| 
 SIGMA 3 (2007), 025, 10 pages      math-ph/0702048     
https://doi.org/10.3842/SIGMA.2007.025 
Contribution to the Vadim Kuznetsov Memorial Issue 
Quantum Super-Integrable Systems as Exactly Solvable Models
Allan P. Fordy
 Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
 
 
Received November 14, 2006, in final form February 05, 2007; Published online February 14, 2007 
Abstract
 
We consider some examples of quantum super-integrable systems and the
associated nonlinear extensions of Lie algebras.  The intimate relationship
between super-integrability and exact solvability is illustrated.
Eigenfunctions are constructed through the action of the commuting operators.
Finite dimensional representations of the quadratic algebras are thus
constructed in a way analogous to that of the highest weight representations of
Lie algebras.
  
 Key words:
quantum integrability; super-integrability; exact solvability; Laplace-Beltrami. 
pdf (215 kb)  
ps (154 kb)  
tex (14 kb)
 
 
References
 
- Boyer C.P., Kalnins E.G., Winternitz P.,
 Completely integrable relativistic Hamiltonian systems and
  separation of variables in Hermitian hyperbolic spaces,
 J. Math. Phys. 24 (1983), 2022-2034.
 
- Daskaloyannis C.,
Quadratic Poisson algebras of two-dimensional classical
superintegrable systems and quadratic associative algebras of quantum
superintegrable systems, J. Math. Phys. 42 (2001), 1100-1119,
math-ph/0003017.
 
- Fordy A.P.,  Symmetries, ladder operators and quantum integrable systems,
Glasg. Math. J. 47 (2005), 65-75.
 
- Fordy A.P.,  Darboux related quantum integrable systems on a constant curvature
surface,  J. Geom. Phys. 56 (2006), 1709-1727.
 
- Gilmore R.,
Lie groups, Lie algebras and some of their applications,
Wiley, New York, 1974.
 
- Harnad J., Vinet L., Yermolayeva O., Zhedanov A.,
Two-dimensional Krall-Sheffer polynomials and integrable systems,
J. Phys. A: Math. Gen. 34 (2001), 10619-10625.
 
- Humphreys J.E.,
Introduction to Lie algebras and representation theory,
 Springer-Verlag, Berlin, 1972.
 
- Infeld L., Hull T., The factorization method,
Rev. Modern Phys. 23 (1951), 21-68.
 
- Kalnins E.G., Kress J.M., Pogosyan G.S., Miller W.Jr.,
 Completeness of superintegrability in two-dimensional
  constant-curvature spaces,
 J. Phys. A: Math. Gen. 34 (2001), 4705-4720, math-ph/0102006.
 
- Kalnins E.G., Miller W.Jr., Hakobyan Ye.M., Pogosyan G.S.,
 Superintegrability on the two-dimensional hyperboloid. II,
 J. Math. Phys. 40 (1999), 2291-2306,
 quant-ph/9907037.
 
- Kalnins E.G., Miller  W.Jr., Pogosyan G.S.,
 Exact and quasiexact solvability of second-order superintegrable
  quantum systems. I. Euclidean space preliminaries,
 J. Math. Phys. 47 (2006), 033502, 30 pages, math-ph/0412035.
 
- Krall H.L., Sheffer I.M.,
 Orthogonal polynomials in two variables,
 Ann. Mat. Pura Appl. (4) 76 (1967), 325-376.
 
- Kuznetsov V.B.,
 Hidden symmetry of the quantum Calogero-Moser system,
 Phys. Lett. A 218 (1996), 212-222, solv-int/9509001.
 
- Tempesta P., Turbiner A.V., Winternitz P.,
 Exact solvability of superintegrable systems,
 J. Math. Phys. 42 (2001), 4248-4257, hep-th/0011209.
 
- Vinet L., Zhedanov A.,
 Two-dimensional Krall-Sheffer polynomials and quantum systems on
  spaces of constant curvature,
 Lett. Math. Phys. 65 (2003), 83-94.
 
 
 | 
 |