| 
 SIGMA 5 (2009), 014, 17 pages      math.QA/0210264     
https://doi.org/10.3842/SIGMA.2009.014 
Contribution to the Special Issue on Kac-Moody Algebras and Applications 
Simple Finite Jordan Pseudoalgebras
Pavel Kolesnikov
 Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave.,
630090 Novosibirsk, Russia
 
 
Received September 12, 2008, in final form January 10, 2009; Published online January 30, 2009 
Abstract
 
We consider the structure of
Jordan H-pseudoalgebras which are linearly finitely
generated over a Hopf algebra H.
There are two cases under consideration:
H = U(h)
and
H = U(h) # C[Γ],
where h is
a finite-dimensional Lie algebra over C,
Γ is an arbitrary group acting on
U(h) by automorphisms.
We construct
an analogue of the Tits-Kantor-Koecher
construction for finite Jordan pseudoalgebras
and describe all simple ones.
  
 Key words:
Jordan pseudoalgebra; conformal algebra; TKK-construction. 
pdf (300 kb)  
ps (202 kb)  
tex (22 kb)
 
 
References
 
- Bakalov B., D'Andrea A., Kac V.G.,
Theory of finite pseudoalgebras, Adv. Math. 162 (2001), 1-140, math.QA/0007121.
 
- Beilinson A.A., Drinfeld V.G.,
Chiral algebras,
American Mathematical Society Colloquium Publications, Vol. 51,
American Mathematical Society, Providence, RI, 2004.
 
- Belavin A.A., Polyakov A.M., Zamolodchikov A.B.,
Infinite conformal symmetry in two-dimensional quantum field theory,
Nuclear Phys. B 241 (1984), 333-380.
 
- Borcherds R.E.,
Vertex algebras, Kac-Moody algebras, and the Monster,
Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 3068-3071.
 
- D'Andrea A., Kac V.G.,
Structure theory of finite conformal algebras,
Selecta Math. (N.S.) 4 (1998), 377-418.
 
- Fattori D., Kac V.G.,
Classification of finite simple Lie conformal superalgebras,
J. Algebra 258 (2002),    23-59, math-ph/0106002.
 
- Kac V.G.,
Vertex algebras for beginners, 2nd ed.,
University Lecture Series, Vol. 10, American Mathematical Society, Providence, RI, 1998.
 
- Kac V.G.,
Formal distribution algebras and conformal algebras,
in Proceedinds of XII-th International Congress in Mathematical Physics (ICMP'97)
(Brisbane), Int. Press, Cambridge, MA, 1999, 80-97, q-alg/9709027.
 
- Kac V.G., Retakh A.,
Simple Jordan conformal superalgebras,
J. Algebra Appl. 7 (2008),  517-533, arXiv:0801.0755.
 
- Kantor I.L.,
Classification of irreducible transitively differential groups,
Soviet Math. Dokl. 5 (1965), 1404-1407.
 
- Koecher M.,
Embedding of Jordan algebras into Lie algebras. I,
Amer. J. Math. 89 (1967), 787-816.
 
- Koecher M.,
Embedding of Jordan algebras into Lie algebras. II,
Amer. J. Math. 90 (1968), 476-510.
 
- Kolesnikov P.S.,
Identities of conformal algebras and pseudoalgebras,
Comm. Algebra 34 (2006), no. 6, 1965-1979, math.RA/0412397.
 
- Lambek J.,
Deductive systems and categories II.
 Standard constructions and closed categories,
 in Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One),
Springer, Berlin, 1969, 76-122.
 
- Roitman M.,
On free conformal and vertex algebras,
J. Algebra 217 (1999),   496-527, math.QA/9809050.
 
- Sweedler M.E.,
Cocommutative Hopf algebras with antipode,
Bull. Amer. Math. Soc. 73 (1967),   126-128.
 
- Sweedler M.E.,
Hopf algebras,
Mathematics Lecture Note Series,
W.A. Benjamin, Inc., New York, 1969.
 
- Tits J.,
Une classe d'algebres de Lie en relation   avec algebres de Jordan,
Indag. Math. 24 (1962), 530-535.
 
- Zelmanov E.I.,
On the structure of conformal algebras,
in Proceedings of Intern. Conf. on Combinatorial and Computational Algebra,
(May 24-29, 1999, Hong Kong)
Contemp. Math. 264 (2000), 139-153.
 
- Zhevlakov K.A., Slin'ko A.M., Shestakov I.P., Shirshov A.I.,
Rings that are nearly associative,
Pure and Applied Mathematics, Vol. 104, Academic Press, Inc., New York - London, 1982.
 
 
 | 
 |