| 
 SIGMA 3 (2007), 100, 21 pages      arXiv:0710.2585     
https://doi.org/10.3842/SIGMA.2007.100 
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson 
Conformal Dirichlet-Neumann Maps and Poincaré-Einstein Manifolds
A. Rod Gover
 Department of Mathematics,   The University of Auckland, Private Bag 92019, Auckland 1,
  New Zealand
 
 
Received October 07, 2007; Published online October 21, 2007 
Abstract
 
A conformal description of Poincaré-Einstein manifolds is
  developed: these structures are seen to be a special case of a
  natural weakening of the Einstein condition termed an almost
  Einstein structure. This is used for two purposes: to shed light on
  the relationship between the scattering construction of
  Graham-Zworski and the higher order conformal Dirichlet-Neumann maps
  of Branson and the author; to sketch a new construction of non-local
  (Dirichlet-to-Neumann type) conformal operators between tensor bundles.
  
 Key words:
conformal differential geometry; Dirichlet-to-Neumann maps. 
pdf (361 kb)  
ps (227 kb)  
tex (31 kb)
 
 
References
 
- Albin P., Renormalizing curvature integrals
on Poincaré-Einstein manifolds, math.DG/0504161.
 
- Anderson M., L2 curvature and volume
renormalization of AHE metrics on 4-manifolds, Math. Res. Lett. 8 (2001), 171-188, math.DG/0011051.
 
- Armstrong S., Definite signature conformal
    holonomy: a complete classification, math.DG/0503388.
 
- Bailey T.N.,   Eastwood M.G., Gover A.R.,  Thomas's structure bundle for
  conformal, projective and related structures, Rocky Mountain J.   Math. 24 (1994), 1191-1217.
 
- Branson T., Sharp
    inequalities, the functional determinant, and the complementary
    series, Trans. Amer. Math. Soc. 347 (1995), 3671-3742.
 
- Branson T.,  Gover A.R., Conformally invariant
  non-local operators,  Pacific J. Math.  201 (2001),  19-60.
 
- Branson  T., Gover A.R., Conformally
    invariant operators, differential forms, cohomology and a
    generalisation of Q-curvature, Comm. Partial Differential
    Equations 30 (2005),  1611-1669, math.DG/0309085.
 
- Branson T., Ólafsson G., Ørsted B., Spectrum generating operators, and intertwining operators for
representations induced from a maximal parabolic subgroup, J. Funct. Anal. 135 (1996), 163-205.
 
- Cartan E., Les espaces à connexion
conforme,  Ann. Soc. Pol. Math. 2 (1923), 171-202.
 
- Cap A.,  Gover A.R., Tractor calculi for
    parabolic geometries, Trans. Amer. Math. Soc. 354
    (2002), 1511-1548.
 
- Cap A., Gover A.R., Standard tractors and the conformal ambient metric construction,  Ann.      Global Anal. Geom.  24 (2003), 231-295, math.DG/0207016.
 
- Cap A., Soucek V.,
Curved Casimir operators and the BGG machinery, arXiv:0708.3180.
 
- Cap A., Slovák J., Soucek V.,
    Bernstein-Gelfand-Gelfand sequences, Ann. of Math. (2) 
    154 (2001), 97-113, math.DG/0001164.
 
- Chang A., Qing J., Yang P., On the
renormalized volumes for conformally compact Einstein manifolds,
math.DG/0512376.
 
- Cherrier P., Problèmes de Neumann non
linéaires sur les variétés riemanniennes, J. Funct. Anal.
57 (1984), 154-206.
 
- Derdzinski A., Maschler G., Special
    Kähler-Ricci potentials on compact Kähler manifolds, J. Reine
  Angew. Math. 593 (2006), 73-116, math.DG/0204328.
 
- Eastwood M.G., Notes on conformal differential
geometry, Supp. Rend. Circ. Matem. Palermo 43
(1996), 57-76.
 
- Eastwood M.G., Rice J., Conformally invariant
  differential operators on Minkowski space and their curved
  analogues,  Comm. Math. Phys. 109 (1987), 207-228,
Erratum, Comm. Math. Phys. 144 (1992), 213.
 
- Fefferman C., Graham C.R., The ambient
metric, arXiv:0710.0919.
 
- Gover A.R., Aspects of parabolic invariant
    theory,  The 18th Winter School "Geometry and Physics" (Srní,
  1998),   Rend. Circ. Mat. Palermo (2) Suppl.  no. 59 (1999),
  25-47.
 
- Gover A.R., Almost conformally Einstein
    manifolds and obstructions, in Proceedings of the 9th International Conference "Differential Geometry and Its
Applications" (Matfyzpress, Prague, 2005),  2005, 247-260,   math.DG/0412393.
 
