| 
 SIGMA 2 (2006), 071, 16 pages      math.CA/0610718     
https://doi.org/10.3842/SIGMA.2006.071 
Contribution to the Vadim Kuznetsov Memorial Issue 
Generalized Ellipsoidal and Sphero-Conal Harmonics
Hans Volkmer
 Department of Mathematical Sciences, University of Wisconsin-Milwaukee,
P.O. Box 413, Milwaukee, WI 53201 USA
 
 
Received August 25, 2006, in final form October 20, 2006; Published online October 24, 2006 
Abstract
 
Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of
the Laplace equation that can be expressed in terms of Lamé polynomials.
Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of
the more general Dunkl equation that can be expressed in terms of Stieltjes polynomials.
Niven's formula
connecting ellipsoidal and sphero-conal harmonics is generalized. Moreover, generalized ellipsoidal
harmonics are applied to solve
the Dirichlet problem for Dunkl's equation on ellipsoids.
  
Key words:
generalized ellipsoidal harmonic; Stieltjes polynomials; Dunkl equation; Niven formula. 
pdf (286 kb)  
ps (188 kb)  
tex (16 kb)
 
 
References
 
- Arscott F.M., Periodic differential equations,
              New York, Pergamon Press, MacMillan Company, 1964.
 
- Dunkl C.F., Reflection groups and orthogonal polynomials on the sphere,
             Math. Z., 1988, V.197, 33-60.
 
- Dunkl C.F., Computing with differential-difference operators,
             J. Symbolic Comput., 1999, V.28, 819-826.
 
- Dunkl C.F., Xu Y., Orthogonal polynomials of several variables, Cambridge,
             Cambridge University Press, 2001.
 
- Heine E., Handbuch der Kugelfunktionen, Vol. 1, Berlin,
             G. Reimer Verlag, 1878.
 
- Hobson E.W., The theory of spherical and ellipsoidal harmonics,
             Cambridge 1931.
 
- Hochstadt H., The functions of mathematical physics, New York,
             Wiley-Interscience, 1971.
 
- Kalnins E.G., Miller  W.Jr., Tratnik M.V., Families of orthogonal and biorthogonal
             polynomials on the n-sphere, SIAM J. Math. Anal., 1991, V.22, 272-294.
 
- Kalnins E.G., Miller  W.Jr., Hypergeometric expansions of Heun polynomials,
             SIAM J. Math. Anal., 1991, V.22, 1450-1459.
 
- Kalnins E.G., Miller W.Jr., Jacobi elliptic coordinates, functions of Heun
             and Lamé type and the Niven transform, Regul. Chaotic Dyn., 2005, V.10, 487-508.
 
- Kellog O.D., On bounded polynomials in several variables, Math. Z., 1927, V.27,
             55-64.
 
- Komarov I.V., Kuznetsov V.B., Quantum Euler-Manakov top
             on the 3-sphere S3, J. Phys. A: Math. Gen., 1991, V.24, L737-L742.
 
- Kuznetsov V.B., Equivalence of two graphical calculi,
             J. Phys. A: Math. Gen., 1992, V.25, 6005-6026.
 
- Lokemba Liamba J.P., Expansions in generalized spherical harmonics in Rk+1,
             Ann. Sci. Math. Québec, 2002, V.26, 79-93.
 
- Müller C., Analysis of spherical symmetries in euclidian spaces, Applied Mathematical Sciences,
Vol. 129, New York, Springer-Verlag, 1998.
 
- Schmidt D., Wolf G., A method of generating integral
             relations by the simultaneous separability of generalized
             Schrödinger equations, SIAM J. Math. Anal., 1979, V.10, 823-838.
 
- Stieltjes T.J., Sur certains polynômes qui vérifient
             une équation différentielle linéaire
             du second ordre et sur la théorie des fonctions de Lamé,
             Acta Math., 1885, V.5, 321-326.
 
- Szegö G., Orthogonal polynomials, Fourth edition,
              Providence, American Mathematical Society, 1975.
 
- Volkmer H., Expansion in products of Heine-Stieltjes polynomials,
             Constr. Approx., 1999, V.15, 467-480.
 
- Whittaker E.T., Watson G.N., A course in modern analysis, Cambridge,
             Cambridge Univ. Press, 1927.
 
- Xu Y., Orthogonal polynomials for a family
             of product weight functions on the spheres,
             Canad. J. Math., 1997, V.49, 175-192.
 
- Xu Y., Harmonic polynomials associated with
             reflection groups, Canad. Math. Bull., 2000, V.43, 496-507.
 
 
 | 
 |