order symmetries for the Hamiltonian H =(
p2

x + p2
y + p2

z

)
/λ(x, y, z) + V (x, y, z) (excluding multiplication by a constant) is of dimension

D = 6.

Corollary 1. If H+V is a superintegrable conformally flat system with nondegenerate potential,
then the dimension of the space of 2nd order symmetries

S =
3∑

k,j=1

akj(x, y, z)pkpj + W (x, y, z)

is 6. At any regular point (x0, y0, z0), and given constants αkj = αjk, there is exactly one
symmetry S (up to an additive constant) such that akj(x0, y0, z0) = αkj. Given a set of 5
functionally independent 2nd order symmetries L = {S` : ` = 1, . . . 5} associated with the
potential, there is always a 6th second order symmetry S6 that is functionally dependent on L,
but linearly independent.

4 Third order constants of the motion

The key to understanding the structure of the space of constants of the motion for superintegrable
systems with nondegenerate potential is an investigation of third order constants of the motion.
We have

K =
3∑

k,j,i=1

akji(x, y, z)pkpjpi + b`(x, y, z)p`,

which must satisfy {H,K} = 0. Here akji is symmetric in the indices k, j, i.
The conditions are

aiii
i = −3

2

∑
s

asii(lnλ)s,

3ajii
i + aiii

j = −3
∑

s

asij(lnλ)s, i 6= j

aijj
i + aiij

j = −1
2

∑
s

asjj(lnλ)s −
1
2

∑
s

asii(lnλ)s, i 6= j,

2aijk
i + akii

j + ajii
k = −

∑
s

asjk(lnλ)s, i, j, k distinct,

bj
k + bk

j = 3λ
∑

s

askjVs, j 6= k, j, k = 1, 2, 3,

bj
j =

3
2
λ
∑

s

asjjVs −
1
2

∑
s

bs(lnλ)s, j = 1, 2, 3,

and ∑
s

bsVs = 0.

The akji is just a third order Killing tensor. We are interested in such third order symmetries
that could possibly arise as commutators of second order symmetries. Thus we require that
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the highest order terms, the akji in the constant of the motion, be independent of the four
independent parameters in V . However, the b` must depend on these parameters. We set

b`(x, y, z) =
3∑

j=1

f `,j(x, y, z)Vj(x, y, z).

(Here we are excluding the purely first order symmetries.) In [20] the following result is obtained.

Theorem 2. Let K be a third order constant of the motion for a conformally flat superintegrable
system with nondegenerate potential V :

K =
3∑

k,j,i=1

akji(x, y, z)pkpjpi +
3∑

`=1

b`(x, y, z)p`.

Then

b`(x, y, z) =
3∑

j=1

f `,j(x, y, z)Vj(x, y, z)

with f `,j + f j,` = 0, 1 ≤ `, j ≤ 3. The aijk, b` are uniquely determined by the four numbers

f1,2(x0, y0, z0), f1,3(x0, y0, z0), f2,3(x0, y0, z0), f1,2
3 (x0, y0, z0)

at any regular point (x0, y0, z0) of V .

Let

S1 =
∑

akj
(1)pkpj + W(1), S2 =

∑
akj

(2)pkpj + W(2)

be second order constants of the the motion for a superintegrable system with nondegenerate
potential and let A(i)(x, y, z) =

{
akj

(i)(x, y, z)
}
, i = 1, 2 be 3 × 3 matrix functions. Then the

Poisson bracket of these symmetries is given by

{S1,S2} =
3∑

k,j,i=1

akji(x, y, z)pkpjpi + b`(x, y, z)p`,

where

fk,` = 2λ
∑

j

(
akj

(2)a
j`
(1) − akj

(1)a
j`
(2)

)
.

