| 
 SIGMA 5 (2009), 005, 10 pages      arXiv:0901.1858     
https://doi.org/10.3842/SIGMA.2009.005 
Contribution to the Proceedings of the VIIth Workshop ''Quantum Physics with Non-Hermitian Operators'' 
Generalized Nonanalytic Expansions, PT-Symmetry  and Large-Order Formulas for Odd Anharmonic Oscillators
Ulrich D. Jentschura a,  Andrey Surzhykov b and Jean Zinn-Justin c
 a) Department of Physics, Missouri University of Science
and Technology, Rolla MO65409-0640, USA
 b) Physikalisches Institut der Universität, Philosophenweg 12, 69120 Heidelberg, Germany
  c) CEA, IRFU and Institut de Physique Théorique, Centre de Saclay, F-91191 Gif-Sur-Yvette, France
 
 
Received October 30, 2008, in final form January 07, 2009; Published online January 13, 2009 
Abstract
 
The concept of a generalized nonanalytic expansion
which involves nonanalytic combinations of exponentials,
logarithms and powers of a coupling is introduced and its use
illustrated in various areas of physics.
Dispersion relations for the resonance energies of odd anharmonic
oscillators are discussed, and higher-order formulas are presented
for cubic and quartic potentials.
  
 Key words:
PT-symmetry; asymptotics; higher-order corrections; instantons. 
pdf (2415 kb)  
ps (1490 kb)  
tex (831 kb)
 
 
References
 
- Bender C.M., Wu T.T.,  Anharmonic oscillator, Phys. Rev. 184 (1969),
  1231-1260.
 
- Bender C.M., Wu T.T., Large-order behavior of perturbation theory,
  Phys. Rev. Lett. 27 (1971), 461-465.
 
- Bender C.M., Wu T.T., Anharmonic oscillator. II. A study in
  perturbation theory in large order, Phys. Rev. D 7 (1973), 1620-1636.
 
- Le Guillou J.C., Zinn-Justin J.,  Critical exponents for the n-vector
  model in three dimensions from field theory, Phys. Rev. Lett. 39 (1977),
  95-98.
 
- Le Guillou J.C., Zinn-Justin J., Critical exponents from field theory,
  Phys. Rev. B 21 (1980), 3976-3998.
 
- Itzykson C., Zuber J.B., Quantum field theory, McGraw-Hill, New York,
  1980.
 
- Pachucki K., Effective Hamiltonian approach to the bound state:
  Positronium hyperfine structure, Phys. Rev. A 56 (1997), 297-304.
 
- Erickson G.W., Yennie D.R.,  Radiative level shifts. I. Formulation and
  lowest order Lamb shift, Ann. Physics 35 (1965), 271-313.
 
- Erickson G.W., Yennie D.R.,  Radiative level shifts. II. Higher order
  contributions to the Lamb shift, Ann. Physics 35 (1965), 447-510.
 
- Karshenboim S.G.,  Two-loop logarithmic corrections in the hydrogen Lamb
  shift, J. Phys. B 29 (1996), L29-L31.
 
- Pachucki K.,  Logarithmic two-loop corrections to the Lamb shift in
  hydrogen, Phys. Rev. A 63 (2001), 042503, 8 pages, physics/0011044.
 
- Jentschura U.D., Pachucki K., Two-loop self-energy corrections to the fine structure, J. Phys. A: Math. Gen. 35 (2002), 1927-1942, hep-ph/0111084.
 
- Oppenheimer J.R., Three notes on the quantum theory of aperiodic
  fields, Phys. Rev. 31 (1928), 66-81.
 
- Zinn-Justin J., Jentschura U. D., Multi-instantons and exact results. I. Conjectures, WKB expansions, and instanton interactions, Ann. Physics
  313 (2004), 197-267, quant-ph/0501136.
 
- Zinn-Justin J., Jentschura U.D., Multi-instantons and exact
  results. II. Specific cases, higher-order effects, and numerical
  calculations, Ann. Physics 313 (2004), 269-325, quant-ph/0501137.
 
- Jentschura U.D., Zinn-Justin J., Instanton in quantum mechanics
  and resurgent expansions, Phys. Lett. B 596 (2004), 138-144, hep-ph/0405279.
 
- Bender C.M., Boettcher S., Real spectra in non-Hermitian Hamiltonians
having PT-symmetry, Phys. Rev. Lett. 80 (1998), 5243-5246, physics/9712001.
 
- Bender C.M., Dunne G.V., Large-order perturbation theory for a
  non-Hermitian PT-symmetric Hamiltonian, J. Math. Phys. 40
  (1999), 4616-4621, quant-ph/9812039.
 
- Bender C.M., Boettcher S., Meisinger P.N., PT-symmetric quantum mechanics, J. Math. Phys. 40 (1999), 2201-2229, quant-ph/9809072.
 
- Bender C.M., Brody D.C., Jones H.F., Complex extension of quantum
  mechanics, Phys. Rev. Lett. 89 (2002), 270401, 4 pages,
  Erratum, Phys. Rev. Lett. 92 (2004), 119902, quant-ph/0208076.
 
- Jentschura U.D., Surzhykov A., Zinn-Justin J., Unified treatment of
  even and odd anharmonic oscillators of arbitrary degree, Phys. Rev. Lett.
  102 (2009), 011601, 4 pages.
 
- Zinn-Justin J., Quantum field theory and critical phenomena, 3rd
ed., Clarendon Press, Oxford, 1996.
 
- Zinn-Justin J., Intégrale de chemin en mécanique quantique:
  Introduction, CNRS Éditions, Paris, 2003.
 
- Feinberg J., Peleg Y., Self-adjoint Wheeler-DeWitt operators, the
  problem of time, and the wave function of the Universe, Phys. Rev. D 52
  (1995), 1988-2000, hep-th/9503073.
 
- Jentschura U.D., Surzhykov A., Lubasch M., Zinn-Justin J., Structure,
  time propagation and dissipative terms for resonances, J. Phys. A: Math. Theor. 41 (2008),
  095302, 16 pages, arXiv:0711.1073.
 
- Benassi L., Grecchi V., Harrell E., Simon B., Bender-Wu formula and the
  Stark effect in hydrogen, Phys. Rev. Lett. 42 (1979), 704-707,
 Erratum,  Phys. Rev. Lett. 42 (1979), 1430.
 
- Pham F., Fonctions résurgentes implicites, C. R. Acad. Sci. Paris Sér. I Math.
  309 (1989), no. 20, 999-1004.
 
- Delabaere E., Dillinger H., Pham F., Développements semi-classiques exacts
  des niveaux d'énergie d'un oscillateur à une dimension, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 4, 141-146.
 
- Candelpergher B., Nosmas J.C., Pham F., Approche de la Résurgence,
  Hermann, Paris, 1993.
 
- Andrianov A.A., Cannata F., Giacconi P.,  Kamenshchik A.Y., Regoli D.,
Two-field cosmological models and large-scale cosmic magnetic fields,
J. Cosmol. Astropart. Phys. 2008 (2008), no. 10, 019, 12 pages,
arXiv:0806.1844.
 
 
 | 
 |