| 
 SIGMA 5 (2009), 037, 17 pages      arXiv:0903.4369     
https://doi.org/10.3842/SIGMA.2009.037 
Contribution to the Special Issue on Dunkl Operators and Related Topics 
Hilbert Transforms Associated with Dunkl-Hermite Polynomials
Néjib Ben Salem and Taha Samaali
 Department of Mathematics, Faculty of Sciences of Tunis,  Campus Universitaire, 2092  Tunis, Tunisia
 
 
Received October 14, 2008, in final form March 12, 2009; Published online March 25, 2009 
Abstract
 
We consider expansions of functions in Lp(R,|x|2kdx),  1 ≤ p < +∞ with respect to Dunkl-Hermite functions in the rank-one setting.
We actually define the heat-diffusion and Poisson integrals in the one-dimensional Dunkl setting and study their properties. Next, we define and deal with Hilbert transforms and conjugate Poisson integrals in the same setting. The formers occur to be Calderón-Zygmund operators and hence their mapping properties follow from general results.
  
 Key words:
Dunkl operator; Dunkl-Hermite functions; Hilbert transforms; conjugate Poisson integrals; Calderón-Zygmund operators. 
pdf (252 kb)  
ps (180 kb)  
tex (13 kb)
 
 
References
 
- de Jeu M.F.E., The Dunkl transform,  Invent. Math.  113 (1993), 147-162.
 
- Dunkl C.F., Hankel transforms associated to finite reflection
groups, in   Hypergeometric Functions
on Domains of Positivity, Jack Polynomials and Applications (Tampa,
1991), Contemp. Math. 138 (1992), 123-138.
 
- El Garna A., The left-definite spectral theory for the Dunkl-Hermite differential-difference equation, J. Math. Anal. Appl.  298   (2004),  463-486.
 
- Gosselin J., Stempak K.,  Conjugate expansions for Hermite functions, Illinois J. Math.  38  (1994),    177-197.
 
- Journé J.-L.,  Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Mathematics, Vol. 994, Springer-Verlag, Berlin,  1983.
 
- Nowak A., Stempak K.,
Riesz transforms  for  the Dunkl harmonic oscillator,
Math. Z., to appear, arXiv:0802.0474.
 
- Rosenblum M., Generalized Hermite polynomials and the Bose-like oscillator calculus,
  in  Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992),  Oper. Theory Adv. Appl., Vol. 73, Birkhäuser, Basel, 1994, 369-396.
 
- Rösler M.,
Generalized Hermite polynomials and the heat equation for Dunkl operators,
Comm. Math. Phys. 192 (1998), 519-542, q-alg/9703006.
 
- Rösler M., Positivity of Dunkl's intertwining operator,
       Duke Math. J. 98 (1999), 445-463, q-alg/9710029.
 
- Stein E.M., Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, no. 63, Princeton University Press, Princeton, NJ, 1970.
 
- Stempak K., Torrea J.L.,
Poisson integrals and Riesz transforms for Hermite function expansions with weights,
J. Funct. Anal. 202 (2003), 443-472.
 
- Thangavelu S., Lectures on Hermite and Laguerre expansions, Mathematical Notes, Vol. 42, Princeton University Press, Princeton, NJ, 1993.
 
 
 | 
 |