| 
 SIGMA 2 (2006), 038, 14 pages      math-ph/0603071     
https://doi.org/10.3842/SIGMA.2006.038 
On the Generalized Maxwell-Bloch Equations
Pavle Saksida
 Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Slovenia 
 
Received December 01, 2005, in final form March 05, 2006; Published online March 27, 2006 
Abstract
 
A new Hamiltonian structure of the Maxwell-Bloch
equations is described. In this setting the Maxwell-Bloch
equations appear as a member of a family of generalized
Maxwell-Bloch systems. The family is parameterized by compact
semi-simple Lie groups, the original Maxwell-Bloch system being
the member corresponding to SU(2). The Hamiltonian structure is
then used in the construction of a new family of symmetries and
the associated conserved quantities of the Maxwell-Bloch
equations.
  
Key words:
Maxwell-Bloch equations; Hamiltonian structures; symmetries; conserved quantities. 
pdf (238 kb)  
ps (179 kb)  
tex (19 kb)
 
 
References
 
-  Reyman A.G., Semenov-Tian-Shansky M.A.,
 Reduction of Hamiltonian systems, affine Lie algebras
and Lax equations I, Invent. Math., 1979, V.54, 81-100.
 
-  Reyman A.G.,   Semenov-Tian-Shansky M.A.,
Integrable systems II, in  Encyclopaedia of Mathematical
Sciences, Vol. 16, Editors V.I. Arnold and S.P. Novikov,
Berlin, Springer,  1994, 116-259.
 
-  Saksida P.,  Nahm's equations and generalizations
of the Neumann system, Proc. Lond. Math. Soc., 1999, V.78,
701-720.
 
-  Novikov S.P.,   The Hamiltonian formalism and multivalued
analogue of Morse theory, Uspekhi Mat. Nauk,  1982, V.37,
3-49 (in Russian).
 
-  Marsden J.E.,   Lectures on mechanics,
London Mathematical Society Lecture Note Series, Vol.174,
Cambridge, Cambridge University Press,  1992.
 
-  Marsden J.E.,  Ratiu T.S.,  Introduction to mechanics
and symmetry,  New York,  Springer,  1994.
 
-  Saksida P.,  Maxwell-Bloch equations, C. Neumann systems and Kaluza-Klein
theory, J. Phys. A: Math. Gen., 2005, V.38,  10321-10344.
 
-  Kostant B.,   Quantization and unitary representations, in
Lectures in Modern Analysis and Applications III. Lecture
Notes in Math., Vol.179, Editor  C.T. Taam, Berlin, Springer,
1970, 87-208.
 
-  Park Q-Han, Shin H.J.,  Complex sine-Gordon equation in coherent
optical pulse propagation,  J. Korean Phys. Soc., 1997,
V.30,  336-340, solv-int/9904007.
 
-  Park Q-Han, Shin H.J.,
Field theory for coherent optical pulse propagation, Phys.
Rev. A, 1998, V.57, 4621-4642, solv-int/9709002.
 
-  Abraham R., Marsden J.E.,  Foundations of
Mechanics,  2nd ed.,  Reading MA, Benjamin-Cummings,  1978.
 
-  Lamb G.L.,  Phase variation in coherent-optical-pulse propagation,
Phys. Rev. Lett., 1973,  V.31,  196-199.
 
-  Lamb G.L.,   Coherent-optical-pulse propagation as an inverse problem,
Phys. Rev. A,  1974,  V.9,  422-430.
 
-  Caudrey P.J., Eilbeck J.C., Gibbon J.D.,
An N-soliton solution of a nonlinear optics equation derived by
inverse  method, Lett. Nuovo Cimento, 1973,  V.8,  773-779.
 
-  Gabitov I.R., Zakharov V.E.,  Mikhailov A.V.,
The Maxwell-Bloch equation and the method of the inverse
scattering problem, Teoret. Mat. Fiz., 1985, V.63, 11-31
(in Russian).
 
-  Saksida P.,   Neumann system, spherical pendulum and
magnetic fields, J. Phys. A: Math. Gen.,  2002,  V.35,
5237-5253.
 
-  Saksida P.,   Integrable anharmonic oscillators on spheres
and hyperbolic spaces, Nonlinearity, 2001,  V.14,  977-994.
 
-  Holm D., Kovacic G., Homoclinic chaos in a laser-matter
system, Phys. D, 1992, V.56, 270-300.
 
-  Naudts J., Kuna M., Special solutions of  nonlinear
von Neumann equations, math-ph/0506020.
 
-  Czachor M., Kuna M., Leble S.B.,  Naudts J.,  Nonlinear von Neumann-type
equations, in Trends in Quantum Mechanics (1998, Goslar), River
Edge, NJ, World Sci. Publishing, 2000, 209-226, quant-ph/9904110.
 
-  Nambu Y., Generalized Hamiltonian dynamics, Phys. Rev. D,
1973, V.7, 2405-2412.
 
 
 | 
 |