- Gover A.R., Laplacian operators and
    Q-curvature on conformally Einstein manifolds, Math.
  Ann., 336 (2006), 311-334, math.DG/0506037.
 
- Gover A.R., Nurowski P., Obstructions to
  conformally Einstein metrics in n dimensions, J. Geom. Phys.
  56 (2006), 450-484, math.DG/0405304.
 
- Gover A.R., Peterson L., Conformally
    invariant powers of the Laplacian, Q-curvature, and tractor
    calculus, Comm. Math. Phys.  235 (2003),  339-378, math-ph/0201030.
 
- Gover A.R., Almost Einstein manifolds in
    Riemannian signature, in preparation.
 
- Gover A.R., Silhan J., Commuting
    linear operators and decompositions; applications to Einstein
    manifolds, math.AC/0701377.
 
- Gover A.R., Silhan J.,
Conformal operators on forms and detour complexes on Einstein manifolds,
arXiv:0708.3854.
 
- Gover A.R., Silhan J., The conformal
    Killing equation on forms - prolongations and applications,
 Differential Geom. Appl., to appear, math.DG/0601751.
 
- Gover A.R., Somberg P., Soucek V., Yang-Mills
  detour complexes and conformal geometry, Comm. Math. Phys., to
  appear, math.DG/0606401.
 
- Graham C.R., Volume and area renormalizations
    for conformally compact Einstein metrics, in The Proceedings of the
    19th Winter School "Geometry and Physics" (Srní, 1999), Rend.     Circ. Mat. Palermo (2) Suppl. no. 63 (2000), 31-42.
 
- Graham C.R., Dirichlet-to-Neumann map for
Poincaré-Einstein metrics, Oberwolfach Reports 2
(2005), 2200-2203.
 
- Graham C.R., Jenne R., Mason L.J., Sparling G.A.,
Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. 46 (1992), 557-565.
 
- Graham C.R., Lee J.M., Einstein metrics with
    prescribed conformal infinity on the ball, Adv. Math.
    87 (1991), 186-225.
 
- Graham C.R., Zworski M., Scattering matrix in
    conformal geometry,  Invent. Math. 152  (2003), 89-118, math.DG/0109089.
 
- Grubb G., Functional calculus of pseudodifferential
boundary problems, 2nd ed., Birkhäuser, Boston, 1996.
 
- Guillarmou C., Meromorphic properties of the
    resolvent on asymptotically hyperbolic manifolds, Duke Math. J.
  129 (2005), 1-37, math.SP/0311424.
 
- Guillarmou C., Guillopé L., The
    determinant of the Dirichlet-to-Neumann map for surfaces with
    boundary, math.SP/0701727.
 
- Hörmander L., The analysis of linear partial
differential operators III, Springer-Verlag, Berlin, 1985.
 
- Joshi M., Sá Barreto A., Inverse scattering
    on asymptotically hyperbolic manifolds, Acta Math. 184
  (2000), 41-86, math.SP/9811118.
 
- Kumano-go H., Pseudo-differential operators,
MIT Press, Cambridge, 1974.
 
- Maldacena J., The large N limit of superconformal
    field theories and supergravity, Adv. Theor. Math.     Phys. 2 (1998), 231-252, hep-th/9711200.
 
- Mazzeo R., The Hodge cohomology of a
      conformally compact metric, J. Differential Geom. 28
    (1988), 309-339.
 
- Mazzeo R., Unique continuation at infinity
      and embedded eigenvalues for asymptotically hyperbolic
      manifolds, Amer. J. Math.  113  (1991),  25-45.
 
- Mazzeo  R., Melrose R., Meromorphic
      extension of the resolvent on complete spaces with
      asymptotically constant negative curvature,  J. Funct. Anal.
      75 (1987), 260-310.
 
- Perry P., The Laplace operator on a
        hyperbolic manifold. II. Eisenstein series and the scattering
        matrix, J. Reine Angew. Math. 398 (1989), 67-91.
 
- Sasaki S., On the spaces with normal
    conformal connexions whose groups of holonomy fix a point or a hypersphere II, Japan J. Math. 18 (1943), 623-633.
 
- Silhan J., Invariant operators in conformal
geometry, PhD thesis, University of Auckland, 2006.
 
- Thomas T.Y., On conformal geometry,
 Proc. Natl. Acad. Sci. USA
  12 (1926), 352-359.
 
- Witten E., Anti de Sitter space and holography,
Adv. Theor. Math. Phys. 2  (1998),
    253-291, hep-th/9802150.
 
 
 | 
 |