| 
 SIGMA 2 (2006), 079, 4 pages      math-ph/0609081     
https://doi.org/10.3842/SIGMA.2006.079 
Contribution to the Proceedings of the O'Raifeartaigh Symposium 
u-Deformed WZW Model and Its Gauging
Ctirad Klimčík
 Institute de mathématiques de Luminy,  163, Avenue de Luminy, 13288 Marseille, France
 
 
Received September 28, 2006; Published online November 13, 2006 
Abstract
 
We review the description of  a particular deformation
of the WZW  model. The resulting theory exhibits
 a Poisson-Lie symmetry with  a non-Abelian cosymmetry group and  can be vectorially gauged.
  
Key words:
gauged WZW model; Poisson-Lie symmetry. 
pdf (167 kb)  
ps (134 kb)  
tex (8 kb)
 
 
References
 
- Balog J., Fehér L., Palla L., Chiral extensions of the WZNW phase space,
Poisson-Lie symmetries and groupoids, Nucl. Phys. B, 2000,
V.568, 503-542,
hep-th/9910046.
 
- Klimčík C.,  Quasitriangular WZW model, Rev. Math. Phys.,
 2004, V.16, 679-808,  hep-th/0103118.
 
- Klimčík C., Poisson-Lie symmetry and q-WZW model,
in  Proceedings of the 4th International  Symposium "Quantum
Theory and Symmetries" (August 15-21, 2005, Varna),
 Sofia, Heron Press, 2006, V.1, 382-393, hep-th/0511003.
 
- Klimčík C., On moment maps associated to a twisted Heisenberg double,
Rev. Math. Phys., 2006, V.18, 781-821,
math-ph/0602048.
 
- Semenov-Tian-Shansky M.,  Poisson Lie groups, quantum duality principle and the twisted quantum double,
Theor. Math. Phys., 1992, V.93, 1292-1307,
hep-th/9304042.
 
- Witten E., Non-Abelian bosonisation in two dimensions,  Comm. Math. Phys., 1984, V.92,  455-472.
 
 
 | 
 |