Differentiating, we find

fk,`
i = 2λ

∑
j

(
∂ia

kj
(2)a

j`
(1) + akj

(2)∂ia
j`
(1) − ∂ia

kj
(1)a

j`
(2) − akj

(1)∂ia
j`
(2)

)
+ Gif

k,`. (7)

Clearly, {S1,S2} is uniquely determined by the skew-symmetric matrix

[A(2),A(1)] ≡ A(2)A(1) −A(1)A(2),

hence by the constant matrix [A(2)(x0, y0, z0),A(1)(x0, y0, z0)] evaluated at a regular point, and
by the number F(x0, y0, z)) = f1,2

3 (x0, y0, z0).
For superintegrable nondegenerate potentials there is a standard structure allowing the iden-

tification of the space of second order constants of the motion with the space S3 of 3 × 3
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symmetric matrices, as well as identification of the space of third order constants of the mo-
tion with a subspace of the space K3 × F of 3 × 3 skew-symmetric matrices K3 crossed with
the line F = {F(x0)}. Indeed, if x0 is a regular point then there is a 1 − 1 linear correspon-
dence between second order symmetries S and their associated symmetric matrices A(x0). Let
{S1,S2}′ = {S2,S1} be the reversed Poisson bracket. Then the map

{S1,S2}′ ⇐⇒ [A(1)(x0),A(2)(x0)]

is an algebraic homomorphism. Here, S1, S2 are in involution if and only if matrices A(1)(x0),
A(2)(x0) commute and F(x0) = 0. If {S1,S2} 6= 0 then it is a third order symmetry and can
be uniquely associated with the skew-symmetric matrix [A(1)(x0),A(2)(x0)] and the parame-
ter F(x0) . Let E ij be the 3× 3 matrix with a 1 in row i, column j and 0 for every other matrix
element. Then the matrices

A(ij) =
1
2
(E ij + Eji) = A(ji), i, j = 1, 2, 3 (8)

form a basis for the 6-dimensional space of symmetric matrices. Moreover,

[A(ij),A(k`)] =
1
2
(
δjkB(i`) + δj`B(ik) + δikB(j`) + δi`B(jk)

)
,

where

B(ij) =
1
2
(E ij − Eji) = −B(ji), i, j = 1, 2, 3.

Here B(ii) = 0 and B(12), B(23), B(31) form a basis for the space of skew-symmetric matrices. To
obtain the commutation relations for the second order symmetries we need to use relations (7)
to compute the parameter F(x0) associated with each commutator [A(ij),A(k`)]. The results
are straightforward to compute, using relations (4).

Commutator 3F/λ

[A(12),A(11)] = B(21) −3A13 −B23 −G3

[A(13),A(11)] = B(31) A12 −B33 + G2

[A(22),A(11)] = 0 −4A23

[A(23),A(11)] = 0 2(A22 −A33)

[A(33),A(11)] = 0 4A23

[A(13),A(12)] = 1
2B

(32) 1
2(3B12 −A22 + 3A33 −G1)

[A(22),A(12)] = B(21) −3B23 −A13 −G3

[A(23),A(12)] = 1
2B

(31) 1
2(−3B33 − 3A12 + 2B22 + G2)

[A(33),A(12)] = 0 2(B23 −A13)

[A(22),A(13)] = 0 −2B33

[A(23),A(13)] = 1
2B

(21) −C33 + 1
2B23 − 1

2A13 − 1
2G3

[A(33),A(13)] = B(31) A12 + B33 + G2

[A(23),A(22)] = B(32) A33 −A22 −B12 −G1

[A(33),A(22)] = 0 −4A23

[A(33),A(23)] = B(32) A22 −A33 −B12 −G1

A consequence of these results is [20]
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Corollary 2. Let V be a superintegrable nondegenerate potential on a conformally flat space,
not a Stäckel transform of the isotropic oscillator. Then the space of truly third order constants
of the motion is 4-dimensional and is spanned by Poisson brackets of the second order constants
of the motion.

Corollary 3. We can define a standard set of 6 second order basis symmetries

S(jk) =
∑

ahs
(jk)(x)phps + W (jk)(x)

corresponding to a regular point x0 by (a(jk))(x0) = A(jk), W (jk)(x0) = 0.

5 Maximum dimensions of the spaces of polynomial constants

In order to demonstrate the existence and structure of quadratic algebras for 3D nondegenerate
superintegrable systems on conformally flat spaces, it is important to compute the dimensions
of the spaces of symmetries of these systems that are of orders 4 and 6. These symmetries are
necessarily of a special type. The highest order terms in the momenta are independent of the
parameters in the potential, while the terms of order 2 less in the momenta are linear in these
parameters, those of order 4 less are quadratic, and those of order 6 less are cubic. We will
obtain these dimensions exactly, but first we need to establish sharp upper bounds.

