| 
 SIGMA 2 (2006), 021, 10 pages      cond-mat/0602427     
https://doi.org/10.3842/SIGMA.2006.021 
On the Degenerate Multiplicity of the sl2 Loop Algebra for the 6V Transfer Matrix at Roots of Unity
Tetsuo Deguchi
 Department of Physics, Faculty of Science,  Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-Ku, Tokyo 112-8610, Japan 
 
Received October 31, 2005, in final form February 06, 2006; Published online February 17, 2006 
Abstract
 
We review the main result of cond-mat/0503564. The
Hamiltonian of the XXZ spin chain and the transfer matrix of the
six-vertex model has the sl2 loop algebra symmetry if the q
parameter is given by a root of unity, q02N = 1, for an
integer N. We discuss the dimensions of the degenerate
eigenspace generated by a regular Bethe state in some sectors,
rigorously as follows:
 We show that every regular Bethe ansatz eigenvector in the sectors is
a highest weight vector and derive the highest weight
 dk±,
 which leads to evaluation parameters aj.
If the evaluation parameters are distinct, we obtain the
dimensions of the highest weight representation generated by the
regular Bethe state.
  
Key words:
loop algebra; the six-vertex model; roots of unity representations of quantum groups; Drinfeld polynomial. 
pdf (249 kb)  
ps (177 kb)  
tex (14 kb)
 
 
References
 
-  Alcaraz F.C., Grimm U., Rittenberg V.,
The XXZ Heisenberg chain, conformal invariance and the operator
content of c < 1 systems, Nucl. Phys. B, 1989, V.316,
735-768.
 
-  Baxter R.J.,
Eight-vertex model in lattice statistics and one-dimensional
anisotropic Heisenberg chain. I. Some fundamental eigenvectors,
Ann. Phys., 1973, V.76, 1-24;
 II. Equivalence to a generalized Ice-type lattice model,
Ann. Phys., 1973, V.76, 25-47; III. Eigenvectors of the
transfer matrix and Hamiltonian, Ann. Phys., 1973, V.76,
48-71.
 
-   Baxter R.J.,
Completeness of the Bethe ansatz for the six and eight vertex
models, J. Statist. Phys., 2002, V.108, 1-48,
cond-mat/0111188.
 
-   Baxter R.J.,
The six and eight-vertex models revisited, J. Statist.
Phys., 2004, V.116, 43-66, cond-mat/0403138.
 
-  Braak D., Andrei N.,
 On the spectrum of the XXZ-chain at roots of unity,
J. Statist. Phys., 2001, V.105, 677-709, cond-mat/0106593.
 
-  Chari V., Pressley A.,
Quantum affine algebras, Comm. Math. Phys., 1991, V.142,
261-283.
 
-  Chari V., Pressley A.,
Quantum affine algebras at roots of unity, Represent.
Theory, 1997, V.1, 280-328, q-alg/9609031.
 
-  Chari V., Pressley A., Weyl modules for classical and
 quantum affine algebras, Represent. Theory, 2001, V.5, 191-223, math.QA/0004174.
 
-  Deguchi T.,
Construction of some missing eigenvectors of the XYZ spin chain at
the discrete coupling constants and the exponentially large
spectral degeneracy of the transfer matrix, J. Phys. A: Math.
Gen., 2002, V.35, 879-895, cond-mat/0109078.
 
-  Deguchi T.,
 The 8V CSOS model and the sl2 loop algebra symmetry
 of the six-vertex model at roots of unity,
Internat. J. Modern Phys. B, 2002, V.16, 1899-1905,
cond-mat/0110121.
 
-  Deguchi T.,
 XXZ Bethe states as highest weight vectors
of the sl2 loop algebra at roots of unity, cond-mat/0503564.
 
-  Deguchi T.,
The six-vertex model at roots of unity and some highest weight
representations of the sl2 loop algebra, in preparation (to be
submitted to the Proceedings of RAQIS'05, Annecy, France).
 
-  Deguchi T., Fabricius K.,  McCoy B.M.,
The sl2 loop algebra symmetry of the six-vertex model at roots
of unity, J. Statist. Phys., 2001, V.102, 701-736,
cond-mat/9912141.
 
-  Fabricius K., McCoy B.M.,
Bethe's equation is incomplete for the XXZ model at roots of
unity, J. Statist. Phys., 2001, V.103, 647-678,
cond-mat/0009279.
 
-  Fabricius K., McCoy B.M.,
Completing Bethe's equations at roots of unity, J. Statist.
Phys., 2001, V.104, 573-587, cond-mat/0012501.
 
-  Fabricius K., McCoy B.M.,
Evaluation parameters and Bethe roots for the six-vertex model at
roots of unity, Progress in Mathematical Physics, Vol. 23
 (MathPhys Odyssey 2001), Editors  M. Kashiwara and T. Miwa, Boston, Birkhäuser, 2002, 119-144, cond-mat/0108057.
 
-  Fabricius K., McCoy B.M.,
New developments in the eight-vertex model,
J. Statist Phys., 2003, V.111, 323-337, cond-mat/0207177.
 
Fabricius K., McCoy B.M., Functional equations and fusion matrices
for the eight-vertex model, Publ. Res. Inst. Math. Sci.,
2004, V.40, 905-932, cond-mat/0311122. 
-  Fabricius K., McCoy B.M.,
New developments in the eight-vertex model II. Chains of odd
length, cond-mat/0410113.
 
-  Jimbo M., Private communication, July 2004.
 
-  Kac V., Infinite dimensional Lie algebras,  Cambridge,
Cambridge University Press, 1990.
 
-  Korepanov I.G., Hidden symmetries in the 6-vertex model
of statistical physics, Zap. Nauchn. Sem. S.-Peterburg.
Otdel. Mat. Inst. Steklov. (POMI), 1994, V.215, 163-177 (English
transl.: J. Math. Sci. (New York), 1997, V.85, 1661-1670),
  hep-th/9410066.
 
-  Korepanov I.G., Vacuum curves of the L-operators related to the six-vertex model,
St. Petersburg Math. J., 1995, V.6, 349-364.
 
-  Korepin V.E., Bogoliubov N.M., Izergin A.G.,
Quantum inverse scattering method and correlation functions,
Cambridge, Cambridge University Press,  1993.
 
-  Korff C., McCoy B.M.,
Loop symmetry of integrable vertex models at roots of unity, 
Nucl. Phys. B, 2001, V.618, 551-569, hep-th/0104120.
 
-  Lusztig G., Modular representations and
quantum groups, Contemp. Math., 1989, V.82, 59-77.
 
-  Lusztig G., Introduction to quantum groups, Boston,
Birkhäuser, 1993.
 
-  Pasquier V., Saleur H.,
Common structures between finite systems and conformal field
theories through quantum groups, Nucl. Phys. B, 1990, V.330,
523-556.
 
-  Takhtajan L., Faddeev L.,
Spectrum and scattering of excitations in the one-dimensional
isotropic Heisenberg model, J. Sov. Math., 1984, V.24,
241-267.
 
-  Tarasov V.O.,
 Cyclic monodromy matrices for the R-matrix of the six-vertex model
and the chiral Potts model with fixed spin boundary conditions,
in Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser.
Math. Phys., Vol. 16, River Edge, NJ, World Sci. Publishing,
1992, 963-975.
 
-  Tarasov V.O., On the Bethe vectors
for the XXZ model at roots of unity, math.QA/0306032.
 
 
 | 
 |