| 
 SIGMA 5 (2009), 032, 11 pages      arXiv:0903.2647     
https://doi.org/10.3842/SIGMA.2009.032 
Contribution to the Special Issue on Kac-Moody Algebras and Applications 
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials
Helene Airault
 LAMFA CNRS UMR 6140, Insset, Université de Picardie Jules Verne,  48
rue Raspail, 02100 Saint-Quentin (Aisne), France
 
 
Received July 17, 2008, in final form March 07, 2009; Published online March 15, 2009 
Abstract
 
We obtain the Kirillov vector fields on the set of  functions f univalent  inside the unit  disk, in terms of the Faber polynomials of 1/f(1/z). Our construction relies on the  generating  function for Faber polynomials.
  
 Key words:
vector fields; univalent functions; Faber polynomials. 
pdf (224 kb)  
ps (152 kb)  
tex (12 kb)
 
 
References
 
- Airault H., Malliavin  P.,
Unitarizing probability measures for representations
of Virasoro algebra, J. Math. Pures Appl. (9) 80
(2001), 627-667.
 
- Airault H.,  Ren J., An algebra of differential
operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126 (2002), 343-367.
 
- Airault H.,    Neretin Yu.A., On the action of Virasoro algebra on the space of univalent functions, Bull. Sci. Math. 132 (2008), 27-39, arXiv:0704.2149.
 
- Kirillov A.A., Geometric approach to discrete series
of unirreps for Vir, J. Math. Pures Appl. (9) 77 (1998),
735-746.
 
- Kirillov  A.A., Yur'ev D.V., Kähler geometry of the infinite-dimensional homogeneous space M = Diff+(S1)/Rot(S1),  Funktsional. Anal. i Prilozhen. 21 (1987), no. 4, 35-46.
 
- Neretin Yu.A., Representations of Virasoro and affine Lie algebras, in  Representation Theory and Noncommutative Harmonic Analysis, I, Encyclopaedia Math. Sci., Vol. 22, Springer, Berlin, 1994, 157-234.
 
- Schaeffer A.C.,  Spencer D.C., Coefficients regions for schlicht functions, American Mathematical Society Colloquium Publications, Vol. 35, New York, 1950.
 
- Schiffer M., Faber polynomials in the theory
of univalent functions, Bull. Amer. Math. Soc. 54 (1948), 503-517.
 
 
 | 
 |