| 
 SIGMA 4 (2008), 083, 9 pages      arXiv:0812.0739     
https://doi.org/10.3842/SIGMA.2008.083 
Contribution to the Special Issue on Dunkl Operators and Related Topics 
A Limit Relation for Dunkl-Bessel Functions of Type A and B
Margit Rösler a  and Michael Voit b
 a) Institut für Mathematik, TU Clausthal,
Erzstr. 1, D-38678 Clausthal-Zellerfeld, Germany
 b) Fachbereich Mathematik, TU Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
 
 
Received October 21, 2008, in final form November 26, 2008; Published online December 03, 2008 
Abstract
 
We prove a limit relation for the Dunkl-Bessel function of type BN
with multiplicity parameters k1 on the roots ±ei and k2 on  ±ei±ej where k1 tends to infinity and the arguments
are suitably scaled. It gives a good approximation
in terms of the Dunkl-type Bessel function of type AN−1 with multiplicity k2. For certain values of k2 an improved estimate is obtained from a corresponding limit relation
for Bessel functions on matrix cones.
  
 Key words:
Bessel functions; Dunkl operators; asymptotics. 
pdf (241 kb)  
ps (170 kb)  
tex (12 kb)
 
 
References
 
- Baker T.H., Forrester P.J., The Calogero-Sutherland model and generalized classical polynomials,  Comm. Math. Phys. 188  (1997),  175-216, solv-int/9608004.
 
- Baker  T.H., Forrester  P.J., Nonsymmetric Jack polynomials and integral kernels,
Duke Math. J. 95 (1998), 1-50, q-alg/9612003.
 
- Dunkl  C.F., Xu  Y., Orthogonal polynomials of several variables,
Encyclopedia of Mathematics and Its Applications, Vol. 81, Cambridge University Press, Cambridge, 2001.
 
- Faraut  J., Korányi  A., Analysis on symmetric cones, Oxford
 Science Publications,
The Clarendon Press, Oxford University Press, New York, 1994.
 
- Gross  K., Richards  D., Special functions of matrix argument
 I. Algebraic induction, zonal polynomials, and hypergeometric functions,
 Trans. Amer. Math. Soc. 301  (1987), 781-811.
 
- Helgason S., Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure and Applied Mathematics, Vol. 113, Academic Press, Inc., Orlando, FL, 1984.
 
- Herz  C.S., Bessel functions of matrix argument,
Ann. of Math. (2) 61 (1955), 474-523.
 
- Kaneko  J., Selberg integrals and hypergeometric functions
associated with Jack polynomials, SIAM J. Math. Anal. 24 (1993),  1086-1100.
 
- Knop  F., Sahi  S., A recursion and combinatorial formula
  for Jack polynomials, Invent. Math. 128 (1997), 9-22, q-alg/9610016.
 
- Opdam  E.M., Dunkl operators, Bessel functions and the
discriminant of a finite Coxeter group, Compositio Math. 85
(1993), 333-373.
 
- Rösler  M., Dunkl operators: theory and applications, in
 Orthogonal Polynomials and Special Functions (Leuven, 2002), Editors E. Koelink  et al.,
Springer Lect. Notes Math., Vol. 1817, Springer, Berlin, 2003, 93-135, math.CA/0210366.
 
- Rösler  M., A positive radial product formula for the Dunkl kernel,
Trans. Amer. Math. Soc. 355 (2003), 2413-2438, math.CA/0210137.
 
- Rösler  M.,  Bessel convolutions on matrix cones,
 Compos. Math.  143 (2007), 749-779, math.CA/0512474.
 
- Rösler  M., Voit  M., Limit theorems for radial
random walks on p×q matrices as p tends to infinity,   Math. Nachr.,  to appear, math.CA/0703520.
 
- Stanley  R.P., Some combinatorial properties
of Jack symmetric functions, Adv. Math. 77 (1989), 76-115.
 
- Voit  M., A limit theorem for  isotropic random walks
on Rd for d®¥, Russian J. Math. Phys. 3 (1995),
 535-539.
 
- Watson  G.N., A treatise on the theory of Bessel functions,
Cambridge University Press, Cambridge, 1966.
 
 
 | 
 |