| 
 SIGMA 5 (2009), 003, 37 pages      arXiv:0809.2605     
https://doi.org/10.3842/SIGMA.2009.003 
Contribution to the Special Issue on Kac-Moody Algebras and Applications 
Quiver Varieties and Branching
Hiraku Nakajima a, b
 a) Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
 b) Research Institute for Mathematical Sciences, Kyoto University,
Kyoto 606-8502, Japan
 
 
Received September 15, 2008, in final form January 05, 2009; Published online January 11, 2009 
Abstract
 
Braverman and Finkelberg  recently proposed the
  geometric Satake correspondence for the affine Kac-Moody group
Gaff [Braverman A., Finkelberg M.,  arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on
  the Uhlenbeck compactification of the framed moduli space of
Gcpt-instantons on R4/Zr correspond to weight
  spaces of representations of the Langlands dual group GaffÚ
  at level r. When G = SL(l), the Uhlenbeck compactification is
  the quiver variety of type sl(r)aff, and their conjecture
  follows from the author's earlier result and I. Frenkel's level-rank
  duality. They further introduce a convolution diagram which
  conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008].
  In this paper, we develop the theory for the
  branching in quiver varieties and check this conjecture for G = SL(l).
  
 Key words:
quiver variety; geometric Satake correspondence; affine Lie algebra; intersection cohomology. 
pdf (563 kb)  
ps (343 kb)  
tex (53 kb)
 
 
References
 
- Bando S.,  Einstein-Hermitian metrics on noncompact  Kähler
  manifolds, in Einstein Metrics and Yang-Mills connections (Sanda, 1990),
 Lecture Notes in Pure and Appl. Math., Vol. 145, Dekker, New York, 1993,
27-33.
 
- Baranovsky V.,  Moduli of sheaves on surfaces and action of the oscillator
  algebra, J. Differential Geom. 55 (2000),  193-227, math.AG/9811092.
 
- Borho W., MacPherson R.,  Partial resolutions of nilpotent varieties,
  in Analysis and Topology on Singular Spaces, II, III (Luminy, 1981),
 Astérisque, Vol. 101, Soc. Math. France, Paris, 1983,  23-74.
 
- Braverman A., Finkelberg M.,  Pursuing the double affine Grassmannian
  I: transversal slices via instantons on Ak-singularities, arXiv:0711.2083.
 
- Braverman A., Finkelberg M., Private communication, 2008.
 
- Braverman A., Kazhdan D., The spherical Hecke algebra for affine
  Kac-Moody groups I, arXiv:0809.1461.
 
- Chriss N., Ginzburg V.,  Representation theory and complex geometry,
  Birkhäuser Boston Inc., Boston, MA, 1997.
 
- Crawley-Boevey W., Geometry of the moment map for representations of
  quivers, Compositio Math. 126 (2001),   257-293.
 
- Frenkel I.B., Representations of affine Lie algebras, Hecke modular
  forms and Korteweg-de Vries type equations, in Lie Algebras and Related
  Topics (New Brunswick, N.J., 1981), Lecture Notes in Math., Vol. 933,
  Springer, Berlin - New York, 1982, 71-110.
 
- Grojnowski I., Instantons and affine algebras. I. The Hilbert
  scheme and vertex operators, Math. Res. Lett. 3 (1996),  275-291,
  alg-geom/9506020.
 
- Hasegawa K., Spin module versions of Weyl's reciprocity theorem for
  classical Kac-Moody Lie algebras - an application to branching rule
  duality, Publ. Res. Inst. Math. Sci. 25 (1989),  741-828.
 
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge
  University Press, Cambridge, 1990.
 
- Kashiwara M., Saito Y., Geometric construction of crystal bases, Duke
  Math. J. 89 (1997),  9-36,  q-alg/9606009.
 
- King A.D.,  Moduli of representations of finite-dimensional algebras,
 Quart. J. Math. Oxford Ser. (2) 45 (1994),  515-530.
 
- Kronheimer P.B.,  The construction of ALE spaces as hyper-Kähler
  quotients, J. Differential Geom. 29 (1989),    665-683.
 
- Kronheimer P.B., Nakajima H., Yang-Mills instantons on ALE
  gravitational instantons, Math. Ann. 288 (1990),   263-307.
 
- Lusztig G.,  Green polynomials and singularities of unipotent classes,
 Adv. in Math. 42 (1981),  169-178.
 
- Lusztig G.,  Canonical bases arising from quantized enveloping algebras.
  II, in Common
  Trends in Mathematics and Quantum Field Theories (Kyoto, 1990),
  Progr. Theoret. Phys. Suppl. (1990), no. 102, 175-201.
 
- Malkin A.,  Tensor product varieties and crystals: the ADE case, Duke
  Math. J. 116 (2003),  477-524, math.AG/0103025.
 
- Mirkovic I., Vilonen K.,  Perverse sheaves on affine
  Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000),
 13-24, math.AG/9911050.
 
- Nagao K.,  Quiver varieties and Frenkel-Kac construction,   math.RT/0703107.
 
- Nakajima H., Instantons on ALE spaces, quiver varieties, and
  Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416.
 
- Nakajima H., Varieties associated with quivers, in Representation Theory of
  Algebras and Related Topics (Mexico City, 1994), CMS Conf. Proc., Vol. 19,
  Amer. Math. Soc., Providence, RI, 1996, 139-157.
 
- Nakajima H., Quiver varieties and Kac-Moody algebras, Duke Math. J.
  91 (1998), 515-560.
 
- Nakajima H., Lectures on Hilbert schemes of points on surfaces, University
  Lecture Series, Vol. 18, American Mathematical Society, Providence, RI, 1999.
 
- Nakajima H., Quiver varieties and finite-dimensional representations of
  quantum affine algebras, J. Amer. Math. Soc. 14 (2001),
  145-238, math.QA/9912158.
 
- Nakajima H., Quiver varieties and tensor products, Invent. Math.
  146 (2001), 399-449, math.QA/0103008.
 
- Nakajima H., Geometric construction of representations of affine algebras,
  in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing,
  2002), Higher Ed. Press, Beijing, 2002, 423-438, math.QA/0212401.
 
- Nakajima H.,  Reflection functors for quiver varieties and Weyl group
  actions, Math. Ann. 327 (2003), 671-721.
 
- Nakajima H.,  Sheaves on ALE spaces and quiver varieties, Mosc. Math. J.
  7 (2007),  699-722.
 
- Nakanishi T., Tsuchiya A.,  Level-rank duality of WZW models in
  conformal field theory, Comm. Math. Phys. 144 (1992),
  351-372.
 
- Rudakov A.,  Stability for an abelian category, J. Algebra 197
  (1997),   231-245.
 
- Saito Y., Crystal bases and quiver varieties, Math. Ann. 324
  (2002),  675-688, math.QA/0111232.
 
 
 | 
 |