| 
 SIGMA 2 (2006), 048, 10 pages      math.RT/0605091     
https://doi.org/10.3842/SIGMA.2006.048 
On Deformations and Contractions of Lie Algebras
Alice Fialowski a and Marc de Montigny b
 a) Institute of Mathematics, Eötvös Loránd University,
Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
 b) Campus Saint-Jean and Theoretical Physics Institute,
University of Alberta, 8406 - 91 Street, Edmonton, Alberta, T6C 4G9, Canada 
 
Received February 24, 2006, in final form April 25, 2006; Published online May 03, 2006 
Abstract
 
In this contributed presentation, we
 discuss and compare the mutually
 opposite procedures of deformations and contractions
 of Lie algebras. We suggest
 that with appropriate combinations of both procedures one may
 construct new Lie algebras. We first discuss low-dimensional Lie
 algebras and illustrate thereby that whereas for every contraction
 there exists a reverse deformation, the converse is not true
 in general. Also we note that some Lie algebras belonging to
 parameterized families are singled out by the irreversibility of
 deformations and contractions. After reminding that global
 deformations of the Witt, Virasoro, and affine Kac-Moody algebras
 allow one to retrieve Lie algebras of Krichever-Novikov type, we
 contract the latter to find new infinite dimensional Lie algebras.
  
Key words:
Lie algebras; deformations; contractions; Kac-Moody algebras. 
pdf (220 kb)  
ps (169 kb)  
tex (25 kb)
 
 
References
 
-  Fialowski A., de Montigny M., Contractions
 and deformations of Lie algebras, J. Phys. A: Math. Gen., 2005, V.38, 6335-6349.
 
-  Gerstenhaber M., On the deformation of rings and algebras,
Ann. Math., 1964, V.79, 59-103;
 
Gerstenhaber M., On the deformation of rings and algebras II, Ann. Math., 1966, V.84, 1-19; 
Gerstenhaber M., On the deformation of rings and algebras III, Ann. Math., 1968, V.88, 1-34; 
Gerstenhaber M., On the deformation of rings and algebras IV, 1974, V.99, 257-276; 
Nijenhuis A., Richardson R.W., Deformations of Lie algebra structures,
J. Math. Mech., 1967, V.17, 89-105; 
Fialowski A.,  Deformations of Lie algebras, Math. USSR Sbornik, 1986, V.55, 467-472; 
Fialowski A., An example of formal deformations of
 Lie algebras, in Proceedings of NATO Conference on
 Deformation Theory of Algebras and Applications, Editors M. Hazawinkel and
 M. Gerstenhaber, Dordrecht, Kluwer, 1988, 375-401; 
 Fialowski A., Fuchs D., Construction of miniversal deformations
 of Lie algebras, J. Funct. Anal., 1999, V.161, 76-110, math.RT/0006117. 
-  Fialowski A., Schlichenmaier M., Global deformations
 of the Witt algebra of Krichever-Novikov type, Commun. Contemp. Math., 2003, V.5, 921-945, math.QA/0206114;
 
Fialowski A., Schlichenmaier M., Global geometric deformations of current
 algebras as Krichever-Novikov type algebras, Comm. Math. Phys., 2005, V.260, 579-612,
 math.QA/0412113.  
-  Inönü E., Wigner E.P., On the contraction of groups and their
 representations, Proc. Nat. Acad. Sci. U.S.A., 1953, V.39, 510-524;
 
Saletan E., Contraction of Lie groups, J. Math. Phys., 1961, V.2, 1-21; 
Gilmore R., Lie groups, Lie algebras, and some of their
applications, New York, Wiley, 1974, Chapter 10; 
Talman J.D., Special functions: a group theoretic approach,
New York, Benjamin,  1968. 
-  Onishchik A.L., Vinberg E.B.,  Lie groups and
 Lie algebras, Enclycopaedia of Mathematical Sciences, Vol. 41,
Berlin, Springer, 1991, Chapter 7.
 
-  Weimar-Woods E., Contractions, generalized
 Inönü-Wigner contractions and deformations of finite-dimensional
 Lie algebras, Rev. Math. Phys., 2000, V.12, 1505-1529;
 
Lévy-Nahas M., Deformation and contraction
 of Lie algebras, J. Math. Phys., 1967, V.8, 1211-1222; 
Lõhmus J., Tammelo R., Contractions and deformations of space-time
 algebras I. General theory and kinematical algebras, Hadronic J., 1997, V.20, 361-416; 
Fialowski A., O'Halloran J., A comparison of deformations
 and orbit closure, Comm. Algebra, 1990, V.18, 4121-4140. 
-  Conatser C.W., Contractions of the low-dimensional real
 Lie algebras, J. Math. Phys., 1972, V.13, 196-203.
 
-  Burde D., Steinhoff C., Classification of orbit closures of
 4-dimensional complex Lie algebras, J. Algebra, 1999, V.214, 729-739.
 -  Fialowski A., Deformations of some
 infinite-dimensional Lie algebras, J. Math. Phys., 1990, V.31, 1340-1343.
 
-   Lecomte P.B.A., Roger C.,
Rigidity of current Lie algebras of complex simple type, J. London Math. Soc. (2),
1988, V.37, 232-240.
 
-  Fialowski A., Penkava M.,
 Versal deformations of three-dimensional Lie algebras as
 L∞ algebras, Commun. Contemp. Math., 2005, V.7, 145-165, math.RT/0303346.
 
-  Goddard P., Olive D., Kac-Moody and Virasoro algebras,
New York, World Scientific, 1988;
 
Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory,
New York, Springer, 1997;  
Tsvelik A.M., Quantum field theory in condensed matter physics,
Cambridge Univ. Press, 2003. 
-  Krichever I.M., Novikov S.P., Algebras of Virasoro type,
  Riemann surfaces and structures of the theory of solitons, Funct. Anal. Appl., 1987, V.21, 126-142;
 
Krichever I.M., Novikov S.P., Virasoro-type algebras, Riemann surfaces
  and strings in Minkowski space, Funct. Anal. Appl., 1987, V.21, 294-307; 
Krichever I.M., Novikov S.P., Algebras of Virasoro type,
  energy-momentum tensor and decomposition operators on Riemann surfaces, Funct. Anal. Appl.,
1989, V.23, 19-33. 
-  Majumdar P., Inönü-Wigner contraction of Kac-Moody algebras,
J. Math. Phys., 1993, V.34, 2059-2065, hep-th/9207057;
 
Olive D.I., Rabinovici E., Schwimmer A., A class of string backgrounds as
 a semiclassical limit of WZW models, Phys. Lett. B, 1994, V.321, 361-364, hep-th/9311081. 
 
 | 
 |