The following results are obtained by a careful study of the defining conditions and the
integrability conditions for higher order constants of the motion [20]:

Theorem 3. The maximum possible dimension of the space of purely fourth order symmetries
for a nondegenerate 3D potential is 21. The maximal possible dimension of the space of truly
sixth order symmetries is 56.

6 Bases for the fourth and sixth order constants of the motion

It follows from Section 5 that, for a superintegrable system with nondegenerate potential, the
dimension of the space of truly fourth order constants of the motion is at most 21. Note from
Section 4 that at any regular point x0, we can define a standard basis of 6 second order constants
of the motion S(ij) = A(ij)+W (ij) where the quadratic form A(ij) has matrix A(ij) defined by (8)
and W (ij) is the potential term with W (ij)(x0) ≡ 0 identically in the parameters W (α). By taking
homogeneous polynomials of order two in the standard basis symmetries we can construct fourth
order symmetries.

Theorem 4. The 21 distinct standard monomials S(ij)S(jk), defined with respect to a regular
point x0, form a basis for the space of fourth order symmetries.

Indeed, we can choose the basis symmetries in the form

1.
(
S(ii)

)2
, S(ii)S(ij), S(ii)S(jj), S(ii)S(jk)

for i, j, k = 1, . . . , 3, i, j, k pairwise distinct (15 possibilities).

2. S(ii)S(jj) −
(
S(ij)

)2
for i, j = 1, . . . , 3, i, j pairwise distinct (3 possibilities).

3. S(ij)S(ik) − S(ii)S(jk)

for i, j, k = 1, . . . , 3, i, j, k pairwise distinct (3 possibilities).
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It is a straightforward computation to show that these 21 symmetries are linearly independent.
Since the maximum possible dimension of the space of fourth order symmetries is 21, they must
form a basis. See [20] for the details of the proof.

Now from Section 5 the dimension of the space of purely sixth order constants of the motion
is at most 56. Again we can show that the 56 independent homogeneous third order polynomials
in the symmetries S(ij) form a basis for this space.

At the sixth order level we have the symmetries

1.
(
S(ii)

)3
,
(
S(ii)

)2S(ij),
(
S(ii)

)2S(jj),
(
S(ii)

)2S(jk)

for i, j, k = 1, . . . , 3, i, j, k pairwise distinct (18 possibilities).

2. S(ii)S(ij)S(jj), S(ii)S(ij)S(jk), S(ii)S(jj)S(kk),

for i, j, k = 1, . . . , 3, i, j, k pairwise distinct (10 possibilities).

3. S(`m)
(
S(ii)S(jj) −

(
S(ij)

)2)
for i, j = 1, . . . , 3, i, j pairwise distinct (10 possibilities).

4. S(`m)
(
S(ij)S(ik) − S(ii)S(jk)

)
for i, j, k = 1, . . . , 3, i, j, k pairwise distinct (18 possibilities).

Theorem 5. The 56 distinct standard monomials S(hi)S(jk)S(`m), defined with respect to a re-
gular x0, form a basis for the space of sixth order symmetries.

See [20] for the details of the proof. We conclude that the quadratic algebra closes.

7 Second order conformal Killing tensors

There is a close relationship between the second-order Killing tensors of a conformally flat space
in 3D and the second order conformal Killing tensors of flat space. A second order conformal
Killing tensor for a space V with metric ds2 = λ(x)

(
dx2

1 + dx2
2 + dx2

3

)
and free Hamiltonian

H =
(
p2
1 + p2

2 + p2
3

)
/λ is a quadratic form S =

∑
aij(x1, x2, x3)pipj such that

{H,S} = f(x1, x2, x3)H,

form some function f . Since f is arbitrary, it is easy to see that S is a conformal Killing tensor
for V if and only if it is a conformal Killing tensor for flat space dx2

