| 
 SIGMA 4 (2008), 054, 12 pages      arXiv:0807.1966     
https://doi.org/10.3842/SIGMA.2008.054 
Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics
Dieter Schuch a and Marcos Moshinsky b
 a) Institut für
Theoretische Physik, Goethe-Universität Frankfurt am Main,
Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
 b) Instituto de Física, Universidad Nacional Autónoma de
  México, Apartado Postal  20-364, 01000 México D.F., México
 
 
Received February 06, 2008, in final form June 08, 2008; Published online July 14, 2008 
Abstract
 
For classical canonical
transformations, one can, using the Wigner transformation, pass
from their representation in Hilbert space to a kernel in phase
space. In this paper it will be discussed how the time-dependence of the
uncertainties of the corresponding time-dependent quantum problems can
be incorporated into this formalism.
  
 Key words:
canonical transformations; Wigner function; time-dependent quantum mechanics; quantum uncertainties. 
pdf (232 kb)  
ps (157 kb)  
tex (17 kb)
 
 
References
 
- Moshinsky M., Smirnov Y.F., The harmonic oscillator in modern
physics, Harwood Academic Publishers, Amsterdam, 1996.
 
- Osborne T.A., Molzahn F.H., Moyal quantum mechanics: the
  semiclassical Heisenberg dynamics,  Ann. Physics 241 (1995), 79-127.
 
- Dias N.C., Prata J.N., Features of Moyal trajectories, 
    J. Math. Phys. 48 (2007), 012109, 23 pages.
 
- Krivoruchenko M.I., Fuchs C., Faessler A., Semiclassical
  expansion of quantum characteristics for many-body potential scattering
  problem, Ann. Phys. (8) 16 (2007), 587-614, nucl-th/0605015.
 
- Krivoruchenko M.I., Faessler A., Weyl's symbols of
  Heisenberg operators of canonical coordinates and momenta as quantum
  characteristics, J. Math. Phys. 48 (2007), 052107, 22 pages, quant-ph/0604075.
 
- Schuch D., Moshinsky M., Transition from quantum to classical
  behavior for some simple model systems, Rev. Mex. Fis. 51
  (2005), 516-524.
 
- García-Calderón G., Moshinsky M., Wigner distribution
  function and the representation of canonical transformations in quantum
  mechanics, J. Phys. A: Math. Gen. 13 (1990), L185-L188.
 
- Moshinsky M., Quesne C., Linear canonical transformations and
  their unitary representations, J. Math. Phys. 12 (1971), 1772-1780.
 
- Mello P.A., Moshinsky M., Nonlinear canonical transformations
  and their representations in quantum mechanics, J. Math. Phys. 16 (1975), 2017-2028.
 
-  Wigner E.P., On the quantum correction for thermodynamic
  equilibrium, Phys. Rev. 40 (1932), 749-759.
 
- Schuch D., Moshinsky M., Connection between quantum-mechanical
  and classical time-evolution via a dynamical invariant, Phys. Rev. A
  73 (2006), 062111, 10 pages.
 
- Feynman R.P., Hibbs A.R., Quantum mechanics and path
    integrals, McGraw-Hill, New York, 1965.
 
- Schuch D., On the complex relations between equations describing
  the dynamics of wave and particle aspects, Internat. J. Quantum Chem. 42 (1992), 663-683.
 
- Ermakov V.P., Second-order differential equations, conditions of
  complete integrability, Univ. Izv. Kiev 20 (1880), no. 9, 1-25.
 
- Lewis H.R., Classical and quantum systems with time-dependent
harmonic-oscillator-type Hamiltonians, Phys. Rev. Lett. 18 (1967), 510-512.
 
- Schuch D., On the relation between the Wigner function and an
  exact dynamical invariant, Phys. Lett. A 338 (2005), 225-231.
 
- Kim Y.S., Wigner E.P., Canonical transformation in quantum
  mechanics, Am. J. Phys. 58 (1990), 439-448.
 
- Kim Y.S., Noz M.E., Phase space picture of quantum mechanics;
  group theoretical approach, Lecture Notes in Physics, Vol. 40, World
    Scientific, Singapore, Chapter 3.3, 1991.
 
- O'Connell R.F., The Wigner distribution function - 50th birthday,
  Found. Phys. 13 (1983), 83-92.
 
- Schuch D., Riccati and Ermakov equations in time-dependent and
  time-independent quantum systems, SIGMA 4 (2008), 043, 16 pages, arXiv:0805.1687.
 
- Dias N.C., Classicality criteria, J. Math. Phys. 43
  (2002), 5882-5901, quant-ph/9912034.
 
- Dodonov V.V., Universal integrals of motion and universal
  invariants of quantum systems, J. Phys. A: Math. Gen. 33 (2000), 7721-7738.
 
- Atakishiyev N.M., Chumakov S.M., Rivera A.L., Wolf K.B., On
  the phase space description of quantum nonlinear dynamics, 
    Phys. Lett. A 215 (1996), 128-134.
 
- Rivera A.L., Atakishiyev N.M., Chumakov S.M., Wolf K.B.,
  Evolution under polynomial Hamiltonians in quantum and optical phase space,
  Phys. Rev. A 55 (1997), 876-889.
 
- Sarlet W., Class of Hamiltonians with one degree-of-freedom allowing
applications of Kruskal's asymptotic theory in closed form. II, Ann. Physics 92 (1975), 248-261.
 
 
 | 
 |