| 
 SIGMA 3 (2007), 018, 7 pages      hep-lat/0702016     
https://doi.org/10.3842/SIGMA.2007.018 
Contribution to the Proceedings of the O'Raifeartaigh Symposium 
Lattice Field Theory with  the Sign Problem and the Maximum Entropy Method
Masahiro Imachi a, Yasuhiko Shinno b and Hiroshi  Yoneyama c
 a) Kashiidai, Higashi-ku, Fukuoka, 813-0014, Japan
 b) Takamatsu National College of Technology, Takamatsu 761-8058,  Japan
 c) Department of Physics, Saga University, Saga, 840-8502, Japan
 
 
Received September 30, 2006, in final form January 19, 2007; Published online February 05, 2007 
Abstract
 
Although  numerical simulation in lattice field theory is one of the most effective tools to study
  non-perturbative properties of field theories, it faces serious obstacles coming  from  the  sign problem in some theories such as
  finite density QCD and lattice field theory with  the
  θ term.  We  reconsider this problem  from the point of view of the maximum
  entropy method.
  
 Key words:
lattice field theory; sign problem; maximum  entropy method. 
pdf (622 kb)  
ps (434 kb)  
tex (664 kb)
 
 
References
 
- Bryan R.K., Maximum entropy analysis of oversampled data problems, Eur. Biophys. J. 18 (1990),   165-174.
 
- Jarrell  M.,  Gubernatis J.E., Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data, Phys. Rep. 269 (1996),  133-195.
 
- Asakawa M.,  Hatsuda T., Nakahara Y.,  Maximum entropy analysis of the spectral functions in lattice QCD,
 Prog. Part. Nuclear Phys.  46 (2001),  459-508, hep-lat/0011040.
 
- Imachi M., Shinno Y.,  Yoneyama H.,  Maximum entropy method approach to q term, Progr. Theoret. Phys.   111 (2004),  387-411, hep-lat/0309156.
 
- Imachi M., Shinno Y., Yoneyama H., True or fictitious flattening?: MEM and the q  term, hep-lat/0506032.
 
- Imachi M., Shinno Y.,  Yoneyama H., Sign problem and MEM in lattice field theory with the q term,  Progr. Theoret. Phys. 115 (2006), 931-949,
    hep-lat/0602009.
 
- 't Hooft  G., Topology of the gauge condition and new confinement phases in non-Abelian gauge theories,  Nuclear Phys. B  190 (1981), 455-478.
 
- Cardy J.L., Rabinovici E., Phase structure of Zp  models in the presence of a q parameter,  Nuclear Phys. B 205  (1982),  1-16.
 
- Cardy J. L.,  Duality and the parameter in Abelian lattice models,  Nuclear Phys. B 205 (1982),  17-26.
 
- Seiberg N.,   Topology in strong coupling, Phys. Rev. Lett. 53 (1984),  637-640.
 
- Bhanot G., Rabinovici E.,  Seiberg N.,  Woit P.,
     Lattice vacua,   Nuclear Phys. B 230 (1984),  291-298.
 
- Wiese U.-J.,  Numerical simulation of lattice q-vacua: the 2-d U(1) gauge theory as a test case,  Nuclear Phys. B  318 (1989),  153-175.
 
- Plefka J.C., Samuel S.,  Monte Carlo studies of two-dimensional systems with a q  term,  Phys. Rev. D 56 (1997),  44-54, hep-lat/9704016.
 
- Imachi M.,   Kanou  S., Yoneyama H.,  Two-dimensional CP2 model with q term and topological charge distributions,  Progr. Theoret. Phys. 102 (1999),  653-670,
    hep-lat/9905035.
 
- Hasenfratz P., Niedermayer F., Perfect lattice action for asymptotically free theories,  Nuclear Phys. B 414 (1994),  785-814,hep-lat/9308004.
 
- Burkhalter R., Imachi M.,  Shinno Y.,  Yoneyama H., CPN-1 models with q term and fixed point action
 Progr. Theoret. Phys. 106 (2001),   613-640, hep-lat/0103016.
 
 
 | 
 |