1 +dx2
2 +dx2

3. The conformal
Killing tensors for flat space are very well known, e.g., [16]. The space of conformal Killing
tensors is infinite dimensional. It is spanned by products of the conformal Killing vectors

p1, p2, p3, x3p2 − x2p3, x1p3 − x3p1, x2p1 − x1p2, x1p1 + x2p2 + x3p3,(
x2

1 − x2
2 − x2

3

)
p1 + 2x1x3p3 + 2x1x2p2,

(
x2

2 − x2
1 − x2

3

)
p2 + 2x2x3p3 + 2x2x1p1,(

x2
3 − x2

1 − x2
2

)
p3 + 2x3x1p1 + 2x3x2p2,

and terms g(x1, x2, x3)
(
p2
1 +p2

2 +p2
3

)
where g is an arbitrary function. Since every Killing tensor

is also a conformal Killing tensor, we see that every second-order Killing tensor for V3 can be
expressed as a linear combination of these second-order generating elements though, of course,
the space of Killing tensors is only finite dimensional. This shows in particular that every aij

and every aii − ajj with i 6= j is a polynomial of order at most 4 in x1, x2, x3, no matter what
is the choice of λ.

It is useful to pass to new variables

a11, a24, a34, a12, a13, a23

for the Killing tensor, where a24 = a22 − a11, a34 = a33 − a11. Then we can establish the result
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Theorem 6. Necessary and sufficient conditions that the quadratic form S =
∑
ij

aijpipj be

a second order Killing tensor for the space with metric ds2 = λ
(
dx2

1 + dx2
2 + dx2

3

)
are

1. S is a conformal Killing tensor on the flat space with metric dx2
1 + dx2

2 + dx2
3.

2. The following integrability conditions hold:(
λ2a

12 + λ3a
13
)
2

=
(
λ1a

12 +
(
a24λ

)
2
+ λ3a

23
)
1
,(

λ2a
12 + λ3a

13
)
3

=
(
λ1a

13 + λ2a
23 +

(
a34λ

)
3

)
1
,(

λ1a
12 +

(
a24λ

)
2
+ λ3a

23
)
3

=
(
λ1a

13 + λ2a
23 +

(
a34λ

)
3

)
2
.

8 The Stäckel transform for three-dimensional systems

The Stäckel transform [37] or coupling constant metamorphosis [38] plays a fundamental role
in relating superintegrable systems on different manifolds. Suppose we have a superintegrable
system

H =
p2
1 + p2

2 + p2
3

λ(x, y, z)
+ V (x, y, z),

in local orthogonal coordinates, with nondegenerate potential V (x, y, z):

V33 = V11 + A33V1 + B33V2 + C33V3,

V22 = V11 + A22V1 + B22V2 + C22V3,

V23 = A23V1 + B23V2 + C23V3,

V13 = A13V1 + B13V2 + C13V3,

V12 = A12V1 + B12V2 + C12V3 (9)

and suppose U(x, y, z) is a particular solution of equations (9), nonzero in an open set. Then
the transformed system

H̃ =
p2
1 + p2

2 + p2
3

λ̃(x, y, z)
+ Ṽ (x, y, z)

with nondegenerate potential Ṽ (x, y, z):

Ṽ33 = Ṽ11 + Ã33Ṽ1 + B̃33Ṽ2 + C̃33Ṽ3,

Ṽ22 = Ṽ11 + Ã22Ṽ1 + B̃22Ṽ2 + C̃22Ṽ3,

Ṽ23 = Ã23Ṽ1 + B̃23Ṽ2 + C̃23Ṽ3,

Ṽ13 = Ã13Ṽ1 + B̃13Ṽ2 + C̃13Ṽ3,

Ṽ12 = Ã12Ṽ1 + B̃12Ṽ2 + C̃12Ṽ3,

is also superintegrable, where

λ̃ = λU, Ṽ =
V

U
,

Ã33 = A33 + 2
U1

U
, B̃33 = B33, C̃33 = C33 − 2

U3

U
,

Ã22 = A22 + 2
U1

U
, B̃22 = B22 − 2

U2

U
, C̃22 = C22,
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Ã23 = A23, B̃23 = B23 − U3

U
, C̃23 = C23 − U2

U
,

Ã13 = A13 − U3

U
, B̃13 = B13, C̃13 = C13 − U1

U
,

Ã12 = A12 − U2

U
, B̃12 = B12 − U1

U
, C̃12 = C12.

