| 
 SIGMA 2 (2006), 053, 8 pages      cond-mat/0605364     
https://doi.org/10.3842/SIGMA.2006.053 
On Regularized Solution for BBGKY Hierarchy of One-Dimensional Infinite System
Tatiana V. Ryabukha
 Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivs'ka Str., Kyiv-4, 01601 Ukraine 
 
Received October 31, 2005, in final form April 26, 2006; Published online May 14, 2006 
Abstract
 
We construct a regularized cumulant (semi-invariant)
representation of a solution of the initial value problem for the BBGKY hierarchy
for a one-dimensional infinite system of hard spheres interacting via
a short-range potential. An existence theorem is proved
for the initial data from the space of sequences of bounded functions.
  
Key words:
BBGKY hierarchy; cumulant; regularized solution. 
pdf (219 kb)  
ps (160 kb)  
tex (12 kb)
 
 
References
 
-         Petrina D.Ya., Gerasimenko V.I., Malyshev P.V.,
        Mathematical foundations of classical statistical mechanics.
        Continuous systems, 2nd ed.,  London - New York, Taylor & Francis Inc., 2002.
 
-         Cercignani C., Gerasimenko V.I., Petrina D.Ya.,
        Many-particle dynamics and kinetic equations,
        Kluwer Acad. Publ., 1997.
 
-         Cercignani C., Illner R., Pulvirenti M.,
        The mathematical theory of dilute gases,
        Applied Mathematical Sciences, Vol. 106,
        New York, Springer, 1994.
 
-         Spohn H.,
        Large scale dynamics of interacting particles, Springer, 1991.
 
-         Petrina D.Ya.,
        Mathematical description of the evolution of infinite
        systems of classical statistical physics. I. Locally perturbed one-dimensional systems,
        Teoret. Mat. Fiz., V.38, 1979, 230-262 (in Russian).
 
-         Petrina D.Ya., Gerasimenko V.I.,
        Mathematical description of the evolution of the state of infinite systems of classical statistical mechanics,
        Uspekhi Mat. Nauk, 1983, V.38, 3-58 (in Russian).
 
-         Gerasimenko V.I., Ryabukha T.V.,
        Dual nonequilibrium cluster expansions,
        Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2003,  N 3, 16-22 (in Ukrainian).
 
-         Gerasimenko V.I., Ryabukha T.V., Stashenko M.O.,
        On the BBGKY hierarchy solutions for many-particle systems with different symmetry properties,
        in Proceedings of Fifth International Conference "Symmetry in
Nonlinear Mathematical Physics" (June 23-29, 2003, Kyiv),
Editors A.G. Nikitin, V.M. Boyko, R.O. Popovych and
I.A. Yehorchenko, Proceedings of Institute of Mathematics,
Kyiv, 2004, V.50, Part 3, 1308-1313.
 
-         Gerasimenko V.I., Ryabukha T.V.,
        Cumulant representation of solutions of the Bogolyubov chains of equations,
        Ukrain. Mat. Zh., 2002, V.54, 1313-1328
        (English transl.: Ukrainian Math. J.,
         2002, V.54, 1583-1601).
 
-         Ruelle D.,
        Statistical mechanics. Rigorous results,
        New York - Amsterdam, W.A. Benjiamin Inc., 1969.
 
-         Cohen E.G.D.,
        Cluster expansions and the hierarchy. I. Non-equilibrium distribution functions,
        Physica, 1962, V.28, 1045-1059.
 
-         Green H.S., Piccirelli R.A.,
        Basis of the functional assumption in the theory of the Boltzmann equation,
        Phys. Rev. (2), 1963, V.132, 1388-1410.
 
-         Reed M., Simon B.,
        Methods of modern mathematical physics. Vol. 1: Functional analysis,
        New York - London, Academic Press, 1972.
 
-         Kaniadakis G.,
        BBGKY hierarchy underlying many-particle quantum mechanics,
        Phys. Lett. A, 2003, V.310, 377-382,  quant-ph/0303159.
 
-         Tarasov V.E.,
        Fractional systems and fractional Bogoliubov hierarchy equations,
        Phys. Rev. E, 2005, V.71,  011102, 12 pages, cond-mat/0505720.
 
-         Illner R., Pulvirenti M.,
        Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum,
        Comm. Math. Phys., 1986, V.105, 189-203.
 
-         Illner R., Pulvirenti M.,
        A derivation of the BBGKY-hierarchy for hard sphere particle systems,
        Transport Theory Statist. Phys., 1987, V.16, 997-1012.
 
 
 | 
 |