| 
 SIGMA 4 (2008), 025, 14 pages      arXiv:0802.3445     
https://doi.org/10.3842/SIGMA.2008.025 
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics 
Free Field Construction of D-Branes in Rational Models of CFT and Gepner Models
Sergei E. Parkhomenko
 Landau Institute for Theoretical Physics Chernogolovka, Russia
 
 
Received October 30, 2007, in final form February 14, 2008; Published online February 23, 2008 
Abstract
 
This is a review article of my recent papers on free
field construction of D-branes in N = 2 superconformal minimal
models and Gepner models.
  
 Key words:
strings; D-branes; conformal field theory; free field construction; minimal models; Gepner models. 
pdf (268 kb)  
ps (182 kb)  
tex (18 kb)
 
 
References
 
- Polchinski J., Dirichlet branes and Ramond-Ramond
charges,
 Phys. Rev. Lett. 75 (1995), 4724-4727, hep-th/9510017.
 
Polchinski J., TASI lectures on D-branes,
hep-th/9611050. 
- Gepner D., Space-time supersymmetry in compactified string
theory and superconformal models, Nuclear Phys. B  296
(1988), 757-778.
 
- Feigin B.L., Fuchs D.B., Invariant skew-symmetric differential operators on
line and Verma modules over the Virasoro algebra,
Funct. Anal. Appl.  16  (1982), 114-126.
 
Feigin B.L., Fuchs D.B., Representations of Virasoro algebra, in
Seminar on Supermanifolds 5, Editors D. Leites, Reports of Dept.
Math. Stockholm Univ., 1986. 
- Malikov F.G., Feigin B.L., Fuchs D.B., Singular vectors
in Verma modules over Kac-Moody algebras, Funktsional. Anal.
i Prilozhen. 20 (1986), no. 2, 25-37, 96 (in Russian).
 
- Feigin B.L., Frenkel E., Representations of affine
Kac-Moody algebras and bosonization, Physics and
Mathematics of Strings, Vol. 271,
World Sci. Publishing, Teaneck,  1990.
 
Feigin B.L., Frenkel E., Affine Kac-Moody algebras and
semi-infinite flag manifolds,  Comm. Math. Phys. 
128 (1990), 161-189. 
- Felder G., BRS Approach to minimal models, Nuclear Phys. B  317 (1989), 215-236.
 
Bernard D., Felder G., Fock representations and BRSt cohomology in
SL(2) current algebra, Comm. Math. Phys. 127
(1990), 145-168. 
- Dotsenko V.S., Fateev V.A., Conformal algebra and multipoint correlation
functions in 2D statistical models,  Nuclear Phys. B 240 (1984). 312-348.
 
Dotsenko V.S., Fateev V.A., Four point correlation functions and operator
algebra in 2D conformal invariant field theory with central charge c < 1,  Nuclear Phys. B 251
(1985), 691-734. 
- Dotsenko V.S., Solving the SU(2) conformal field theory
using the Wakimoto free field representation, Nuclear Phys. B 358
(1991), 547-570.
 
- Parkhomenko S.E., BRST construction of D-branes in SU(2) WZW model, Nuclear Phys. B 617
(2001), 198-214,
hep-th/0103142.
 
- Parkhomenko S.E., Free field construction of D-branes
in N = 2 minimal models, Nuclear Phys. B 671 (2003),
325-342,
hep-th/0301070.
 
- Parkhomenko S.E., Free field approach to D-branes in Gepner models, Nuclear Phys. B 731 (2005), 360-388,
hep-th/0412296.
 
- Parkhomenko S.E., Free field representation of
permutation D-branes in Gepner models, J. Exp. Theor. Phys.
102 (2006), 902-919,
hep-th/0512322.
 
- Ishikawa H., Watamura S., Free field realization of
D-brane in group manifold, J. High Energy Phys.  2000
(2000), no. 8, 044, 23 pages,
hep-th/0007141.
 
- Feigin B.L., Semikhatov A.M., Sirota V.A., Tipunin
I.Yu., Resolutions and characters of irredicible representations
of the N = 2 superconformal algebra, Nuclear Phys. B 
536 (1998), 617-656,
hep-th/9805179.
 
- Schwimmer A., Seiberg N., Comments on the N = 2,3,4 superconformal
algebras in two dimensions, Phys. Lett. B 
184 (1987), 191-196.
 
- Feigin B.L., Semikhatov A.M., Free field resolutions of
the unitary N = 2 super-Virasoro representations,
hep-th/9810059.
 
- Cardy J.L., Boundary conditions, fusion rules and the Verlinde
formula, Nuclear Phys. B 324
(1989), 581-596.
 
- Sen A., Tachyon condensation on the brane antibrane
system, J. High Energy Phys. 1998 (1998), no. 8, 012,
6 pages,
hep-th/9805170.
 
- Gelfand S., Manin Yu., Methods of homological algebra,
Springer-Verlag, Berlin,  1996.
 
- Okuda T., Takayanagi T., Ghost D-branes, J. High
Energy Phys. 2006 (2006), no. 3, 062, 39 pages,
hep-th/0601024.
 
- Recknagel A., Schomerus V., D-branes in Gepner models, Nuclear Phys. B
531 (1998), 185-225,
hep-th/9712186.
 
- Eguchi T.,  Ooguri H., Taormina A., Yang S.-K., Superconformal algebras and string
compactification on manifolds with SU(n) holonomy,
Nuclear Phys. B 315 (1989) 193-221.
 
- Fuchs J., Schweigert C., Walcher J., Projections in
string theory and boundary states for Gepner models, Nuclear
Phys. B 588 (2000), 110-148,
hep-th/0003298.
 
- Recknagel A., Permutation branes, J. High Energy
Phys. 2003 (2003), no. 4, 041, 27 pages,
hep-th/0208119.
 
- Malikov F., Schechtman V., Vaintrob A., Chiral de Rham
complex, Comm. Math. Phys. 204 (1999), 439-473,
math.AG/9803041.
 
- Frenkel E., Schestney M., Chiral de Rham complex on
orbifolds,
math.AG/0307181.
 
- Diaconescu D., Gomis J., Fractional branes and boundary
states in orbifold theories, J. High Energy Phys.  
2000 (2000), no. 10, 001, 48 pages,
hep-th/9906242.
 
 
 | 
 |