Let S =
∑

aijpipj +W = S0+W be a second order symmetry of H and SU =
∑

aijpipj +WU =
S0 + WU be the special case that is in involution with

(
p2
1 + p2

2 + p2
3

)
/λ + U . Then

S̃ = S0 −
WU

U
H +

1
U

H

is the corresponding symmetry of H̃. Since one can always add a constant to a nondegenerate
potential, it follows that 1/U defines an inverse Stäckel transform of H̃ to H. See [37] for many
examples of this transform.

9 Multiseparability and Stäckel equivalence

From the general theory of variable separation for Hamilton–Jacobi equations [16, 17] we know
that second order symmetries S1, S2 define a separable system for the equation

H =
p2

x + p2
y + p2

z

λ(x, y, z)
+ V (x, y, z) = E

if and only if

1. The symmetries H, S1, S2 form a linearly independent set as quadratic forms.
2. {S1,S2} = 0.
3. The three quadratic forms have a common eigenbasis of differential forms.

This last requirement means that, expressed in coordinates x, y, z, at least one of the matrices
A(j)(x) can be diagonalized by conjugacy transforms in a neighborhood of a regular point and
that [A(2)(x),A(1)(x)] = 0. However, for nondegenerate superintegrable potentials in a confor-
mally flat space we see from Section 5 that

{S1,S2} = 0 ⇐⇒ [A(2)(x0),A(1)(x0)] = 0, and F(x0) = 0

so that the intrinsic conditions for the existence of a separable coordinate system are simplified.

Theorem 7. Let V be a superintegrable nondegenerate potential in a 3D conformally flat space.
Then V defines a multiseparable system.

See [21] for the details of the proof.
In [39] the following result was obtained.

Theorem 8. Let u1, u2, u3 be an orthogonal separable coordinate system for a 3D conformally
flat space with metric ds̃2 Then there is a function f such that

fds̃2 = ds2

where ds2 is a constant curvature space metric and ds2 is orthogonally separable in exactly these
same coordinates u1, u2, u3. The function f is called a Stäckel multiplier with respect to this
coordinate system.

Thus the possible separable coordinate systems for a conformally flat space are all obtained,
modulo a Stäckel multiplier, from separable systems on 3D flat space or on the 3-sphere. This
result provides evidence that, as in the 2D case, all nondegenerate 3D superintegrable systems
on conformally flat spaces are Stäckel equivalent to a superintegrable system on either 3D flat
space or the 3-sphere, but we have not yet settled this issue.
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10 Discussion and conclusions

We have shown that all classical superintegrable systems with nondegenerate potential on real
or complex 3D conformally flat spaces admit 6 linearly independent second order constants of
the motion (even though only 5 functionally independent second order constants are assumed)
and that the spaces of fourth order and sixth order symmetries are spanned by polynomials in
the second order symmetries. (An interesting issue here is the form of the functional dependence
relation between the 6 linearly independent symmetries. It appears that the relation is always
of order 8 in the momenta, but we have as yet no general proof.) This implies that a quadratic
algebra structure always exists for such systems. We worked out their common structure and
related it to algebras of 3×3 symmetric matrices. We demonstrated that such systems are always
multiseparable, more precisely they permit separation of variables in at least three orthogonal
coordinate systems.

We also studied the Stäckel transform, a conformal invertible mapping from a superintegrable
system on one space to a system on another space. Using prior results from the theory of
separation of variables on conformally flat spaces, we gave evidence that every nondegenerate
superintegrable system on such a space is Stäckel equivalent to a superintegrable system on
complex Euclidean space or on the complex 3-sphere, though we haven’t yet settled the issue.
This suggests that to classify all such superintegrable systems we can restrict attention to these
two constant curvature spaces, and then obtain all other cases via Stäckel transforms. We are
making considerable progress on the classification theory [21], though the problem is complicated.

All of our 2D and 3D classical results can be extended to quantum systems and the Schrödinger
equation and we are in the process of writing these up.

Another interesting set of issues comes from the consideration of 3D superintegrable systems
with degenerate, but multiparameter, potentials. In some cases such as the extended Kepler–
Coulomb potential there is no quadratic algebra, whereas in other cases the quadratic algebra
exists. Understanding the underlying structure of these systems is a major challenge. Finally
there is the challenge of generalizing the 2D and 3D results to higher dimensions.
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