| 
 SIGMA 4 (2008), 091, 13 pages      arXiv:0812.4365     
https://doi.org/10.3842/SIGMA.2008.091 
Contribution to the Special Issue on Dunkl Operators and Related Topics 
External Ellipsoidal Harmonics for the Dunkl-Laplacian
Hans Volkmer
 Department of Mathematical Sciences,
University of Wisconsin-Milwaukee, P. O. Box 413, Milwaukee, WI 53201, USA
 
 
Received September 22, 2008, in final form December 18, 2008; Published online December 23, 2008 
Abstract
 
The paper introduces external ellipsoidal and external
sphero-conal h-harmonics for the Dunkl-Laplacian. These external
h-harmonics admit integral representations,  and they are
connected by a formula of Niven's type. External h-harmonics in
the plane are expressed in terms of Jacobi polynomials
Pnα,β and Jacobi's functions
Qnα,β of the second kind.
  
 Key words:
external ellipsoidal harmonics; Stieltjes polynomials; Dunkl-Laplacian; fundamental solution; Niven's formula; Jacobi's function of the second kind. 
pdf (268 kb)  
ps (181 kb)  
tex (15 kb)
 
 
References
 
- Arscott F.M., Periodic differential equations. An introduction to Mathieu, Lamé, and allied functions, International Series of Monographs in Pure and Applied Mathematics, Vol. 66, A Pergamon Press Book, The Macmillan Co., New York, 1964.
 
- Ben Saïd S., Ørsted B., The wave equation for Dunkl operators,
             Indag. Math. (N.S.) 16 (2005), 351-391.
 
- Blimke J., Myklebust J., Volkmer H., Merrill S., Four-shell ellipsoidal model employing multipole expansion in ellipsoidal coordinates, Med. Biol. Eng. Comput. 46 (2008), 859-869.
 
- Dassios G., The magnetic potential for the ellipsoidal MEG problem, J. Comput. Math. 25
             (2007), 145-156.
 
- Dassios G., Kariotou F., Magnetoencephalography in ellipsoidal geometry,
             J. Math. Phys. 44 (2003), 220-241.
 
- de Jeu M.F.E., The Dunkl transform, Invent. Math. 113 (1993), 147-162.
 
- Dunkl C.F., Reflection groups and orthogonal polynomials on the sphere,
             Math. Z. 197 (1988), 33-60.
 
- Dunkl C.F., A Laguerre polynomial orthogonality and the hydrogen atom,
             Anal. Appl. (Singap.) 1 (2003), 177-188, math-ph/0011021.
 
- Dunkl C.F., Xu Y., Orthogonal polynomials of several variables,
             Encyclopedia of Mathematics and Its Applications, Vol. 81, Cambridge University Press, Cambridge, 2001.
 
- Evans L., Partial differential equations, Graduate Studies in Mathematics, Vol. 19,
             American Mathematical Society, Providence, RI, 1998.
 
- Heine E., Handbuch der Kugelfunktionen, Vol. 1,
             G. Reimer Verlag, Berlin, 1878.
 
- Heine E., Handbuch der Kugelfunktionen, Vol. 2,
             G. Reimer Verlag, Berlin, 1881.
 
- Hikami K., Boundary K-matrix, elliptic Dunkl operator and
             quantum many-body systems, J. Phys. A: Math. Gen. 29 (1996), 2135-2147.
 
- Hobson E.W., The theory of spherical and ellipsoidal harmonics,
             Cambridge University Press, Cambridge, 1931.
 
- Kalnins E.G., Miller W. Jr., Jacobi elliptic coordinates, functions of Heun
             and Lamé type and the Niven transform, Regul. Chaotic Dyn. 10 (2005), 487-508.
 
- Niven W.D., On ellipsoidal harmonics, Phil. Trans. Royal Society London A
             182 (1891), 231-278.
 
- Rösler M., Dunkl operators: theory and applications,
             in Orthogonal Polynomials and Special Functions (Leuven, 2002),
             Lecture Notes in Math., Vol. 1817, Springer, Berlin, 2003, 93-135, math.CA/0210366.
 
- Rösler M., Voit M., Markov processes related with Dunkl operators,
             Adv. in Appl. Math. 21 (1998), 575-643.
 
- Stieltjes T.J., Sur certains polynômes qui vérifient
             une équation différentielle linéaire
             du second ordre et sur la théorie des fonctions de Lamé,
             Acta Math. 5 (1885), 321-326.
 
- Szegö G., Orthogonal polynomials, 4th ed.,
             American Mathematical Society, Providence, R.I., 1975.
 
- Volkmer H., Generalized ellipsoidal and sphero-conal harmonics,
             SIGMA 2 (2006), 071, 16 pages, math.CA/0610718.
 
- Whittaker E.T., Watson G.N., A course in modern analysis,
             Cambridge University Press, Cambridge, 1927.
 
- Xu Y., Orthogonal polynomials for a family
             of product weight functions on the spheres,
             Canad. J. Math. 49 (1997), 175-192.
 
 
 | 
 |