| 
 SIGMA 5 (2009), 105, 11 pages      arXiv:0911.3875     
https://doi.org/10.3842/SIGMA.2009.105 
Noncommutative Root Space Witt, Ricci Flow, and Poisson Bracket Continual Lie Algebras
Alexander Zuevsky
 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
 Max-Planck Institut für Mathematik, Vivatsgasse 7, 53111, Bonn, Germany
 
 
Received August 21, 2009, in final form November 16, 2009; Published online November 19, 2009 
Abstract
 
We introduce new examples of mappings
 defining noncommutative root space generalizations
 for the Witt, Ricci flow, and Poisson bracket continual Lie algebras.
  
 Key words:
continual Lie algebras; noncommutative integrable models. 
pdf (227 kb)  
ps (141 kb)  
tex (14 kb)
 
 
References
 
- Atiyah M.F., Macdonald I.G.,
Introduction to commutative algebra,
Addison-Wesley Publishing Co., Reading, Mass. - London - Don Mills, Ont., 1969.
 
- Bakas I.,
Geometric flows and (some of) their physical applications,
hep-th/0511057.
 
- Bakas I.,
The algebraic structure of geometric flows in two dimensions
J. High Energy Phys. 2005 (2005), no. 10, 038, 52 pages,
hep-th/0507284.
 
- Bakas I.,
Ricci flows and their integrability in two  dimensions,
C. R. Phys. 6 (2005), 175-184,
hep-th/0410093.
 
- Berenstein A., Retakh V.,
Lie algebras and Lie groups over noncommutative rings,
Adv. Math.  218 (2008), 1723-1758,
math.QA/0701399.
 
- Devchand Ch., Saveliev M.V.,
Comultiplication for quantum deformations of the centreless  Virasoro algebra in the continuum formulation,
Phys. Lett. B 258 (1991), 364-368.
 
- Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.,
  Deformation theory and quantization. I. Deformation of symplectic structures,
Ann. Physics 111 (1978), 61-110.
 
Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.,
 Deformation theory and quantization. II. Physical applications,
 Ann. Physics 111 (1978), 111-151. 
- Dimakis A., Müller-Hoissen F.,
Bicomplexes and integrable models,
J. Phys. A: Math. Gen. 33 (2000), 6579-6591,
nlin.SI/0006029.
 
 Dimakis  A., Müller-Hoissen F.,
 Bicomplexes, integrable models, and noncommutative geometry,
Internat. J. Modern Phys. B 14 (2000), 2455-2460,
hep-th/0006005. 
- Grisaru M.T., Penati S.,
 An integrable noncommutative version of the sine-Gordon system,
Nuclear Phys. B  655 (2003), 250-276,
hep-th/0112246.
 
- Hamanaka M., Toda K.,
Towards noncommutative integrable systems,
Phys. Lett. A 316 (2003), 77-83,
hep-th/0211148.
 
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed.,
Cambridge, Cambridge University Press, 1990.
 
- Kashaev R.M., Saveliev M.V., Savelieva S.A., Vershik A.M.,
 On nonlinear equations associated with Lie algebras of diffeomorphism groups of two-dimensional manifolds,
in  Ideas and Methods in Mathematical Analysis, Stochastics, and Aapplications (Oslo, 1988),
Editors S. Albeverio, J.E. Fenstad, H. Holden and T. Lindstrom,
Cambridge University Press, Cambridge, 1992, 295-307.
 
- Leznov A.N., Saveliev M.V.,
Group-theoretical methods for integration of nonlinear dynamical systems,
Progress in Physics, Vol. 15, Birkhäuser Verlag, Basel, 1992.
 
- Reshetikhin N.Yu.,  Semenov-Tian-Shansky M.A.,
Central extensions of quantum current groups,
Lett. Math. Phys. 19 (1990), 133-142.
 
- Saveliev M.V.,
On an equation associated with the contact Lie algebras,
hep-th/9311035.
 
- Saveliev M.V.,
A nonlinear dynamical system related to the contact Lie algebras,
J.  Math. Sci. 82 (1996),  3832-3833.
 
- Saveliev M.V.,
 Integro-differential nonlinear equations and continual Lie algebras,
 Comm. Math. Phys. 121 (1989),  283-290.
 
- Saveliev M.V.,  Vershik A.M.,
Continuum analogues of contragredient Lie algebras (Lie algebras with a Cartan operator and nonlinear dynamical systems),
Comm. Math. Phys. 126 (1989), 367-378.
 
- Saveliev M.V.,  Vershik A.M.,
 New examples of continuum graded Lie algebras,
 Phys. Lett. A 143 (1990), 121-128.
 
- Saveliev M.V., Zuevsky A.B.,
Quantum vertex operators for the sine-Gordon model,
  Internat. J. Modern Phys. A 15 (2000),  3877-3897.
 
- Seiberg N., Witten E.,
String theory and noncommutative geometry,
J. High Energy Phys. 1999 (1999), no. 09, 032, 93 pages,
hep-th/9908142.
 
 Douglas M.R., Nekrasov N.A.,
 Noncommutative field theory,
Rev. Modern Phys. 73 (2001), 977-1029,
hep-th/0106048. 
- Zuevsky A.,
Continual Lie algebra bicomplexes and integrable models,
Czechoslovak J. Phys. 55 (2005), 1545-1551.
 
- Zuevsky A.,
Continual Lie algebras and noncommutative counterparts of exactly solvable models,
J. Phys. A: Math. Gen. 37 (2004), 537-547.
 
- Zuevsky A.,
 Non-commutative Ricci and Calabi flows,
Ann. Henri Poincaré 7 (2006), 1569-1578.
 
 
 | 
 |